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Makers of Patterns:
FromEscher to Coxeter
Alexis Marchand

Dutch artistM.C. Escherwas fascinatedwith the idea
of representing infinity within a finite piece of art.
Among many sources of mathematical inspiration, a
correspondence with the geometer Donald Coxeter
led him to hisCircle Limit series, an example of which
is given in Figure 1. Unsurprisingly, this series of
drawings hides deep mathematical ideas connected
with the work of Coxeter, andwe are going to see how
these ideas can lead tomodern concepts in geometric
group theory.

Examining Circle Limit I, we see that it is constructed
by starting with a simple building block, a (hyper-
bolic) polygon with some decoration (shown in Fig-
ure 2), and then reflecting this initial polygon along
its edges, and iterating the process.

▲ Figure 1: Circle Limit I, M. C. Escher.

▲ Figure 2: The fundamental domain
of Escher's Circle Limit I

In order to formalise this construction, we shall work
in a spaceX that can be either the euclidean planeE2,
the sphereS2, or the hyperbolic planeH2, the latter be-
ing the setting of Escher’s Circle Limits. A geodesic in
X is the shortest path between two points: euclidean
geodesics are straight lines and spherical geodesics
are great circles. Any geodesic can be extended in
both directions to either an infinite geodesic (in the
euclidean and hyperbolic cases) or a closed geodesic
(in the spherical case); there is then an operation of
reflectionwith respect to that geodesic, which defines
an isometry ofX. The hyperbolic plane can be repre-
sented, as in Escher’s work, by an open disk in which
geodesics are arcs of circles (or straight lines) orthog-
onal to the boundary; this representation is called
the Poincaré disk model. In this model, distances are
more and more distorted as one gets closer to the
boundary. One can think of it as a way to visualise
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a geometric universe which does not obey euclidean
rules, in the same way that a standard Mercator pro-
jectionmap of the world will alter distances andmag-
nify the regions that are closer to the poles.

We consider a compact convex polygon P in
X, in other words a set of vertices together
with geodesic segments between them; this is
our tiling’s basic building block. We denote by
x0, x1, . . . , xn−1, xn = x0 the successive vertices
of P , and we assume that the interior angle at xk
can be written as π/pk for some integer pk ≥ 2,
as in Figure 3. For instance, the hyperbolic poly-
gon of Figure 2 has four vertices, with interior angles
π/3, π/2, π/3, π/2.
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▲ Figure 3: A polygon satisfying the hypotheses
of the Poincaré Theorem

Let σk : X → X be the reflection of X with re-
spect to the geodesic segment [xk−1, xk]. The tiling
we are interested in can be constructed by drawing
all the polygons obtained by applying sequences of
reflections among the σks to the original polygon P ,
or in other words, by making the group Γ generated
by σ1, . . . , σn act on P ; this group Γ is therefore our
fundamental object.

The Poincaré Theorem

Because Γ determines the tiling, we wish to under-
stand its algebraic structure. We would like in partic-
ular to find a presentation of Γ: this means finding a
small set of algebraic relations between the generators
that determine all other relations that exist in Γ. We
start by writing the most obvious relations we have:
since σk is a reflection, it satisfies σ2

k = 1. Moreover,
one can check that the composite σk ◦σk+1 is a rota-
tion around xk of angle 2π/pk; therefore it has order

pk, which implies that (σkσk+1)
pk = 1. Now it turns

out that these relations entirely determineΓ, as stated
by the following theorem.

Theorem 1 (Poincaré). The group Γ = ⟨σ1, . . . , σn⟩
has the following presentation:

Γ ∼=
⟨
σ1, . . . , σn | ∀k, (σkσk+1)

pk = 1, σ2
k = 1

⟩
.

(1)
Moreover, Γ acts properly on X and P is a fundamen-
tal domain for this action (i.e. the Γ-translates of P
cover X).

Saying that Γ has a presentation given by (1) means
that Γ is, in some sense, the simplest group gen-
erated by σ1, . . . , σn and satisfying the given re-
lations. More precisely, Γ is isomorphic to the
free group on {σ1, . . . , σn} quotiented by the nor-
mal subgroup generated by

{
σ2
k, 1 ≤ k ≤ n

}
∪

{(σkσk+1)
pk , 1 ≤ k < n}. The fact that Γ acts

properly onXmeans that the action is, in some sense,
discrete: in the resulting tiling, there cannot be an in-
finite number of copies of P in a small region.

The proof of the theorem involves reconstructing the
tiling as a cell complex, i.e. a space obtained by glue-
ing various cells. This cell complex K is defined by
taking one copy Pγ of P for each element γ of Γ and
by glueing the k-th edge of Pγ with the k-th edge of
Pγσk

for all 1 ≤ k ≤ n. One has to show that K is
homeomorphic to X and that the action of Γ on K
corresponds to the action on X, and this allows one
to actually understand the structure of Γ. For more
details, the reader is referred to [4].

Before going any further, let us examine a few spe-
cial cases of the Poincaré Theorem. If we look back at
the polygon of Figure 3, we see that it is impossible in
the euclidean world: the sum of angles of an n-sided
polygon is (n− 2)π. We should therefore have

(n− 2) =
1

p1
+ · · ·+ 1

pn
.

But since pk ≥ 2 for all k, the right-hand side of the
above equation is at most n/2, which is only possible
if n = 3 or 4. Reasoning along these lines, we see
that the only euclidean polygons to which the the-
orem applies are rectangles, the equilateral triangle,
and right-angled triangles with angles π/2, π/3, π/6
or π/2, π/4, π/4. Figure 4 shows such a tiling.
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▲ Figure 4: Tiling of E2 by a triangle with angles π/2, π/4, π/4

In the spherical world, the sum of angles of a trian-
gle is always greater than π; as a consequence, the
only polygons satisfying the hypotheses of the the-
orem are triangles, but there are infinitely many of
them, for instance with angles π/2, π/2, π/p for all
p ≥ 2. In the hyperbolic world on the other hand,
because the sum of angles of a triangle is less than π,
there is a lot more freedom. For instance, hyperbolic
regular right-angled n-gons exist for all n ≥ 5. Fig-
ure 5 shows both a hyperbolic and a spherical tiling.

▲ Figure 5: Tiling of H2 by a right-angled hexagon and
of S2 by a triangle with angles π/2, π/2, π/5

Coxeter groups and
Cayley graphs

The group Γ with the presentation given by the
Poincaré Theorem is part of a class of groups intro-
duced by Donald Coxeter in a 1934 article [1] in
which he undertook a study of “discrete groups gen-
erated by reflections” in euclidean and spherical ge-
ometry; these groups would later become known as
Coxeter groups: a group W is a Coxeter group if it
has a presentation of the form

W =
⟨
S | ∀s ̸= t ∈ S, s2 = (st)mst = 1

⟩
, (2)

where S is a finite set and (mst)s,t∈S is a sym-
metric matrix indexed by S, with coefficients in
{2, 3, . . . } ∪ {∞}.

The simplest example of a Coxeter group is
the one with only two generators: W =⟨
s, t | s2 = t2 = (st)m = 1

⟩
. In order to visualise

this group, let us introduce the concept of Cayley
graph: given a group G with a generating set S, its
Cayley graph Cay(W,S) is the graph obtained by
drawing one vertex for each element of G, and by
drawing an edge labelled by s between g and gs for
all g ∈ G. Hence, the local model for a Cayley graph
is the following:

g gs
s

Coming back to our previous example of
W =

⟨
s, t | s2 = t2 = (st)m = 1

⟩
, we can enumer-

ate elements of W : starting with the trivial word 1,
we obtain s, st, sts, etc. These words are all dif-
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· · · · · ·

· · ·

· · ·

ferent until we reach (st)m = 1. We could also
have started with t, ts, etc., but we would have ob-
tained the same words because t = (st)m−1 s, ts =
(st)m−1, etc. Therefore, if m is finite, the Cay-
ley graph Cay (W, {s, t}) should look like a cycle of
length 2m, with edges labelled by s and t alterna-
tively.

st
1

s

st

sts

t

ts

▲ Figure 6: The Cayley graph of
D6 =

⟨
s, t | s2 = t2 = (st)3 = 1

⟩

If m = ∞, we can multiply indefinitely by s or t, so
the Cayley graph of W is an infinite line.

1 s st sts stst
ttststtsts

st · · ·· · ·

▲ Figure 7: The Cayley graph of
D∞ =

⟨
s, t | s2 = t2 = 1

⟩

It turns out that having determined theCayley graphs
of Coxeter groups with two generators tells us how
to draw the Cayley graph of any Coxeter group: given

▲ Figure 8: The Cayley graph of⟨
r, s, t | r2 = s2 = t2 = (rs)4 = (rt)4 = (st)2

⟩
as

the dual of the corresponding Euclidean tiling

W as in (2), if one looks at edges labelled by two gen-
erators s, t ∈ S only in Cay(W,S), then one will see
cycles of length 2mst (or lines if mst = ∞).

If we look back at the cell complex K that we used
to reconstruct the tiling of the Poincaré Theorem,
we will see that we have done something very simi-
lar to the construction of Cayley graphs: we started
with a collection of polygons (instead of vertices for
the Cayley graph) indexed by elements of the group,
and we glued edges of the polygons (instead of link-
ing vertices by an edge) when the two correspond-
ing elements of the group differ by a generator. This
suggests the following construction illustrated in Fig-
ure 8: in the tiling, add a vertex inside each copy of
the polygon. If two copies of the polygon share an
edge, then draw a new edge between the correspond-
ing vertices across the old edge. The resulting graph
(consisting of new vertices and edges only) is called
the dual graph of the tiling, and is exactly the Cayley
graph of the corresponding Coxeter group.

Quasi-isometries

In the context of the PoincaréTheorem, the construc-
tion of theCayley graph as the dual of the tiling seems
to point to a connection between the geometry of
X and that of Cay(Γ, S). One way to put it is that,
forgetting the local details and looking at them from
afar, those two objects have very similar geometric
structures. We can make this intuition rigorous by
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introducing the concept of quasi-isometry. Given two
metric spaces X and Y , a map f : X → Y is said to
be a quasi-isometric embedding if there exist ε ≥ 0
and λ ≥ 1 such that

1

λ
dX

(
x, x′

)
− ε ≤ dY

(
f(x), f

(
x′
))

≤ λdX
(
x, x′

)
+ ε,

for all x, x′ ∈ X . We say that f is a quasi-isometry
(and that X and Y are quasi-isometric) if in addition
f has a quasi-inverse: a map g : Y → X such that

sup
x∈X

dX (x, g ◦ f(x)) < ∞
and

sup
y∈Y

dY (y, f ◦ g(y)) < ∞.

Quasi-isometry defines an equivalence relation be-
tweenmetric spaces and captures the idea of “looking
the same from afar”.

Given a group G with a generating set S, the Cayley
graph Cay(G,S) can be made into a metric space by
endowing it with the graph distance: the distance be-
tween any two points in the graph is the length of the
shortest path between them. If we restrict this dis-
tance toG, we obtain theword metric dS onG, which
can be defined equivalently by saying that dS(g, h) is
the length of the shortest word on S equal to h−1g.
In fact, restricting our attention to elements of G or
considering the whole Cayley graph does not matter:
(G, dS) is quasi-isometric to Cay(G,S). Now one of
the reasons for the importance of quasi-isometry is
the following fact.

Proposition 1. IfG is a group and S, S′ are two finite
generating sets for G, then (G, dS) is quasi-isometric
to (G, dS′).

Therefore, even though a finitely generated group
may have many different Cayley graphs and word
metrics, the proposition implies that they are all
quasi-isometric. This allows one to talk of the ge-
ometric structure of a (finitely generated) group,
which is well-defined up to quasi-isometry and can
be visualised as the structure of any Cayley graph of
the group.

The geometry of groups

Theidea of defining the geometric structure of finitely
generated groups and accepting to look at metric
spaces up to quasi-isometry was first introduced by
Mikhail Gromov in the eighties; this is the first step

into the realm of geometric group theory, a very active
field of contemporary mathematical research. One
fundamental result of the field is the following:

Lemma 1 (Švarc-Milnor). Let G be a group acting
properly, cocompactly and by isometries on a proper
geodesic space X . Then:

1. G is finitely generated.

2. G is quasi-isometric to X .

It follows from the Švarc-Milnor Lemma that the
Coxeter group Γ appearing in the Poincaré Theorem
is quasi-isometric to the space X. Amazingly, we can
use this fact to deduce many algebraic properties of
Γ: for instance, if X is the hyperbolic plane, then Γ
is a so-called hyperbolic group, which implies for ex-
ample that it does not contain a subgroup isomorphic
to Z2 (the intuition behind this is that Z2 is flat, so it
cannot be embedded into the hyperbolic world).

This short article will hopefully have pointed to the
idea that viewing groups as intrinsically geometric
objects and trying to understand them as the sym-
metries of some spaces is both a natural and beauti-
ful approach. A good place to learn more about var-
ious aspects of this general idea is [4]; a more linear
textbook-style approach is given by [5]. For more on
Coxeter groups, we recommend [3] for their combi-
natorial theory and [2] for their geometry.
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