The Loop & Sphere Theorems

Reading group on 3-manifolds

Alexis Marchand

February 2, 2023

Suppose that we have a loop $\gamma: S^1 \to M$ on a 3-manifold M and assume that γ is null-homotopic. This means that there is a map $f: D^2 \to M$ with $f_{|S^1} = \gamma$, where D^2 is the 2-dimensional disc, with $\partial D^2 = S^1$. The general problem that we are concerned with is, assuming that γ is regular enough, to upgrade f to a regular map. More specifically, we would like to answer the following:

Question 1. If $\gamma : S^1 \hookrightarrow M$ is a null-homotopic *embedded* loop, is there an embedding $f : D^2 \hookrightarrow M$ such that $f_{|S^1} = \gamma$?

Remark 2. If M is a surface, then the Jordan-Schönflies Theorem gives an affirmative answer to Question 1.

Dehn's Lemma, the Loop and Sphere Theorems

For 3-manifolds, an answer to Question 1 is given by Dehn's Lemma:

Lemma 3 (Dehn's Lemma [Deh10]). Let $f: D^2 \to M$ be a map that restricts to an embedding on some neighbourhood of $\partial D^2 = S^1$. Then $f_{|S^1}: S^1 \to M$ extends to an embedding $D^2 \hookrightarrow M$.

Dehn's original proof had a gap, but this was fixed by Papakyriakopoulos with the Loop and Sphere Theorems. We give a stronger version of the Loop's Theorem, due to Stallings:

Theorem 4 (Loop Theorem [Pap57, Sta60]). Let M be a 3-manifold and let B be a connected component of ∂M . Let N be a normal subgroup of $\pi_1 B$. If $\operatorname{Ker}(\pi_1 B \to \pi_1 M) \not\subseteq N$, then there is an embedding

$$g: (D^2, S^1) \hookrightarrow (M, B)$$

such that $[g_{|S^1}] \notin N$.

We first explain why the Loop Theorem implies Dehn's Lemma:

Proof (Loop \Rightarrow Dehn). Let $f: D^2 \to M$ be a map that restricts to an embedding on some neighbourhood of $\partial D^2 = S^1$. Consider R a regular neighbourhood of $f(S^1)$ in M, and let

$$M_1 = \overline{M \smallsetminus R}.$$

Hence M_1 is a 3-manifold, with boundary homeomorphic to the 2-torus T^2 . Apply the Loop Theorem to M_1 , with N = 1, $B = \partial M_1 \cong T^2$. Note that $\pi_1 B \cong \mathbb{Z}^2$, with basis $\{a, b\}$, where a and b are represented by simple closed curves on B, with $a = [f_{|S^1}]$. In particular, the existence of the map $f : D^2 \to M$ shows that a maps to 1 under $\pi_1 B \to \pi_1 M_1$. Hence, the Loop Theorem gives an embedding

$$g: (D^2, S^1) \hookrightarrow (M, B)$$

such that $[g_{|S^1}] \neq 1$. Set $c = [g_{|S^1}] \in \pi_1 B$, and write $c = ka + \ell b$, with $k, \ell \in \mathbb{Z}$. Since a and c map to 1 in $\pi_1 M_1$ and b does not, we must have $\ell = 0$. Moreover, c admits a simple closed curve representative in B, from which it follows that $k = \pm 1$. After possibly changing orientations, we may assume that k = 1, proving that $[g_{|S^1}] = [f_{|S^1}]$. After performing a homotopy in B, we obtain the result.

Papakyriakopoulos also proved the following:

Theorem 5 (Sphere Theorem). Let M be an orientable 3-manifold, and let $N \leq \pi_2 M$ be a proper $\pi_1 M$ -invariant subgroup. Then there is an embedding $g: S^2 \hookrightarrow M$ such that $[g] \notin N$.

Remark 6. The action of the fundamental group on higher homotopy groups is illustrated in Figure 1, interpreting $\pi_n(M, x)$ as the set of homotopy classes of maps $(D^n, \partial D^n) \to (M, x)$. In particular, if n = 1, then we recover the action

Figure 1: The action $\pi_1(M, x) \curvearrowright \pi_n(M, x)$.

of $\pi_1(M, x)$ by conjugation on itself.

Applying the Sphere Theorem with N = 1 yields a corollary worth stating separately:

Corollary 7. Let M be an orientable 3-manifold. If $\pi_2 M \neq 1$, then there is an embedding $S^2 \hookrightarrow M$ that is not null-homotopic.

Our goal for this talk is to give the main ideas of the proof of the Loop Theorem (in the case N = 1). We will follow [Hat07] and [Sta60].

The tower argument

Proof of Theorem 4 (for N = 1). Start with a map $f : (D^2, S^1) \to (M, \partial M)$ with $[f_{|S^1}] \neq 1$ in $\pi_1 B$. The goal is to upgrade f to an embedding.

The strategy is to construct a *tower*: starting with $f_0 = f : D^2 \to M$, pick a regular neighbourhood V_0 of $D_0 = \text{Im } f_0$ in $M_0 = M$. Then take a (connected) 2-sheeted cover $p_1 : M_1 \to V_0$. Since D^2 is simply-connected, f_0 lifts to a map $f_1 : D^2 \to M_1$. Now pick a regular neighbourhood V_1 of $D_1 = \text{Im } f_1$ in M_1 , and repeat the construction. One obtains the following commutative diagram:

Each V_i is a regular neighbourhood of $D_i = \text{Im } f_i$, and each $p_{i+1} : M_{i+1} \to V_i$ is a (connected) 2-sheeted cover.

Claim. The tower construction eventually terminates.

Proof. The idea is to measure the *singularity* of the maps f_i , and show that this becomes smaller at each step.

Given a (set-theoretic) map $f: X \to Y$, the singularity of f is the set

$$\mathcal{S}(f) = \{ (x_1, x_2) \in X \times X \mid f(x_1) = f(x_2) \}.$$

Observe that, given a commutative diagram

we have $\mathcal{S}(f) \subseteq \mathcal{S}(g)$, with equality if and only if the restriction of p to Im f is injective.

Therefore, we have a chain of proper inclusions

$$\cdots \subsetneq \mathcal{S}(f_{i+1}) \subsetneq \mathcal{S}(f_i) \subsetneq \cdots \subsetneq \mathcal{S}(f_1) \subsetneq \mathcal{S}(f_0).$$

For now, this is no more than a chain of closed subsets of $D^2 \times D^2$, so it could decrease indefinitely. To make the inductive argument work, we need to make the situation discrete. To do this, we *triangulate* the manifold M and the disc D^2 in such a way that the map $f: D^2 \to M$ is simplicial, and we perform the construction of the tower in such a way that all resulting spaces and maps are simplicial.

Therefore, $(\mathcal{S}(f_i))_{i\geq 0}$ is a strictly descending chain of subcomplexes of $D^2 \times D^2$, so it is eventually constant and the construction must terminate.

Now we have a finite tower as in (1). The next step is to see that, at the top of tower, the topology has become simpler and we can show there that $f_n: D^2 \to M_n$ is an embedding.

Lemma 8. Let M be a compact 3-manifold that has no connected 2-sheeted cover. Then every component of ∂M is a 2-sphere.

Proof. Note that connected 2-sheeted covers of M correspond to maps $\pi_1 M \to \mathbb{Z}/2$, which correspond to maps $H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2$. Hence, the assumption that M has no connected 2-sheeted cover means that

$$H_1\left(M;\mathbb{Z}/2\right) = 0$$

By Poincaré-Lefschetz Duality and the Universal Coefficient Theorem, it follows that $H_2(M, \partial M; \mathbb{Z}/2) \cong H^1(M; \mathbb{Z}/2) = 0$. Therefore, the long exact sequence of $(M, \partial M)$ is

$$\cdots \to H_2(M, \underset{=0}{\partial M}; \mathbb{Z}/2) \to H_1(\partial M; \mathbb{Z}/2) \to H_1(M; \mathbb{Z}/2) \to \cdots$$

It follows that $H_1(\partial M; \mathbb{Z}/2) = 0$. Since the only compact connected surface Σ with $H_1(\Sigma; \mathbb{Z}/2) = 0$ is the 2-sphere, it follows that every component of ∂M is a 2-sphere.

Hence, every component of ∂M_n is a 2-sphere. Now consider the preimage of ∂M_0 inside M_n . This is a planar surface F, so its fundamental group is generated by some loops in ∂F . One of these loops must be nontrivial in $\pi_1 F$ (because of the assumption that $[f_{|S^1}] \neq 1$ in $\pi_1 B$), and this loop bounds an embedded disc in ∂V_n . This yields an embedding

$$g^{(n)}: (D^2, S^1) \hookrightarrow (M_n, F)$$

with $\left[g_{|S^1}^{(n)}\right] \neq 1$ in $\pi_1 F$.

We have an embedding at the top of the tower; the final step is to descend back to M_0 . At each step of the tower, we produce at most double singularities, and they can be eliminating by some surgery operations. See [Hat07] or [Sta60] for more details. In the end, we obtain an embedding

$$g^{(0)}: (D^2, S^1) \hookrightarrow (M, B)$$

with $\left[g_{|S^1}^{(0)}\right] \neq 1$ in $\pi_1 B$.

Application of the Loop Theorem

We conclude with a simple application of the Loop Theorem to the classification of 3-manifolds. We are interested in classifying all prime 3-manifolds, and the following classifies those that have infinite cyclic fundamental group:

Proposition 9. Let M be an orientable compact connected 3-manifold. Assume that M is prime and $\pi_1 M \cong \mathbb{Z}$. Then $M \cong S^1 \times S^2$ (if $\partial M = \emptyset$) or $M \cong S^1 \times D^2$ (if $\partial M \neq \emptyset$).

Proof. Case 1: $\partial M \neq \emptyset$. Note that the only prime 3-manifold with a spherical boundary component is B^3 (which has $\pi_1 B^3 = 1$), so ∂M contains no 2-sphere. Moreover, dim $H_1(M; \mathbb{Q}) = 1$, so Poincaré-Lefschetz Duality and the Universal Coefficient Theorem give dim $H_2(M, \partial M; \mathbb{Q}) = \dim H^1(M; \mathbb{Q}) = 1$. Now consider the following commutative diagram, with vertical arrows given by Poincaré-Lefschetz Duality:

$$\cdots \to H_2(M, \partial M; \mathbb{Q}) \xrightarrow{\partial} H_1(\partial M; \mathbb{Q}) \xrightarrow{i_*} H_1(M; \mathbb{Q}) \longrightarrow \cdots$$

$$PD \downarrow \mathbb{R} \qquad PD \downarrow \mathbb{R} \qquad PD \downarrow \mathbb{R} \qquad PD \downarrow \mathbb{R} \qquad \cdots$$

$$\cdots \longrightarrow H^1(M; \mathbb{Q}) \xrightarrow{i^*} H^1(\partial M; \mathbb{Q}) \xrightarrow{\delta} H^2(M, \partial M; \mathbb{Q}) \to \cdots$$

Observe that

$$\operatorname{rk} \partial = \dim \operatorname{Im} \partial = \dim \operatorname{Ker} i_* = \dim \operatorname{Coker} i^* = \dim \operatorname{Coker} \partial$$
$$= \dim H_1(\partial M; \mathbb{Q}) - \operatorname{rk} \partial.$$

Therefore

$$\dim H_1(\partial M; \mathbb{Q}) = 2 \operatorname{rk} \partial \leq 2 \dim H_2(M, \partial M; \mathbb{Q}) = 2$$

It follows that ∂M is a 2-torus. In particular, the map $\pi_1(\partial M) \to \pi_1 M$ is not injective, so the Loop Theorem gives an embedding

$$g: \left(D^2, S^1\right) \hookrightarrow \left(M, \partial M\right)$$

with $[g_{|S^1}] \neq 1$ in $\pi_1(\partial M)$. Cutting M along $g(D^2)$ yields a splitting

$$M = N \sharp \left(S^1 \times D^2 \right).$$

But M is prime, so $N \cong S^3$.

Case 2: $\partial M = \emptyset$. Then we need the

Fact. Every class in $H_2(M)$ is represented by an embedded oriented closed surface $\Sigma \to M$, with every component of Σ mapping to $M \pi_1$ -injectively.

By Poincaré Duality and the Universal Coefficient Theorem, we have

$$H_2(M) \cong H^1(M) \cong H_1(M) \cong \mathbb{Z}.$$

$$M = N \sharp \left(S^1 \times S^2 \right),$$

and M is prime, so $N \cong S^3$.

References

- [Deh10] M. Dehn. Über die Topologie des dreidimensionalen Raumes. Math. Ann., 69(1):137–168, 1910.
- [Hat07] Allen Hatcher. Notes on basic 3-manifold topology. Available at pi.math.cornell.edu/~hatcher, 2007.
- [Pap57] C. D. Papakyriakopoulos. On Dehn's lemma and the asphericity of knots. Ann. of Math. (2), 66:1–26, 1957.
- [Sta60] John Stallings. On the loop theorem. Ann. of Math. (2), 72:12–19, 1960.