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It is an observation usually attributed to Gromov that ‘a theorem that is true for all groups is
either trivial or of no importance’. Our goal in these notes will be to explore classes of groups that
contain a large number of relevant examples, and about which we can prove interesting statements.
Those groups are geometric in nature and are inspired by Gromov’s theory of hyperbolic groups.

Talk 1 – Overview of hyperbolic groups
Speaker: Alexis Marchand. Main reference: [GdlH90].

1.1 Prehistory
The theory of hyperbolic groups can be argued to date back from Dehn’s decision problems in
group theory. Given a group presentation 〈S | R〉, Dehn set two questions which have become
fundamental:

(i) Word problem: find an algorithm that decides, given a word w over S, whether w represents
the trivial element in 〈S | R〉.

(ii) Conjugacy problem: find an algorithm that decides, given two words w1 and w2 over S,
whether w1 and w2 represent conjugate elements in 〈S | R〉.

In 1912, Dehn proposed a solution to the word problem for fundamental groups of closed sur-
faces (surface groups for short). In modern language, he proved that surface groups have linear
isoperimetric function. Later, Dehn’s algorithm was abstracted and led to small cancellation the-
ory. A small cancellation group is, roughly, a group G with a presentation 〈S | R〉 in which there
is little overlap between the relators. However, small cancellation groups exclude many groups
of significant geometric interest. For example, they have cohomological dimension at most 2, so
fundamental groups of higher rank hyperbolic manifolds cannot be small cancellation groups.

Instead, in 1987, Gromov [Gro87] proposed a new method with a much stronger geometric
flavour, and that would have a long-lasting impact on the field.
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1.2 Definition and examples
The general idea is, given a finitely generated group G, to consider the geometric properties of
the metric spaces X equipped with a geometric action of G (i.e. a proper cocompact action by
isometries). By the Švarc-Milnor, all those spaces are quasi-isometric, and they are quasi-isometric
to Cayley graphs of G (with respect to finite generating sets).
Definition 1.1. Let (X, d) be a geodesic metric space. The following assertions are equivalent:
(i) (Rips-hyperbolicity) There is a constant δ ≥ 0 such that, given three points x, y, z ∈ X and

three geodesic segments [x, y], [y, z], [z, x] between them, we have

[x, z] ⊆ Nδ ([x, y]) ∪Nδ ([y, z]) ,

where Nδ(A) = {x ∈ X | d(x,A) < δ} for A ⊆ X.

(ii) (Gromov-hyperbolicity) There is a constant δ ≥ 0 such that the following inequality holds for
all x, y, z, ω ∈ X:

(x | y)ω ≥ min {(x | z)ω , (y | z)ω} − δ,
where (· | ·)ω is a ‘metric inner product’ defined by

(a | b)ω = d(a, ω) + d(b, ω)− d(a, b)
2 ,

for a, b ∈ X.
If these assertions are satisfied, we say that X is hyperbolic.
Example 1.2. (i) Trees are hyperbolic (and one can take δ = 0 in both definitions).

(ii) The hyperbolic plane H2 is hyperbolic (where δ is the radius of a disk of area 2π for Rips-
hyperbolicity).

(iii) The hyperbolic n-space Hn is hyperbolic (triangles in Hn are contained in copies of H2, so
this follows from hyperbolicity of H2).

One reason why hyperbolicity is a very nice notion is the following result:
Theorem 1.3. Hyperbolicity is a quasi-isometry invariant of geodesic metric spaces.

This allows one to give the following definition:
Definition 1.4. A finitely generated group G is hyperbolic if some (or any) of the geodesic spaces
on which it acts geometrically is hyperbolic.
Example 1.5. The following groups are hyperbolic:
(i) Free groups (acting geometrically on trees),

(ii) Fundamental groups of closed hyperbolic surfaces (acting geometrically on H2),

(iii) Fundamental groups of closed hyperbolic manifolds (acting geometrically on Hn),

(iv) C′
( 1

6
)
or C(7) small cancellation groups,

(v) Random groups,

(vi) Finite groups.
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1.3 Main properties
The Rips complex and applications. Hyperbolic groups have very rich structural properties.
Many of them can be deduced from the following fundamental theorem:

Theorem 1.6 (Rips). If G is a hyperbolic group, then there is a proper cocompact simplicial action
of G on a locally finite, finite-dimensional simplicial complex X.

Corollary 1.7. If G is a hyperbolic group, then

(i) G is finitely presented (and in fact of type F if it is torsion-free),

(ii) G has a finite number of conjugacy classes of torsion elements,

(iii) Hk (G;Q) = 0 for k large enough.

Algorithmic properties. Hyperbolic groups have solvable word and conjugacy problems.

Boundary. In the same way that one can equip the hyperbolic plane with its boundary at infinity,
there is a notion of boundary for hyperbolic spaces and groups that has great relevance in the study
of the dynamics of elements of the group.

Definition 1.8. Let X be a proper hyperbolic space.

• A geodesic ray in X is an isometric embedding ρ : R≥0 → X.

• We say that two geodesic rays ρ1, ρ2 in X are equivalent, and we write ρ1 ∼ ρ2, if

sup
t
d (ρ1(t), ρ2(t)) <∞.

• The (visual) boundary of X is the set

∂X = {geodesic rays ρ : R≥0 → X with ρ(0) = x0} / ∼

for a fixed basepoint x0.

One can define a topology on the set X̄ = X ∪ ∂X that makes it a compactification of X.
Remarkably, the boundary is a quasi-isometry invariant:

Proposition 1.9. If two hyperbolic spaces X1 and X2 are quasi-isometric, then ∂X1 and ∂X2 are
homeomorphic.

Definition 1.10. Given a hyperbolic group G, its boundary ∂G is defined to be the boundary of
any space X on which G acts geometrically.

Example 1.11. (i) The boundary of a free group is a Cantor set.

(ii) The boundary of a closed hyperbolic surface group is a circle.

(iii) The boundary of a closed hyperbolic 3-manifold group is a 2-sphere.

(iv) The boundary of the fundamental group of a compact hyperbolic 3-manifold with nonempty
boundary is a Sierpinski carpet.
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Hence, given a hyperbolic group G, there is an action G y ∂G by homeomorphisms, and we
can use it to read dynamical properties of elements of G:

Definition 1.12. If G y X is a geometric action of a hyperbolic group, and if H ≤ G is a
subgroup, the limit set of H is

Λ(H) = H · x0 ∩ ∂X

for a fixed choice of basepoint x0 ∈ X.

Proposition 1.13. Let G be a hyperbolic group acting geometrically on a space X, and let g ∈ G.
Then the following are equivalent:

(i) g has no fixed point in ∂X.

(ii) There is x0 ∈ X such that the orbit 〈g〉 · x0 is bounded.

(iii) For each x0 ∈ X, the orbit 〈g〉 · x0 is bounded.

(iv) Λ (〈g〉) = ∅.

We then say that g is elliptic.

Proposition 1.14. Let G be a hyperbolic group acting geometrically on a space X, and let g ∈ G.
Then the following are equivalent:

(i) g has at least one fixed point in ∂X.

(ii) There is x0 ∈ X such that the orbit 〈g〉 · x0 is a quasi-geodesic.

(iii) For each x0 ∈ X, the orbit 〈g〉 · x0 is a quasi-geodesic.

(iv) |Λ (〈g〉)| = 2.

We then say that g is loxodromic.

Proposition 1.15. Let G be a hyperbolic group acting geometrically on a space X. Given H ≤ G,
the following are equivalent:

(i) |Λ(H)| <∞.

(ii) |Λ(H)| ∈ {0, 2}.

(iii) H is virtually cyclic.

We then say that H is elementary.

SQ-universality. The following is another nice property that hyperbolic groups enjoy, and that
will be relevant when we discuss acylindrical hyperbolicity:

Definition 1.16. A group G is SQ-universal if every countable group embeds into some quotient
of G.

Theorem 1.17. Non-elementary hyperbolic groups are SQ-universal.

SQ-universality means that hyperbolic groups have a lot of quotients in a very strong sense.
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Tits alternative. Being hyperbolic also imposes strong restrictions on subgroups of hyperbolic
groups:

Theorem 1.18. If G is hyperbolic and G1 ≤ G is a subgroup, then either

(i) G1 is virtually cyclic, or

(ii) G1 contains a free subgroup of rank 2.

It follows for instance from Theorem 1.18 that containing a copy of Z2 or of a Baumslag-Solitar
group is an obstruction to being hyperbolic.

Hopf property. We conclude this hyperbolic sightseeing tour with the following:

Definition 1.19. A group G has the Hopf property if every surjective morphism G � G is an
isomorphism.

Theorem 1.20. Torsion-free hyperbolic groups have the Hopf property.

Note that all finitely generated, residually finite groups have the Hopf property, and it is a
famous open problem to know whether every hyperbolic group is residually finite.

1.4 Shortcomings
There are still many groups of strong geometric significance that are not hyperbolic, even though
their geometry is somehow hyperbolic-like. Here are just a few examples.

Finite-volume hyperbolic manifolds. If M is a finite-volume cusped hyperbolic n-manifold
(with n ≥ 3), thenM may not be hyperbolic, because the cusps might contain subgroups isomorphic
to Z2.

Mapping class groups and Out (Fn). Given a closed surface S, define its mapping class group
by

MCG(S) = Homeo(S)/Homeo0(S),
where Homeo(S) is the group of homeomorphisms of S, and Homeo0(S) is the connected component
of the identity. Then there is a simplicial complex C(S) — called the curve complex of S — on
which MCG(S) acts cocompactly — but not properly. Moreover,

Theorem 1.21 (Masur-Minsky [MM99]). C(S) is hyperbolic.

However, MCG(S) is not hyperbolic: for instance, two Dehn twists in disjoint simple closed
curves generate a copy of Z2.

The situation with Out (Fn) is very similar.

Free products. Free products of groups act on trees via Bass-Serre theory, but they may not be
hyperbolic if the vertex groups are not nice.

Our goal will be to understand larger classes of groups with hyperbolic-like features that will
allow us to study the above examples (and more).
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Talk 2 – Relatively hyperbolic groups: definitions inspired by
hyperbolic geometry

Speaker: Alexis Marchand. Main reference: [Hru10].

Remark 2.1. In §2 and §3, all groups are assumed to be countable.

2.1 The geometry of horoballs
Before defining relatively hyperbolic groups, we need to understand horoballs in δ-hyperbolic spaces.
First recall that, in the Poincaré upper-half-space model of Hn, there is a point ∞ ∈ ∂Hn, and a
horosphere centered at ∞ is the set

H =
{

(x1, . . . , xn) ∈ Hn = Rn−1 × R>0 | xn = k
}

for some fixed k > 0. This can be used to define horospheres centered at any point of ∂Hn by
transitivity of the action Isom (Hn) y ∂Hn. Horospheres play an important part in hyperbolic
geometry because they are stabilised by parabolic groups of isometries, and because their geometry
is Euclidean.

Let X be a δ-hyperbolic geodesic metric spaces. After possibly changing the value of δ, we may
assume that ideal triangles in X̄ = X ∪ ∂X are also δ-slim in the sense of Definition 1.1.

Definition 2.2. A δ-centre of a geodesic triangle ∆ in X with vertices x1, x2, x3 is a point w ∈ X
such that, for all i 6= j ∈ {1, 2, 3},

d (w, [xi, xj ]) ≤ δ.

Note that, by δ-slimness, each side of ∆ must contain a δ-centre (using the continuity of the
function w 7→ d (w, [xi, xj ])).

Definition 2.3. Given ξ ∈ ∂X, a horofunction about ξ is a map h : X → R such that there is a
constant D0 ≥ 0, such that, for all x, y ∈ X, for each geodesic triangle ∆ with vertices x, y, ξ, and
for each w centre of ∆, the following inequality holds:

|(h(x)− h(y))− (d(y, w)− d(x,w))| ≤ D0.

Example 2.4. (i) Let X be a tree and ξ ∈ ∂X. Then one can define a horofunction about ξ
as follows. Pick a point x0 ∈ X and choose a value for h (x0). Now, given any point x ∈ X,
there is a unique ideal triangle — which is in fact a tripod — with vertices x0, x, ξ; let w be
the centre (or 0-centre) of that tripod. Then h(x) is defined by the equality

h(x)− h (x0) = d (x0, w)− d (x,w) .

See Figure 1a. The function h : X → R thus defined is a horofunction with error D0 = 0.

(ii) Let X = H2 and ξ ∈ ∂H2. One can define the Buseman cocycle bξ : X2 → R by

bξ(x, y) = lim
t→∞

(d (x, γ(t))− d (y, γ(t))) ,
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where γ : R≥0 → X is a geodesic ray converging to ξ. One can then define a horofunction
h : X → R about ξ by fixing the value of h (x0) for some x0 ∈ X and imposing that, for all
x ∈ X,

h(x)− h (x0) = bξ (x0, x) .
The level sets are horospheres in the usual sense. See Figure 1b.

w

x

x0

ξ

h(x)− h (x0)

(a) In a tree.

ξ

(b) In H2 (Poincaré disk model).

Figure 1: Level sets of horofunctions.

Remark 2.5. Horofunctions about a given point ξ ∈ ∂X are far from being unique: one can always
add a constant.

Definition 2.6. A horoball centered at ξ is a closed subset H ⊆ X for which there is a horofunction
h about ξ and a constant D1 ≥ 0 such that

• ∀x ∈ H, h(x) ≥ −D1,

• ∀x ∈ X rH, h(x) ≤ D1.

Hence, a horoball is ‘almost’ the set {x ∈ X | h(x) ≥ 0} for some horofunction h.

2.2 Relative hyperbolicity via cusp uniform actions
The motivation behind our first definition of relative hyperbolicity comes from the thick-thin de-
composition in hyperbolic geometry.

Let M be a complete hyperbolic n-manifold.

Definition 2.7. Given x ∈M , the injectivity radius of M at x is defined by

injx(M) = sup {r > 0 | expx : B(0, r) ⊆ TxM −→M is injective}

= 1
2 inf
γ∈π1Mr1

d (x̃, γx̃) ,

for any choice of lift x̃ of x to the universal cover M̃ = Hn.
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Note that injx(M) > 0 for all x.
Definition 2.8. Given ε > 0,

• The ε-thin part of M is M(0,ε] = {x ∈M | 2 injx(M) ≤ ε},

• The ε-thick part of M is M[ε,∞) = {x ∈M | 2 injx(M) ≥ ε},
Theorem 2.9 (Thick-thin decomposition). For each n ≥ 1, there is an ε > 0 (the Kazhdan-
Margulis constant) such that, for each complete hyperbolic n-manifold M , the ε-thin part of M
consists of a disjoint union of

• Truncated cusps, i.e. quotients H/Γ, where H is a horoball centered at ξ ∈ ∂Hn, and Γ is a
discrete subgroup of Stab(ξ) ≤ Isom (Hn), and

• Tubes, i.e. neighbourhoods of simple closed geodesics.
See Figure 2 for an illustration when n = 2.

(a) A truncated cusp. (b) A tube.

Figure 2: Thin parts of hyperbolic surfaces.

The thick-thin decomposition says that a finite-volume complete hyperbolic manifold can be
split into a thick part, which is compact and has a lower bound on the injectivity radius, and a thin
part, which consists of cusps and tubes only.

Now the idea is that, given a finite-volume complete hyperbolic manifold M with cusps, the
action π1M y Hn is not cocompact, but it will be after removing the cusps. Hence, we want to
consider that π1M is ‘hyperbolic relative to the cusps’. Since truncated cusps lift to horoballs in
the universal cover, this leads to the following definition of relative hyperbolicity.
Definition 2.10. Given a properly discontinuous action of a group G on a proper δ-hyperbolic
space, a parabolic subgroup is a subgroup H ≤ G such that Λ(H) is a singleton {ξ}. We then say
that ξ is the corresponding parabolic point.
Definition 2.11 (RH3). Let G be a group and P a collection of subgroups of G. We say that
the pair (G,P) is relatively hyperbolic if there is a properly discontinuous action of G on a proper
δ-hyperbolic space X for which

• P is a set of representatives of conjugacy classes of maximal parabolic subgroups, and

• There is a G-equivariant collection of disjoint horoballs centered at the parabolic points of
the subgroups in P, whose union U is open in X, and such that the quotient G\ (X r U) is
compact.

We then say that the action G y X is cusp uniform and that X r U is a truncated space for the
action.
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2.3 Relative hyperbolicity via convergence group actions
Our next definition of relative hyperbolicity is motivated by the dynamics of the action of discrete
groups of hyperbolic isometries on the boundary ∂Hn of hyperbolic n-space.

Definition 2.12 (Beardon-Maskit). A convergence group action is an action of a group M on a
compact metrisable space M such that:

• If M is empty, then G is finite.

• If M is a singleton, then G can be any countable group.

• If M is a pair, then G is virtually cyclic.

• In all other cases, the action of G on the space of distinct unordered triples in M is properly
discontinuous.

Theorem 2.13 (Tukia). Every properly discontinuous action of a group G on a δ-hyperbolic space
X induces a convergence group action Gy ∂X.

Let GyM be a convergence group action.

Definition 2.14. • An element g ∈ G is loxodromic if it has infinite order and fixes exactly
two points in M .

• A subgroup P ≤ G is parabolic if it is infinite and has no loxodromic element. This implies
that P has a unique fixed point in M , which we call the parabolic point of P .

Note that, if p ∈M is a parabolic point, then its stabiliser Stab(p) is maximal parabolic.

Definition 2.15. • A parabolic point p ∈ M is bounded if its stabiliser Stab(p) acts cocom-
pactly on M r p.

• A point ξ ∈ M is a conical limit point if there is a sequence (gi)i≥1 of elements of G, and
points ζ0, ζ1 ∈M such that gi(ξ)→ ζ0 and, for all η ∈M r ξ, gi(η)→ ζ1.

Example 2.16. (i) The action of PSL2 (Z) on H2 by Möbius transforms induces a convergence
group action on M = ∂H2. In the upper-half-plane model, let p =∞. Then the stabiliser of
p is given by

Stab(p) =
〈[

1 1
0 1

]〉
.

Hence, the action Stab(p) y M r p is just Z y R, which is cocompact (with fundamental
domain the red segment in Figure 3a).

(ii) Let Σ1,1 be the once-punctured torus. Endowing Σ1,1 with a hyperbolic structure yields an
action of π1Σ1,1 = F2 on H2, inducing a convergence group action on M = ∂H2. Let a, b be
the usual free generating set of π1Σ1,1, and let ξ = ζ0 and ζ1 be the opposite endpoints of a
geodesic axis of a, as shown in Figure 3b. Then ξ is a conical limit point, and one can pick
gi = ai.

Definition 2.17. A convergence group action GyM is geometrically finite if each point of M is
either a conical limit point or a bounded parabolic point.
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p =∞

Stab p

(a) PSL2Z y ∂H2 (upper-half-plane model).

a

b

ξ = ζ0

ζ1

(b) π1Σ1,1 y ∂H2 (Poincaré disk model).

Figure 3: Two examples of convergence group actions.

We are now ready to give our second definition of relative hyperbolicity:

Definition 2.18 (RH1). Let G be a group and P a collection of subgroups of G. We say that the
pair (G,P) is relatively hyperbolic if there is a geometrically finite convergence group action of G
such that P is a set of representatives of conjugacy classes of maximal parabolic subgroups.

In fact, in this definition, we can always assume that the convergence group action comes from
an action on a δ-hyperbolic space as in Tukia’s Theorem:

Definition 2.19 (RH2). Let G be a group and P a collection of subgroups of G. We say that
the pair (G,P) is relatively hyperbolic if there is a properly discontinuous action of G on a proper
δ-hyperbolic space X such that the induced convergence group action on ∂X is geometrically finite,
and P is a set of representatives of conjugacy classes of maximal parabolic subgroups.

Example 2.20 (continuing 2.16). (i) Let G = PSL2(Z) y H2, and let

τ =
[
1 1
0 1

]
∈ PSL2(Z).

Then the pair (G, 〈τ〉) is relatively hyperbolic.

(ii) Let G = π1Σ1,1 = F (a, b), and let g = aba−1b−1 ∈ G. Then the pair (G, 〈g〉) is relatively
hyperbolic.

Note that in both cases, G is a hyperbolic group, so the pair (G,∅) is also relatively hyperbolic!
This illustrates the fact that there can be several different relatively hyperbolic structures on a
given group G.

Talk 3 – Relatively hyperbolic groups via actions on graphs
Speaker: Will Cohen. Main reference: [Hru10].

3.1 Fine hyperbolic graphs
The next definition of relative hyperbolicity is due to Bowditch and relies on the following graph-
theoretic property:
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Definition 3.1. A graph Γ is fine if for each edge e of Γ and for each integer n ∈ N, e is contained
in only finitely many loops of length n.

Example 3.2. (i) Trees are fine (because they have no loop), as are locally finite graphs (because
they have only finitely many paths of a given length starting at a fixed vertex).

(ii) A simple example of a non-fine graph can be constructed by taking two vertices and joining
them by infinitely many edges.

Definition 3.3 (RH4). Let G be a group and P a collection of subgroups of G. We say that the
pair (G,P) is relatively hyperbolic if there is an action of G on a fine hyperbolic graph Γ, with
finitely many orbits of edges and finite edge stabilisers, and such that P is a set of representatives
of conjugacy classes of infinite vertex stabilisers.

Example 3.4. (i) If G is a group, then (G, {G}) is a relatively hyperbolic pair because the
action Gy {pt} satisfies (RH4).

(ii) If G is a hyperbolic group, then (G,∅) is a relatively hyperbolic pair because the action of G
on a Cayley graph satisfies (RH4).

(iii) Consider the free product G = Z ∗H for a fixed infinite group H. Denote by t a generator
of Z. Let Γ be the Bass-Serre tree of G, seen as a trivial HNN extension of H: the graph Γ
has one vertex for each (left) coset of H, with an edge between aH and atH for each a ∈ G;
the action G y Γ is given by g · (aH) = (ga)H. This action satisfies (RH4), showing that
(G, {H}) is relatively hyperbolic.

Remark 3.5. The fineness condition might seem unnatural. To understand why we need it, take
an infinite groupH, and consider the group G = Z×H acting on the graph Γ of Figure 4. The graph
Γ is hyperbolic (it is a quasi-tree), the action is simply transitive on edges, and vertex stabilisers
are all equal to H. However, we do not want the pair (G, {H}) to be relatively hyperbolic, and it
is not according to our definition because Γ is not a fine graph.

...
...

...
...

...
· · · · · ·

Z

H

Figure 4: An action of Z×H on a non-fine hyperbolic graph.

3.2 The coned-off Cayley graph and bounded coset penetration
We consider a pair (G,P) consisting of a group G and a collection P of subgroups of G.

Definition 3.6. A subset S ⊆ G is a relative generating set for (G,P) if G =
〈
S ∪

⋃
P∈P P

〉
.

Definition 3.7. Let S ⊆ G be a subset. The coned-off Cayley graph Γ̂ (G,P, S) is constructed as
follows. Start with the (usual) Cayley graph Γ(G,S), then for each coset gP of subgroups P ∈ P,
add a vertex vgP , and connect vgP to every element of gP by an edge of length 1

2 .
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Remark 3.8. Γ̂ (G,P, S) is connected if and only if S is a relative generating set for (G,P).

Example 3.9. Consider G = Z2 with a basis (x, y), let P = {〈y〉} and S = {x}. The coned-off
Cayley graph Γ̂ (G,P, S) is represented in Figure 5, with the Cayley graph in black and the added
vertices and edges in red.

Figure 5: The coned-off Cayley graph of
(
Z2, {〈y〉} , {x}

)
.

We need a technical condition on coned-off Cayley graphs:

Definition 3.10. Let γ be a path in Γ̂ (G,P, S).

• We say that γ enters the coset gP if γ passes through the vertex vgP . In this case, the vertex
preceding vgP is called the entering vertex and the vertex succeeding vgP is called the exiting
vertex.

• We say that γ is without backtracking if it enters each coset at most once.

Definition 3.11. The triple (G,P, S) is said to satisfy bounded coset penetration if for each λ ≥ 1,
there is some a > 0 such that for any pair (γ1, γ2) of (λ, 0)-quasi-geodesics without backtracking in
Γ̂ (G,P, S) with the same initial point and endpoints within distance 1 of each other, we have:

(i) If γ1 penetrates a coset gP and γ2 does not, then the entering vertex and the exiting vertex
in γ1 are at S-distance at most a from each other.

(ii) If both γ1 and γ2 penetrate a coset gP , then their entering vertices (resp. exiting vertices)
are at S-distance at most a from each other.

Loosely, bounded coset penetration can be understood as the right condition to ensure that
when each coset is collapsed to a point, the resulting graph is fine.

This leads to a definition of relative hyperbolicity in terms of the coned-off Cayley graph:

Definition 3.12 (RH5). Assume G is finitely generated relative to P, and each P ∈ P is infinite.
We say that the pair (G,P) is relatively hyperbolic if for some (hence every) finite relative generating
set S, the coned-off Cayley graph Γ̂ (G,P, S) is hyperbolic and satisfies bounded coset penetration.
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Example 3.13. (i) Consider the free product G = Z∗H for an infinite group H. If Z = 〈t〉, then
{t} is a relative generating set for (G, {H}). The coned-off Cayley graph looks like the Bass-
Serre tree of the trivial HNN extension of H (see Example 3.4.(iii)), but where each vertex is
replaced by a copy of H, and with an extra vertex representing the corresponding coset. This
is hyperbolic and satisfies bounded coset penetration because quasi-geodesics with the same
endpoints must penetrate the same cosets with the same entering and exiting vertices.

(ii) Let (x, y) be a basis of G = Z2, let P = {〈y〉} and S = {x} as in Example 3.9. Figure 6 shows
an example of two geodesics in the coned-off Cayley graph which do not satisfy bounded coset
penetration; indeed, the blue geodesic penetrates a coset with entering and exiting vertices at
an infinite S-distance from each other, while the green geodesic does not penetrate this coset.

Figure 6: Two geodesics in Γ̂
(
Z2, {〈y〉} , {x}

)
violating bounded coset penetration.

3.3 Relative Dehn function
Recall that a group is hyperbolic if and only if it admits a finite presentation with linear Dehn
function. We now describe a relative analogue of this phenomenon.

Definition 3.14. Let G be a group and let P be a collection of subgroups of G. If S ⊆ G is a
relative generating set, there is a natural epimorphism

K = F (S) ∗ ∗
P∈P

P
p
� G.

Given a set R ⊆ K of relators, we say that G has a relative presentation 〈P, S | R〉 if Ker p is the
normal subgroup generated by R.

The relative presentation 〈P, S | R〉 is called finite if both S and R are finite.

Definition 3.15. A function f : N→ N is a relative isoperimetric function for a relative presenta-
tion 〈P, S | R〉 if for each m ∈ N and for each word w over S q

∐
P∈P P of length at most m, there

are elements g1, . . . , gk ∈ K and relators r1, . . . , rk ∈ R such that k ≤ f(m) and

w
K=

k∏
i=1

g−1
i rigi.

14



The relative Dehn function of 〈P, S | R〉 is the smallest possible relative isoperimetric function if it
exists.

This allows us to define relative hyperbolicity via linear relative Dehn functions.

Definition 3.16 (RH6). Let P be a finite collection of subgroups of G. We say that the pair
(G,P) is relatively hyperbolic if (G,P) has a finite relative presentation for which the relative Dehn
function is well-defined and linear.

Talk 4 – CAT(0) cube complexes, contact graphs, and quasi-
arboreality

Speaker: Ana Isakovic. Main reference: [Hag14].

The goal of this talk is to show how to construct a ‘hierarchy’ of hyperbolic spaces for CAT(0)
cube complexes, and in particular for right-angled Artin groups.

4.1 Weak hyperbolicity
We start by introducing the notion of weak hyperbolicity. We give two equivalent definitions, which
are parallel to definitions RH4 and RH5 of relative hyperbolicity (see Definitions 3.3 and 3.12).

Definition 4.1 (WH1, Farb [Far94]). A group G is weakly hyperbolic with respect to a finite
collection P of conjugacy-invariant subgroups if there is a relative generating set S such that the
coned-off Cayley graph Γ̂ (G,P, S) is hyperbolic.

Note that, contrary to relative hyperbolicity, we do not impose that the coned-off Cayley graph
satisfy bounded coset penetration.

Example 4.2. Z2 = 〈x, y〉 is weakly hyperbolic with respect to {〈y〉} because the coned-off Cayley
graph Γ̂

(
Z2, {〈y〉} , {x}

)
is hyperbolic (see Figure 5).

This example shows in particular that a group that is weakly hyperbolic with respect to hyper-
bolic subgroups need not be hyperbolic.

Definition 4.3 (WH2, Bowditch [Bow12]). A group G is weakly hyperbolic with respect to a
collection P of subgroups if G acts on a connected hyperbolic graph Γ with finitely many edge
orbits, and such that each P ∈ P fixes a vertex v of Γ, and each vertex stabiliser contains an
element of P as a finite index subgroup.

If in addition Γ is quasi-isometric to a tree, we say that G is quasi-arboreal with respect to P.

Note that we do not require the graph Γ to be fine, nor the edge stabilisers to be finite.

4.2 Cube complexes and contact graphs
Definition 4.4. • A cube complex X is a Euclidean complex (i.e. a metric cell complex ob-

tained by gluing Euclidean polytopes) in which all n-cells are isometric to n-cubes
[
− 1

2 ,
1
2
]n.

• A midcube (or hypercube) of an n-cube is an (n − 1)-cube which is obtained by restricting
exactly one coordinate to zero.
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• If X is CAT(0), a hyperplane W in X is a maximal connected collection of midcubes of X such
that, for every cube C in X, the intersection W ∩ C is either empty or one of the midcubes
of the collection.

• The carrier N(W ) of a hyperplane W is the union of all cubes which W intersects.

Proposition 4.5. If X is a CAT(0) cube complex, then every hyperplane W is

(i) Two-sided,

(ii) Separated,

(iii) A CAT(0) cube complex.

Moreover, every midcube is in exactly one hyperplane.

Definition 4.6. Two hyperplanes V,W in X are said to contact if N(V ) ∩N(W ) 6= ∅.

There are two types of contacts: crossings and osculations. See Figure 7.

(a) A crossing.
(b) An osculation.

Figure 7: Contacts in CAT(0) cube complexes.

Definition 4.7. The contact graph of a CAT(0) cube complex X is the graph Γ with vertices
corresponding to hyperplanes of X, and with edges given by contact. See Figure 8 for an example.

Theorem 4.8 (Hagen [Hag14]). The contact graph of a CAT(0) cube complex is quasi-isometric
to a tree.

We do not prove Theorem 4.8 here, but we will just say that it relies on the following:

Lemma 4.9 (Manning’s Bottleneck Criterion). Let Q be a geodesic metric space. Assume that
there is a constant ∆ ≥ 0 such that, for all x, y ∈ Q, there is a path [x, y] between x and y that is
contained in the ∆-neighbourhood of every path from x to y. Then Q is quasi-isometric to a tree,
and ∆ is called a bottleneck constant for Q.

As a consequence of Theorem 4.8, we obtain:
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(a) The CAT(0) cube complex X.

· · · · · ·

· · · · · ·

(b) The contact graph of X.

Figure 8: A CAT(0) cube complex and its contact graph.

Corollary 4.10. If a group G acts properly and cocompactly on a CAT(0) cube complex, then it is
quasi-arboreal with respect to hyperplane stabilisers.

Corollary 4.10 hints at what a hierarchy is going to be: our group G is quasi-arboreal with
respect to hyperplane stabilisers; but hyperplanes are also CAT(0) cube complexes, so we can
iterate. We will now see a more specific example of this in the case of right-angled Artin groups.

4.3 Right-angled Artin groups
Definition 4.11. Let N be a simplicial graph.

• The right-angled Artin group defined by N is
AN = 〈V (N) | [v, w] = 1 whenever {v, w} ∈ E(N)〉 ,

where V (N) and E(N) denote the vertex and edge set respectively of N .

• The Salvetti complex SN of AN is the cube complex obtained by starting with a 0-cell, adding
one 1-cell for each vertex v ∈ V (N), and one k-cube for each k-complete subgraph of N .

Example 4.12. (i) If N = , then AN is the free group of rank 2, SN is the wedge of two
circles, and the universal cover S̃N is the regular 4-valent tree.

(ii) If N = , then AN is Z2, SN is the (2-dimensional) torus, and the universal cover S̃N is R2

with the same cubulation as in Figure 8a.
Proposition 4.13. The Salvetti complex SN is nonpositively curved, so its universal cover S̃N is
CAT(0).

An important observation is that, in S̃N , hyperplane stabilisers are again right-angled Artin
groups. Again, this hints at what the hierarchy may be. In fact, we have the following (so far
imprecise) theorem:
Theorem 4.14 (Behrstock-Hagen-Sisto [BHS17]). Let X be a CAT(0) cube complex with a factor
system F , i.e. a collection of ‘nice’ convex subcomplexes. Then X is hierarchically hyperbolic with
respect to the set of factored contact graphs ĈW for W ∈ F , where ĈW denotes the contact graph
of W with coned-off smaller factors.
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Talk 5 – Mapping class groups and curve complexes
Speaker: Jason Behrstock. Main references: [MM99], [MM00].

5.1 Mapping class groups
We denote by S = Sg,p an oriented surface of genus g with p punctures.

Definition 5.1. The mapping class group of S is the group MCG(S) = Homeo(S)/Homeo0(S).

Example 5.2. Let S = S0,4 be the 4-punctured sphere. Figure 9 shows two elements a and b of
MCG(S). Those elements are called half-twists.

a b

Figure 9: Two half-twists on the 4-punctured sphere (with one puncture at infinity).

We can understand the mapping class ab by considering a simple closed curve γ on S and its
iterates under ab, as in Figure 10.

γ
b7−→ a7−→ b7−→ · · ·

Figure 10: Applying successive half-twists to a simple closed curve on the 4-punctured sphere.

All the iterates (ab)kγ will be carried by the ‘train track’ represented in Figure 11.

Figure 11: The invariant train track of the mapping class ab.

5.2 Curve complexes
The mapping class group MCG(S) acts on an important geometric object:

Definition 5.3. The curve complex of S is the simplicial complex C(S) where

• Vertices are homotopy classes of essential, non-peripheral simple closed curves on S,

• Edges correspond to simple closed curves which can be realised disjointly on S,
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• n-simplices correspond to collections of (n+ 1) disjoint simple closed curves.

See Figure 12.

a1 a4

a3

a2

(a) S2,0.

a2
a3

a4
a1

δa2 (a1)
δ2
a2

(a1)
· · ·

(b) C (S2,0).

Figure 12: A part of the curve complex of S2,0 (δa2 denotes the Dehn twist in a2).

We first give some basic properties of the curve complex:

Proposition 5.4. Let S = Sg,p.

(i) dim C(S) = ξ(S)− 1, where ξ(S) = 3g + p− 3 is the complexity of S.

(ii) C(S) is locally infinite (see Figure 12).

(iii) C(S) is connected, except for the exceptional cases where S = S1,0, S1,1, S0,4.

Remark 5.5. In the exceptional cases S = S1,0, S1,1, S0,4, the curve complex C(S) as we defined
it has no edge. This can be fixed by replacing ‘can be realised disjointly’ by ‘can be realised with
minimal intersection among all pairs of curves on S’ in Definition 5.3 (in S1,0 or S1,1, this means
‘with one intersection point’; in S0,4, this means ‘with two intersection points’; in all other cases,
this means ‘with no intersection point’).

Example 5.6. Let S = S1,0 be the torus. Edges of C(S) correspond to pairs of simple closed curves
with a single intersection. Observe that, by seeing the torus as the quotient R2/Z2, simple closed
curves on S correspond to elements of Q ∪ {∞}, where each rational q ∈ Q ∪ {∞} is associated to
the curve given by the image in R2/Z2 of the line of slope q in R2. It turns out that C(S) is the
Farey graph. See Figure 13. In fact, C (S1,0) = C (S1,1) = C (S0,4).

The following are deeper results on the curve complex:

Proposition 5.7. Let S = Sg,p.

(i) C(S) has infinite diameter.

(ii) (Masur-Minsky [MM99]) C(S) is hyperbolic.

5.3 Hierarchy paths
There is another way to understand MCG(S): one can pick a pants decomposition of S and think
of a mapping class as the image of that pants decomposition.
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Figure 13: The curve graph of the torus.

Example 5.8. Take S = S0,5. A pants decomposition of S is given by the choice of two simple
closed curves a1, a2. Applying a mapping class gives two new simple closed curves b1, b2. Now
consider a geodesic γ in C(S) from a1 to b1. The first point x1 of γ is a simple closed curve in
S r a1 = S0,3 q S0,4. Note that C (S0,3) is a point, but there is a copy of C (S0,4) containing both
x1 and a2. We can pick a geodesic in that copy of C (S0,4) from a2 to x1. Then we look at the next
point x2 on γ: it lies in a copy of C (S0,4) which also contains a1. Repeating this process, we get
the picture of Figure 14. The red path is called a hierarchy path. It really is a path in the pants

a1

a2

b1

b2

x1

x2

Figure 14: A hierarchy path in C (S0,5).

graph of S, which can be identified with MCG(S).

The construction of a hierarchy path in Example 5.8 implicitly uses the fact that, given a
subsurface W ⊆ S, there is a Lipschitz map

πW : MCG(S)→ C(W ).

This map is given by viewing an element of MCG(S) as a pants decomposition of S, restricting it
to W , and applying surgery.

The following coarse equality now tells us that hierarchy paths are quasi-geodesics in MCG(S).

Theorem 5.9 (Masur-Minsky [MM00]). There is a constant T0 > 0 such that for all T ≥ T0, there
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are constants K,C, such that for all a, b ∈ MCG(S),

dMCG(S)(a, b) �K,C
∑
Y⊆S

essential

[[
dC(Y ) (πY (a), πY (b))

]]
T
.

In the above theorem, �K,C denotes a (K,C)-coarse inequality, and we write

[[x]]T =
{
x if x > T

0 otherwise
.

One might then ask, given two essential subsurfaces Y,Z ⊆ S, what can be said about the image
of the map

MCG(S) πY ×πZ−−−−−→ C(Y )× C(Z).

If Y and Z can be realised disjointly, then the above map is coarsely onto.
Otherwise, the image of MCG(S) contains the wedge of C(Y ) and C(Z) along the point

(πY (∂Z) , πZ (∂Y )) ∈ C(Y )× C(Z).

Actually, this is coarsely an equality. In this case, we say that Y and Z are overlapping or transverse:
this happens exactly when Y and Z intersect and are non-nested.

Talk 6 – Hierarchically hyperbolic spaces
Speaker: Jason Behrstock. Main reference: [BHS17].

6.1 Contracting geodesics
Consider a geodesic γ in a hyperbolic space. Then γ satisfies the following:

Definition 6.1. A quasi-geodesic γ in a metric space X is said to be contracting if there is a map
πγ : X → γ, and constants A,D such that

(i) For all x ∈ X, diam πγ
(
BA·d(x,γ)(x)

)
< D,

(ii) πγ is coarsely idempotent,

(iii) πγ is coarsely Lipschitz.

See Figure 15.

The contracting property has the following applications.

Proposition 6.2. Let γ be a contracting quasi-geodesic. Then:

(i) γ is Morse, i.e. quasi-geodesically stable. This means that any quasi-geodesic with endpoints
on γ lies within a bounded distance of γ.
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γ

x
A · d(x, γ)

πγ
d(x, γ)

< D

Figure 15: The contracting property for quasi-geodesics.

(ii) γ has at least quadratic divergence. This means that, given a ball B centred on γ of radius r,
the shortest path in X rB between two opposite points on γ rB has length of order at least
r2.

Our goal for this talk is to describe spaces where we can characterise the contracting quasi-
geodesics.

Remark 6.3. There is also a notion of ‘strongly contracting’ quasi-geodesics, in which one demands
that all balls (without any restriction on the radius) are projected to γ with diameter less than D.
This property is very strong but, contrary to the contracting property, it is not a quasi-isometry
invariant.

6.2 Hierarchically hyperbolic spaces
A hierarchically hyperbolic space (or HHS) is a quasi-geodesic metric space X (e.g. X = MCG(S)),
together with the following data:

• An indexing set S (playing the role of the set of essential subsurfaces Y ⊆ S),

• A collection {C(Y )}Y ∈S of uniformly hyperbolic spaces (playing the role of the curve com-
plexes),

• A partial order v on S (playing the role of inclusion of subsurfaces), with a largest element
S, and such that the lengths of chains are bounded,

• A symmetric, non-reflexive relation ⊥ on S, called orthogonality (playing the role of disjoint-
ness), and such that there is a bound on the size of pairwise orthogonal subsets of S,

• A transversality relation: Y and Z are transverse if they are neither nested nor orthogonal,

• Coarsely Lipschitz maps πC(Y ) : X → 2C(Y ) (for each Y ∈ S) that sends points to bounded
diameter sets in C(Y ) (playing the role of subsurface projections).

In addition, those objects must satisfy some natural geometric assumptions.
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The following result generalises Theorem 5.9 and says that, in a HHS, one can compute distances
by computing a collection of distances in some hyperbolic spaces.
Theorem 6.4 (Distance formula, Behrstock-Hagen-Sisto [BHS17]). Let (X,S) be a HHS. There
is a constant T0 > 0 such that for all T ≥ T0, there are constants K,C, such that for all a, b ∈ X,

dX(a, b) �K,C
∑
Y ∈S

[[
dC(Y ) (πY (a), πY (b))

]]
T
.

In the above theorem, �K,C denotes a (K,C)-coarse inequality, and we write

[[x]]T =
{
x if x > T

0 otherwise
.

The following gives a characterisation of hyperbolic spaces among HHSs. It says that, in a
hyperbolic space, all products must look like strips.
Theorem 6.5 (Behrstock-Hagen-Sisto [BHS17]). Let (X,S) be a HHS. Then X is hyperbolic if
and only if there is some q > 0 such that, whenever U ⊥ Y ,

min {diam C(U),diam C(Y )} < q.

There is a similar criterion for relative hyperbolicity, due to Russell.
Remark 6.6. There is also a notion of relative hierarchical hyperbolicity, where we require that
C(Y ) be hyperbolic only if Y is not a minimal element for v.

6.3 Examples of hierarchically hyperbolic spaces
The main motivating examples of HHSs are mapping class groups and right-angled Artin groups,
as hinted at in Talks 4 and 5, but there are many others.
Example 6.7. The following are hierarchically hyperbolic spaces:
(i) Hyperbolic spaces, where S has only one element.

(ii) Mapping class groups, with the structure described in §6.2.

(iii) Right-angled Artin groups AΓ, where S = {gAΛ | g ∈ AΓ, Λ ⊆ Γ} /parallelism, C (gAΛ) is
the factored contact graph of the Salvetti complex associated to AΛ, v is the inclusion up to
parallelism, g1AΛ1 ⊥ g2AΛ2 if and only if AΛ1 and AΛ2 span a direct product, and πC(gAΛ)(x)
is the set of hyperplanes containing x (this set is a simplex in C (gAΛ)). See Talk 4.

(iv) Most non-positively curved cube complexes (including all special ones) with a geometric ac-
tion. Conjecturally all non-positively curved cube complexes?

(v) Fundamental groups of 3-manifolds without any Nil or Sol component.

(vi) Leary-Minasyan groups.

(vii) Separating curve graphs.
In addition, there are combination theorems to produce new HHSs out of old ones.

There are also some obstructions to being a hierarchically hyperbolic group or space:
Proposition 6.8. Every hierarchically hyperbolic group has quadratic Dehn function.
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6.4 Characterisation of contracting geodesics
As promised, we have a complete criterion for detecting contracting quasi-geodesics in HHSs:

Theorem 6.9 (Abbott-Behrstock-Durham [ABD21]). Let X be a hierarchically hyperbolic group
(i.e. a group that is a HHS, where all the structure is G-equivariant), or a hierarchically hyperbolic
space with some minor additional assumptions. Then for all D > 0, there is D′ > 0, such that for
each quasi-geodesic γ in X, the following are equivalent:

(i) γ is D-contracting,

(ii) For each U ∈ Sr {S}, diam
(
πC(U)(γ)

)
< D′.

Corollary 6.10. Every hierarchically hyperbolic group X is universally acylindrically hyperbolic,
in the sense that every element of X that acts loxodromically for some acylindrical action of X acts
acylindrically on X itself.

Talk 7 – Acylindrically hyperbolic groups: definitions
Speaker: Julian Wykowski. Main reference: [Osi16].

The goal of this talk is to explain all the terms in the following:

Theorem 7.1 (Osin [Osi16]). Let G be a group. Then the following are equivalent:

(AH1) There is a (not necessarily finite) generating set S for G such that the Cayley graph Γ(G,S)
is hyperbolic, |∂Γ(G,S)| > 2, and the action Gy Γ(G,S) is acylindrical.

(AH2) G acts acylindrically and non-elementarily on a hyperbolic metric space.

(AH3) G is not virtually cyclic and has an action on a hyperbolic space with at least one loxodromic
element acting weakly properly discontinuously.

(AH4) G contains a hyperbolically embedded infinite proper subgroup.

7.1 Acylindrical actions
Definition 7.2. An action of a group G on a geodesic metric space X is acylindrical if for all
ε > 0, there are R > 0 and N ≥ 1 such that, for all x, y ∈ X with d(x, y) ≥ R, we have

|{g ∈ G | d(x, gx) < ε and d(y, gy) < ε}| ≤ N.

See Figure 16.

Note that any group G acts acylindrically on a point. But acylindricity is not very interesting
for small actions: that is why we assume in (AH2) that the action is non-elementary (recall that
an action of a group G on a hyperbolic space X is elementary if |Λ(G)| ≤ 2, see also Proposition
1.15 in the case of a geometric action).

Proposition 7.3. Any non-elementary geometric action on a hyperbolic space is in fact acylindri-
cal.
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x

ε
y

ε

≥ R
gx

gy

g g

Figure 16: An action is acylindrical if there are few elements g ∈ G acting as on the picture.

7.2 Weak proper discontinuity
Definition 7.4. Let G be a group acting on a hyperbolic space X. A loxodromic element g ∈ G
is said to satisfy weak proper discontinuity (or WPD) if for all ε > 0 and for all x ∈ X, there is
M ≥ 1 such that the set {

h ∈ G | d(x, hx) < ε and d
(
gM , hgMx

)
< ε
}

is finite. See Figure 17.

x

ε

gMx

ε

hx

hgMx

h h

g

Figure 17: The element g satisfies WPD if the set of elements h as on the picture is finite.

Note that, if G acts geometrically on X, then every loxodromic element satisfies WPD by
properness of the action.

We have now defined all the words in the first three statements of Theorem 7.1. It is an exercise
to check that (AH1)⇒ (AH2)⇒ (AH3).

7.3 Hyperbolically embedded subgroups
Let G be a group and let {Hλ}λ∈Λ be a collection of subgroups of G.

Given a subset X ⊆ G such that G = 〈X ∪
⋃
λHλ〉, we denote by

Γ
(
G,X q

∐
λ∈Λ

Hλ

)

the Cayley graph of G with edges in X q
∐
λHλ (note that, if the Hλs intersect, we add edges

multiple times for elements in the intersection).
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For each λ ∈ Λ, there is an embedding Γ (Hλ, Hλ) ↪→ Γ
(
G,X q

∐
λ∈ΛHλ

)
, and the relative

metric
d̂λ : Hλ ×Hλ → [0,∞]

on Hλ is defined as follows: given x, y ∈ Hλ, d̂λ(x, y) is the infimum of the lengths of the paths
from x to y in Γ

(
G,X q

∐
λ∈ΛHλ

)
that do not contain any edge in Γ (Hλ, Hλ).

Definition 7.5. The collection {Hλ}λ∈Λ is said to be hyperbolically embedded in (G,X), which we
denote {Hλ}λ∈Λ ↪→h (G,X), if

(i) Γ
(
G,X q

∐
λ∈ΛHλ

)
is hyperbolic, and

(ii) For each λ ∈ Λ, the metric space
(
Hλ, d̂λ

)
is proper (i.e. any ball of finite radius is finite).

Example 7.6. (i) For any group G, we have G ↪→h (G,∅) because d̂ =∞.

(ii) Given H ≤ G, we have H ↪→h (G,G) whenever H is finite.

(iii) Consider G = H × 〈t〉 and X = {t}. Then
(
H, d̂

)
has diameter ≤ 3.

It follows that H ↪→h (H × 〈t〉 , {t}) if and only if H is finite.

(iv) Consider G = H ∗ 〈t〉 and X = {t}. Then it is always true that H ↪→h (H ∗ 〈t〉 , {t}).

Observe that Definition 3.12 can be reinterpreted as saying that the group G is hyperbolic
relative to {Hλ}λ∈Λ if and only if there is a relative generating setX such that {Hλ}λ∈Λ ↪→h (G,X).

7.4 Examples of acylindrically hyperbolic groups
Definition 7.7. We say that a group G is acylindrically hyperbolic if any (hence every) of the
statements (AH1)− (AH4) of Theorem 7.1 hold.

We now give a few examples:

Example 7.8. (i) Non-elementary hyperbolic groups are acylindrically hyperbolic.

(ii) Non-virtually cyclic groups that are hyperbolic relative to a finite collection of proper periph-
eral subgroups are acylindrically hyperbolic.

(iii) MCG (Sg,p) is acylindrically hyperbolic unless g = 0 and p ≤ 3 (because the action on the
curve complex is acylindrical).

(iv) Out (Fn) is acylindrically hyperbolic for n ≥ 2.

(v) (Hamenstädt) Any group acting properly on a proper hyperbolic space of bounded growth is
either acylindrically hyperbolic or virtually nilpotent.

Talk 8 – Acylindrically hyperbolic groups: applications and
bounded cohomology

Speaker: Julian Wykowski. Main reference: [Osi16].
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8.1 Classification of acylindrical actions
The following theorem classifies acylindrical actions:
Theorem 8.1 (Osin [Osi16]). Let G be a group with an acylindrical action on a metric space X.
Then exactly one of the following holds:
(i) The action has bounded orbits.

(ii) G is virtually cyclic and has a loxodromic elements.

(iii) The action has infinitely many loxodromic elements that are independent (i.e. their limit
points are pairwise disjoint).

Theorem 8.1 says that an acylindrical action cannot be parabolic or quasi-parabolic (i.e. where
the limit set is infinite but all loxodromic elements share a limit point).

We now give two examples of non-acylindrical action where the theorem fails.
Example 8.2. Let G be a group with a finite generating set S. We construct a graph H(G,S),
with vertex set G× N≥0, and with two types of edges:

• For all g ∈ G and k ∈ N≥0, there is an edge (g, k)↔ (g, k + 1),

• For all g, h ∈ G and k ∈ N≥0, if 0 < dS(g, h) ≤ 2k, then we add an edge (g, k)↔ (h, k).
The graphH(G,S) can be thought of as putting together Cayley graphs Γ

(
G,Sk+1) for all k ∈ N≥0.

It turns out that H(G,S) is always hyperbolic. Thus we have a proper action of G on a
hyperbolic space, which is not acylindrical unless G is finite.

This action does not satisfy the conclusion of Theorem 8.1 since the action G y H(G,S) is
parabolic. Note in particular that, if G is a finitely generated infinite torsion group, then all g ∈ G
have bounded orbits, but G has unbounded orbits.
Example 8.3. Consider BS(1, 2) =

〈
a, t | t−1at = a2〉. There is an embedding BS(1, 2) ↪→

SL2 (R) via

a 7→
(

1 1
0 1

)
and b 7→

( 1√
2 0

0
√

2

)
.

This gives an action BS(1, 2) y H2, which is free and non-elementary.
However, any two loxodromic elements share a limit point, so the action is quasi-parabolic.

8.2 More examples, and some applications
Continuing Example 7.8, here are some more acylindrically hyperbolic groups:
Example 8.4. (vi) (Minasyan) Many graphs of groups are acylindrically hyperbolic. It follows

in particular that

• One-relator groups with at least three generators are acylindrically hyperbolic,
• For any field k, Aut (k[x, y]) is acylindrically hyperbolic.

(vii) (Wilton-Zalesski) If M is a compact 3-manifold, then π1M is either virtually polycyclic, or
acylindrically hyperbolic, or there is a short exact sequence

1→ Z→ π1M → Q→ 1,
with Q acylindrically hyperbolic.
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We give one selected application of acylindrical hyperbolicity. Recall the following from Definition
1.16:

Definition 8.5. A group G is SQ-universal if every countable group embeds into some quotient
of G.

Theorem 8.6 (Dahmani-Guirardel-Osin). Let G be an acylindrically hyperbolic group. Then:

(i) G is SQ-universal.

(ii) The elementary theory of G is not superstable.

8.3 Bounded cohomology
We’ll give one application of acylindrical hyperbolicity to bounded cohomology. We start by recall-
ing some definitions.

Let X be a topological space and let V be a Banach space over R.

• Sn(X) is the set of singular simplices on X, i.e. continuous maps ∆n → X.

• Cn(X) is the free Z-module with basis Sn(X).

• Cn(X,V ) is the Z-module of homomorphisms Cn(X) → V , which correspond to maps
Sn(X)→ V .

• Cnb (X,V ) is the set of bounded maps Sn(X)→ V .

Recall that C•(X,V ) is equipped with a differential dn+1 : Cn(X,V )→ Cn+1(X,V ). Observe that
Cnb (X,V ) ⊆ Cn(X,V ), and C•(X,V ) is preserved by the differential. Hence, we get a cochain
complex (C•b (X,V ), d).

Definition 8.7. The bounded cohomology of X with coefficients in V is defined by

Hn
b (X,V ) = Hn (C•b (X,V )) .

Note that the inclusion C•b (X,V ) ↪→ C•(X,V ) commutes with the differential by construction,
so it descends to a map on cohomology groups.

Definition 8.8. The comparison map is the homomorphism

ψn : Hn
b (X,V )→ Hn(X,V )

induced by the inclusion C•b (X,V ) ↪→ C•(X,V ).

There is a seminorm ‖·‖∞ on Hn
b (X,V ), defined by

‖[ϕ]‖∞ = inf
f∈[ϕ]

sup
σ∈Sn(X)

‖f(σ)‖V .
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Bounded cohomology can be defined for groups as well. Suppose G is a group acting on the
Banach space V by isometries.

• If the action Gy V is trivial, one can set Hn
b (G,V ) = Hn

b (K(G, 1), V ).

• In general, one can define Hn
b (G,V ) as the n-th cohomology group of the cochain complex

C•b (G,V ), where Cnb (G,V ) is the set of bounded functions Gn → V .

It turns out that hyperbolicity can be completely characterized in terms of bounded cohomology:

Theorem 8.9 (Mineyev). A finitely presented group G is hyperbolic if and only if the comparison
map

H2
b (G,V )→ H2(G,V )

is surjective for any Banach G-module V that is bounded (i.e. elements of G act on V with
uniformly bounded norms).

Acylindrical hyperbolicity also has consequences in bounded cohomology:

Theorem 8.10 (Bestvina-Fujiwara, Hamenstädt). If G is acylindrically hyperbolic and V = R or
V = `p(G) (1 ≤ p <∞), then Ker

(
H2
b (G,V )→ H2(G,V )

)
is infinite-dimensional.
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