The Loop \& Sphere Theorems

Reading group on 3-manifolds

Alexis Marchand

February 2, 2023

Suppose that we have a loop $\gamma: S^{1} \rightarrow M$ on a 3 -manifold M and assume that γ is null-homotopic. This means that there is a map $f: D^{2} \rightarrow M$ with $f_{\mid S^{1}}=\gamma$, where D^{2} is the 2-dimensional disc, with $\partial D^{2}=S^{1}$. The general problem that we are concerned with is, assuming that γ is regular enough, to upgrade f to a regular map. More specifically, we would like to answer the following:

Question 1. If $\gamma: S^{1} \hookrightarrow M$ is a null-homotopic embedded loop, is there an embedding $f: D^{2} \hookrightarrow M$ such that $f_{\mid S^{1}}=\gamma$?

Remark 2. If M is a surface, then the Jordan-Schönflies Theorem gives an affirmative answer to Question 1 .

Dehn's Lemma, the Loop and Sphere Theorems

For 3-manifolds, an answer to Question 1 is given by Dehn's Lemma:
Lemma 3 (Dehn's Lemma Deh10). Let $f: D^{2} \rightarrow M$ be a map that restricts to an embedding on some neighbourhood of $\partial D^{2}=S^{1}$. Then $f_{\mid S^{1}}: S^{1} \rightarrow M$ extends to an embedding $D^{2} \hookrightarrow M$.

Dehn's original proof had a gap, but this was fixed by Papakyriakopoulos with the Loop and Sphere Theorems. We give a stronger version of the Loop's Theorem, due to Stallings:

Theorem 4 (Loop Theorem Pap57, Sta60). Let M be a 3-manifold and let B be a connected component of ∂M. Let N be a normal subgroup of $\pi_{1} B$. If $\operatorname{Ker}\left(\pi_{1} B \rightarrow \pi_{1} M\right) \nsubseteq N$, then there is an embedding

$$
g:\left(D^{2}, S^{1}\right) \hookrightarrow(M, B)
$$

such that $\left[g_{\mid S^{1}}\right] \notin N$.
We first explain why the Loop Theorem implies Dehn's Lemma:

Proof (Loop \Rightarrow Dehn). Let $f: D^{2} \rightarrow M$ be a map that restricts to an embedding on some neighbourhood of $\partial D^{2}=S^{1}$. Consider R a regular neighbourhood of $f\left(S^{1}\right)$ in M, and let

$$
M_{1}=\overline{M \backslash R}
$$

Hence M_{1} is a 3-manifold, with boundary homeomorphic to the 2-torus T^{2}. Apply the Loop Theorem to M_{1}, with $N=1, B=\partial M_{1} \cong T^{2}$. Note that $\pi_{1} B \cong \mathbb{Z}^{2}$, with basis $\{a, b\}$, where a and b are represented by simple closed curves on B, with $a=\left[f_{\mid S^{1}}\right]$. In particular, the existence of the map $f: D^{2} \rightarrow$ M shows that a maps to 1 under $\pi_{1} B \rightarrow \pi_{1} M_{1}$. Hence, the Loop Theorem gives an embedding

$$
g:\left(D^{2}, S^{1}\right) \hookrightarrow(M, B)
$$

such that $\left[g_{\mid S^{1}}\right] \neq 1$. Set $c=\left[g_{\mid S^{1}}\right] \in \pi_{1} B$, and write $c=k a+\ell b$, with $k, \ell \in \mathbb{Z}$. Since a and c map to 1 in $\pi_{1} M_{1}$ and b does not, we must have $\ell=0$. Moreover, c admits a simple closed curve representative in B, from which it follows that $k= \pm 1$. After possibly changing orientations, we may assume that $k=1$, proving that $\left[g_{\mid S^{1}}\right]=\left[f_{\mid S^{1}}\right]$. After performing a homotopy in B, we obtain the result.

Papakyriakopoulos also proved the following:
Theorem 5 (Sphere Theorem). Let M be an orientable 3-manifold, and let $N \lesseqgtr \pi_{2} M$ be a proper $\pi_{1} M$-invariant subgroup. Then there is an embedding $g: S^{2} \hookrightarrow M$ such that $[g] \notin N$.

Remark 6. The action of the fundamental group on higher homotopy groups is illustrated in Figure 1, interpreting $\pi_{n}(M, x)$ as the set of homotopy classes of maps $\left(D^{n}, \partial D^{n}\right) \rightarrow(M, x)$. In particular, if $n=1$, then we recover the action

Figure 1: The action $\pi_{1}(M, x) \curvearrowright \pi_{n}(M, x)$.
of $\pi_{1}(M, x)$ by conjugation on itself.
Applying the Sphere Theorem with $N=1$ yields a corollary worth stating separately:

Corollary 7. Let M be an orientable 3-manifold. If $\pi_{2} M \neq 1$, then there is an embedding $S^{2} \hookrightarrow M$ that is not null-homotopic.

Our goal for this talk is to give the main ideas of the proof of the Loop Theorem (in the case $N=1$). We will follow Hat07 and Sta60.

The tower argument

Proof of Theorem 4 (for $N=1$). Start with a map $f:\left(D^{2}, S^{1}\right) \rightarrow(M, \partial M)$ with $\left[f_{\mid S^{1}}\right] \neq 1$ in $\pi_{1} B$. The goal is to upgrade f to an embedding.

The strategy is to construct a tower: starting with $f_{0}=f: D^{2} \rightarrow M$, pick a regular neighbourhood V_{0} of $D_{0}=\operatorname{Im} f_{0}$ in $M_{0}=M$. Then take a (connected) 2-sheeted cover $p_{1}: M_{1} \rightarrow V_{0}$. Since D^{2} is simply-connected, f_{0} lifts to a map $f_{1}: D^{2} \rightarrow M_{1}$. Now pick a regular neighbourhood V_{1} of $D_{1}=\operatorname{Im} f_{1}$ in M_{1}, and repeat the construction. One obtains the following commutative diagram:

Each V_{i} is a regular neighbourhood of $D_{i}=\operatorname{Im} f_{i}$, and each $p_{i+1}: M_{i+1} \rightarrow V_{i}$ is a (connected) 2 -sheeted cover.

Claim. The tower construction eventually terminates.
Proof. The idea is to measure the singularity of the maps f_{i}, and show that this becomes smaller at each step.

Given a (set-theoretic) map $f: X \rightarrow Y$, the singularity of f is the set

$$
\mathcal{S}(f)=\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid f\left(x_{1}\right)=f\left(x_{2}\right)\right\}
$$

Observe that, given a commutative diagram

we have $\mathcal{S}(f) \subseteq \mathcal{S}(g)$, with equality if and only if the restriction of p to $\operatorname{Im} f$ is injective.

Therefore, we have a chain of proper inclusions

$$
\cdots \subsetneq \mathcal{S}\left(f_{i+1}\right) \subsetneq \mathcal{S}\left(f_{i}\right) \subsetneq \cdots \subsetneq \mathcal{S}\left(f_{1}\right) \subsetneq \mathcal{S}\left(f_{0}\right)
$$

For now, this is no more than a chain of closed subsets of $D^{2} \times D^{2}$, so it could decrease indefinitely. To make the inductive argument work, we need to make the situation discrete. To do this, we triangulate the manifold M and the disc D^{2} in such a way that the map $f: D^{2} \rightarrow M$ is simplicial, and we perform the construction of the tower in such a way that all resulting spaces and maps are simplicial.

Therefore, $\left(\mathcal{S}\left(f_{i}\right)\right)_{i \geq 0}$ is a strictly descending chain of subcomplexes of $D^{2} \times$ D^{2}, so it is eventually constant and the construction must terminate.

Now we have a finite tower as in (11). The next step is to see that, at the top of tower, the topology has become simpler and we can show there that $f_{n}: D^{2} \rightarrow M_{n}$ is an embedding.

Lemma 8. Let M be a compact 3-manifold that has no connected 2-sheeted cover. Then every component of ∂M is a 2-sphere.

Proof. Note that connected 2-sheeted covers of M correspond to maps $\pi_{1} M \rightarrow$ $\mathbb{Z} / 2$, which correspond to maps $H_{1}(M ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$. Hence, the assumption that M has no connected 2 -sheeted cover means that

$$
H_{1}(M ; \mathbb{Z} / 2)=0 .
$$

By Poincaré-Lefschetz Duality and the Universal Coefficient Theorem, it follows that $H_{2}(M, \partial M ; \mathbb{Z} / 2) \cong H^{1}(M ; \mathbb{Z} / 2)=0$. Therefore, the long exact sequence of $(M, \partial M)$ is

It follows that $H_{1}(\partial M ; \mathbb{Z} / 2)=0$. Since the only compact connected surface Σ with $H_{1}(\Sigma ; \mathbb{Z} / 2)=0$ is the 2 -sphere, it follows that every component of ∂M is a 2 -sphere.

Hence, every component of ∂M_{n} is a 2 -sphere. Now consider the preimage of ∂M_{0} inside M_{n}. This is a planar surface F, so its fundamental group is generated by some loops in ∂F. One of these loops must be nontrivial in $\pi_{1} F$ (because of the assumption that $\left[f_{\mid S^{1}}\right] \neq 1$ in $\pi_{1} B$), and this loop bounds an embedded disc in ∂V_{n}. This yields an embedding

$$
g^{(n)}:\left(D^{2}, S^{1}\right) \hookrightarrow\left(M_{n}, F\right)
$$

with $\left[g_{\mid S^{1}}^{(n)}\right] \neq 1$ in $\pi_{1} F$.
We have an embedding at the top of the tower; the final step is to descend back to M_{0}. At each step of the tower, we produce at most double singularities, and they can be eliminating by some surgery operations. See Hat07 or Sta60. for more details. In the end, we obtain an embedding

$$
g^{(0)}:\left(D^{2}, S^{1}\right) \hookrightarrow(M, B)
$$

with $\left[g_{\mid S^{1}}^{(0)}\right] \neq 1$ in $\pi_{1} B$.

Application of the Loop Theorem

We conclude with a simple application of the Loop Theorem to the classification of 3 -manifolds. We are interested in classifying all prime 3 -manifolds, and the following classifies those that have infinite cyclic fundamental group:

Proposition 9. Let M be an orientable compact connected 3-manifold. Assume that M is prime and $\pi_{1} M \cong \mathbb{Z}$. Then $M \cong S^{1} \times S^{2}$ (if $\partial M=\emptyset$) or $M \cong S^{1} \times D^{2}$ (if $\partial M \neq \emptyset$).

Proof. Case 1: $\partial M \neq \emptyset$. Note that the only prime 3 -manifold with a spherical boundary component is B^{3} (which has $\pi_{1} B^{3}=1$), so ∂M contains no 2-sphere. Moreover, $\operatorname{dim} H_{1}(M ; \mathbb{Q})=1$, so Poincaré-Lefschetz Duality and the Universal Coefficient Theorem give $\operatorname{dim} H_{2}(M, \partial M ; \mathbb{Q})=\operatorname{dim} H^{1}(M ; \mathbb{Q})=1$. Now consider the following commutative diagram, with vertical arrows given by Poincaré-Lefschetz Duality:

$$
\begin{aligned}
& \cdots \rightarrow H_{2}(M, \partial M ; \mathbb{Q}) \xrightarrow{\partial} H_{1}(\partial M ; \mathbb{Q}) \xrightarrow{i_{*}} H_{1}(M ; \mathbb{Q}) \longrightarrow \cdots
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\operatorname{rk} \partial & =\operatorname{dim} \operatorname{Im} \partial=\operatorname{dim} \operatorname{Ker} i_{*}=\operatorname{dim} \text { Coker } i^{*}=\operatorname{dim} \text { Coker } \partial \\
& =\operatorname{dim} H_{1}(\partial M ; \mathbb{Q})-\operatorname{rk} \partial
\end{aligned}
$$

Therefore

$$
\operatorname{dim} H_{1}(\partial M ; \mathbb{Q})=2 \operatorname{rk} \partial \leq 2 \operatorname{dim} H_{2}(M, \partial M ; \mathbb{Q})=2
$$

It follows that ∂M is a 2-torus. In particular, the map $\pi_{1}(\partial M) \rightarrow \pi_{1} M$ is not injective, so the Loop Theorem gives an embedding

$$
g:\left(D^{2}, S^{1}\right) \hookrightarrow(M, \partial M)
$$

with $\left[g_{\mid S^{1}}\right] \neq 1$ in $\pi_{1}(\partial M)$. Cutting M along $g\left(D^{2}\right)$ yields a splitting

$$
M=N \sharp\left(S^{1} \times D^{2}\right) .
$$

But M is prime, so $N \cong S^{3}$.
Case 2: $\partial M=\emptyset$. Then we need the
Fact. Every class in $H_{2}(M)$ is represented by an embedded oriented closed surface $\Sigma \rightarrow M$, with every component of Σ mapping to $M \pi_{1}$-injectively.

By Poincaré Duality and the Universal Coefficient Theorem, we have

$$
H_{2}(M) \cong H^{1}(M) \cong H_{1}(M) \cong \mathbb{Z}
$$

Hence pick a class in $H_{2}(M) \backslash 0$, and represent it by an embedded oriented closed surface $\Sigma \rightarrow M$ where each component is π_{1}-injective. But $\pi_{1} M \cong \mathbb{Z}$, so each component of Σ is a 2 -sphere. Again, this gives a splitting

$$
M=N \sharp\left(S^{1} \times S^{2}\right),
$$

and M is prime, so $N \cong S^{3}$.

References

[Deh10] M. Dehn. Über die Topologie des dreidimensionalen Raumes. Math. Ann., 69(1):137-168, 1910.
[Hat07] Allen Hatcher. Notes on basic 3-manifold topology. Available at pi.math.cornell.edu/ ~hatcher, 2007.
[Pap57] C. D. Papakyriakopoulos. On Dehn's lemma and the asphericity of knots. Ann. of Math. (2), 66:1-26, 1957.
[Sta60] John Stallings. On the loop theorem. Ann. of Math. (2), 72:12-19, 1960.

