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Definition 1.1 (Bond percolation). Let d > 2 and p € [0,1]. Consider the lattice Z¢ (with edge set
E¢). Each edge e € E? is declared open with probability p and closed otherwise; states of different

edges are independent.

In other words, the configuration space is 2 = {0, 1}Ed, equipped with the product o-algebra and
the product P, of Bernoulli measures of parameter p. For e € E¢, e is open in the configuration w if

w(e) = 1. The set of open edges of is n(w) = {e € E wle) = 1}.
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Our aim will be to study the geometry of n(w) as p varies.

Definition 1.2 (Connectivity and open clusters). Let z,y € Z%. We say that x is connected to v,
and we write x <>y (in w) if there is an open path from x to y in the configuration w. We also write
x <> oo if x lies in some infinite open path.

The relation < is an equivalence relation on Z%. For x € 7%, the equivalence class of = is denoted
by C, and called the open cluster at x. In particular, we write C' = Cy, where 0 is the origin of 7.

Definition 1.3 (Percolation probability). The percolation probability is the function 6 : [0,1] —
[0, 1] defined by
0(p) =P, (IC] = +00) =P, (0 4> 00).

Proposition 1.4. The percolation probability is a nondecreasing function.

Proof. The idea is to couple percolation processes corresponding to different values of p by considering
independent and identically distributed random variables (U.),cg« With uniform law on [0,1]. For
more details, see Theorem 1.20. O

Definition 1.5 (Critical probability). The critical probability is defined by

pe =sup{p € [0,1], 6(p) = 0}.
By monotonicity, (p) = 0 for p < p. and 0(p) > 0 for p > pe.

Conjecture 1.6. 0 (p.) = 0.
The result is known for d =2 and d > 11.

Theorem 1.7. If d > 2, then 0 < p. < 1. Values of p with 0 < p < p. (resp. p. < p < 1) are called
subcritical (resp. supercritical ).

Proof. We first show that p. > 0. To do this, denote by o, the number of self-avoiding walks (i.e.
paths visiting no vertex more than once) of length n in the lattice Z? and starting at 0. A basic
question will be to understand the asymptotic behaviour of (0,,),.y. We will also denote by N, the
random variable giving the number of open self-avoiding walks of length n in the percolation process.
Note that we have:

9(p)=Pp(0HOO)<Pp(ﬂ (Nn>1))

neN
< limsupE,N,, = lim sup Z P, (7 is open)
n—+00 n—+oo o self-avoiding walk
of length n
= lim sup Z p" = limsup o,p".
n—-+00 n—-+00

7 self-avoiding walk
of length n

Now, we can give a crude upper-bound for o,, by noticing that o, < (2d)(2d — 1)"~!. Therefore:

((2d —1)p)".

2
0(p) < i
() S limsup 57—

This proves that 0(p) =0 if p < ﬁ, SO Pe = ﬁ > 0.

We now show that p. < 1. Note first that Z¢ C Z4 so 0(p,d) < 0 (p,d+ 1) and p.(d) >
pe (d+1). It is therefore sufficient to prove the result for d = 2, and so we shall assume that d = 2.
We denote by T',, the random variable giving the number of dual cycles of length n in the lattice Z?2,



containing 0 in their interior, and only traversing closed edges of Z2 We shall also write ~,, for the
total number of such cycles. We have:

1—0(p) =P, (|C] < +00) <P, (U (T = 1))

neN neN

But to each dual cycle containing 0, we may associate a self-avoiding walk of length (n — 1) starting

at one of the n vertices (0, —n),...,(0,—1). Thus v, < no,_1, which gives:
4 n
1—0(p) < §Z”(3(1—p)) puvidl
neN
Hence, there exists p’ < 1 such that 1 — 0(p) < 1 for p > p’. This implies that p. < p’ < 1. O

Remark 1.8. The duality arqument used in the above proof is called Peierls’ argument and comes
from statistical mechanics.

1.2 Self-avoiding walks

Notation 1.9. Let L be a lattice, i.e. a vertex-transitive graph: the group of graph automorphisms
of L acts transitively on the set of vertices of .. We denote by o, the number of self-avoiding walks
of length n starting at a point 0 € L.

Our question will be to understand the asymptotic behaviour of (o), cn-

Lemma 1.10. For all m,n € N, we have op1p < 00y
The sequence (logoy,), oy s therefore subadditive.

Proof. Note that 0,0, is the number of (not necessarily self-avoiding) walks of length m + n formed
of an m-step self-avoiding walk followed by an n-step self-avoiding walk. Since all self-avoiding walks
of length m + n are of that type, it follows that o,,,, < 0,,0,.

Note that we have used the fact that IL is transitive. O]

Theorem 1.11 (Subadditive inequality theorem). Assume that f : N — N is subadditive: f(m +
n) < f(m)+ f(n) for allm,n € N. Then the sequence (@) _, has a limit given by:

lim M f )

F1) ¢ [—o0, +00).
n—+oco n =zl n

Proof. We let ¢ = inf, >, M € [—00,400) and we want to show that £ ) —— (. We shall do the

n—-+o00

proof in the case where ¢/ > —oo. Let £ > 0 and pick ng > 1 s.t.

f (no)

U]

(< </l+e.
Now, let M = supgc,,, | f(r)| and choose n; > ng such that 0 <
n = qng +r with ¢ > 0 and 0 < r < ng, so that

L 0 _ af () + £

n n ny

< e. For n > nq, we can write

<+ 2e. O

Corollary 1.12. There exists a constant k = (L) > 1 such that logo, = (logr)n (1 +0o(1)), or in
other words:

o, = grto(1)

The constant k(IL) is called the connective constant of L.
Our aim will now be to determine r (L) for L = Z% and for other lattices.
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Example 1.13. For L = Z, we have o, =2 forn > 1, so k = 1.

Conjecture 1.14. [t is believed that o, ~ Ax™n'Y/32 for L = 7Z2. The exponent % s called the
critical exponent.
It is known that o, ~ A" for L. = Z% with d > 5.

1.3 Connective constant of the hexagonal lattice

Notation 1.15. We now want to determine the connective constant of the hexagonal lattice H.

We embed H in the complex plane as in Figure 1. We shall change slightly our notation for the
purpose of the proof and write o, for the number of self-avoiding walks between midpoints of edges
(rather than between vertices). Note that this is equal to the former o,1, so the asymptotic behaviour
remains unchanged. We consider the generating function

Z(x) =) opa" = > zh.
neN v s.a.w. from a

Our aim is to show that Z has radius of convergence x = \/zl_ﬁ Given a self-avoiding walk v, we
Jr

shall denote by T'(7y) the turning angle of 7y, i.e. the angle between the initial and the final directions
of v.

Figure 1: The hexagonal lattice H C C

Lemma 1.16. Fizx a bounded and simply-connected region M of C. Given a midpoint z of H, define

F(z)=F"(z) = > M exp (—ioT(7)).

¥ s.a.w. a =z in M

Let v be a vertex of H and let p, q,r be the three neighbouring midpoints. If o = % andx = x = ,

then
(p—v)F(p)+ (g—v)F(q)+ (r —v)F(r) = 0. (%)

This is a discrete analyticity result.

Proof. For k € {1,2,3}, let Pk be the set of all self-avoiding walks in M visiting exactly k points of
{p,q,7}.

Consider the set P3. Given v € Ps, we may assume that p is the first point of {p,q,r} met by
v, and we denote by p the subwalk of ~ stopped at p. After p, the walk crosses the vertex v and
can either continue to the left (say, to r) or to the right (to ¢). If it continues to 7, it then follows a
self-avoiding walk 7 from r to ¢ and must necessarily stop at ¢q. To this walk + corresponds another
walk 7 which continues to ¢ after v and then follows the walk 7 in the reverse direction; denote that
walk by 7. This defines an involution - : P3 — P35 without fixed point, and note that the aggregate
contribution of 7 and 7 to the left-hand side of Equation (x) is given by:

. an - an 2
c (96720% + 96“’%> = 2ccos (;(20 + 1)) ,
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where ¢ = (p — v)alPlFITH1e=0T() and § = == ¢% . Ifo = 2 then cos (%’r (20 + 1)) = 0, so the
contributions of v and % cancel out, which implies that the contribution of P5 is 0.

Now consider P; U Py. Let v € Py, assume that p is the first point of {p, ¢, 7} met by =, let p be
the subwalk of v stopped at p, and consider the two walks of Py obtained from v by either continuing
one step to g or one step to r. This defines a partition of P; U P, into subsets of cardinal 3, and the
contribution of each such subset to the left-hand side of (x) is

c (1 + 05 + ?xe_iag) ,

where ¢ = (p — v)zle™T) and § = =7 = ¢'5 . We check that this contribution cancels out when
m = x, which implies that the contribution of P; U P, is also zero, and therefore Equation
g

(%) holds. O

Tr =

Theorem 1.17. The hexzagonal lattice H has connective constant s (H) = /2 + /2.

Proof. We will show that Z has radius of convergence x = \/21—\/5
+

First step: Z(x) = oo. We shall work in a region M = M,,,, of the complex plane which is
a trapezium with a lower basis containing 2m + 1 midpoints of edges (the set of these points will
be denoted by L,,), two edges to the left and right making respective angles of § and —% from the
vertical, containing each n midpoints of edges (the sets of these points will be denoted by T, and
T ;n respectively) and a horizontal upper basis (whose set of midpoints will be denoted by U,, ).
We assume moreover that a lies in the middle of L,,. Summing Equation (%) of Lemma 1.16 over all
vertices v in M, we see that only terms corresponding to the boundary remain. We write

Tnj;,n: Z xlwl’ A = Z xlwl’ Umon = Z 2

’YZGHTT%,n ~v:a— L, v:a—3Um,n

Hence, the sum of Equation (x) over M yields (for o = 2 and = = x)

27

—iF(a) — iR (ei”> Amn + i@e_i”?Tn;m + iV, + b5 t =0,

m,n

Since F(a) = 1, we deduce that

adpn + 5 (T,j;n + Tn_m) V= 1, ()
~

Tm,n

with o = cos (%”) and = cos (%) Now, note that (A, ,) and (v,,) are nondecreasing sequences

of m. By Equation (¢), it follows that (7,,,,) is a nonincreasing sequence of m. Therefore, we have

Amon SEPARN My Umon AN v, and Tyn > Tn, With
7 m—4o00 7 m—4o00 7 m—+oo

a, + B, vy = 1. (0)

Assume first that 7,, > 0 for some n > 0. Then 7,,,,, > 7, > 0 for all m, so Z(x) = > ,.en T = +00.
If on the other hand 7,, = 0 for all n > 0, consider the quantity \,y; — A,. This is the number of
paths that start at @ and reach the horizontal strip comprised between heights n and n + 1 before
returning to height 0. Such a path can be decomposed into two paths starting at the top and ending
at the bottom, with one edge counted twice. Therefore

1 2
)\n+1 — )\n < }Vn+1.

Using the fact that a, + v, =1 (by (¢)), we obtain

@ 9
Un < Un+1 + ;Vn—l—l‘



It follows by induction that v, > % with C' = min {yl, %}, and therefore

Z(X)EZV,Z>Z€:+OO.

neN nz1

This proves that Z(y) = +o0.

Second step: Z(x) < +oo if 0 < x < x. We will call bridge any self-avoiding walk (between
midpoints) starting at its lowest height and finishing at its highest height. Note that every half-
space self-avoiding walk can be decomposed into a sequence of bridges of decreasing heights Ty >
Ty > --- > T; (by choosing successive minima and maxima). Moreover, every full-space walk can be
decomposed into two half-space walks (by cutting at the maximum), and therefore into two sequences
of bridges with associated heights Ty > 77 > --- > T; and Sy > 51 > --- > S;. Therefore

Z(z)<2 Y (VTO...VTZ,)(;/SO...VSJ_)_2(H(1+un)).

To>-->T; neN
So>-->S;

It is therefore sufficient to prove that the family (1), cy is summable. But note that

() < (i)nm) < (X)

because v,(x) < 1 by Equation (¢). Hence Y ,cnvn < Ynen (%)n < +oo for 0 < x < x, so
Z(x) < +o0. O

1.4 Back to percolation

Proposition 1.18. The critical probability and the connective constant of Z% satisfy

1 1
R(Z) R(Z4)

<p(Z7) <1 -

Proof. In the proof of Theorem 1.7, we have seen that

0(p) < limsup o, p".

n—-+o0o

But note that log (¢,p™) ~ n (log k + logp). Hence, if p < %, then log k+logp < 0 and o,,p" —— 0,

n—-+oo
which implies that 6(p) = 0. This shows that p. > %
For the upper-bound in the case d = 2, we need to elaborate on the proof of Theorem 1.7. We
denote by F,, the event that there exists a closed cycle of the dual lattice of Z? containing the box
A(m) = [—m, m]" in its interior. We have, as in the proof of Theorem 1.7,

1—-60(p) <P, (F,) < i no,—1(1 —p)".

n=4m

Ifp>1- %, then the above sum converges, and therefore one may find a value of m such that
P, (Fn) < % Thus, 6(p) > 0, which proves that p. < 1 — %

For other values of d, note that p.(d) < p.(2) and k(d) > k(2). As a consequence, 1 — ﬁ >

O

Notation 1.19. Recall that the configuration space we use to model percolation is Q = {0,1}F, where
E is the set of edges. The set Q) is partially ordered by w < W' <= Ve € E, w(e) < w'(e).

Theorem 1.20. Let f : Q@ — R be a nondecreasing integrable function. Then the function p — E,(f)
is mondecreasing.



Proof. Model the percolation process as follows: let (U.), .5 be a family of independent and identically
distributed random variables following a uniform law on [0, 1]. For each edge e, set n,(e) = 1 (U. < p).
For a given p, (1,(e)),.p is a family of independent random variables following a Bernoulli law with
parameter p. Note moreover that p < p’ = n,(e) < ny(e) for all e. Therefore:

Ep(f) =E(f () SE(f () =Ep(f) =

Remark 1.21. Theorem 1.20 implies Proposition 1.4.

Definition 1.22 (Oriented percolation). Let d > 2 and p € [0,1]. Consider the lattice Z* (with edge
set E?). Each edge e € E? is declared open with probability p and closed otherwise; states of different
edges are independent. As opposed to standard bond percolation, each edge is oriented to the North
or to the Fast. We define

0(p) = P, (0 lies in an infinite oriented path) ,

—

and ji. = sup {p € [0,1], f(p) = 0}.
Theorem 1.23. 0 < p,. < 1.

Proof. Clearly p. > p. > 0. For the other inequality, we use the same idea as in Theorem 1.7:
we count dual cycles which block oriented paths from 0 to oo (therefore, only edges going right or
downwards matter); this yields:

1-6(p) <> 4" (1 —p)? — 0. O

i p—1

2 Association and influence

2.1 The Holley and FKG inequalities

Definition 2.1 (Increasing sets and functions). Recall that the configuration space we use to model
percolation is Q = {0, 1}¥, where E is the set of edges. The set §) is partially ordered by w < w' <=
Ve € B, w(e) < w'(e).

o A subset A C Q is called increasing if w € A and w < W = W' € A.

o A subset A C Q is called decreasing if Q\ A is increasing.

e A function f:Q — R is called increasing if w < W' = f(w) < f ().
Note that a subset A is increasing iff the function 1 4 is increasing.

Definition 2.2 (Stochastic ordering). Let P be the set of probability measures on ), let u, ' € P.
We say that u <q i’ if one of the following two equivalent conditions is satisfied:

(i) For all increasing subsets A C Q, u(A) < (/(A).

(ii) For all increasing functions f : Q — R, u(f) < p/'(f) (where p(f) is the integral of f relative
to u, i.e. the expectation of f).

The partial order <4 is called the stochastic ordering.
Theorem 2.3 (Baby Strassen). For py, o € P, the following assertions are equivalent:

(1) p1 <gt pta-

(i) There exists a probability measure k on % s.t.
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(a) The first marginal of k is p1 and the second one is s,

(b) k(S) =1 where S = {(wy,wq) € 0% w1 < wy}.
Proof. (ii) = (i) Let A C Q be an increasing event. Then

pr1(A) =k (AX QY =r(AxYDNS) <K(AXA) <K(QXxA) = py(A). O
Notation 2.4. For wy,ws € ), we define
(w1 V we) (€) = max {w;(e),wa(e)} and (w1 A ws) (€) = min {w;(e),wa(e)}.
Given w € Y and e € E, define w we € Q by w® =w V Ly and we = w A Lo\ (e}
Theorem 2.5 (Holley). Let ji1, j12 be two positive probability measures on Q = {0,1}F (i.e. p;(w) >0
for allw € Q), with E finite. Assume that the following inequality is satisfied for all wy,wq € C2:
pi (w1 V ws) pa (w1 Awsz) 2 i (wr) pio (w2) -

Then py <g flo.

Proof. First choose a positive probability measure p on €2 and consider a Markov chain (X;),., in
continuous time on () with single edge-flips, i.e. with generator G defined by

f (we)

p(we)’

and G (w,w’) = 0 for all other pairs w # w', and G(w,w) is such that > cq G (w,w') = 0 for all
w € . Therefore

G (we,w*) =1, G (W we) =

pw)G (w,0') = p (W) G (W, w) .
It follows that the Markov chain (X;),., with generator G is reversible, irreducible, and has invariant
probability measure .
Now do the same thing with pairs: let py, o be as in the statement of the theorem, let S =
{(m,w) € @, m <w}. Consider a Markov chain (X, Y;),5, on S € Q% s.t. (Xo,Yp) = (0,1) and with
generator H defined by

H ((W&w) ) (7T67we>) =1,

H ((ﬂ-?we) ) (ﬂ-e’we)) =

p(me) — pra (we)

prn (m€)  po (W)

Note that the positivity of H ((7¢, w®), (e, w®)) follows from the fact that s (7¢ V we) pq (76 A we) >
pi1 (7€) po (we), which is true by assumption. Also note that (X;),., is now a Markov chain with
invariant probability measure ji;, and (Y;),., is a Markov chain with invariant probability measure
pi2. Therefore, the unique invariant probability measure of (X;, Y;),., is some & which has p; as first
marginal, us as second, and k(S) = 1. Theorem 2.3 implies that pu; <g po. ]

Theorem 2.6 (FKG). Let ju be a positive probability measure on Q = {0, 1}¥, with E finite. Assume
that the following inequality holds for all wy,wy € €2

H ((ﬂ—eva) ) (7T6>we>) =

p(wi Vowa) p(wr Aws) 2 i (wr) p(w) -

Then w(fg) = u(f)u(g) for all increasing functions f,g :  — R (or equivalently, pn(AN B) >
w(A) p (B) for all increasing events A, B C §)).

Proof. Let py = p and py be the probability measure defined by
g(w)p(w)
Zw’EQ g (W’) 2 (w/)
We may assume that g > 0 by replacing it by g + n for n large enough. Then p;, o satisfy the
hypotheses of Holley’s Theorem (Theorem 2.5), so 1 <g pa2, which yields p(fg) = u(f)u(g). O

p2(w) =

8



2.2 Disjoint occurence and the BK inequality

Remark 2.7. The product measure P, on Q = {0,1}¥ (with E finite) satisfies the FKG condition.
It follows from Theorem 2.6 that

P,(AN B) > B,(A)F,(B).
for all increasing events A, B.
Notation 2.8. Let Q = {0,1}F with E finite. For w € Q and F C E, define the cylinder event
Clw,F) = {w’ €, wp :wl’F}.
Moreover, denote wp = wip X 0E\F € Q.
Definition 2.9 (Disjoint occurrence). Let Q = {0,1}¥ with E finite. Given A, B C ), define:
(i) AB={weQ, IFCEFE, C(w,F)C A and C (w, E\F) C B},
(ii)) Ao B = {wGQ, JF CFE, wp € A and wE\FEB}.
Hence Ao B=A0OB if A and B are increasing.
Theorem 2.10 (BK). Let Q = {0,1}¥ with E finite. If A, B C Q) are increasing events, then
P, (Ao B) < B,(A)P,(B).

Proof. Write E = {ey,...,en}. Consider the duplicate sample space 2 x €', where ' = {0,1}¥ = Q;
we equip 2 x € with the product measure P = P, x P,. For (w,w') € QxQ and 1 <j < N+1,
define

wj= (W (e1),...,0 (F—1),w(j),...,w(N)) € Q.

Define in addition A; = {(w,w’) € A x U, w; € A CQAx Y and B =B x Q' C Q x Q. Note that
o Ay=AxQ and B=BxQ,s0P (A 0B)=P,(A0oB),

QAN+1:Qannd§:BxQ/,SO

P(Ayj10B) =P ( U {ww), wf € Aand wpp, € B}) — P (A x B) = P,(A)P,(B).

F1,FhCE

It is therefore enough to prove that ]f"( e B) <P (/Aljﬂ o l—?) for all 1 < 7 < N. To do this, fix
t ={

j
1 < 7 < N and condition on the event III (w,w'), Vi #j, w(e;) = p; and ' (e;) = v;}. Given

(w,w’) € LI, there are three cases:

(i) A; o B does not occur when w (e;) = «' (¢;) = 1, so P (/Alj o B | H.[) —0<P (fle o B | ]_H)

(ii) A; o B occurs when w(e;) = ' (e;) = 0. In that case, so does A;,; o B, which implies that

(iii) Neither of the two cases above hold. Since A; o B does not depend on the value of o’ (e;) and
since we assume that we are in none of the above cases, it follows that

P(Aj0B|1) =P (w(e) =1]1I)=p.
Likewise, since A;,; o B must occur when o’ (¢;) = 1, we have
P(Ajy10B 1) > B (W (¢j) = 1| I) = p. 0
Theorem 2.11 (Reimer). Let Q = {0, 1} with E finite. If A, B C Q are any events, then

P, (A0 B) <P, (A)Py(B).
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2.3 Influence

Definition 2.12 (Influence). Let Q = {0, 1}¥ with E finite. Given A C Q and e € E, the (absolute)
influence of e is defined by

Ia(e) =Py (14 (we) # 14 (w°)).
If A is an increasing event, then
Ix(e) =Py (A°) — P, (Ac),
where A° = {w € Q, w® € A} and A, = {w € Q, w, € A}.

Theorem 2.13. There exists an absolute constant ¢ € (0,400) s.t. for any finite set E, and for any
ACQ={0,1}F, we have

— 1
Ix(e) = Py (A)P A)log| ——— | .
EEZE ale) 1/2( ) 1/2( ) g<maXeeE[A(€)>
Remark 2.14. Let Q = {0,1}F with |E| = N < +oo. If m = maxecp [4(e), we have Nm >
> ecr La(e), and therefore Theorem 2.13 implies that

= > £P1/2(A)]P1/2 (Z) -

_logm N

From this we can deduce that
— log N
Izleeg( IA(G) 2 CPl/Q(A)Pl/Q (A) N .
Remark 2.15. Theorem 2.15 remains valid if Py /5 is replaced by any product measure on any finite
product (in particular by P, on Q = {0,1}").
Theorem 2.16 (Russo). Let Q = {0,1}¥ with E finite. For A C Q, we have

d e

—Py(A) =D (P, (A°) =P, (A)).

dp eck
Proof. Write P,(A) = Y cq 1a(w)p"@(1 — p)N =@l with N = |E| and n(w) = {e € E, w(e) = 1}.
It follows that

d 1 n(w N—|n(w
apTr W) = Jimy 2 1@ (@ =) @) —p (N = @) p"! 0= py

1
=—E, (1 =p)n1ls—p(N — 1
1
= E 1,—pN1
p(l—p) pHn‘ A A]
1
2R E Lo openyla —pla).
p(l_p)eeZE p({ pen} )

But note that
E, (]l{e Open}]lA) =P, (A | e open)P, (e open) = pPP, (A°),
and
B, (p1a) = p (pPy (A°) + (1 = p)P, (Ac)) -

Therefore E, (]l{e open} LA — p]lA) =p(l —p) (P, (A°) — P, (A.)), from which the result follows. [
Corollary 2.17. Let Q = {0,1}F with E finite. If A C Q) is an increasing event, then

d - 1

dprp(A) > Py (A)P, (4) log () .

maXecg ]A<€>

It follows that if 1a(e) does not depend on e, then dip]P’p(A) > P,(A)P, (Z) log N, with N = |E)|.
This means that the function p — P,(A) has a sharp threshold: it stays close to 0, then increases
very quickly and stays close to 1 (at least for large values of N ).

10



3 Further percolation

Notation 3.1. We return to bond percolation on Z% with d > 2.

Remark 3.2. Let 2K be the event that there exists an infinite open cluster. Note that the Kolmogorov
Zero-One Law implies that P, (2K) € {0,1} for all p. Moreover

Q(p) = Pp(’CO| = +OO) < Pp OK) = Pp ( U (|Cx| = +OO)) < Z IED10(|Cx| = +OO) = Z e(p).

zeZd zeZ? zeZ?
It follows that:

e [n the subcritical phase (0 < p < p.), O(p) = 0 and almost surely there is no infinite open
cluster.

e [n the supercritical phase (p. < p < 1), 8(p) > 0 and almost surely there exists an infinite open

cluster.

3.1 Subcritical phase
Notation 3.3. Forn € N, we shall write A(n) = [—n,+n]* C Z* and dA(n) = A(n)\A(n—1). Thus

O(p) =P, (0> 00) = lim P, (0 <> 0A(n)).

n—-+oo

Theorem 3.4. (i) For 0 <p < p., there ezists {(p) > 0 s.t.

P, (0 <+ OA(n)) < e ™®),

(ii) For p. <p <1, we have
P —Dec

o) > p(l—pc)

Proof. Given 0 € S C Z4, |S| < 400, we define the external edge boundary of S by
AS={e=(x,y),x€ S, y&S}.
For e € AS, we shall always write e = (x,y) with x € S. For y € Z% and n € N, define
En(y) = (y > 0A(n)) C €,
and E, = E,(0), g,(n) =P, (E,). Also set

o) =p ¥ B0cans).
(z,y)EAS

Now, choose L € N in such a way that S C A(L). Then for every k, we have, using the BK Inequality
(Theorem 2.10),

gp(kL) < Z P, ((0 <> 2 in S) o (e open) o (y <> JA(kL)))

e=(z,y)€EAS
(BK) .
< > pP, (0> 2 in S)P, (Err(y))
e=(z,y)€EAS

<gp((k—1)L)

< SOP(S)QP (k=1)L).

11



By induction, it follows that g,(kL) < ¢,(S)*. Let
pe =sup {p € [0, 1], there exists a finite set S 3 0 with ¢,(5) < 1}.

If p < P, pick S with ¢,(S) < 1. We have g,(n) < ¢,(S)"L) and since g,(n) < 1 for n > 1 and
p < 1, we have g,(n) < e™™® for some 1(p) > 0.

Proving that p. = p. will imply (i). We shall actually prove that for p > p., 6(p) > p(p pc) This

will imply that 6(p) > 0 for p > p., and therefore p. > p.. But we also know that if p > p., then
there cannot exist a set S as in the definition of p. (otherwise we would have 6(p) = 0), so that
Pe = Pe and therefore p. = p., which will prove both (i) and (ii).

So it suffices to prove that for p > p., 6(p) > pfl__’;jc). We define a random variable S =
{r € A(n), = ¢» OA(n)}. We shall now estimate g,(n) = P, (0 <> OA(n)) using Russo’s Formula
(Theorem 2.16):

d
—gp(n) = > P, (e is pivotal for {0 <> OA(n)})
dp eck
1
= —— Y P, (eis pivotal for {0 <> dA(n)}, e is closed)
)
1 _
=—> Y P, (e is pivotal for {0 <> dA(n)}, e is closed, S = S)
e

:72 > ]P’Z,(O@x,?:S)

P §30 e=(zyens

~ Ly Y B0&)E(5=9)

P 850 = (z,y)EAS

ZIP’ (S S) > p]P’p(O<§>x>

SSO e=(z,y)EAS
RSP (S =5)eu(9).
p ) 530

Now if p > p., then ¢,(S) > 1 for all S, so that

ZJP (S=9)= 1= g

/pl ) &5 p(1—p)

4 m)
dpgp

Integrating this differential inequality yields

1—g: 1— P
1og< ng(N)>>log< P ~p>7
1_gp(n) 1_p Pe

1— n
from which it follows that —— > _g;C( ) > £ .1 Lpe and therefore, for p > p.,
1—gp(n) 1—gp(n) 1-p Pc
p— ﬁc
gp(n) = ———.
P g p (1 - pc)
Making n — +o0 gives the claimed inequality. O]

3.2 Supercritical phase

Remark 3.5. We have seen (in Remark 3.2) that in the supercritical phase there is almost surely
an infinite open cluster. The next question is: how many infinite open clusters are there?

12



Lemma 3.6. If A is a translation-invariant event, then P(A) € {0,1}, where P is any product
measure on 2.

Proof. For ¢ > 0, a measure-theoretic argument shows that there is a finite set S C Z? and an event
Ag defined on S only such that P(AAAg) < e. Now choose a translation 7 such that 7SN S = @.
Then Ag is independent of TAg. But Ag approximates A and 7Ag approximates 7A = A, so we can
deduce that P(A) = P(AN A) = P(A)?, and therefore P(A) € {0,1}. O

Theorem 3.7. Let N be the number of infinite open clusters. Then for all p € [0, 1], we have either
P,(N=0)=1o0orP,(N=1)=1

Proof. 1f 6(p) = 0, then P, (N = 0) = 1, so we henceforth assume that 6(p) > 0 and we wish to prove
that P, (N =1) = 1.

First step: there exists k, € NU {oo} s.t. P, (N =k,) = 1. Note that N is invariant w.r.t.
translations of the configuration. Moreover, P, is a product measure; it follows from Lemma 3.6 that
P, (N = n) € {0,1} for all n, so it suffices to set k, =sup{n € N, P, (N > n) = 1}.

Second step: k, & N>o. Suppose for contradiction that 2 < k, < +00. For n € N, let C), be the
event that A,, intersects at least two distinct infinite open clusters. Since lim,,, . P, (C,,) = 1, there
exists an n such that P, (C,,) > % By making all the edges inside A,, open, we have

1
P, (N <k,—1)> 5p‘mn)' >0,

a contradiction.

Third step: k, # oo. Suppose for contradiction that 3 < k, < oo. Consider the box L, =
{a: ez ||z||, n} As before, there exists an n such that the probability that L, intersects at least
three distinct infinite open clusters is at least % We now say that a point z € Z? is a trifurcation
if x +» oo and if the removal of x and its adjacent edges breaks C, into three distinct infinite open
clusters and no finite cluster. Let T, be the event that x is a trifurcation. Pick points z,y, z € 0L,
such that z,y, z lie in distinct infinite open clusters off L,,. Given x,y, 2z, there exists a configuration
Wg,y,» inside L,, such that 0 is a trifurcation when w, , . occurs. Therefore

1 .
P, (Ty) = 5 (min {p, 1 — p})F" > 0.

Now, in a situation where 0 is a trifurcation, we can produce a graph of trifurcations; this graph is
a forest of degree 3. A graph-theoretic argument then shows that there exists an o > 0 such that

trifurcations in 9L
b "> a>0.

ftrifurcations in L,

Thus
|Sn| = E (gtrifurcations in 0L,,) > aF (ftrifurcations in L,) = o |L,| P, (1) .

We deduce the existence of a constant C' > 0 such that n?~! > Cn?, which gives a contradiction for
large values of n. n

Corollary 3.8. If p > p., then for all vertices x,y,
P, (x4 y) > 0(p)? > 0.
Proof. By Theorem 3.7 and the FKG inequality (Theorem 2.6), we have

(FKG)
P,(xy) 2P, (x> y, 2400, y<r00) =P, (x> 00, y<>00) = 0(p)*>0. O

Theorem 3.9 (Slab Critical Point Theorem). When d > 3, define a slab of thickness k + 1 by
S, ={0,1,... .k} ?x7? C 7

We have Pe (Sk) 2 DPe;, SO Pc (Sk) ﬁ ﬁc = Pe-
—+00

In fact, p. = p..
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3.3 Exact critical probabilities

Lemma 3.10. For bond percolation on Z?*, 0 (%) =0.

Proof. We assume for contradiction that 6 (%) > 0. By Theorem 3.7, there is P j,-almost surely a

unique infinite open cluster. We denote by T'(n) the box [0, n]*, with edges labelled ¢ (left), r (right),
b (bottom) and t (top). Choose ng large enough so that, for n > ny,

1 4
Py (9T () ¢ 00) > 1 — <8> .
Let n = ng+ 1. Let A9 be the event that the edge labelled g is joined to oo off T'(n). We have, using
the FKG inequality (Theorem 2.6),

1\* —t _—r _—b _—ty\ FKG) —g\4

<8> > Pyyy (0T (n) 5 00) = Piyp (A N A NANA) 2 By ()

It follows that Py, (A9) > % for all g. Now consider the dual box T'(n), ~ [0,n — 1]2 with n—1 > ng,
and let AY be the event that the edge labelled ¢ is joined to oo by a dual open path off T'(n),. As
before, we have Py/5 (AY) > L. Therefore

1

1
¢ r b t _ =
1— Py (A" A" N AY N AL) <dg=3
But the event A*N A”N A% N A!, has probability zero because it contradicts the uniqueness of infinite
open clusters in both the primal and the dual lattice. This is a contradiction. O

1

Theorem 3.11. For bond percolation on Z2, p, = 3

Proof. (>) Follows from Lemma 3.10. (<) Assume for contradiction that p. > 3. Consider the box
B, =[0,n+ 1] x [0,n] C Z? and let A,, be the event that B,, has a left-to-right open crossing (i.e. an
open path connecting the left boundary of B, to its right boundary). Consider the dual box B) of
B,,. We take the convention that an open edge in Z? is always crossed by a dual closed edge, and vice
versa. Let AY be the event that B, has a bottom-to-top open crossing. Note that exactly one of A,
and A must occur; moreover, B) has the same geometry as B, so P15 (4,) = P12 (A)). It follows
that Py (A4,) = 3. But if p. > 3, then 3 is subcritical, so by Theorem 3.4 Py 5 (4,) < (n+1)e™ "
for some v > 0, which gives a contradiction for large n. O]

3.4 RSW theory
Notation 3.12. Let T be the triangular lattice, which we embed in the plane by

T = {mi+nj, (m,n) € Z2},

where i = (1,0) and j = (1, \/§)

In this section, we shall study site percolation on T, i.e. each vertex is coloured black with
probability p, white otherwise.

We also introduce the following notations:

e R,y is the subgraph of T induced by vertices in [0,a] x [0,0], L (Rap) (resp. R (Rap)) is the set
of vertices of T at distance at most § from the left (resp. right) edge of [0, a] x [0,b].

e H,, is the event that L (Rap) is connected to R (R.p) by a black path in Rep.

We fix p = % and P =Py 5.

Lemma 3.13. P (Hqp) > 1P (Hap)-

14



Proof. Consider the box [0, a] x [0,b] and the reflection p whose axis is the vertical line at a. Given
a path g from the left to the right edge of [0, a] x [0,b], we define U, to be the part of [0, a] x [0, b]
that lies under g and let
Jy=U,N0([0,a] x[0,8]).
We denote by B, (resp. W,,) the event that g (resp. pg) is connected to pJ, (resp. J,) by a path
of U, N pU, that intersects g U pg only once and every vertex (except possibly the endvertex on g)
is black (resp. white). We observe that B, U W,, must occur (by a duality argument). But by
symmetry, PP (B,) = P (W), which implies that
1

P(By) =P (W) > 9
Moreover, if L (resp. R) is the left (resp. right) edge of the box [0, 2a] x [0, b], and J is the union of
the left and bottom edges of the box [0, a] x [0, 0], then

(FKG)

P (Hayap) 2P (L <5 pJ, R J) > P(L < pJ)°.

Now let v be the random variable denoting the highest left-right black crossing in he rectangle R, .
We have

1 1
P(L < pJ) > ZIP’ =g9,B ZIP’ P(By) > 52 P(v=29) = 5P (Haup).
g
It follows that P (Haap) = P (L < pJ)* > 1P (H,yp). O

Corollary 3.14. P (HQkaJ)) > (l)zk_IP(Haﬂb).

Lemma 3.15. P (Ha a/\[) for a>1.
Proof. Use a self-duality argument to show that there exists a left-right crossing in the rhombus of

dimensions (a, %) with probability % O

3.5 Cardy’s formula

Theorem 3.16 (Cardy’s formula). Consider a Jordan curve bounding a domain D in the plane with
four points b, a,c,xz on the boundary. Assume the plane is covered by a triangular lattice with mesh
0. By Riemann’s Theorem, there exists a conformal map from D to an equilateral triangle such that
a,b,c are sent to vertices A, B,C of that triangle. Let X be the image of x under that map (X lies
on the boundary of the triangle). Then

P (ac <> bx in D) — |BX]|.
6—0

Sketch of proof. We set 6 = 1 and we shall make n — +oo. Let 7 = €*™/3 let 4; = A = 0,
A, =B=1,A.>=C=¢c"3 For €T (T is the triangle ABC), let EI'(z) be the event that there
exists a black path from A i-1 A i+1 to Ayi-1 Ay separating z from A A1, Let H'(z) =P (El'(2)),
extended to T' by interpolation. Then there exist C, a such that

[H (2) = H} ()| < Clz = 2|7,

for all z, 2/, j,n. By the Arzela-Ascoli Theorem, any sequence of functions in (H J”) . has a conver-
gent subsequence (for uniform convergence). Now we want to show that there is only one possible
limit of convergent subsequence, and this will imply convergence. We define

Gy, = H, + H, + H;,

Gy = H,+1Hy + 7°Hj.
Then a theorem says that Gy, Gy are analytic functions of z. Since G is real-valued, it follows that

it is constant. And R (Gs) = 3 (3H; — 1), so H; is harmonic and may be derived explicitly.
The rest of the proof uses the so-called exploration process. O
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4 The Ising, Potts and random cluster models

4.1 The models

Definition 4.1 (Ising model). Let G = (V, E) be a finite connected graph. Define ¥ = {£1}": a
spin vector is an element o = (0,),c,, € 2. The hamiltonian of a spin vector is defined by

H(o)=-J Y. o,0,—h> oy,

(zy)EE zeV

where J,h € R are parameters. The (Lenz) Ising model is the probability measure A\ = \g on X
defined by

1
)\(O') = EeiﬁH(o.) s

where 3 > 0 is a parameter (corresponding to the inverse temperature) and Z = ¥ cx, e P s the
partition function.

We normally take h = 0. The case J > 0 is called the ferromagnet while the case J < 0 is called
the antiferromagnet. In this course, we will take J > 0 (i.e. adjacent vertices tend to be in the same
state) and even J =1 for simplicity. Therefore

A(o) ox exp (ﬁ > axay) :

(z,y)EE

Definition 4.2 (Potts model). The Potts model is the generalisation of the Ising model obtained
by replacing {£1} by {1,2,...,q}. Thus the state space is ¥ = {1,2,...,q}" and the probability
measure satisfies

(o) o exp (6 > (o, = ay)> .
(z,y)eEE

Note that, when q =2, m3 = Ag2.

Definition 4.3 (Random cluster model). Consider as before a finite graph G = (V, E) and let
Q={0,1}¥. Let p € [0,1], ¢ > 0. The random cluster model is the probability measure ¢, , on
defined by

@p,q(w) o qk(w) H pw(e)(l _p)l—w(e)’
eck

where k(w) is the number of open components (including isolated vertices) of the configuration w
(again, the edge e is called open if w(e) =1, closed otherwise).
For g =1, the random cluster model is simply bond percolation on G.

4.2 Link with percolation

Notation 4.4. We are going to construct a coupling of the Potts model and the random cluster model
on a finite connected graph G = (V, E) when q € Nsy. We define a probability measure jn on ¥ X §)

by
:u(07 w) X Pp(w)]lF(U7 w),

where Py, is the probability measure on S for standard edge percolation, and
F={(o,w) e xQ, Ve=(z,y) € E, wle)=1= 0, =0,}.

In other words, we are adding to bond percolation the constraint that whenever an edge is open, its
endpoints have the same state.

Proposition 4.5. Properties of the measure p on > x §):
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(i) The marginal on ¥ is the Potts model with parameter f = —log (1 — p).
(ii) The marginal on Q) is the random cluster model.

(iii) The conditional law given w is the model where each cluster receives a uniform spin indepen-
dently.

(iv) The conditional law given o is the model where, for e = (x,y), if 0, # o, then w(e) = 0,
otherwise w(e) = 1 with probability p, independently of other edges.

Definition 4.6 (Correlation and connection functions). (i) The correlation function of the Potts
model is given by

T(x,y) =7 (0, = 0y) — —.
(ii) The connection function of the random cluster model is given by

o(r < y).

Theorem 4.7. Assume that ¢ € Nso, let 3> 0 andp=1—e?. Then

T4(2,y) = (1 - ;) Ppq (T Y).

This gives a strong link between correlation in the Potts model and connection in the random cluster
model.

Proof. We have

(z,y) :w(%:ay)—;
- X e (uam:ay)—;)
- e Tl (1=~ )
=S (1 (=) 1))
:(1—2)@(1‘Hy). O

Proposition 4.8. The random cluster model y, , has the following properties:
(i) FKG inequality. If ¢ > 1, then p,, is positively associated.
(ii) Comparison inequalities.

(a) If ¢ > max{q, 1} and p’' < p, then vy <st Ppq-
p/

(b) If ¢ > max{q,1} and 71— Z q(lp_p)7 then @y ¢ Zst Ppq-

Proof. (i) Use the FKG inequality (Theorem 2.6). (ii) Use the Holley inequality (Theorem 2.5). [
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4.3 Negative association

Definition 4.9 (Edge-negative association). A probability measure @ on {0,1}F is said to be edge-
negatively associated if for all edges e, f, we have

pwle) =Lw(f)=1) <pwle)=1) ¢ Ww(f)=1).
Remark 4.10. Proposition 4.8 leads to the following question: is ¢, , edge-negatively associated for

qg<1?

Theorem 4.11. Let G be a finite connected graph. Then the measure y,, converges weakly to

e The uniform connected subgraph measure UCS if p = % and g — 0,

e The uniform spanning tree measure UST if p,q, % — 0,
e The uniform forest measure UF if p=q — 0.

Proof. We prove the result for the uniform forest. We write n(w) = {e € E, w(e) = 1} and we assume
that p = ¢. Then

In(w)[+k(w)
@) (] — pyEm@lghtw) oo 27
pq(w) o pTH(1 = p) 7 (1 — p)@l”
Note that |p(w)| + k(w) > |V| with equality iff there are no cycles. the result follows. O

Theorem 4.12. UST is edge-negatively associated.
Conjecture 4.13. UCS and UF are edge-negatively associated.

4.4 Infinite volume limits for the random cluster model

Remark 4.14. The random cluster model is well-defined for finite graphs, but we want to extend
the definition to infinite graphs, for instance Z.°.

Notation 4.15. We work on Z¢, with d > 2. Given a bounded region A C 7%, we have a random
cluster measure @y, 4, on A. We add a boundary condition: either b =0 and all edges outside A are
closed, or b = 1 and all edges outside A are open. We now define the measure gpﬂ’u%q in the same
manner as Qi pq, but by taking into account connectivity through the boundary when counting open
clusters.

Theorem 4.16. For ¢ > 1 and b € {0,1}, the measures (gp’jx’p,q)

gog g a8 N — VA
The measure gpf,,q is called the infinite volume measure.

\ega COTVETGE weakly to a measure

Proof. We assume that b = 1 (the proof is similar if b = 0). To prove weak convergence, it suffices

to prove that (w}‘vpvq(ADAczd
then we have, using Proposition 4.8,

converges for all increasing cylinder events A. But, if A C A’ C Z¢,

_ (FKG)
P pg(A) = @p e (Al every edge of A\Ais open) > ¢}, (A).

Therefore the limit exists by monotonicity. O
Remark 4.17. An infinite volume measure can also be defined using the so-called DLR method.

Definition 4.18 (Percolation probability for the random cluster model). Given b € {0,1}, ¢ > 1
and p € [0, 1], we define

0°(p,q) = ¢y (0 ¢ 00).
By Proposition 4.8, 0°(p,q) is nondecreasing in p, and we define

ph(q) = sup {p € [0,1], 6"(p,q) = 0} .
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Theorem 4.19. There exists a countable subset D, C [0, 1] such that

Vp € [0,1\D,, 4p27q = goll)’q.
Corollary 4.20. pl(q) = p2(q).

Proof. Assume for contradiction that pl(q) # p2(¢q) with, say, pl(q) < p2(g). Then, in the open
interval (pi(q),p2(q)), we would have 6'(q) > 0 = 6°(¢), and therefore ¢, # ¢ , contradicting
Theorem 4.19. O

Definition 4.21 (Order parameter for the Potts model). For the Potts model with q states, we define
the order parameter by

M(B,q) = lim, (Wi,q (00 =1) — 1) = (1 - 1) 0 (p, q),

q

where 7r/1\7q is the probability measure conditioned by the event that all vertices off A have state 1.
There is a critical parameter 5. = —log (1 — p.(q)).

Theorem 4.22. Forq¢>1, 0 < p.(q) < 1.

Proof. The comparison inequalities (Proposition 4.8) imply that

1 1
gpp,71 gst Qppyq gst @p,l;

where p’ = sratip- 1t follows that 0 < (1) < pe(q) < mgécif)lgc(l) < 1, using the fact that
0 < pe(1) < 1 by Theorem 1.7. O

Theorem 4.23. Whend =2 and g > 1

Va
1+/q

Proof. Define a dual random cluster measure on the square lattice, with dual parameter p* satisfying

A q%, and show that this mapping p — p¥ has the unique value p = 1_‘([ as a fixed point. [

pc(‘]) =

1-pV
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