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Introduction
This report is the result of a six-week long research internship at the Institute for Algebra

and Geometry of the Karlsruhe Institute of Technology. The aim of the internship was to
learn the foundations of geometric group theory through the example of Coxeter groups. It
involved learning the basics of the combinatorial theory of Coxeter groups, geometric group
theory, hyperbolic geometry, metric geometry and the theory of buildings. Concretely, the
work was mainly bibliographical, the two principal references being [Dav08] and [BH99]; but it
also involved attending seminars, for example Gye-Seon Lee’s lectures on Coxeter groups and
geometry at the University of Heidelberg. We present here an outline of the work that has been
done during the internship, focusing on the results leading to Moussong’s Theorem, which states
that Coxeter groups are CAT(0).
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1 Coxeter groups from an algebraic point of view
We will start by defining Coxeter systems, and then introduce a first way of viewing a Coxeter

group as a geometric object, which will give us some insight into the combinatorial structure of
Coxeter groups.

1.1 Coxeter systems

In order to define a Coxeter system and a Coxeter group, we will use the vocabulary of
presentations: given a set S and a set R of words on the alphabet S∪S−1, the group defined by
the presentation 〈S | R〉 is the quotient of the free group F (S) on S by the normal subgroup
〈〈R〉〉 generated by R: 〈S | R〉 = F (S)/ 〈〈R〉〉.
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A Coxeter matrix on a finite set S is a symmetric matrix (ms,t)(s,t)∈S2 with entries in
N∗ ∪ {∞} such that ms,t = 1 if and only if s = t. A Coxeter system is a pair (W,S), where
W is a group and S is a finite subset of W , associated to a Coxeter matrix (ms,t)(s,t)∈S2 on S,
such that a presentation for W is given by:

W = 〈S | {(st)ms,t , s, t ∈ S, ms,t <∞}〉 .

If (W,S) is a Coxeter system, W will be called a Coxeter group. Associated to any Coxeter
system (W,S), there is a length function: if w ∈ W , define `S(w) to be the length of a word
of minimal length on S representing w.

Given a Coxeter system, many combinatorial questions arise naturally. For example, if s, t
are two generators, we know that the order of (st) divides ms,t, but is it equal to ms,t? More
generally, given two words a and b on the alphabet S, can we decide whether a and b represent the
same element of W? This problem is called the word problem. Another problem is to decide
whether the elements of W represented by a and b are conjugate; this is called the conjugacy
problem. Using elegant geometric methods, we shall give answers to these seemingly simple
combinatorial problems.

1.2 The canonical representation

The simplest examples of Coxeter groups are given by Euclidean reflection groups, i.e. sub-
groups of O(n) generated by reflections across hyperplanes. An arbitrary Coxeter system (W,S)
may not be representable in such a way, but we shall construct a linear representation of W
which has similar properties. We first define the cosine matrix C = (cs,t)(s,t)∈S2 of (W,S) by:

cs,t = − cos
(

π

ms,t

)
,

where (ms,t)(s,t)∈S2 is the Coxeter matrix of (W,S) (with the convention cos
(
π
∞
)

= cos(0) = 1).
We then define B to be the symmetric bilinear form on V = RS whose matrix in the canonical
basis (es)s∈S is C. For s ∈ S, consider Hs = KerB (es, ·) (this is the hyperplane orthogonal to
es relative to B). As es is anisotropic, we have V = Res ⊕Hs. Therefore, we can define σs to
be the reflection through Hs parallel to Res (i.e. σs(x) = x− 2B (es, x) es for x ∈ V ); it is clear
that σs preserves B. In order to be able to define a group homomorphism W → GL(V ), we
need to check firstly that the relations defining W are carried into GL(V ) by the map s 7→ σs:

Lemma 1.1. Let (W,S) be a Coxeter system. With the above notations, σsσt has order ms,t

for all s, t ∈ S.

Proof. Let Vs,t = Res + Ret. Note that Vs,t is σs-stable and σt-stable. For λ, µ ∈ R, we have:

B (λes + µet, λes + µet) = λ2− 2λµ cos
(

π

ms,t

)
+µ2 =

(
λ− µ cos

(
π

ms,t

))2

+µ2 sin2
(

π

ms,t

)
.

Hence, the restriction of B to Vs,t is positive semidefinite, and it is nondegenerate precisely when
ms,t <∞. We now have two separate cases:

• If ms,t < ∞, B is a euclidean scalar product on Vs,t, and σs and σt are both orthogonal
reflections. Moreover, B (es, et) = cos

(
π
(
1− 1

ms,t

))
, so the angle between es and et is

π
(
1− 1

ms,t

)
. Thus, the lines Hs and Ht make an angle of π

ms,t
. From this, we deduce

that σsσt is a rotation through the angle 2π
ms,t

(on the euclidean plane (Vs,t, B)), so the
endomorphism of Vs,t induced by σsσt is of order ms,t. Moreover, as the restriction of B to
Vs,t is nondegenerate, we have V = Vs,t⊕ (Hs ∩Ht). But the restriction of σsσt to Hs∩Ht

is the identity, which proves that the order of σsσt is ms,t.
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• If ms,t = ∞, we see that σs(u) = σt(u) = u, where u = es + et. Therefore, ∀k ∈
N∗, (σsσt)k (es) = 2ku+ es 6= es, and σsσt has infinite order.

In particular, we have (σsσt)ms,t = idV for all s, t ∈ S. Therefore, the homomorphism
F (S) → GL(V ) given by s 7→ σs induces a homomorphism σ : W → GL(V ). This homomor-
phism is called the canonical representation of (W,S). We shall see σ as an action of W on
V and write w(x) instead of (σ(w)) (x) for w ∈W and x ∈ V .

Define Φ = {w (es) , w ∈W, s ∈ S} ⊆ V . The set Φ is called a root system for (W,S) and
its elements are called roots. A root α ∈ Φ is said to be positive (resp. negative), which shall
be denoted by α > 0 (resp. α < 0), if all its coefficients in the basis (es)s∈S are nonnegative
(resp. nonpositive). There is a strong link between the length function and the sign of roots:

Proposition 1.2. Let (W,S) be a Coxeter system. For w ∈W and s ∈ S, we have:

(i) If `S(ws) > `S(w), then w (es) > 0.

(ii) If `S(ws) < `S(w), then w (es) < 0.

Proof. It is enough to prove the first statement (because if `S(ws) < `S(w), then `S (w′s) >
`S (w′), with w′ = ws). We shall prove it by induction on `S(w). If `S(w) = 0, then w = 1 and
it is clear that w (es) = es > 0.

Let w ∈ W with `S(w) > 0 and assume that the result is proven for elements of length
less than `S(w). If we take s′ ∈ S to be the last letter in a minimal word on S representing
W , we have `S (ws′) < `S(w). We have s′ 6= s because `S (ws) > `S(w). Put I = {s, s′} and
WI = 〈I〉 ≤ W . WI is a subgroup of W isomorphic to a dihedral group; and it has a length
function `I relative to its generating set I. Now consider:

A =
{
v ∈W, v−1w ∈WI , `S(v) + `S

(
v−1w

)
= `S(w)

}
.

The set A is nonempty because w ∈ A. Choose v ∈ A of minimal length and put vI = v−1w ∈
WI . Hence w = vvI and `S(w) = `S(v)+`S (vI). Note that ws′ ∈ A, so `S(v) ≤ `S (ws′) < `S(w).
Therefore, the induction hypothesis applies to v. Moreover, if `S(vs) < `S(v), then we could
prove that vs ∈ A, which would contradict the choice of v. Therefore, `S(vs) > `S(v), which
gives v (es) > 0. Likewise, we obtain v (es′) > 0. As w = vvI , it suffices to proves that vI
maps es to a linear combination of es and es′ with nonnegative coefficients. Observe firstly that
`I (vIs) ≥ `I (vI), so any minimal word on I representing vI must end in s′. Write m = ms,s′ and
consider two cases. If m = ∞, we prove the desired statement by a direct calculation (noting
that B (es, es′) = 1). If m <∞, note that `I (vI) ≤ m, and any element of length m in WI has
a reduced expression ending in s, so `I (vI) < m. Using the fact that WI is a reflection group in
the euclidean plane, it is easy to show the desired statement.

Theorem 1.3. The canonical representation of a Coxeter system is faithful.

Proof. Let (W,S) be a Coxeter system and σ : W → GL(V ) be its canonical representation.
If w ∈ W\{1}, then `S(w) ≥ 1. By choosing s ∈ S to be the last letter of a minimal word
on S representing w, we have `S (ws) < `S(w), which implies (thanks to Proposition 1.2), that
w (es) < 0. But es > 0, so w (es) 6= es. Hence, σ(w) 6= idV .

1.3 Combinatorial consequences

Proposition 1.4. Let (W,S) be a Coxeter system with Coxeter matrix (ms,t)(s,t)∈S2. For s, t ∈
S, the order of (st) is ms,t.

Proof. Let σ : W → GL(V ) be the canonical representation of (W,S). We know that the order
of (st) divides ms,t. But if there existed 1 ≤ k < ms,t such that (st)k = 1, we would have
(σ(s)σ(t))k = σ

(
(st)k

)
= idV , which is impossible according to Lemma 1.1.
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The definition of a Coxeter system which we have chosen here is the one given in [Hum90].
Both [Bou68] and [Dav08] give a different definition, saying that (W,S) is a Coxeter system if
W is a group with a generating set S such that W = 〈S | {(st)ms,t , s, t ∈ S, ms,t <∞}〉, where
ms,t is the order of st in W for s, t ∈ S. In this definition, the Coxeter matrix is intrinsic to the
Coxeter system, whereas in our definition, there was a slight abuse in writing (W,S) when we
really meant

(
W,S, (ms,t)(s,t)∈S2

)
. However, Proposition 1.4 proves that the two definitions are

equivalent, which was by no means obvious.

Using Proposition 1.2, we shall prove that Coxeter systems have a solvable word problem. To
do this, consider the dual σ∗ : W → GL (V ∗) of the canonical representation σ : W → GL (V ).
To each generator s ∈ S we associate two half spaces of V ∗ defined by:

A+
s = {f ∈ V ∗, 〈f, es〉 > 0} and A−s = {f ∈ V ∗, 〈f, es〉 < 0} .

We also define the fundamental chamber of (W,S) by C =
⋂
s∈S A

+
s . The following lemma

describes the action of W on the fundamental chamber:

Lemma 1.5. Let (W,S) be a Coxeter system. For w ∈W and s ∈ S, we have:

(i) If `S(sw) > `S(w), then w(C) ⊆ A+
s .

(ii) If `S(sw) < `S(w), then w(C) ⊆ A−s .

Proof. Suppose that `S(sw) > `S(w), i.e. `S
(
w−1s

)
> `S

(
w−1). Proposition 1.2 implies that

w−1 (es) > 0. Let f ∈ C and write f =
∑
s∈S λse

∗
s, with (λs)s∈S ∈

(
R∗+
)S , where (e∗s)s∈S is the

dual basis of (es)s∈S . We have:

〈w (f) , es〉 =
〈
f, w−1 (es)

〉
=
∑
s′∈S

>0︷︸︸︷
λs′

〈
e∗s′ , w−1 (es)

〉
︸ ︷︷ ︸

≥0

≥ 0.

Moreover, if we had
〈
e∗s′ , w−1 (es)

〉
= 0 for all s ∈ S, we would have w−1 (es) = 0, so es = 0,

which is false. Hence 〈w (f) , es〉 > 0 and w(f) ∈ A+
s . The proof of the second statement is

similar.

Theorem 1.6. Coxeter systems have a solvable word problem.

Proof. Let (W,S) be a Coxeter system. Consider the canonical representation σ : W → GL(V )
and its dual representation σ∗ : W → GL (V ∗). Write (e∗s)s∈S for the dual basis of (es)s∈S .
Consider f =

∑
s∈S e

∗
s ∈ C. We are going to show that the stabiliser Stab(f) of f in W is

trivial. Therefore, in order to determine whether a word s1 · · · sk ∈ F (S) represents the identity
in W , one only needs to compute s1 · · · sk(f): the result is f if and only if s1 · · · sk

W= 1.
It remains to prove that Stab(f) = {1}. Let w ∈ Stab(f). Note that, because of Lemma

1.5, we have w(C) ⊆
⋂
s∈S A

εs
s , where (εs)s∈S ∈ {±1}S . But since f = w(f) ∈ C ∩ w(C), it

follows that εs = +1 for all s ∈ S. Applying Lemma 1.5 again, we see that `S(sw) > `S(w) for
all s ∈ S, which implies that w = 1.

2 Elements of geometric group theory
Geometric group theory consists in studying groups by making them operate on interesting

topological or metric spaces. We will endow a group with a geometric structure, and we shall
study the relations between this structure and spaces on which the group operates. This will
lead us to first examples of algebraic properties originating from geometric methods.
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2.1 Cayley graphs and word metrics

Let Γ be a group with a generating set S. We define the Cayley graph Cay(Γ, S) as the
oriented graph whose vertices are elements of Γ and where there is an edge labeled by s ∈ S
going from g ∈ Γ to h ∈ Γ precisely when h = gs. If s is of order 2, note that there is an s-edge
from g to h if and only if there is an s-edge from h to g; in this case, we shall only draw one
undirected edge between g and h rather than two directed edges, as in Figure 1 (this is always
the case for Coxeter systems). The Cayley graph is endowed with the structure of a metric
graph by defining the length of each edge to be 1; this metric is locally well-defined, and the
distance between two arbitrary points is taken to be the length of a shortest path joining these
two points. The following remark will be fundamental for working with Cayley graphs:

Remark. A path between two vertices in the Cayley graph Cay(Γ, S) corresponds to a word on
S ∪ S−1. Moreover, this correspondence preserves lengths.

As S generates Γ, the preceding remark shows that Cay(Γ, S) is connected. Moreover, for
any element g ∈ Γ, the distance between 1 and g is equal to the length of a minimal word
(s1, . . . , sk) on S ∪S−1 such that g = s1 · · · sk. This is the length of g relative to S, denoted by
`(g) or `S(g) (note that this notion of length is the same as for Coxeter systems). Moreover, the
restriction to Γ of the metric on Cay(Γ, S) will be called the word metric on Γ (relative to S).

(1 2)(2 3)
(1)

(1 2)

(1 2 3)

(1 3)

(2 3)

(1 3 2)

(1 2)
(2 3)

(3 4)(1)

(3 4)

(2 4)

(1 4 3 2)

(2 4 3)

Figure 1: The Cayley graphs of (S3, {(1 2), (2 3)}) and (S4, {(1 2), (2 3), (3 4)}).

There is a natural geometric action of Γ on Cay(Γ, S). Here is some vocabulary which shall
be used to describe the properties of this action: if a group Γ acts by homeomorphisms on a
topological space X, we shall say that the action is proper if for any compact set K ⊆ X, the
set {γ ∈ Γ, γK ∩K 6= ∅} is finite; and we shall say that the action is cocompact if there exists
a compact set K ⊆ X such that X = Γ ·K.

Proposition 2.1. Let Γ be a group with a generating set S.

(i) The left action of Γ on Γ by translation induces an action of Γ on Cay(Γ, S) by isometries.

(ii) If S is finite, the action of Γ on Cay(Γ, S) is proper and cocompact.

Proof. (i) It is enough to prove that the action of Γ preserves adjacency in the Cayley graph.
To do this, consider γ ∈ Γ and take two vertices g, h ∈ Γ of Cay(Γ, S). Suppose there is
an s-edge from g to h, i.e. h = gs. Then γh = (γg) s, so there is indeed an s-edge from
γg to γh.

(ii) To see that the action of Γ on Cay(Γ, S) is proper, take a compact set K ⊆ X. Choose
r > 0 so that K ⊆ B(1, r), where B(1, r) is the open ball with center 1 and radius r. If
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γ ∈ Γ is such that γK ∩K 6= ∅, then γB(1, r) ∩B(1, r) 6= ∅, so d(1, γ) < 2r. This proves
that:

{γ ∈ Γ, γK ∩K 6= ∅} ⊆ {γ ∈ Γ, d(1, γ) < 2r} = {γ ∈ Γ, `(γ) < 2r} .

As S is finite, these sets are finite, so the action of Γ on Cay(Γ, S) is proper.
Now note that the action of Γ on itself by translation is transitive. Therefore, for all s ∈ S,
the action of Γ on the set of s-edges of Cay(Γ, S) is transitive. Hence, if Ks is an s-edge
for s ∈ S, we have Cay(Γ, S) = Γ · (

⋃
s∈SKs), so the action is cocompact.

2.2 Geodesic spaces and length spaces

The central idea of what follows will be to compare paths in the Cayley graph of (Γ, S) (which
correspond to words on S ∪ S−1) to paths in a metric space X on which Γ acts geometrically.
Therefore, it will be necessary to add an additional hypothesis on X, which will ensure that
paths in X are well-behaved.

If X is a metric space and c : [a, b]→ X is a path in X, the length of c is defined by:

` (c) = sup
a=t0<t1<···<tk=b

k−1∑
j=0

d (c (tj) , c (tj+1)) ≥ d (c(a), c(b)) .

The space X is said to be a length space (resp. a geodesic space) if for any two points
x, y ∈ X, the distance between x and y is the infimum (resp. the minimum) of the lengths of
paths from x to y (as a consequence, X is path-connected). A path c is said to be a geodesic
path if d (c(s), c(t)) = |s− t| for all s, t ∈ [a, b]. It is said to be a linearly reparametrised
geodesic if there exists λ > 0 such that t 7→ c (λt) is a geodesic path. The space X is geodesic
if and only if any two points of X are joined by a geodesic path. If this geodesic path is always
unique, X is said to be uniquely geodesic.

Remark. All metric graphs are geodesic spaces; in particular, Cayley graphs are geodesic spaces.

2.3 Quasi-isometry

The problem we now face is that, given a group Γ, there may be several different generating sets
S leading to different Cayley graphs and different word metrics. For example, Cay (Z, {1}) is not
isometric to Cay (Z, {2, 3}). To get round this problem, we define the notion of quasi-isometry.
If X and Y are metric spaces, a map f : X → Y is called a quasi-isometric embedding if
there exist λ ≥ 1 and ε ≥ 0 such that the following inequalities hold for all x, x′ ∈ X:

1
λ
d
(
x, x′

)
− ε ≤ d

(
f(x), f

(
x′
))
≤ λd

(
x, x′

)
+ ε.

The map f is called a quasi-isometry if it is a quasi-isometric embedding and has a quasi-
inverse, i.e. a map g : Y → X such that d (g ◦ f, idX) <∞ and d (f ◦ g, idY ) <∞. In this case,
g is also a quasi-isometric embedding, and the spaces X and Y are said to be quasi-isometric.
Therefore, the quasi-isometry of metric spaces is an equivalence relation.

Proposition 2.2. Let Γ be a finitely generated group. Consider S and S′ two finite generating
sets for G, with associated word metrics dS and dS′. Then the metric spaces (Γ, dS) and (Γ, dS′)
are quasi-isometric. Therefore, Γ has a unique natural metric structure up to quasi-isometry.

Proof. We will show that idΓ : (Γ, dS) → (Γ, dS′) is a quasi-isometric embedding, which will
imply that it is a quasi-isometry because it has an inverse map, namely idΓ : (Γ, dS′)→ (Γ, dS).
With λ = max {maxs∈S `S′(s),maxs′∈S′ `S (s′)}, we have 1

λ`S(g) ≤ `S′(g) ≤ λ`S(g) for g ∈ Γ.

6
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2.4 The fundamental observation of geometric group theory

The following lemma is very general, and tells us how to obtain a generating set for a group
given a geometric action of this group on a topological space.

Lemma 2.3. Let Γ be a group. Suppose Γ acts by homeomorphisms on a connected topological
space X and consider an open subset U ⊆ X such that X = Γ·U . Then S = {γ ∈ Γ, γU ∩ U 6= ∅}
is a generating set for Γ.

Proof. Consider V = 〈S〉·U and V ′ = (Γ\ 〈S〉)·U . Due to the definition of S, we have V ∩V ′ = ∅.
Therefore, V and V ′ are disjoint open subsets of X, and X = V t V ′. Moreover, V ⊇ U ) ∅,
and X is connected, so V = X and V ′ = ∅, which implies that Γ\ 〈S〉 = ∅.

The following theorem is sometimes called the fundamental observation of geometric group
theory; it helps us understand the relation between a group and a metric space on which it acts.
We call a metric space proper if its closed balls are compact.

Theorem 2.4 (Švarc-Milnor). Let Γ be a group. Suppose Γ acts properly cocompactly by isome-
tries on a proper length space X. Then:

(i) Γ is finitely generated.

(ii) For all x0 ∈ X, the map g ∈ Γ 7−→ gx0 ∈ X is a quasi-isometry between Γ and X.

Proof. (i) As the action of Γ on X is cocompact, let x0 ∈ X and r > 0 such that X = Γ·B (x0, r).
Define S = {γ ∈ Γ, γB (x0, 3r) ∩B (x0, 3r) 6= ∅}. The set S is finite because the operation of
Γ on X is proper, and X is proper. Since X = Γ · B (x0, 3r), Lemma 2.3 guarantees that S
generates Γ.

r

r

x0

gx0 = xk

x1

x2
· · ·

g1x0
g2x0

Figure 2: Proof of the Švarc-Milnor Theorem.

(ii) Consider f : g ∈ Γ 7−→ g · x0 ∈ X. We shall prove that f is a quasi-isometry. Let g ∈ Γ.
Let k ∈ N∗ such that dX (x0, gx0) = (k − 1)r + r′, with 0 ≤ r′ < r. As X is a length space,
choose a path c in X from x0 to gx0 of length `(c) = dX (x0, gx0) + ε, with 0 ≤ ε ≤ (r − r′).
Now separate c into (k − 1) subpaths of length r and one extra subpath of length r′ + ε. Write
x0, x1, . . . , xk−1, xk = gx0 for the corresponding points in X. For j ∈ {1, . . . , k − 1}, there exists
gj ∈ Γ such that xj ∈ gjB (x0, r). Set g0 = 1 and gk = g. For j ∈ {0, . . . , k − 1}, we have
gj+1x0 ∈ gj+1B (x0, 3r) ∩ gjB (x0, 3r) so sj = g−1

j gj+1 ∈ S. As g = s0 · · · sk−1, the length of g
relative to S is at most k:

`(g) ≤ k = (k − 1)r
r

+ 1 ≤ 1
r
dX (x0, gx0) + 1.

Now, consider g = s′0 · · · s′m−1 a reduced expression for g relative to S (i.e. m = `(g)). For
j ∈ {0, . . . ,m− 1}, we know that s′jB (x0, 3r) ∩B (x0, 3r) 6= ∅ (because s′j ∈ S), which implies
that dX

(
s′jx0, x0

)
< 6r. Thus:

dX (x0, gx0) ≤
m−1∑
j=0

dX
(
s′0 · · · s′j−1x0, s

′
0 · · · s′jx0

)
=

m−1∑
j=0

dX
(
x0, s

′
jx0
)
< 6mr = 6r`(g).

7
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To summarise, we have proved that r`(g)− r ≤ dX (x0, gx0) ≤ 6r`(g) for all g ∈ Γ. As Γ acts by
isometries, we obtain rdΓ(g, h) − r ≤ dX (f(g), f(h)) ≤ 6rdΓ(g, h) for all g, h ∈ Γ, where dΓ is
the word metric on Γ relative to S. This proves that f : Γ→ X is a quasi-isometric embedding.

Moreover, for x ∈ X, if g(x) ∈ Γ is such that dX (x, g(x)x0) < r, then the map g : X → Γ is
a quasi-inverse for f , so f is a quasi-isometry.

Corollary 2.5. If Γ is a group with a finite generating set S, Γ is quasi-isometric to Cay(Γ, S).

To illustrate the depth of the Švarc-Milnor Theorem, here is a purely algebraic property,
proved using geometric ideas:

Proposition 2.6. If a group Γ is finitely generated, then every subgroup H ≤ Γ of finite index
is also finitely generated.

Proof. Take S a finite set of generators for Γ. We know that Γ acts properly cocompactly by
isometries on Cay(Γ, S), which is a proper length space. The induced action of H on Cay(Γ, S)
is proper and by isometries. It is also cocompact because H has finite index in Γ. Therefore,
the Švarc-Milnor Theorem guarantees that H is finitely generated.

3 Nonpositive curvature
We are going to define a notion of curvature for a metric space X. To do this, the idea will be

to compare triangles in X with triangles in a well-known space in which we already have a notion
of curvature (given by differential geometry, for instance). We will see later that information
about the curvature of a space on which a group acts translates into algebraic properties of the
group itself.

3.1 CAT(0) and CAT(1) spaces

Informally, CAT(0) spaces are metric spaces in which triangles are thinner than in the Eu-
clidean plane E2, equipped with the standard scalar product and the induced distance dE2 .
Likewise, CAT(1) spaces are spaces in which triangles are thinner than in the 2-sphere S2,
equipped with the distance dS2 defined by dS2(A,B) = arccos (〈A,B〉R3) for A,B ∈ S2, where
〈·, ·〉R3 is the Euclidean scalar product on R3. These spaces have the following properties:

Proposition 3.1. (i) E2 is a uniquely geodesic space and for all (`1, `2, `3) ∈ (R+)3 satisfying
the triangle inequality, there exists a triangle in E2 whose edges have lengths `1, `2, `3.

(ii) S2 is a geodesic space and any pair of points a distance less than π apart can be joined by
a unique geodesic path. For all (`1, `2, `3) ∈ (R+)3 satisfying the triangle inequality and
such that `1 + `2 + `3 < 2π, there exists a triangle in S2 whose edges have lengths `1, `2, `3.

A geodesic triangle ∆ in a metric space X consists of three points x1, x2, x3 together
with three geodesic paths [x1, x2] , [x2, x3] , [x3, x1]. According to Proposition 3.1, there always
exists a geodesic triangle ∆ with vertices x1, x2, x3 in E2 such that dX (xi, xj) = dE2 (xi, xj)
for all i, j. Once we have the triangle ∆, we can construct comparison points for any point on
edges of ∆ by choosing the comparison point for p ∈ [xi, xj ] to be the unique point p ∈ [xi, xj ]
such that dX (p, xi) = dE2 (p, xi). We shall say that ∆ satisfies the CAT(0) inequality if
dX (p, q) ≤ dE2 (p, q) for all p, q ∈ ∆. Likewise, if the perimeter of ∆ is less than 2π, there exists
a comparison triangle ∆ in S2 and one can define the CAT(1) inequality in the same manner.

8
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x1 x2

x3

p

q

dX(p, q)

X
x1 x2

x3

p

q

dE2(p, q)

E2

Figure 3: The CAT(0) inequality.

The space X is said to be a CAT(0) space if it is a geodesic space such that any geodesic
triangle satisfies the CAT(0) inequality; X is said to be a CAT(1) space if any two points a
distance less than π apart can be joined by a geodesic path and if any triangle of perimeter less
than 2π satisfies the CAT(1) inequality. Moreover, X is said to be nonpositively curved if it
is locally a CAT(0) space (i.e. for x ∈ X, there exists r > 0 such that B (x, r) is CAT(0)).

Remark. The Euclidean plane E2 is a CAT(1) space. Therefore, any CAT(0) space is CAT(1).

3.2 Properties of CAT(0) spaces

Proposition 3.2. Let X be a CAT(0) space.

(i) X is uniquely geodesic.

(ii) The distance on X is convex, i.e. for any pair of linearly reparametrised geodesics c, c′ :
[0, 1]→ X, the following inequality holds for all t ∈ [0, 1]:

d
(
c(t), c′(t)

)
≤ (1− t) · d

(
c(0), c′(0)

)
+ t · d

(
c(1), c′(1)

)
.

(iii) X is contractible.

Proof. (i) Let x, y ∈ X and consider two geodesic paths [x, y] and [x, y]′ from x to y. Let
p ∈ [x, y]. Write [x, p] and [p, y] for the subpaths of [x, y] respectively starting and ending
at p. Then [x, p], [p, y], [x, y]′ is a geodesic triangle in X and the comparison triangle in E2

is degenerate (i.e. its vertices are aligned). Therefore, thanks to the CAT(0) inequality,
the triangle in X is also degenerate, which proves that p ∈ [x, y]′. Hence, [x, y] = [x, y]′.

(ii) In the case where c(0) = c′(0), the desired inequality can be obtained by taking a com-
parison triangle for the triangle ∆ (c(0), c(1), c′(1)). In the general case, we introduce a
linearly reparametrised geodesic c′′ : [0, 1] → X from c(0) to c′(1). We then apply the
previous special case, firstly to c and c′′, and then to c′′ and c′ with reverse orientation.

(iii) Fix a point x0 ∈ X. For any x ∈ X, let γx : [0, 1] → X be the unique linearly
reparametrised geodesic from x0 to x. Define a map H : [0, 1]×X → X by H(t, x) = γx(t).
We have H(0, ·) = x0 and H(1, ·) = idX ; it remains to prove that H is continuous. Thanks
to the convexity of d, we have, for all t, t′ ∈ [0, 1] and x, x′ ∈ X :

d
(
H(t, x), H

(
t′, x′

))
= d

(
γx(t), γx′

(
t′
))

≤ d (γx(t), γx′(t)) + d
(
γx′(t), γx′

(
t′
))

≤ td (γx(1), γx′(1)) + (t− t′)d (γx′(0), γx′(1))
= td(x, x′) + (t− t′)d

(
x0, x

′)
≤ d(x, x′) + (t− t′)d

(
x0, x

′) .
Therefore, H is a homotopy from the constant map at x0 to idX .

9
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3.3 The exponential map and the Cartan-Hadamard Theorem

Our aim will be to show that, under suitable hypotheses, if a space X is nonpositively curved
(i.e. if it is locally CAT(0)), then it is (globally) CAT(0). In differential or Riemannian geometry,
one of the important tools for obtaining global properties thanks to local one is the exponential
map; this is why we are going to define an analogue of the exponential map for metric spaces.

Let X be a metric space. A local geodesic path in X is a path c : I → X, where I ⊆ R is
an interval, such that for every t0 ∈ I, there exists an ε > 0 such that d (c(t), c (t′)) = |t− t′| for
all t, t′ ∈ I with |t− t0|+ |t′ − t0| ≤ ε. A linearly reparametrised local geodesic is a path
c : I → X such that there exists a constant λ > 0 such that t 7→ c (λt) is a local geodesic.

Fix a point x0 ∈ X. We define the tangent space X̃x0 of X at x0 to be the set of all linearly
reparametrised local geodesics c : [0, 1] → X such that c(0) = x0, together with the constant
path x̃0 at x0. We define a metric on X̃x0 by d (c, c′) = supt∈[0,1] d (c(t), c′(t)). Finally, we define
the exponential map by exp : c ∈ X̃x0 7−→ c(1) ∈ X. The following proposition highlights the
analogy with the differential case:
Proposition 3.3. Suppose that X is a complete metric space, with a locally convex metric, and
fix x0 ∈ X.
(i) X̃x0 is a complete contractible metric space.

(ii) exp : X̃x0 → X is a local isometry.

(iii) There is a unique local geodesic path joining x̃0 to each point of X̃x0.

(iv) If X is connected, then exp : X̃x0 → X is a universal covering map.

(v) If X is connected, then there is a unique local geodesic path between each pair of points of
X̃x0, and these local geodesics vary continuously with their endpoints.

Proof. See [BH99], Chapter II.4.

Therefore, the exponential map provides an explicit construction of the universal covering
of X. Using this construction, one can prove the following theorem:
Theorem 3.4 (Cartan-Hadamard). Let X be a complete connected metric space.
(i) If the metric on X is locally convex, then the induced length metric on the universal

covering X̃ is convex.

(ii) If X is nonpositively curved, then X̃ (with the induced length metric) is CAT(0).
Proof. See [BH99], Chapter II.4.

Corollary 3.5. Let X be a complete simply-connected geodesic space. If X is nonpositively
curved, then X is CAT(0).

3.4 Berestovskii’s Theorem

For the last part of this report, it will be necessary to understand the curvature of cell
complexes. Berestovskii’s Theorem, which supplies information about the curvature of the
cone Cone(Y ) over a metric space Y , will be our main tool in order to achieve this aim. To
define Cone(Y ), consider the quotient of [0,∞[ × Y by the equivalence relation which consists
in identifying the points whose first coordinate is 0, and equip it with the metric defined by
dCone(Y ) ((t, y) , (t′, y′))2 = t2 + t′2 − 2tt′ cos (min {π, dY (y, y′)}).
Theorem 3.6 (Berestovskii). A metric space Y is CAT(1) if and only if Cone(Y ) is CAT(0).
Proof. See [BH99], Theorem II.3.14.

10
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If L is a Euclidean cell complex and v is a vertex of L, we define the link Lk(v, L) of v in
L to be the set of unit vectors at v that point into L. The link Lk(v, L) has the structure of a
spherical cell complex. If L has only finitely many isometry types of cells, then there exists an
open ball centred at v in L which is isometric to an open ball centred at v in Cone (Lk (v, L)).
This leads to the following result:

Corollary 3.7. A Euclidean cell complex L with only finitely many isometry types of cells has
nonpositive curvature if and only if the link of every vertex of L is a CAT(1) space.

4 Coxeter groups from a geometric point of view
The aim of this report’s last part will be, given a Coxeter group W , to construct a Euclidean

CAT(0) cell complex on which W acts properly cocompactly by isometries. Remarkably, this
fact has many algebraic applications. In particular, knowing that Coxeter groups act on CAT(0)
spaces will enable us to solve their conjugacy problem, i.e. to decide whether or not two words
on the set of generators represent conjugate elements of W .

4.1 The Davis complex

Let (W,S) be a Coxeter system. A subset T ⊆ S is said to be spherical if it generates a finite
subgroup of W . In this case, the subgroup 〈T 〉 is called a spherical subgroup and its (left)
cosets are called spherical cosets. Write S for the set of spherical subsets of S and define the
nerve N of (W,S) to be the poset S \{∅}, ordered by inclusion; the nerve will be considered
as an abstract simplicial complex.

Consider the poset WS of all spherical cosets of (W,S), ordered by inclusion. The Davis
complex Σ is defined as the flag complex of the poset WS , i.e. the abstract simplicial
complex whose set of vertices is WS and where a subset ∆ ⊆WS spans a simplex if and only
if it is totally ordered. Here is a first observation aiming to understand what the flag complex
of a poset is:

Remark. Let Λ be a convex cell complex (i.e. a complex whose cells are convex polytopes). If
P is the poset of cells of Λ, then the flag complex of P is the barycentric subdivision of Λ.

We are now going to relate Σ to a geometric object. Suppose for the moment that W is
finite. Recall the definition of the fundamental chamber associated to (W,S) from Section
1.3. Define a Coxeter polytope of (W,S) to be the convex hull of an orbit Wx, where x is any
point of the fundamental chamber. As shown by the following proposition, Coxeter polytopes
are closely related to the Davis complex:

Figure 4: Coxeter polytopes of (S3, {(1 2), (2 3)}) and (S4, {(1 2), (2 3), (3 4)}), with their
barycentric subdivision.

11
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Proposition 4.1. Let (W,S) be a Coxeter system, with W finite. Write Cx for the Coxeter
polytope of (W,S) associated to a point x lying in the fundamental chamber. Then the map
w 7→ wx induces an isomorphism of posets between WS and the poset of faces of Cx.

Proof. See [Dav08], Lemma 7.3.3.

Corollary 4.2. Let (W,S) be a Coxeter system, with W finite. Then the Davis complex Σ of
(W,S) is the barycentric subdivision of any Coxeter polytope of (W,S).

We do not suppose anymore that W is finite. If T ⊆ S is a spherical subset, note that
(〈T 〉 , T ) is a Coxeter system and the poset (WS )≤w〈T 〉 is isomorphic to 〈T 〉S≤T for all w ∈W .
According to Corollary 4.2, the flag complex of (WS )≤w〈T 〉 is the barycentric subdivision of a
Coxeter polytope associated to 〈T 〉. Therefore, we can equip Σ with a new cell structure, its
natural cell structure, where each cell is a Coxeter polytope. With this new structure, the
vertex set of Σ is W and its 1-skeleton is Cay(W,S). We observe that the 2-skeleton of Σ is
the complex formed by attaching a 2-cell to each loop in Cay(W,S) corresponding to a relation
given by the Coxeter matrix. This leads to the following proposition:

Lemma 4.3. Let (W,S) be a Coxeter system and write R = {(st)ms,t , s, t ∈ S, ms,t <∞} ⊆
F (S) for the set of relations given by the Coxeter matrix. Then π1 (Cay(W,S)) ' 〈〈R〉〉 E F (S).

Proposition 4.4. The Davis complex Σ of a Coxeter system (W,S) is simply connected.

Thanks to the natural cell structure on Σ, it is possible to define a metric on Σ by specifying
a metric for each Coxeter polytope. Coxeter polytopes are subsets of a real finite-dimensional
vector space, so they naturally come with the Euclidean metric; but the question remains of
the choice of the Coxeter polytope, because the Coxeter polytopes associated to different points
of the fundamental chamber are not isometric. It is not difficult to see that, if (W,S) is a
Coxeter system with W finite, given a choice of positive real numbers (`s)s∈S indexed by S,
one can find a point x in the fundamental chamber (by solving a linear system) such that,
in the Coxeter polytope associated to x, each s-edge has length `s. For instance there exists
a Coxeter polytope, unique up to isometry, such that each edge has length 1; this defines a
canonical Coxeter polytope for any Coxeter system (W,S), with W finite. If (W,S) is any
Coxeter system (where W may be infinite), we now equip its Davis complex Σ with the length
metric defined so as to extend the metric structure defined on Coxeter polytopes. The following
proposition will be useful for studying the curvature of the Davis complex:

Proposition 4.5. Let (W,S) be a Coxeter system. The link of each vertex of the Davis complex
Σ is isomorphic (as an abstract simplicial complex) to the nerve N .

4.2 Gromov’s Lemma

Thanks to Corollaries 3.5 and 3.7, we see that, under certain hypotheses, in order to prove
that a Euclidean complex is CAT(0), one only needs to prove that its link, a spherical complex,
is CAT(1). Our main tool to do this will be Gromov’s Lemma, which gives a combinatorial
condition for spherical complexes to be CAT(1). Before proving it, we need a few lemmata. To
state them, we use the following vocabulary: a spherical complex is said to be all-right if each
edge has length π

2 .

Lemma 4.6. Let K be an all-right spherical complex. Suppose that ` is a geodesic circle and
v ∈ Vert(K). Then each connected component of ` ∩B

(
v, π2

)
must have length π.

Proof. Let `′ be a connected component of ` ∩ B
(
v, π2

)
. Consider the endpoints a and b of `′,

i.e. the points of `′ which are a distance π
2 from v. Choose a point m in the relative interior of

`′. Now consider a comparison triangle ∆ (v, a,m) ⊆ S2 for ∆ (v, a,m). If v is chosen to lie on

12
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the North pole, a is on the equator and m is in the open Northern hemisphere. Now choose b to
be a comparison point for b, lying on the side of [v,m] opposite to a (i.e. b is determined by its
distances from v and m). As b is at a distance π

2 from v, it also lies on the equator. Moreover,
since `′ is a geodesic circle, [a,m] ∪

[
m, b

]
is a local geodesic, i.e. b lies on the same great circle

as a and m. Hence a and b are both in the intersection of two great circles, namely the equator
and the one passing through m. These two great circles are distinct since m lies in the open
Northern hemisphere. Therefore, a and b are opposite poles, so their distance is exactly π.

Lemma 4.7. Let L be an all-right spherical complex. If two distinct vertices of L are a distance
less than π apart, then they are adjacent.

Proof. This is due to the fact that, in an all-right spherical simplex, the distance between a
vertex and any point of the opposite hyperface is exactly π

2 .

We also need the following proposition. A complex is said to satisfy the link condition if
the link of each vertex is CAT(1).

Proposition 4.8. Let L be a spherical complex with only finitely many isometry types of cells.
Then L is CAT(1) if and only if L satisfies the link condition and contains no isometrically
embedded circle of length less than 2π.

Proof. See [BH99], Theorem II.5.4.

We are now ready to prove Gromov’s Lemma. A simplicial complex is said to be a flag
complex if any finite set of pairwise adjacent vertices spans a simplex.

Lemma 4.9 (Gromov). Let L be a finite dimensional all-right spherical complex. If L is a flag
complex, then it is CAT(1).

Proof. We proceed by induction on the dimension of L. The statement is clear if dimL = 0.
Suppose the statement is true for any all-right spherical complex of dimension less than dimL.
In particular, for all v ∈ L, the statement is true for Lk (v, L). But since Lk (v, L) is an all-right
spherical flag complex, it is CAT(1). This proves that L satisfies the link condition. In order to
prove that L is CAT(1), it remains to prove that L contains no isometrically embedded circle of
length less than 2π (because of Proposition 4.8).

Let ` be an isometrically embedded circle of L and suppose for contradiction that ` has
length < 2π. Let V =

{
v ∈ Vert(L), ` ∩B

(
v, π2

)
6= ∅

}
. For v ∈ V , the length of ` ∩ B

(
v, π2

)
is at least π according to Lemma 4.6. Therefore, if v, v′ ∈ V , B

(
v, π2

)
and B

(
v′, π2

)
cannot be

disjoint (for otherwise ` would have length at least 2π). This proves that d (v, v′) < π for all
v, v′ ∈ V . Due to Lemma 4.7, the vertices of V are pairwise adjacent so V spans a simplex ∆ in
L, because L is a flag complex and V is finite. Now ` ⊆ ∆, which is a contradiction because a
spherical simplex cannot contain an isometrically embedded circle of length less than 2π.

Therefore, L satisfies the link condition and does not contain any isometrically embedded
circle of length less than 2π, so L is CAT(1) according to Proposition 4.8.

4.3 Coxeter groups are CAT(0)
We now reach this report’s main theorem. A group is said to be CAT(0) if it acts properly

cocompactly by isometries on a proper CAT(0) space (according to Theorem 2.4, this implies
that it is finitely generated and quasi-isometric to a CAT(0) space). Firstly, we make the
following observation:

Proposition 4.10. Let (W,S) be a Coxeter system and let Σ be its Davis complex. Then W
acts on Σ properly cocompactly by isometries.

13
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We can prove that a special class of Coxeter groups are CAT(0):

Theorem 4.11. Let (W,S) be a right-angled Coxeter system, i.e. a Coxeter system such that
the Coxeter matrix has entries in {1, 2,∞}. Then W is CAT(0).

Proof. It suffices to prove that the Davis complex Σ, a proper simply connected geodesic space,
is CAT(0). According to Corollary 3.5, Σ is CAT(0) if and only if it is nonpositively curved;
according to Corollary 3.7, Σ is nonpositively curved if and only if the link of each vertex is
CAT(1). But the link of each vertex is isomorphic to the nerve N of (W,S), so in the light of
Lemma 4.9, it is enough to prove that N is a flag complex. To do this, let T ⊆ Vert (N ) = S
be a finite set of pairwise adjacent vertices. Since (W,S) is right-angled, we have ms,t = 2 for
all s, t ∈ T with s 6= t. Therefore, we see that 〈T 〉 ' (Z/2Z)|T |, which is finite, so T spans a
simplex in N , and N is a flag complex.

In his PhD thesis, Moussong generalised Theorem 4.11 to any Coxeter system. The method
used consists in generalising Gromov’s Lemma to be able to apply it to the nerve of any Coxeter
system.

Theorem 4.12 (Moussong). The Davis complex of any Coxeter group is CAT(0). In particular,
Coxeter groups are CAT(0).

Proof. See [Mou88].

4.4 Solvability of the conjugacy problem for Coxeter groups

Using Theorem 4.12, a geometric result, we are going to give an answer to an algebraic question
which we asked at the beginning of this report, namely the conjugacy problem. In Theorem
1.6, we have already seen that a Coxeter system (W,S) has a solvable word problem, i.e. one
can decide whether two words on S represent the same element of W .

A finitely generated group Γ is said to have the quasi-monotone conjugacy property if
for any finite generating set S, there is a constant K ≥ 1 such that if two words u, v ∈ F (S) are
conjugate in Γ, then there exists a word w = s1 · · · sn with si ∈ S∪S−1 such that w−1uw

Γ= v and
`S
(
(s1 · · · si)−1 u (s1 · · · si)

)
≤ K max {`S(u), `S(v)} for all 1 ≤ i ≤ n. Due to Proposition 2.2,

it is enough to check that there exists one finite generating set S satisfying the above condition.

Proposition 4.13. If Γ is a CAT(0) group, then Γ has the quasi-monotone conjugacy property.

Proof. LetX be a proper CAT(0) space on which Γ acts properly cocompactly by isometries. Fix
x0 ∈ X and r > 0 s.t. X = Γ · B

(
x0,

r
3
)
. Set S = {γ ∈ Γ, γB (x0, r + 1) ∩B (x0, r + 1) 6= ∅}.

According to Lemma 2.3, S is a finite generating set for Γ.
For γ ∈ Γ, let cγ : [0, `]→ X be a geodesic segment from x0 to γx0. For k ∈ N∗ with k < `,

set wk ∈ Γ such that d (cγ(k), wkx0) < r
3 , and define w0 = 1 and wk = γ if k ≥ `. Hence, for all

k ∈ N∗, sk = w−1
k−1wk ∈ S. Define σγ

F (S)= s1 · · · sd`e
Γ= γ.

By the Švarc-Milnor Theorem (Theorem 2.4), there are constants λ ≥ 1, ε ≥ 0 such that
γ 7→ γx0 is a (λ, ε)-quasi-isometric-embedding, as in Section 2.3.

Let u, v ∈ F (S) such that there exists γ ∈ Γ with v
Γ= γ−1uγ. We consider the geodesic

paths cγ : [0, `]→ X and c′γ = ucγ joining respectively x0 to γx0 and ux0 to uγx0 = γvx0. Set

w
F (S)= σγ

F (S)= s1 · · · sm, with m = d`e. We have v Γ= γ−1uγ
Γ= w−1uw. Now let k ∈ {1, . . . ,m}

14
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Figure 5: The quasi-monotone conjugacy property in a CAT(0) group.

and consider wk = s1 · · · sk. We have:

`S
(
w−1
k uwk

)
= d (wk, uwk)

≤ λd (wkx0, uwkx0) + λε

≤ λd
(
cγ(k), c′γ(k)

)
+ λε+ 2

3λr

≤ λmax
{
d
(
cγ(0), c′γ(0)

)
, d
(
cγ(`), c′γ(`)

)}
+ λε+ 2

3λr

because X is CAT(0), so d is convex

≤ λ2 max {d (1, u) , d (γ, uγ)}+ 2λε+ 2
3λr

= λ2 max {d (1, u) , d (γ, γv)}+ 2λε+ 2
3λr

= λ2 max {`S (u) , `S (v)}+ 2λε+ 2
3λr.

Now choose K = λ2 + 2λε+ 2
3λr > 0 (which is independent of u and v). We may suppose that

u 6= 1 and v 6= 1. Hence:

`S
(
w−1
k uwk

)
≤ λ2 max {`S (u) , `S (v)}+

(
2λε+ 2

3λr
)

max {`S (u) , `S (v)}

= K max {`S (u) , `S (v)} .

Using the preceding lemma, we are ready to prove that Coxeter groups have a solvable con-
jugacy problem:

Proposition 4.14. Let Γ be a group with a finite generating set S. If Γ has a quasi-monotone
conjugacy property with a computable constant K for the set S and if Γ has a solvable word
problem, then Γ has a solvable conjugacy problem.

Proof. For n ∈ N, let V (n) = {w ∈ F (S) , `S (w) ≤ n}. We define a relation C on V (n) by v1Cv2
if and only if there exists a ∈ S ∪ S−1 such that a−1v1a = v2. The group Γ has a solvable word
problem and S is finite; therefore, given v1, v2 ∈ V (n), one can decide whether v1Cv2. Thus, we
can algorithmically construct a finite graph G(n) with vertex set V (n) that has an edge joining
v1 and v2 if and only if v1Cv2.
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Now fix u, v ∈ F (S). According to the quasi-monotone conjugacy property, u and v are
conjugate in Γ if and only if there exists a path from u to v in the graph G(n), with n ≥
K max {`S (u) , `S (v)}. Therefore, we can decide whether u and v are conjugate in Γ.

Theorem 4.15. Coxeter systems have a solvable conjugacy problem.
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