PERCOLATION AND RELATED TOPICS

Lectures by Geoffrey Grimmett Notes by Alexis Marchand

> University of Cambridge Michaelmas 2019 Part III course

Contents

1	Percolation and self-avoiding walks			
	1.1	Percolation	1	
	1.2	Self-avoiding walks	3	
	1.3	Connective constant of the hexagonal lattice	4	
	1.4	Back to percolation	6	
2	Association and influence			
	2.1	The Holley and FKG inequalities	7	
	2.2	Disjoint occurence and the BK inequality	9	
	2.3	Influence	10	
3	Further percolation			
	3.1	Subcritical phase	11	
	3.2	Supercritical phase	12	
	3.3	Exact critical probabilities	14	
	3.4	RSW theory	14	
	3.5	Cardy's formula	15	
4	The Ising, Potts and random cluster models		16	
	4.1	The models	16	
	4.2	Link with percolation	16	
	4.3	Negative association	18	
	4.4	Infinite volume limits for the random cluster model	18	
Re	References			

1 Percolation and self-avoiding walks

1.1 Percolation

Definition 1.1 (Bond percolation). Let $d \ge 2$ and $p \in [0,1]$. Consider the lattice \mathbb{Z}^d (with edge set \mathbb{E}^d). Each edge $e \in \mathbb{E}^d$ is declared open with probability p and closed otherwise; states of different edges are independent.

In other words, the configuration space is $\Omega = \{0, 1\}^{\mathbb{E}^d}$, equipped with the product σ -algebra and the product \mathbb{P}_p of Bernoulli measures of parameter p. For $e \in \mathbb{E}^d$, e is open in the configuration ω if $\omega(e) = 1$. The set of open edges of is $\eta(\omega) = \{e \in \mathbb{E}^d, \omega(e) = 1\}$.

Our aim will be to study the geometry of $\eta(\omega)$ as p varies.

Definition 1.2 (Connectivity and open clusters). Let $x, y \in \mathbb{Z}^d$. We say that x is connected to y, and we write $x \leftrightarrow y$ (in ω) if there is an open path from x to y in the configuration ω . We also write $x \leftrightarrow \infty$ if x lies in some infinite open path.

The relation \leftrightarrow is an equivalence relation on \mathbb{Z}^d . For $x \in \mathbb{Z}^d$, the equivalence class of x is denoted by C_x and called the open cluster at x. In particular, we write $C = C_0$, where 0 is the origin of \mathbb{Z}^d .

Definition 1.3 (Percolation probability). The percolation probability is the function $\theta : [0,1] \rightarrow [0,1]$ defined by

$$\theta(p) = \mathbb{P}_p\left(|C| = +\infty\right) = \mathbb{P}_p\left(0 \leftrightarrow \infty\right).$$

Proposition 1.4. The percolation probability is a nondecreasing function.

Proof. The idea is to couple percolation processes corresponding to different values of p by considering independent and identically distributed random variables $(U_e)_{e \in \mathbb{E}^d}$ with uniform law on [0, 1]. For more details, see Theorem 1.20.

Definition 1.5 (Critical probability). The critical probability is defined by

$$p_c = \sup \{ p \in [0, 1], \theta(p) = 0 \}.$$

By monotonicity, $\theta(p) = 0$ for $p < p_c$ and $\theta(p) > 0$ for $p > p_c$.

Conjecture 1.6. $\theta(p_c) = 0$.

The result is known for d = 2 and $d \ge 11$.

Theorem 1.7. If $d \ge 2$, then $0 < p_c < 1$. Values of p with $0 (resp. <math>p_c) are called subcritical (resp. supercritical).$

Proof. We first show that $p_c > 0$. To do this, denote by σ_n the number of self-avoiding walks (i.e. paths visiting no vertex more than once) of length n in the lattice \mathbb{Z}^d and starting at 0. A basic question will be to understand the asymptotic behaviour of $(\sigma_n)_{n \in \mathbb{N}}$. We will also denote by N_n the random variable giving the number of open self-avoiding walks of length n in the percolation process. Note that we have:

$$\theta(p) = \mathbb{P}_p \left(0 \leftrightarrow \infty \right) \leq \mathbb{P}_p \left(\bigcap_{n \in \mathbb{N}} \left(N_n \ge 1 \right) \right)$$

$$\leq \limsup_{n \to +\infty} \mathbb{E}_p N_n = \limsup_{n \to +\infty} \sum_{\substack{\pi \text{ self-avoiding walk} \\ \text{ of length } n}} \mathbb{P}_p \left(\pi \text{ is open} \right)$$

$$= \limsup_{n \to +\infty} \sum_{\substack{\pi \text{ self-avoiding walk} \\ \text{ of length } n}} p^n = \limsup_{n \to +\infty} \sigma_n p^n.$$

Now, we can give a crude upper-bound for σ_n by noticing that $\sigma_n \leq (2d)(2d-1)^{n-1}$. Therefore:

$$\theta(p) \leq \limsup_{n \to +\infty} \frac{2d}{2d-1} \left((2d-1)p \right)^n$$

This proves that $\theta(p) = 0$ if $p < \frac{1}{2d-1}$, so $p_c \ge \frac{1}{2d-1} > 0$.

We now show that $p_c < 1$. Note first that $\mathbb{Z}^d \subseteq \mathbb{Z}^{d+1}$, so $\theta(p,d) \leq \theta(p,d+1)$ and $p_c(d) \geq p_c(d+1)$. It is therefore sufficient to prove the result for d=2, and so we shall assume that d=2. We denote by Γ_n the random variable giving the number of dual cycles of length n in the lattice \mathbb{Z}^2 , containing 0 in their interior, and only traversing closed edges of \mathbb{Z}^2 . We shall also write γ_n for the total number of such cycles. We have:

$$1 - \theta(p) = \mathbb{P}_p(|C| < +\infty) \leq \mathbb{P}_p\left(\bigcup_{n \in \mathbb{N}} (\Gamma_n \ge 1)\right)$$
$$\leq \sum_{n \in \mathbb{N}} \mathbb{E}_p \Gamma_n = \sum_{n \in \mathbb{N}} \gamma_n (1 - p)^n.$$

But to each dual cycle containing 0, we may associate a self-avoiding walk of length (n-1) starting at one of the *n* vertices $(0, -n), \ldots, (0, -1)$. Thus $\gamma_n \leq n\sigma_{n-1}$, which gives:

$$1 - \theta(p) \leqslant \frac{4}{9} \sum_{n \in \mathbb{N}} n \left(3 \left(1 - p \right) \right)^n \xrightarrow[p \to 1]{} 0.$$

Hence, there exists p' < 1 such that $1 - \theta(p) < 1$ for $p \ge p'$. This implies that $p_c \le p' < 1$.

Remark 1.8. The duality argument used in the above proof is called Peierls' argument and comes from statistical mechanics.

1.2 Self-avoiding walks

Notation 1.9. Let \mathbb{L} be a lattice, i.e. a vertex-transitive graph: the group of graph automorphisms of \mathbb{L} acts transitively on the set of vertices of \mathbb{L} . We denote by σ_n the number of self-avoiding walks of length n starting at a point $0 \in \mathbb{L}$.

Our question will be to understand the asymptotic behaviour of $(\sigma_n)_{n \in \mathbb{N}}$.

Lemma 1.10. For all $m, n \in \mathbb{N}$, we have $\sigma_{m+n} \leq \sigma_m \sigma_n$. The sequence $(\log \sigma_n)_{n \in \mathbb{N}}$ is therefore subadditive.

Proof. Note that $\sigma_m \sigma_n$ is the number of (not necessarily self-avoiding) walks of length m + n formed of an *m*-step self-avoiding walk followed by an *n*-step self-avoiding walk. Since all self-avoiding walks of length m + n are of that type, it follows that $\sigma_{m+n} \leq \sigma_m \sigma_n$.

Note that we have used the fact that \mathbb{L} is transitive.

Theorem 1.11 (Subadditive inequality theorem). Assume that $f : \mathbb{N} \to \mathbb{N}$ is subadditive: $f(m + n) \leq f(m) + f(n)$ for all $m, n \in \mathbb{N}$. Then the sequence $\left(\frac{f(n)}{n}\right)_{n \geq 1}$ has a limit given by:

$$\lim_{n \to +\infty} \frac{f(n)}{n} = \inf_{n \ge 1} \frac{f(n)}{n} \in [-\infty, +\infty)$$

Proof. We let $\ell = \inf_{n \ge 1} \frac{f(n)}{n} \in [-\infty, +\infty)$ and we want to show that $\frac{f(n)}{n} \xrightarrow[n \to +\infty]{} \ell$. We shall do the proof in the case where $\ell > -\infty$. Let $\varepsilon > 0$ and pick $n_0 \ge 1$ s.t.

$$\ell \leqslant \frac{f(n_0)}{n_0} \leqslant \ell + \varepsilon.$$

Now, let $M = \sup_{0 \le r < n_0} |f(r)|$ and choose $n_1 \ge n_0$ such that $0 \le \frac{M}{n_1} \le \varepsilon$. For $n \ge n_1$, we can write $n = qn_0 + r$ with $q \ge 0$ and $0 \le r < n_0$, so that

$$\ell \leqslant \frac{f(n)}{n} \leqslant \frac{qf(n_0) + f(r)}{n} \leqslant f(n_0) + \frac{f(r)}{n_1} \leqslant \ell + 2\varepsilon.$$

Corollary 1.12. There exists a constant $\kappa = \kappa (\mathbb{L}) \ge 1$ such that $\log \sigma_n = (\log \kappa) n (1 + o(1))$, or in other words:

$$\sigma_n = \kappa^{n(1+o(1))}.$$

The constant $\kappa(\mathbb{L})$ is called the connective constant of \mathbb{L} .

Our aim will now be to determine $\kappa(\mathbb{L})$ for $\mathbb{L} = \mathbb{Z}^d$ and for other lattices.

Example 1.13. For $\mathbb{L} = \mathbb{Z}$, we have $\sigma_n = 2$ for $n \ge 1$, so $\kappa = 1$.

Conjecture 1.14. It is believed that $\sigma_n \sim A\kappa^n n^{11/32}$ for $\mathbb{L} = \mathbb{Z}^2$. The exponent $\frac{11}{32}$ is called the critical exponent.

It is known that $\sigma_n \sim A\kappa^n$ for $\mathbb{L} = \mathbb{Z}^d$ with $d \ge 5$.

1.3 Connective constant of the hexagonal lattice

Notation 1.15. We now want to determine the connective constant of the hexagonal lattice \mathbb{H} .

We embed \mathbb{H} in the complex plane as in Figure 1. We shall change slightly our notation for the purpose of the proof and write σ_n for the number of self-avoiding walks between midpoints of edges (rather than between vertices). Note that this is equal to the former σ_{n+1} , so the asymptotic behaviour remains unchanged. We consider the generating function

$$Z(x) = \sum_{n \in \mathbb{N}} \sigma_n x^n = \sum_{\gamma \text{ s.a.w. from } a} x^{|\gamma|}.$$

Our aim is to show that Z has radius of convergence $\chi = \frac{1}{\sqrt{2+\sqrt{2}}}$. Given a self-avoiding walk γ , we shall denote by $T(\gamma)$ the turning angle of γ , i.e. the angle between the initial and the final directions of γ .

Figure 1: The hexagonal lattice $\mathbb{H} \subseteq \mathbb{C}$

Lemma 1.16. Fix a bounded and simply-connected region \mathcal{M} of \mathbb{C} . Given a midpoint z of \mathbb{H} , define

$$F(z) = F^{x,\sigma}(z) = \sum_{\gamma \text{ s.a.w. } a \to z \text{ in } \mathcal{M}} x^{|\gamma|} \exp\left(-i\sigma T(\gamma)\right).$$

Let v be a vertex of \mathbb{H} and let p, q, r be the three neighbouring midpoints. If $\sigma = \frac{5}{8}$ and $x = \chi = \frac{1}{\sqrt{2+\sqrt{2}}}$, then

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.$$
 (*)

This is a discrete analyticity result.

Proof. For $k \in \{1, 2, 3\}$, let \mathcal{P}_k be the set of all self-avoiding walks in \mathcal{M} visiting exactly k points of $\{p, q, r\}$.

Consider the set \mathcal{P}_3 . Given $\gamma \in \mathcal{P}_3$, we may assume that p is the first point of $\{p, q, r\}$ met by γ , and we denote by ρ the subwalk of γ stopped at p. After p, the walk crosses the vertex v and can either continue to the left (say, to r) or to the right (to q). If it continues to r, it then follows a self-avoiding walk τ from r to q and must necessarily stop at q. To this walk γ corresponds another walk $\overline{\gamma}$ which continues to q after v and then follows the walk τ in the reverse direction; denote that walk by $\overline{\gamma}$. This defines an involution $\overline{\cdot} : \mathcal{P}_3 \to \mathcal{P}_3$ without fixed point, and note that the aggregate contribution of γ and $\overline{\gamma}$ to the left-hand side of Equation (*) is given by:

$$c\left(\overline{\theta}e^{-i\sigma\frac{4\pi}{3}} + \theta e^{i\sigma\frac{4\pi}{3}}\right) = 2c\cos\left(\frac{2\pi}{3}(2\sigma+1)\right),$$

where $c = (p - v)x^{|\rho| + |\tau| + 1}e^{-i\sigma T(\rho)}$ and $\theta = \frac{q-v}{p-v} = e^{i\frac{2\pi}{3}}$. If $\sigma = \frac{5}{8}$, then $\cos\left(\frac{2\pi}{3}\left(2\sigma + 1\right)\right) = 0$, so the contributions of γ and $\overline{\gamma}$ cancel out, which implies that the contribution of \mathcal{P}_3 is 0.

Now consider $\mathcal{P}_1 \cup \mathcal{P}_2$. Let $\gamma \in \mathcal{P}_1$, assume that p is the first point of $\{p, q, r\}$ met by γ , let ρ be the subwalk of γ stopped at p, and consider the two walks of \mathcal{P}_2 obtained from γ by either continuing one step to q or one step to r. This defines a partition of $\mathcal{P}_1 \cup \mathcal{P}_2$ into subsets of cardinal 3, and the contribution of each such subset to the left-hand side of (*) is

$$c\left(1+\theta x e^{i\sigma\frac{\pi}{3}}+\overline{\theta} x e^{-i\sigma\frac{\pi}{3}}\right),$$

where $c = (p - v)x^{|\rho|}e^{-i\sigma T(\rho)}$ and $\theta = \frac{q-v}{p-v} = e^{i\frac{2\pi}{3}}$. We check that this contribution cancels out when $x = \frac{1}{2\cos(\frac{\pi}{8})} = \chi$, which implies that the contribution of $\mathcal{P}_1 \cup \mathcal{P}_2$ is also zero, and therefore Equation (*) holds.

Theorem 1.17. The hexagonal lattice \mathbb{H} has connective constant $\kappa(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$.

Proof. We will show that Z has radius of convergence $\chi = \frac{1}{\sqrt{2+\sqrt{2}}}$.

First step: $Z(\chi) = \infty$. We shall work in a region $\mathcal{M} = \mathcal{M}_{m,n}$ of the complex plane which is a trapezium with a lower basis containing 2m + 1 midpoints of edges (the set of these points will be denoted by L_m), two edges to the left and right making respective angles of $\frac{\pi}{6}$ and $-\frac{\pi}{6}$ from the vertical, containing each *n* midpoints of edges (the sets of these points will be denoted by $T_{m,n}^-$ and $T_{m,n}^+$ respectively) and a horizontal upper basis (whose set of midpoints will be denoted by $U_{m,n}$). We assume moreover that *a* lies in the middle of L_m . Summing Equation (*) of Lemma 1.16 over all vertices *v* in \mathcal{M} , we see that only terms corresponding to the boundary remain. We write

$$\tau_{m,n}^{\pm} = \sum_{\gamma:a \to T_{m,n}^{\pm}} x^{|\gamma|}, \qquad \lambda_{m,n} = \sum_{\gamma:a \to L_m} x^{|\gamma|}, \qquad \nu_{m,n} = \sum_{\gamma:a \to U_{m,n}} x^{|\gamma|}.$$

Hence, the sum of Equation (*) over \mathcal{M} yields (for $\sigma = \frac{5}{8}$ and $x = \chi$)

$$-iF(a) - i\Re\left(e^{i\sigma\pi}\right)\lambda_{m,n} + i\theta e^{-i\sigma\frac{2\pi}{3}}\tau_{m,n}^{-} + i\nu_{m,n} + i\overline{\theta}e^{i\sigma\frac{2\pi}{3}}\tau_{m,n}^{+} = 0.$$

Since F(a) = 1, we deduce that

$$\alpha \lambda_{m,n} + \beta \underbrace{\left(\tau_{m,n}^{+} + \tau_{m,n}^{-}\right)}_{\tau_{m,n}} + \nu_{m,n} = 1, \qquad (\blacklozenge)$$

with $\alpha = \cos\left(\frac{3\pi}{8}\right)$ and $\beta = \cos\left(\frac{\pi}{4}\right)$. Now, note that $(\lambda_{m,n})$ and $(\nu_{m,n})$ are nondecreasing sequences of m. By Equation (\blacklozenge), it follows that $(\tau_{m,n})$ is a nonincreasing sequence of m. Therefore, we have $\lambda_{m,n} \xrightarrow[m \to +\infty]{\sim} \lambda_n, \nu_{m,n} \xrightarrow[m \to +\infty]{\sim} \nu_n$ and $\tau_{m,n} \xrightarrow[m \to +\infty]{\sim} \tau_n$, with $\alpha \lambda_n + \beta \tau_n + \nu_n = 1.$ (\diamondsuit)

Assume first that $\tau_n > 0$ for some $n \ge 0$. Then $\tau_{m,n} \ge \tau_n > 0$ for all m, so $Z(\chi) \ge \sum_{m \in \mathbb{N}} \tau_{m,n} = +\infty$. If on the other hand $\tau_n = 0$ for all $n \ge 0$, consider the quantity $\lambda_{n+1} - \lambda_n$. This is the number of paths that start at a and reach the horizontal strip comprised between heights n and n + 1 before returning to height 0. Such a path can be decomposed into two paths starting at the top and ending at the bottom, with one edge counted twice. Therefore

$$\lambda_{n+1} - \lambda_n \leqslant \frac{1}{\chi} \nu_{n+1}^2.$$

Using the fact that $\alpha \lambda_n + \nu_n = 1$ (by (\diamond)), we obtain

$$\nu_n \leqslant \nu_{n+1} + \frac{\alpha}{\chi} \nu_{n+1}^2$$

It follows by induction that $\nu_n \ge \frac{C}{n}$ with $C = \min\left\{\nu_1, \frac{\chi}{\alpha}\right\}$, and therefore

$$Z(\chi) \ge \sum_{n \in \mathbb{N}} \nu_n \ge \sum_{n \ge 1} \frac{C}{n} = +\infty.$$

This proves that $Z(\chi) = +\infty$.

Second step: $Z(x) < +\infty$ if $0 < x < \chi$. We will call bridge any self-avoiding walk (between midpoints) starting at its lowest height and finishing at its highest height. Note that every halfspace self-avoiding walk can be decomposed into a sequence of bridges of decreasing heights $T_0 >$ $T_1 > \cdots > T_i$ (by choosing successive minima and maxima). Moreover, every full-space walk can be decomposed into two half-space walks (by cutting at the maximum), and therefore into two sequences of bridges with associated heights $T_0 > T_1 > \cdots > T_i$ and $S_0 > S_1 > \cdots > S_j$. Therefore

$$Z(x) \leqslant 2 \sum_{\substack{T_0 > \dots > T_i \\ S_0 > \dots > S_j}} \left(\nu_{T_0} \cdots \nu_{T_i} \right) \left(\nu_{S_0} \cdots \nu_{S_j} \right) = 2 \left(\prod_{n \in \mathbb{N}} \left(1 + \nu_n \right) \right)^2.$$

It is therefore sufficient to prove that the family $(\nu_n)_{n\in\mathbb{N}}$ is summable. But note that

$$\nu_n(x) \leqslant \left(\frac{x}{\chi}\right)^n \nu_n(\chi) \leqslant \left(\frac{x}{\chi}\right)^n,$$

because $\nu_n(\chi) \leq 1$ by Equation (\Diamond). Hence $\sum_{n \in \mathbb{N}} \nu_n \leq \sum_{n \in \mathbb{N}} \left(\frac{x}{\chi}\right)^n < +\infty$ for $0 < x < \chi$, so $Z(x) < +\infty.$

1.4 Back to percolation

Proposition 1.18. The critical probability and the connective constant of \mathbb{Z}^d satisfy

$$\frac{1}{\kappa(\mathbb{Z}^d)} \leqslant p_c(\mathbb{Z}^d) \leqslant 1 - \frac{1}{\kappa(\mathbb{Z}^d)}$$

Proof. In the proof of Theorem 1.7, we have seen that

$$\theta(p) \leqslant \limsup_{n \to +\infty} \sigma_n p^n$$

But note that $\log(\sigma_n p^n) \sim n (\log \kappa + \log p)$. Hence, if $p < \frac{1}{\kappa}$, then $\log \kappa + \log p < 0$ and $\sigma_n p^n \xrightarrow[n \to +\infty]{} 0$, which implies that $\theta(p) = 0$. This shows that $p_c \ge \frac{1}{\kappa}$.

For the upper-bound in the case d = 2, we need to elaborate on the proof of Theorem 1.7. We denote by F_m the event that there exists a closed cycle of the dual lattice of \mathbb{Z}^2 containing the box $\Lambda(m) = [-m, m]^d$ in its interior. We have, as in the proof of Theorem 1.7,

$$1 - \theta(p) \leq \mathbb{P}_p(F_m) \leq \sum_{n=4m}^{\infty} n\sigma_{n-1}(1-p)^n$$

If $p > 1 - \frac{1}{\kappa}$, then the above sum converges, and therefore one may find a value of m such that $\mathbb{P}_p(F_m) \leq \frac{1}{2}$. Thus, $\theta(p) > 0$, which proves that $p_c \leq 1 - \frac{1}{\kappa}$. For other values of d, note that $p_c(d) \leq p_c(2)$ and $\kappa(d) \geq \kappa(2)$. As a consequence, $1 - \frac{1}{\kappa(d)} \geq \frac{1}{\kappa(d)}$.

 $1 - \frac{1}{\kappa(2)} \ge p_c(2) \ge p_c(d).$

Notation 1.19. Recall that the configuration space we use to model percolation is $\Omega = \{0, 1\}^E$, where E is the set of edges. The set Ω is partially ordered by $\omega \leq \omega' \iff \forall e \in E, \ \omega(e) \leq \omega'(e)$.

Theorem 1.20. Let $f: \Omega \to \mathbb{R}$ be a nondecreasing integrable function. Then the function $p \mapsto \mathbb{E}_p(f)$ is nondecreasing.

Proof. Model the percolation process as follows: let $(U_e)_{e \in E}$ be a family of independent and identically distributed random variables following a uniform law on [0, 1]. For each edge e, set $\eta_p(e) = \mathbb{1}$ $(U_e < p)$. For a given p, $(\eta_p(e))_{e \in E}$ is a family of independent random variables following a Bernoulli law with parameter p. Note moreover that $p \leq p' \Rightarrow \eta_p(e) \leq \eta_{p'}(e)$ for all e. Therefore:

$$\mathbb{E}_{p}(f) = \mathbb{E}\left(f\left(\eta_{p}\right)\right) \leqslant \mathbb{E}\left(f\left(\eta_{p'}\right)\right) = \mathbb{E}_{p'}(f).$$

Remark 1.21. Theorem 1.20 implies Proposition 1.4.

Definition 1.22 (Oriented percolation). Let $d \ge 2$ and $p \in [0, 1]$. Consider the lattice \mathbb{Z}^d (with edge set \mathbb{E}^d). Each edge $e \in \mathbb{E}^d$ is declared open with probability p and closed otherwise; states of different edges are independent. As opposed to standard bond percolation, each edge is oriented to the North or to the East. We define

 $\vec{\theta}(p) = \mathbb{P}_p(0 \text{ lies in an infinite oriented path}),$

and $\vec{p}_c = \sup \left\{ p \in [0,1], \ \vec{\theta}(p) = 0 \right\}.$

Theorem 1.23. $0 < \vec{p_c} < 1$.

Proof. Clearly $\vec{p_c} \ge p_c > 0$. For the other inequality, we use the same idea as in Theorem 1.7: we count dual cycles which block oriented paths from 0 to ∞ (therefore, only edges going right or downwards matter); this yields:

$$1 - \vec{\theta}(p) \leqslant \sum_{n \ge 4} 4^{n-1} (1-p)^{n/2} \xrightarrow{p \to 1} 0.$$

2 Association and influence

2.1 The Holley and FKG inequalities

Definition 2.1 (Increasing sets and functions). Recall that the configuration space we use to model percolation is $\Omega = \{0, 1\}^E$, where E is the set of edges. The set Ω is partially ordered by $\omega \leq \omega' \iff \forall e \in E, \ \omega(e) \leq \omega'(e)$.

- A subset $A \subseteq \Omega$ is called increasing if $\omega \in A$ and $\omega \leq \omega' \Longrightarrow \omega' \in A$.
- A subset $A \subseteq \Omega$ is called decreasing if $\Omega \setminus A$ is increasing.
- A function $f: \Omega \to \mathbb{R}$ is called increasing if $\omega \leq \omega' \Longrightarrow f(\omega) \leq f(\omega')$.

Note that a subset A is increasing iff the function $\mathbb{1}_A$ is increasing.

Definition 2.2 (Stochastic ordering). Let \mathcal{P} be the set of probability measures on Ω , let $\mu, \mu' \in \mathcal{P}$. We say that $\mu \leq_{st} \mu'$ if one of the following two equivalent conditions is satisfied:

- (i) For all increasing subsets $A \subseteq \Omega$, $\mu(A) \leq \mu'(A)$.
- (ii) For all increasing functions $f : \Omega \to \mathbb{R}$, $\mu(f) \leq \mu'(f)$ (where $\mu(f)$ is the integral of f relative to μ , i.e. the expectation of f).

The partial order \leq_{st} is called the stochastic ordering.

Theorem 2.3 (Baby Strassen). For $\mu_1, \mu_2 \in \mathcal{P}$, the following assertions are equivalent:

- (i) $\mu_1 \leq_{st} \mu_2$.
- (ii) There exists a probability measure κ on Ω^2 s.t.

- (a) The first marginal of κ is μ_1 and the second one is μ_2 ,
- (b) $\kappa(S) = 1$ where $S = \{(\omega_1, \omega_2) \in \Omega^2, \ \omega_1 \leq \omega_2\}.$

Proof. (ii) \Rightarrow (i) Let $A \subseteq \Omega$ be an increasing event. Then

$$\mu_1(A) = \kappa \left(A \times \Omega \right) = \kappa \left((A \times \Omega) \cap S \right) \leqslant \kappa \left(A \times A \right) \leqslant \kappa \left(\Omega \times A \right) = \mu_2(A).$$

Notation 2.4. For $\omega_1, \omega_2 \in \Omega$, we define

 $(\omega_1 \vee \omega_2)(e) = \max \{\omega_1(e), \omega_2(e)\} \qquad and \qquad (\omega_1 \wedge \omega_2)(e) = \min \{\omega_1(e), \omega_2(e)\}.$

Given $\omega \in \Omega$ and $e \in E$, define $\omega^e, \omega_e \in \Omega$ by $\omega^e = \omega \vee \mathbb{1}_{\{e\}}$ and $\omega_e = \omega \wedge \mathbb{1}_{\Omega \setminus \{e\}}$.

Theorem 2.5 (Holley). Let μ_1, μ_2 be two positive probability measures on $\Omega = \{0, 1\}^E$ (i.e. $\mu_i(\omega) > 0$ for all $\omega \in \Omega$), with E finite. Assume that the following inequality is satisfied for all $\omega_1, \omega_2 \in \Omega$:

$$\mu_{2}(\omega_{1} \vee \omega_{2}) \,\mu_{1}(\omega_{1} \wedge \omega_{2}) \geqslant \mu_{1}(\omega_{1}) \,\mu_{2}(\omega_{2})$$

Then $\mu_1 \leq_{st} \mu_2$.

Proof. First choose a positive probability measure μ on Ω and consider a Markov chain $(X_t)_{t\geq 0}$ in continuous time on Ω with single edge-flips, i.e. with generator G defined by

$$G(\omega_e, \omega^e) = 1, \qquad G(\omega^e, \omega_e) = \frac{\mu(\omega_e)}{\mu(\omega^e)}$$

and $G(\omega, \omega') = 0$ for all other pairs $\omega \neq \omega'$, and $G(\omega, \omega)$ is such that $\sum_{\omega' \in \Omega} G(\omega, \omega') = 0$ for all $\omega \in \Omega$. Therefore

$$\mu(\omega)G\left(\omega,\omega'\right) = \mu\left(\omega'\right)G\left(\omega',\omega\right)$$

It follows that the Markov chain $(X_t)_{t \ge 0}$ with generator G is reversible, irreducible, and has invariant probability measure μ .

Now do the same thing with pairs: let μ_1, μ_2 be as in the statement of the theorem, let $S = \{(\pi, \omega) \in \Omega^2, \pi \leq \omega\}$. Consider a Markov chain $(X_t, Y_t)_{t \geq 0}$ on $S \subseteq \Omega^2$ s.t. $(X_0, Y_0) = (0, 1)$ and with generator H defined by

$$H\left(\left(\pi_{e},\omega\right),\left(\pi^{e},\omega^{e}\right)\right) = 1,$$

$$H\left(\left(\pi,\omega^{e}\right),\left(\pi_{e},\omega_{e}\right)\right) = \frac{\mu_{2}\left(\omega_{e}\right)}{\mu_{2}\left(\omega^{e}\right)},$$

$$H\left(\left(\pi^{e},\omega^{e}\right),\left(\pi_{e},\omega^{e}\right)\right) = \frac{\mu_{1}\left(\pi_{e}\right)}{\mu_{1}\left(\pi^{e}\right)} - \frac{\mu_{2}\left(\omega_{e}\right)}{\mu_{2}\left(\omega^{e}\right)}$$

Note that the positivity of $H((\pi^e, \omega^e), (\pi_e, \omega^e))$ follows from the fact that $\mu_2(\pi^e \vee \omega_e) \mu_1(\pi^e \wedge \omega_e) \ge \mu_1(\pi^e) \mu_2(\omega_e)$, which is true by assumption. Also note that $(X_t)_{t\ge 0}$ is now a Markov chain with invariant probability measure μ_1 , and $(Y_t)_{t\ge 0}$ is a Markov chain with invariant probability measure μ_2 . Therefore, the unique invariant probability measure of $(X_t, Y_t)_{t\ge 0}$ is some κ which has μ_1 as first marginal, μ_2 as second, and $\kappa(S) = 1$. Theorem 2.3 implies that $\mu_1 \leq_{st} \mu_2$.

Theorem 2.6 (FKG). Let μ be a positive probability measure on $\Omega = \{0, 1\}^E$, with E finite. Assume that the following inequality holds for all $\omega_1, \omega_2 \in \Omega$:

$$\mu(\omega_1 \vee \omega_2) \,\mu(\omega_1 \wedge \omega_2) \ge \mu(\omega_1) \,\mu(\omega_2) \,.$$

Then $\mu(fg) \ge \mu(f)\mu(g)$ for all increasing functions $f, g: \Omega \to \mathbb{R}$ (or equivalently, $\mu(A \cap B) \ge \mu(A)\mu(B)$ for all increasing events $A, B \subseteq \Omega$).

Proof. Let $\mu_1 = \mu$ and μ_2 be the probability measure defined by

$$\mu_{2}(\omega) = \frac{g(\omega)\mu(\omega)}{\sum_{\omega' \in \Omega} g(\omega')\mu(\omega')}$$

We may assume that g > 0 by replacing it by g + n for n large enough. Then μ_1, μ_2 satisfy the hypotheses of Holley's Theorem (Theorem 2.5), so $\mu_1 \leq_{st} \mu_2$, which yields $\mu(fg) \ge \mu(f)\mu(g)$. \Box

2.2 Disjoint occurrence and the BK inequality

Remark 2.7. The product measure \mathbb{P}_p on $\Omega = \{0,1\}^E$ (with E finite) satisfies the FKG condition. It follows from Theorem 2.6 that

$$\mathbb{P}_p(A \cap B) \ge \mathbb{P}_p(A)\mathbb{P}_p(B),$$

for all increasing events A, B.

Notation 2.8. Let $\Omega = \{0,1\}^E$ with E finite. For $\omega \in \Omega$ and $F \subseteq E$, define the cylinder event

$$C(\omega, F) = \left\{ \omega' \in \Omega, \ \omega_{|F} = \omega'_{|F} \right\}.$$

Moreover, denote $\omega_F = \omega_{|F|} \times 0^{E \setminus F} \in \Omega$.

Definition 2.9 (Disjoint occurrence). Let $\Omega = \{0,1\}^E$ with E finite. Given $A, B \subseteq \Omega$, define:

- (i) $A \square B = \{ \omega \in \Omega, \exists F \subseteq E, C(\omega, F) \subseteq A \text{ and } C(\omega, E \setminus F) \subseteq B \},\$
- (ii) $A \circ B = \left\{ \omega \in \Omega, \exists F \subseteq E, \omega_F \in A \text{ and } \omega_{E \setminus F} \in B \right\}.$

Hence $A \circ B = A \Box B$ if A and B are increasing.

Theorem 2.10 (BK). Let $\Omega = \{0, 1\}^E$ with E finite. If $A, B \subseteq \Omega$ are increasing events, then

$$\mathbb{P}_p(A \circ B) \leqslant \mathbb{P}_p(A)\mathbb{P}_p(B)$$

Proof. Write $E = \{e_1, \ldots, e_N\}$. Consider the duplicate sample space $\Omega \times \Omega'$, where $\Omega' = \{0, 1\}^E = \Omega$; we equip $\Omega \times \Omega'$ with the product measure $\hat{\mathbb{P}} = \mathbb{P}_p \times \mathbb{P}_p$. For $(\omega, \omega') \in \Omega \times \Omega'$ and $1 \leq j \leq N+1$, define

$$\omega_{j} = (\omega'(e_{1}), \dots, \omega'(j-1), \omega(j), \dots, \omega(N)) \in \Omega.$$

Define in addition $\hat{A}_j = \{(\omega, \omega') \in \Omega \times \Omega', \omega_j \in A\} \subseteq \Omega \times \Omega'$ and $\hat{B} = B \times \Omega' \subseteq \Omega \times \Omega'$. Note that

• $\hat{A}_1 = A \times \Omega'$ and $\hat{B} = B \times \Omega'$, so $\hat{\mathbb{P}}(\hat{A}_1 \circ \hat{B}) = \mathbb{P}_p(A \circ B)$,

•
$$\hat{A}_{N+1} = \Omega \times A$$
 and $\hat{B} = B \times \Omega'$, so

$$\hat{\mathbb{P}}\left(\hat{A}_{N+1}\circ\hat{B}\right) = \hat{\mathbb{P}}\left(\bigcup_{F_1,F_2\subseteq E}\left\{\left(\omega,\omega'\right),\ \omega'_{F_1}\in A \text{ and } \omega_{E\setminus F_2}\in B\right\}\right) = \hat{\mathbb{P}}\left(A\times B\right) = \mathbb{P}_p(A)\mathbb{P}_p(B).$$

It is therefore enough to prove that $\hat{\mathbb{P}}(\hat{A}_j \circ \hat{B}) \leq \hat{\mathbb{P}}(\hat{A}_{j+1} \circ \hat{B})$ for all $1 \leq j \leq N$. To do this, fix $1 \leq j \leq N$ and condition on the event $\text{III} = \{(\omega, \omega'), \forall i \neq j, \omega(e_i) = \mu_i \text{ and } \omega'(e_i) = \nu_i\}$. Given $(\omega, \omega') \in \text{III}$, there are three cases:

- (i) $\hat{A}_j \circ \hat{B}$ does not occur when $\omega(e_j) = \omega'(e_j) = 1$, so $\hat{\mathbb{P}}\left(\hat{A}_j \circ \hat{B} \mid \coprod\right) = 0 \leqslant \hat{\mathbb{P}}\left(\hat{A}_{j+1} \circ \hat{B} \mid \coprod\right)$.
- (ii) $\hat{A}_j \circ \hat{B}$ occurs when $\omega(e_j) = \omega'(e_j) = 0$. In that case, so does $\hat{A}_{j+1} \circ \hat{B}$, which implies that $\hat{\mathbb{P}}(\hat{A}_j \circ \hat{B} \mid \coprod) \leq \hat{\mathbb{P}}(\hat{A}_{j+1} \circ \hat{B} \mid \amalg)$.
- (iii) Neither of the two cases above hold. Since $\hat{A}_j \circ \hat{B}$ does not depend on the value of $\omega'(e_j)$ and since we assume that we are in none of the above cases, it follows that

$$\hat{\mathbb{P}}\left(\hat{A}_{j}\circ\hat{B}\mid\mathrm{III}\right)=\hat{\mathbb{P}}\left(\omega\left(e_{j}\right)=1\mid\mathrm{III}\right)=p.$$

Likewise, since $\hat{A}_{j+1} \circ \hat{B}$ must occur when $\omega'(e_j) = 1$, we have

$$\hat{\mathbb{P}}\left(\hat{A}_{j+1}\circ\hat{B}\mid\mathrm{III}\right)\geqslant\hat{\mathbb{P}}\left(\omega'\left(e_{j}\right)=1\mid\mathrm{III}\right)=p.$$

Theorem 2.11 (Reimer). Let $\Omega = \{0,1\}^E$ with E finite. If $A, B \subseteq \Omega$ are any events, then

$$\mathbb{P}_p(A \square B) \leqslant \mathbb{P}_p(A)\mathbb{P}_p(B)$$

2.3 Influence

Definition 2.12 (Influence). Let $\Omega = \{0, 1\}^E$ with E finite. Given $A \subseteq \Omega$ and $e \in E$, the (absolute) influence of e is defined by

$$I_{A}(e) = \mathbb{P}_{p}\left(\mathbb{1}_{A}\left(\omega_{e}\right) \neq \mathbb{1}_{A}\left(\omega^{e}\right)\right).$$

If A is an increasing event, then

$$I_A(e) = \mathbb{P}_p(A^e) - \mathbb{P}_p(A_e),$$

where $A^e = \{ \omega \in \Omega, \ \omega^e \in A \}$ and $A_e = \{ \omega \in \Omega, \ \omega_e \in A \}.$

Theorem 2.13. There exists an absolute constant $c \in (0, +\infty)$ s.t. for any finite set E, and for any $A \subseteq \Omega = \{0, 1\}^E$, we have

$$\sum_{e \in E} I_A(e) \ge c \mathbb{P}_{1/2}(A) \mathbb{P}_{1/2}(\overline{A}) \log\left(\frac{1}{\max_{e \in E} I_A(e)}\right).$$

Remark 2.14. Let $\Omega = \{0,1\}^E$ with $|E| = N < +\infty$. If $m = \max_{e \in E} I_A(e)$, we have $Nm \ge \sum_{e \in E} I_A(e)$, and therefore Theorem 2.13 implies that

$$-\frac{m}{\log m} \ge \frac{c}{N} \mathbb{P}_{1/2}(A) \mathbb{P}_{1/2}\left(\overline{A}\right).$$

From this we can deduce that

$$\max_{e \in E} I_A(e) \ge c \mathbb{P}_{1/2}(A) \mathbb{P}_{1/2}\left(\overline{A}\right) \frac{\log N}{N}.$$

Remark 2.15. Theorem 2.13 remains valid if $\mathbb{P}_{1/2}$ is replaced by any product measure on any finite product (in particular by \mathbb{P}_p on $\Omega = \{0, 1\}^E$).

Theorem 2.16 (Russo). Let $\Omega = \{0, 1\}^E$ with E finite. For $A \subseteq \Omega$, we have

$$\frac{\mathrm{d}}{\mathrm{d}p}\mathbb{P}_p(A) = \sum_{e \in E} \left(\mathbb{P}_p\left(A^e\right) - \mathbb{P}_p\left(A_e\right)\right)$$

Proof. Write $\mathbb{P}_p(A) = \sum_{\omega \in \Omega} \mathbb{1}_A(\omega) p^{|\eta(\omega)|} (1-p)^{N-|\eta(\omega)|}$ with N = |E| and $\eta(\omega) = \{e \in E, \omega(e) = 1\}$. It follows that

$$\frac{\mathrm{d}}{\mathrm{d}p} \mathbb{P}_p(A) = \frac{1}{p(1-p)} \sum_{\omega \in \Omega} \mathbb{1}_A(\omega) \left((1-p) |\eta(\omega)| - p \left(N - |\eta(\omega)| \right) \right) p^{|\eta(\omega)|} (1-p)^{N-|\eta(\omega)|} \\
= \frac{1}{p(1-p)} \mathbb{E}_p \left[(1-p) |\eta| \mathbb{1}_A - p \left(N - |\eta| \right) \mathbb{1}_A \right] \\
= \frac{1}{p(1-p)} \mathbb{E}_p \left[|\eta| \mathbb{1}_A - p N \mathbb{1}_A \right] \\
= \frac{1}{p(1-p)} \sum_{e \in E} \mathbb{E}_p \left(\mathbb{1}_{\{e \text{ open}\}} \mathbb{1}_A - p \mathbb{1}_A \right).$$

But note that

$$\mathbb{E}_{p}\left(\mathbb{1}_{\{e \text{ open}\}}\mathbb{1}_{A}\right) = \mathbb{P}_{p}\left(A \mid e \text{ open}\right)\mathbb{P}_{p}\left(e \text{ open}\right) = p\mathbb{P}_{p}\left(A^{e}\right),$$

and

$$\mathbb{E}_{p}\left(p\mathbb{1}_{A}\right) = p\left(p\mathbb{P}_{p}\left(A^{e}\right) + (1-p)\mathbb{P}_{p}\left(A_{e}\right)\right)$$

Therefore $\mathbb{E}_p\left(\mathbb{1}_{\{e \text{ open}\}}\mathbb{1}_A - p\mathbb{1}_A\right) = p(1-p)\left(\mathbb{P}_p\left(A^e\right) - \mathbb{P}_p\left(A_e\right)\right)$, from which the result follows. **Corollary 2.17.** Let $\Omega = \{0,1\}^E$ with E finite. If $A \subseteq \Omega$ is an increasing event, then

$$\frac{\mathrm{d}}{\mathrm{d}p}\mathbb{P}_p(A) \ge c\mathbb{P}_p(A)\mathbb{P}_p\left(\overline{A}\right)\log\left(\frac{1}{\max_{e\in E}I_A(e)}\right).$$

It follows that if $I_A(e)$ does not depend on e, then $\frac{d}{dp}\mathbb{P}_p(A) \ge c\mathbb{P}_p(A)\mathbb{P}_p(\overline{A})\log N$, with N = |E|. This means that the function $p \mapsto \mathbb{P}_p(A)$ has a sharp threshold: it stays close to 0, then increases very quickly and stays close to 1 (at least for large values of N).

3 Further percolation

Notation 3.1. We return to bond percolation on \mathbb{Z}^d with $d \ge 2$.

Remark 3.2. Let \mathbb{K} be the event that there exists an infinite open cluster. Note that the Kolmogorov Zero-One Law implies that $\mathbb{P}_p(\mathbb{K}) \in \{0,1\}$ for all p. Moreover

$$\theta(p) = \mathbb{P}_p\left(|C_0| = +\infty\right) \leqslant \mathbb{P}_p\left(\mathcal{H}\right) = \mathbb{P}_p\left(\bigcup_{x \in \mathbb{Z}^d} \left(|C_x| = +\infty\right)\right) \leqslant \sum_{x \in \mathbb{Z}^d} \mathbb{P}_p\left(|C_x| = +\infty\right) = \sum_{x \in \mathbb{Z}^d} \theta(p).$$

It follows that:

- In the subcritical phase $(0 \leq p < p_c)$, $\theta(p) = 0$ and almost surely there is no infinite open cluster.
- In the supercritical phase $(p_c , <math>\theta(p) > 0$ and almost surely there exists an infinite open cluster.

3.1 Subcritical phase

Notation 3.3. For $n \in \mathbb{N}$, we shall write $\Lambda(n) = [-n, +n]^d \subseteq \mathbb{Z}^d$ and $\partial \Lambda(n) = \Lambda(n) \setminus \Lambda(n-1)$. Thus

$$\theta(p) = \mathbb{P}_p\left(0 \leftrightarrow \infty\right) = \lim_{n \to +\infty} \mathbb{P}_p\left(0 \leftrightarrow \partial \Lambda(n)\right)$$

Theorem 3.4. (i) For $0 \leq p < p_c$, there exists $\psi(p) > 0$ s.t.

$$\mathbb{P}_p\left(0\leftrightarrow\partial\Lambda(n)\right)\leqslant e^{-n\psi(p)}.$$

(ii) For $p_c , we have$

$$\theta(p) \geqslant \frac{p - p_c}{p \left(1 - p_c\right)}.$$

Proof. Given $0 \in S \subseteq \mathbb{Z}^d$, $|S| < +\infty$, we define the *external edge boundary* of S by

$$\Delta S = \{ e = \langle x, y \rangle, \ x \in S, \ y \notin S \}.$$

For $e \in \Delta S$, we shall always write $e = \langle x, y \rangle$ with $x \in S$. For $y \in \mathbb{Z}^d$ and $n \in \mathbb{N}$, define

$$E_n(y) = (y \leftrightarrow \partial \Lambda(n)) \subseteq \Omega,$$

and $E_n = E_n(0), g_p(n) = \mathbb{P}_p(E_n)$. Also set

$$\varphi_p(S) = p \sum_{\langle x, y \rangle \in \Delta S} \mathbb{P}_p \left(0 \leftrightarrow x \text{ in } S \right).$$

Now, choose $L \in \mathbb{N}$ in such a way that $S \subseteq \Lambda(L)$. Then for every k, we have, using the BK Inequality (Theorem 2.10),

$$g_p(kL) \leqslant \sum_{\substack{e = \langle x, y \rangle \in \Delta S}} \mathbb{P}_p\left((0 \leftrightarrow x \text{ in } S) \circ (e \text{ open}) \circ (y \leftrightarrow \partial \Lambda(kL)) \right)$$

$$\stackrel{(BK)}{\leqslant} \sum_{\substack{e = \langle x, y \rangle \in \Delta S}} p\mathbb{P}_p\left(0 \leftrightarrow x \text{ in } S \right) \underbrace{\mathbb{P}_p\left(E_{kL}(y) \right)}_{\leqslant g_p((k-1)L)}$$

$$\leqslant \varphi_p(S) g_p\left((k-1)L \right).$$

By induction, it follows that $g_p(kL) \leq \varphi_p(S)^k$. Let

 $\widetilde{p}_c = \sup \{ p \in [0,1], \text{ there exists a finite set } S \ni 0 \text{ with } \varphi_p(S) < 1 \}.$

If $p < \tilde{p}_c$, pick S with $\varphi_p(S) < 1$. We have $g_p(n) \leq \varphi_p(S)^{\lfloor n/L \rfloor}$, and since $g_p(n) < 1$ for $n \ge 1$ and p < 1, we have $g_p(n) \leq e^{-n\psi(p)}$ for some $\psi(p) > 0$.

Proving that $p_c = \tilde{p}_c$ will imply (i). We shall actually prove that for $p > \tilde{p}_c$, $\theta(p) \ge \frac{p-p_c}{p(1-p_c)}$. This will imply that $\theta(p) > 0$ for $p > \tilde{p}_c$, and therefore $\tilde{p}_c \ge p_c$. But we also know that if $p > p_c$, then there cannot exist a set S as in the definition of \tilde{p}_c (otherwise we would have $\theta(p) = 0$), so that $p_c \ge \tilde{p}_c$ and therefore $\tilde{p}_c = p_c$, which will prove both (i) and (ii).

So it suffices to prove that for $p > \tilde{p}_c$, $\theta(p) \ge \frac{p-p_c}{p(1-p_c)}$. We define a random variable $\underline{S} = \{x \in \Lambda(n), x \not\leftrightarrow \partial \Lambda(n)\}$. We shall now estimate $g_p(n) = \mathbb{P}_p(0 \leftrightarrow \partial \Lambda(n))$ using Russo's Formula (Theorem 2.16):

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}p}g_p(n) &= \sum_{e \in E} \mathbb{P}_p\left(e \text{ is pivotal for } \{0 \leftrightarrow \partial \Lambda(n)\}\right) \\ &= \frac{1}{1-p} \sum_{e \in E} \mathbb{P}_p\left(e \text{ is pivotal for } \{0 \leftrightarrow \partial \Lambda(n)\}, e \text{ is closed}\right) \\ &= \frac{1}{1-p} \sum_{e \in E} \sum_{\substack{S \ni 0 \\ \Delta S \ni e}} \mathbb{P}_p\left(e \text{ is pivotal for } \{0 \leftrightarrow \partial \Lambda(n)\}, e \text{ is closed}, \overline{S} = S\right) \\ &= \frac{1}{1-p} \sum_{S \ni 0} \sum_{e = \langle x, y \rangle \in \Delta S} \mathbb{P}_p\left(0 \stackrel{S}{\leftrightarrow} x, \overline{S} = S\right) \\ &= \frac{1}{1-p} \sum_{S \ni 0} \sum_{e = \langle x, y \rangle \in \Delta S} \mathbb{P}_p\left(0 \stackrel{S}{\leftrightarrow} x\right) \mathbb{P}_p\left(\overline{S} = S\right) \\ &= \frac{1}{p(1-p)} \sum_{S \ni 0} \mathbb{P}_p\left(\overline{S} = S\right) \sum_{e = \langle x, y \rangle \in \Delta S} p \mathbb{P}_p\left(0 \stackrel{S}{\leftrightarrow} x\right) \\ &= \frac{1}{p(1-p)} \sum_{S \ni 0} \mathbb{P}_p\left(\overline{S} = S\right) \varphi_p(S). \end{aligned}$$

Now if $p > \tilde{p}_c$, then $\varphi_p(S) \ge 1$ for all S, so that

$$\frac{\mathrm{d}}{\mathrm{d}p}g_p(n) \ge \frac{1}{p(1-p)} \sum_{S \ge 0} \mathbb{P}_p\left(\overline{S} = S\right) = \frac{1-g_p(n)}{p\left(1-p\right)}.$$

Integrating this differential inequality yields

$$\log\left(\frac{1-g_{\widetilde{p}_c}(n)}{1-g_p(n)}\right) \ge \log\left(\frac{p}{1-p} \cdot \frac{1-\widetilde{p}_c}{\widetilde{p}_c}\right),$$

from which it follows that $\frac{1}{1-g_p(n)} \ge \frac{1-g_{\widetilde{p_c}}(n)}{1-g_p(n)} \ge \frac{p}{1-p} \cdot \frac{1-\widetilde{p_c}}{\widetilde{p_c}}$ and therefore, for $p > \widetilde{p_c}$,

$$g_p(n) \ge \frac{p - p_c}{p \left(1 - \widetilde{p}_c\right)}.$$

Making $n \to +\infty$ gives the claimed inequality.

3.2 Supercritical phase

Remark 3.5. We have seen (in Remark 3.2) that in the supercritical phase there is almost surely an infinite open cluster. The next question is: how many infinite open clusters are there?

Lemma 3.6. If A is a translation-invariant event, then $\mathbb{P}(A) \in \{0,1\}$, where \mathbb{P} is any product measure on Ω .

Proof. For $\varepsilon > 0$, a measure-theoretic argument shows that there is a finite set $S \subseteq \mathbb{Z}^d$ and an event A_S defined on S only such that $\mathbb{P}(A \triangle A_S) < \varepsilon$. Now choose a translation τ such that $\tau S \cap S = \emptyset$. Then A_S is independent of τA_S . But A_S approximates A and τA_S approximates $\tau A = A$, so we can deduce that $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2$, and therefore $\mathbb{P}(A) \in \{0, 1\}$.

Theorem 3.7. Let N be the number of infinite open clusters. Then for all $p \in [0, 1]$, we have either $\mathbb{P}_p(N=0) = 1$ or $\mathbb{P}_p(N=1) = 1$.

Proof. If $\theta(p) = 0$, then $\mathbb{P}_p(N = 0) = 1$, so we henceforth assume that $\theta(p) > 0$ and we wish to prove that $\mathbb{P}_p(N = 1) = 1$.

First step: there exists $k_p \in \mathbb{N} \cup \{\infty\}$ s.t. $\mathbb{P}_p(N = k_p) = 1$. Note that N is invariant w.r.t. translations of the configuration. Moreover, \mathbb{P}_p is a product measure; it follows from Lemma 3.6 that $\mathbb{P}_p(N \ge n) \in \{0, 1\}$ for all n, so it suffices to set $k_p = \sup\{n \in \mathbb{N}, \mathbb{P}_p(N \ge n) = 1\}$.

Second step: $k_p \notin \mathbb{N}_{\geq 2}$. Suppose for contradiction that $2 \leq k_p < +\infty$. For $n \in \mathbb{N}$, let C_n be the event that Λ_n intersects at least two distinct infinite open clusters. Since $\lim_{n\to+\infty} \mathbb{P}_p(C_n) = 1$, there exists an n such that $\mathbb{P}_p(C_n) \geq \frac{1}{2}$. By making all the edges inside Λ_n open, we have

$$\mathbb{P}_p\left(N\leqslant k_p-1\right)\geqslant \frac{1}{2}p^{|E(\Lambda_n)|}>0,$$

a contradiction.

Third step: $k_p \neq \infty$. Suppose for contradiction that $3 \leq k_p \leq \infty$. Consider the box $L_n = \{x \in \mathbb{Z}^d, \|x\|_1 \leq n\}$. As before, there exists an n such that the probability that L_n intersects at least three distinct infinite open clusters is at least $\frac{1}{2}$. We now say that a point $x \in \mathbb{Z}^d$ is a trifurcation if $x \leftrightarrow \infty$ and if the removal of x and its adjacent edges breaks C_x into three distinct infinite open cluster. Let T_x be the event that x is a trifurcation. Pick points $x, y, z \in \partial L_n$ such that x, y, z lie in distinct infinite open clusters off L_n . Given x, y, z, there exists a configuration $\omega_{x,y,z}$ inside L_n such that 0 is a trifurcation when $\omega_{x,y,z}$ occurs. Therefore

$$\mathbb{P}_{p}(T_{0}) \ge \frac{1}{2} \left(\min \{p, 1-p\} \right)^{|E(L_{n})|} > 0.$$

Now, in a situation where 0 is a trifurcation, we can produce a graph of trifurcations; this graph is a forest of degree 3. A graph-theoretic argument then shows that there exists an $\alpha > 0$ such that

$$\frac{\text{\#trifurcations in }\partial L_n}{\text{\#trifurcations in }L_n} \ge \alpha > 0.$$

Thus

 $|S_n| \ge \mathbb{E} (\# \text{trifurcations in } \partial L_n) \ge \alpha \mathbb{E} (\# \text{trifurcations in } L_n) = \alpha |L_n| \mathbb{P}_p (T_0).$

We deduce the existence of a constant C > 0 such that $n^{d-1} \ge Cn^d$, which gives a contradiction for large values of n.

Corollary 3.8. If $p > p_c$, then for all vertices x, y,

$$\mathbb{P}_p\left(x \leftrightarrow y\right) \ge \theta(p)^2 > 0.$$

Proof. By Theorem 3.7 and the FKG inequality (Theorem 2.6), we have

$$\mathbb{P}_p(x \leftrightarrow y) \ge \mathbb{P}_p(x \leftrightarrow y, x \leftrightarrow \infty, y \leftrightarrow \infty) = \mathbb{P}_p(x \leftrightarrow \infty, y \leftrightarrow \infty) \stackrel{(\mathrm{rrot})}{\ge} \theta(p)^2 > 0.$$

(FKC)

Theorem 3.9 (Slab Critical Point Theorem). When $d \ge 3$, define a slab of thickness k + 1 by

$$S_k = \{0, 1, \dots, k\}^{d-2} \times \mathbb{Z}^2 \subseteq \mathbb{Z}^d.$$

We have $p_c(S_k) \ge p_c$, so $p_c(S_k) \xrightarrow[k \to +\infty]{} \hat{p}_c \ge p_c$. In fact, $\hat{p}_c = p_c$.

3.3 Exact critical probabilities

Lemma 3.10. For bond percolation on \mathbb{Z}^2 , $\theta\left(\frac{1}{2}\right) = 0$.

Proof. We assume for contradiction that $\theta\left(\frac{1}{2}\right) > 0$. By Theorem 3.7, there is $\mathbb{P}_{1/2}$ -almost surely a unique infinite open cluster. We denote by T(n) the box $[0, n]^2$, with edges labelled ℓ (left), r (right), b (bottom) and t (top). Choose n_0 large enough so that, for $n \ge n_0$,

$$\mathbb{P}_{1/2}\left(\partial T(n)\leftrightarrow\infty\right) \ge 1-\left(\frac{1}{8}\right)^4.$$

Let $n = n_0 + 1$. Let A^g be the event that the edge labelled g is joined to ∞ off T(n). We have, using the FKG inequality (Theorem 2.6),

$$\left(\frac{1}{8}\right)^4 \ge \mathbb{P}_{1/2}\left(\partial T(n) \not\leftrightarrow \infty\right) = \mathbb{P}_{1/2}\left(\overline{A}^\ell \cap \overline{A}^r \cap \overline{A}^b \cap \overline{A}^t\right) \stackrel{(\mathrm{FKG})}{\ge} \mathbb{P}_{1/2}\left(\overline{A}^g\right)^4.$$

It follows that $\mathbb{P}_{1/2}(A^g) \ge \frac{7}{8}$ for all g. Now consider the dual box $T(n)_{\vee} \simeq [0, n-1]^2$ with $n-1 \ge n_0$, and let A^g_{\vee} be the event that the edge labelled g is joined to ∞ by a dual open path off $T(n)_{\vee}$. As before, we have $\mathbb{P}_{1/2}(A^g_{\vee}) \ge \frac{7}{8}$. Therefore

$$1 - \mathbb{P}_{1/2} \left(A^{\ell} \cap A^r \cap A^b_{\vee} \cap A^t_{\vee} \right) \leqslant 4 \cdot \frac{1}{8} = \frac{1}{2}$$

But the event $A^{\ell} \cap A^{r} \cap A^{b}_{\vee} \cap A^{t}_{\vee}$ has probability zero because it contradicts the uniqueness of infinite open clusters in both the primal and the dual lattice. This is a contradiction.

Theorem 3.11. For bond percolation on \mathbb{Z}^2 , $p_c = \frac{1}{2}$.

Proof. (≥) Follows from Lemma 3.10. (≤) Assume for contradiction that $p_c > \frac{1}{2}$. Consider the box $B_n = [0, n+1] \times [0, n] \subseteq \mathbb{Z}^2$ and let A_n be the event that B_n has a left-to-right open crossing (i.e. an open path connecting the left boundary of B_n to its right boundary). Consider the dual box B_n^{\vee} of B_n . We take the convention that an open edge in \mathbb{Z}^2 is always crossed by a dual closed edge, and vice versa. Let A_n^{\vee} be the event that B_n^{\vee} has a bottom-to-top open crossing. Note that exactly one of A_n and A_n^{\vee} must occur; moreover, B_n^{\vee} has the same geometry as B_n , so $\mathbb{P}_{1/2}(A_n) = \mathbb{P}_{1/2}(A_n^{\vee})$. It follows that $\mathbb{P}_{1/2}(A_n) = \frac{1}{2}$. But if $p_c > \frac{1}{2}$, then $\frac{1}{2}$ is subcritical, so by Theorem 3.4 $\mathbb{P}_{1/2}(A_n) \leq (n+1)e^{-\gamma n}$ for some $\gamma > 0$, which gives a contradiction for large n.

3.4 RSW theory

Notation 3.12. Let \mathbb{T} be the triangular lattice, which we embed in the plane by

$$\mathbb{T} = \left\{ m\mathbf{i} + n\mathbf{j}, \ (m, n) \in \mathbb{Z}^2 \right\},\$$

where $\mathbf{i} = (1, 0)$ and $\mathbf{j} = \frac{1}{2} (1, \sqrt{3})$.

In this section, we shall study site percolation on \mathbb{T} , i.e. each vertex is coloured black with probability p, white otherwise.

We also introduce the following notations:

- $R_{a,b}$ is the subgraph of \mathbb{T} induced by vertices in $[0,a] \times [0,b]$, $L(R_{a,b})$ (resp. $R(R_{a,b})$) is the set of vertices of \mathbb{T} at distance at most $\frac{1}{2}$ from the left (resp. right) edge of $[0,a] \times [0,b]$.
- $H_{a,b}$ is the event that $L(R_{a,b})$ is connected to $R(R_{a,b})$ by a black path in $R_{a,b}$.

We fix
$$p = \frac{1}{2}$$
 and $\mathbb{P} = \mathbb{P}_{1/2}$.

Lemma 3.13. $\mathbb{P}(H_{2a,b}) \geq \frac{1}{4}\mathbb{P}(H_{a,b}).$

Proof. Consider the box $[0, a] \times [0, b]$ and the reflection ρ whose axis is the vertical line at a. Given a path g from the left to the right edge of $[0, a] \times [0, b]$, we define U_q to be the part of $[0, a] \times [0, b]$ that lies under q and let

$$J_g = U_g \cap \partial \left([0, a] \times [0, b] \right)$$

We denote by B_g (resp. $W_{\rho g}$) the event that g (resp. ρg) is connected to ρJ_g (resp. J_g) by a path of $U_q \cap \rho U_q$ that intersects $g \cup \rho g$ only once and every vertex (except possibly the endvertex on g) is black (resp. white). We observe that $B_g \cup W_{\rho g}$ must occur (by a duality argument). But by symmetry, $\mathbb{P}(B_q) = \mathbb{P}(W_q)$, which implies that

$$\mathbb{P}(B_g) = \mathbb{P}(W_g) \ge \frac{1}{2}.$$

Moreover, if L (resp. R) is the left (resp. right) edge of the box $[0, 2a] \times [0, b]$, and J is the union of the left and bottom edges of the box $[0, a] \times [0, b]$, then

$$\mathbb{P}(H_{2a,b}) \geqslant \mathbb{P}(L \leftrightarrow \rho J, R \leftrightarrow J) \stackrel{(\mathrm{FKG})}{\geqslant} \mathbb{P}(L \leftrightarrow \rho J)^2$$

Now let γ be the random variable denoting the highest left-right black crossing in he rectangle $R_{a,b}$. We have

$$\mathbb{P}(L \leftrightarrow \rho J) \ge \sum_{g} \mathbb{P}(\gamma = g, B_g) = \sum_{g} \mathbb{P}(\gamma = g) \mathbb{P}(B_g) \ge \frac{1}{2} \sum_{g} \mathbb{P}(\gamma = g) = \frac{1}{2} \mathbb{P}(H_{a,b}).$$
we that $\mathbb{P}(H_{2g,b}) \ge \mathbb{P}(L \leftrightarrow \rho J)^2 \ge \frac{1}{4} \mathbb{P}(H_{a,b}).$

It follows that $\mathbb{P}(H_{2a,b}) \geq \mathbb{P}(L \leftrightarrow \rho J)^2 \geq \frac{1}{4}\mathbb{P}(H_{a,b}).$

Corollary 3.14. $\mathbb{P}(H_{2^k a, b}) \ge \left(\frac{1}{4}\right)^{2^k - 1} \mathbb{P}(H_{a, b}).$

Lemma 3.15. $\mathbb{P}\left(H_{a,a/\sqrt{3}}\right) \geq \frac{1}{2}$ for $a \geq 1$.

Proof. Use a self-duality argument to show that there exists a left-right crossing in the rhombus of dimensions $\left(a, \frac{a}{\sqrt{3}}\right)$ with probability $\frac{1}{2}$.

3.5Cardy's formula

Theorem 3.16 (Cardy's formula). Consider a Jordan curve bounding a domain D in the plane with four points b, a, c, x on the boundary. Assume the plane is covered by a triangular lattice with mesh δ . By Riemann's Theorem, there exists a conformal map from D to an equilateral triangle such that a, b, c are sent to vertices A, B, C of that triangle. Let X be the image of x under that map (X lies on the boundary of the triangle). Then

$$\mathbb{P}\left(ac \leftrightarrow bx \text{ in } D\right) \xrightarrow[\delta \to 0]{} |BX|.$$

Sketch of proof. We set $\delta = \frac{1}{n}$ and we shall make $n \to +\infty$. Let $\tau = e^{2i\pi/3}$, let $A_1 = A = 0$, $A_{\tau} = B = 1$, $A_{\tau^2} = C = e^{i\pi/3}$. For $z \in T$ (T is the triangle ABC), let $E_i^n(z)$ be the event that there exists a black path from $A_{\tau^{i-1}}A_{\tau^{i+1}}$ to $A_{\tau^{i-1}}A_{\tau^i}$ separating z from $A_{\tau^i}A_{\tau^{i+1}}$. Let $H_i^n(z) = \mathbb{P}(E_i^n(z))$, extended to T by interpolation. Then there exist C, α such that

$$\left|H_{j}^{n}(z)-H_{j}^{n}(z')\right| \leqslant C \left|z-z'\right|^{\alpha},$$

for all z, z', j, n. By the Arzelà-Ascoli Theorem, any sequence of functions in $(H_j^n)_{n \in \mathbb{N}}$ has a convergent subsequence (for uniform convergence). Now we want to show that there is only one possible limit of convergent subsequence, and this will imply convergence. We define

$$G_1 = H_1 + H_2 + H_3,$$

$$G_2 = H_1 + \tau H_2 + \tau^2 H_3$$

Then a theorem says that G_1, G_2 are analytic functions of z. Since G_1 is real-valued, it follows that it is constant. And $\Re(G_2) = \frac{1}{2}(3H_1 - 1)$, so H_1 is harmonic and may be derived explicitly.

The rest of the proof uses the so-called *exploration process*.

4 The Ising, Potts and random cluster models

4.1 The models

Definition 4.1 (Ising model). Let G = (V, E) be a finite connected graph. Define $\Sigma = \{\pm 1\}^V$; a spin vector is an element $\sigma = (\sigma_x)_{x \in V} \in \Sigma$. The hamiltonian of a spin vector is defined by

$$H(\sigma) = -J \sum_{\langle x, y \rangle \in E} \sigma_x \sigma_y - h \sum_{x \in V} \sigma_x,$$

where $J, h \in \mathbb{R}$ are parameters. The (Lenz) Ising model is the probability measure $\lambda = \lambda_{\beta}$ on Σ defined by

$$\lambda(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)},$$

where $\beta \ge 0$ is a parameter (corresponding to the inverse temperature) and $Z = \sum_{\sigma \in \Sigma} e^{-\beta H(\sigma)}$ is the partition function.

We normally take h = 0. The case J > 0 is called the ferromagnet while the case J < 0 is called the antiferromagnet. In this course, we will take J > 0 (i.e. adjacent vertices tend to be in the same state) and even J = 1 for simplicity. Therefore

$$\lambda(\sigma) \propto \exp\left(\beta \sum_{\langle x,y \rangle \in E} \sigma_x \sigma_y\right).$$

Definition 4.2 (Potts model). The Potts model is the generalisation of the Ising model obtained by replacing $\{\pm 1\}$ by $\{1, 2, ..., q\}$. Thus the state space is $\Sigma = \{1, 2, ..., q\}^V$ and the probability measure satisfies

$$\pi(\sigma) \propto \exp\left(\beta \sum_{\langle x,y \rangle \in E} \mathbb{1} \left(\sigma_x = \sigma_y\right)\right).$$

Note that, when q = 2, $\pi_{\beta} = \lambda_{\beta/2}$.

Definition 4.3 (Random cluster model). Consider as before a finite graph G = (V, E) and let $\Omega = \{0, 1\}^E$. Let $p \in [0, 1]$, q > 0. The random cluster model is the probability measure $\varphi_{p,q}$ on Ω defined by

$$\varphi_{p,q}(\omega) \propto q^{k(\omega)} \prod_{e \in E} p^{\omega(e)} (1-p)^{1-\omega(e)},$$

where $k(\omega)$ is the number of open components (including isolated vertices) of the configuration ω (again, the edge e is called open if $\omega(e) = 1$, closed otherwise).

For q = 1, the random cluster model is simply bond percolation on G.

4.2 Link with percolation

Notation 4.4. We are going to construct a coupling of the Potts model and the random cluster model on a finite connected graph G = (V, E) when $q \in \mathbb{N}_{\geq 2}$. We define a probability measure μ on $\Sigma \times \Omega$ by

$$\mu(\sigma,\omega) \propto \mathbb{P}_p(\omega) \mathbb{1}_F(\sigma,\omega),$$

where \mathbb{P}_p is the probability measure on Ω for standard edge percolation, and

 $F = \{ (\sigma, \omega) \in \Sigma \times \Omega, \forall e = \langle x, y \rangle \in E, \ \omega(e) = 1 \Rightarrow \sigma_x = \sigma_y \}.$

In other words, we are adding to bond percolation the constraint that whenever an edge is open, its endpoints have the same state.

Proposition 4.5. Properties of the measure μ on $\Sigma \times \Omega$:

- (i) The marginal on Σ is the Potts model with parameter $\beta = -\log(1-p)$.
- (ii) The marginal on Ω is the random cluster model.
- (iii) The conditional law given ω is the model where each cluster receives a uniform spin independently.
- (iv) The conditional law given σ is the model where, for $e = \langle x, y \rangle$, if $\sigma_x \neq \sigma_y$ then $\omega(e) = 0$, otherwise $\omega(e) = 1$ with probability p, independently of other edges.
- **Definition 4.6** (Correlation and connection functions). (i) The correlation function of the Potts model is given by

$$\tau(x,y) = \pi \left(\sigma_x = \sigma_y\right) - \frac{1}{q}$$

(ii) The connection function of the random cluster model is given by

$$\varphi(x \leftrightarrow y).$$

Theorem 4.7. Assume that $q \in \mathbb{N}_{\geq 2}$, let $\beta \geq 0$ and $p = 1 - e^{-\beta}$. Then

$$\tau_{\beta,q}(x,y) = \left(1 - \frac{1}{q}\right)\varphi_{p,q}\left(x \leftrightarrow y\right)$$

This gives a strong link between correlation in the Potts model and connection in the random cluster model.

Proof. We have

$$\begin{aligned} \tau(x,y) &= \pi \left(\sigma_x = \sigma_y \right) - \frac{1}{q} \\ &= \sum_{\omega \in \Omega} \mu \left(\sigma, \omega \right) \left(\mathbbm{1} \left(\sigma_x = \sigma_y \right) - \frac{1}{q} \right) \\ &= \sum_{\omega \in \Omega} \varphi(\omega) \sum_{\sigma \in \Sigma} \mu \left(\sigma \mid \omega \right) \left(\mathbbm{1} \left(\sigma_x = \sigma_y \right) - \frac{1}{q} \right) \\ &= \sum_{\omega \in \Omega} \varphi(\omega) \left(\mathbbm{1} \left(x \nleftrightarrow y \right) \left(1 - \frac{1}{q} \right) + \mathbbm{1} \left(x \not \to y \right) \cdot 0 \right) \\ &= \left(1 - \frac{1}{q} \right) \varphi \left(x \leftrightarrow y \right). \end{aligned}$$

Proposition 4.8. The random cluster model $\varphi_{p,q}$ has the following properties:

- (i) FKG inequality. If $q \ge 1$, then $\varphi_{p,q}$ is positively associated.
- (ii) Comparison inequalities.
 - (a) If $q' \ge \max\{q, 1\}$ and $p' \le p$, then $\varphi_{p',q'} \le_{st} \varphi_{p,q}$.
 - (b) If $q' \ge \max\{q, 1\}$ and $\frac{p'}{q'(1-p')} \ge \frac{p}{q(1-p)}$, then $\varphi_{p',q'} \ge_{st} \varphi_{p,q}$.

Proof. (i) Use the FKG inequality (Theorem 2.6). (ii) Use the Holley inequality (Theorem 2.5). \Box

4.3 Negative association

Definition 4.9 (Edge-negative association). A probability measure φ on $\{0,1\}^E$ is said to be edgenegatively associated if for all edges e, f, we have

$$\varphi\left(\omega(e)=1,\omega(f)=1\right)\leqslant\varphi\left(\omega(e)=1\right)\varphi\left(\omega(f)=1\right).$$

Remark 4.10. Proposition 4.8 leads to the following question: is $\varphi_{p,q}$ edge-negatively associated for q < 1?

Theorem 4.11. Let G be a finite connected graph. Then the measure $\varphi_{p,q}$ converges weakly to

- The uniform connected subgraph measure \mathcal{UCS} if $p = \frac{1}{2}$ and $q \to 0$,
- The uniform spanning tree measure \mathcal{UST} if $p, q, \frac{q}{p} \to 0$,
- The uniform forest measure \mathcal{UF} if $p = q \to 0$.

Proof. We prove the result for the uniform forest. We write $\eta(\omega) = \{e \in E, \omega(e) = 1\}$ and we assume that p = q. Then

$$\varphi_{p,q}(\omega) \propto p^{|\eta(\omega)|} (1-p)^{|E\setminus\eta(\omega)|} q^{k(\omega)} \propto \frac{p^{|\eta(\omega)|+k(\omega)}}{(1-p)^{|\eta(\omega)|}}$$

Note that $|\eta(\omega)| + k(\omega) \ge |V|$ with equality iff there are no cycles. the result follows.

Theorem 4.12. \mathcal{UST} is edge-negatively associated.

Conjecture 4.13. UCS and UF are edge-negatively associated.

4.4 Infinite volume limits for the random cluster model

Remark 4.14. The random cluster model is well-defined for finite graphs, but we want to extend the definition to infinite graphs, for instance \mathbb{Z}^d .

Notation 4.15. We work on \mathbb{Z}^d , with $d \ge 2$. Given a bounded region $\Lambda \subseteq \mathbb{Z}^d$, we have a random cluster measure $\varphi_{\Lambda,p,q}$ on Λ . We add a boundary condition: either b = 0 and all edges outside Λ are closed, or b = 1 and all edges outside Λ are open. We now define the measure $\varphi_{\Lambda,p,q}^b$ in the same manner as $\varphi_{\Lambda,p,q}$, but by taking into account connectivity through the boundary when counting open clusters.

Theorem 4.16. For $q \ge 1$ and $b \in \{0,1\}$, the measures $\left(\varphi_{\Lambda,p,q}^{b}\right)_{\Lambda \subseteq \mathbb{Z}^{d}}$ converge weakly to a measure $\varphi_{p,q}^{b}$ as $\Lambda \to \mathbb{Z}^{d}$.

The measure $\varphi_{p,q}^{b}$ is called the infinite volume measure.

Proof. We assume that b = 1 (the proof is similar if b = 0). To prove weak convergence, it suffices to prove that $\left(\varphi_{\Lambda,p,q}^1(A)\right)_{\Lambda \subseteq \mathbb{Z}^d}$ converges for all increasing cylinder events A. But, if $\Lambda \subseteq \Lambda' \subseteq \mathbb{Z}^d$, then we have, using Proposition 4.8,

$$\varphi_{\Lambda,p,q}^{1}(A) = \varphi_{\Lambda',p,q}^{1}(A \mid \text{every edge of } \Lambda' \setminus \Lambda \text{ is open}) \stackrel{(\text{FKG})}{\geqslant} \varphi_{\Lambda',p,q}^{1}(A).$$

Therefore the limit exists by monotonicity.

Remark 4.17. An infinite volume measure can also be defined using the so-called DLR method.

Definition 4.18 (Percolation probability for the random cluster model). Given $b \in \{0, 1\}$, $q \ge 1$ and $p \in [0, 1]$, we define

$$\theta^{b}(p,q) = \varphi^{b}_{p,q} \left(0 \leftrightarrow \infty \right).$$

By Proposition 4.8, $\theta^{b}(p,q)$ is nondecreasing in p, and we define

$$p_c^b(q) = \sup \left\{ p \in [0, 1], \ \theta^b(p, q) = 0 \right\}.$$

Theorem 4.19. There exists a countable subset $\mathcal{D}_q \subseteq [0,1]$ such that

$$\forall p \in [0,1] \backslash \mathcal{D}_q, \ \varphi_{p,q}^0 = \varphi_{p,q}^1.$$

Corollary 4.20. $p_c^1(q) = p_c^0(q)$.

Proof. Assume for contradiction that $p_c^1(q) \neq p_c^0(q)$ with, say, $p_c^1(q) < p_c^0(q)$. Then, in the open interval $(p_c^1(q), p_c^0(q))$, we would have $\theta^1(q) > 0 = \theta^0(q)$, and therefore $\varphi_{p,q}^1 \neq \varphi_{p,q}^0$, contradicting Theorem 4.19.

Definition 4.21 (Order parameter for the Potts model). For the Potts model with q states, we define the order parameter by

$$\mathcal{M}(\beta,q) = \lim_{\Lambda \to \mathbb{Z}^d} \left(\pi^1_{\Lambda,q} \left(\sigma_0 = 1 \right) - \frac{1}{q} \right) = \left(1 - \frac{1}{q} \right) \theta^1(p,q),$$

where $\pi^1_{\Lambda,q}$ is the probability measure conditioned by the event that all vertices off Λ have state 1. There is a critical parameter $\beta_c = -\log(1 - p_c(q))$.

Theorem 4.22. For $q \ge 1$, $0 < p_c(q) < 1$.

Proof. The comparison inequalities (Proposition 4.8) imply that

$$\varphi_{p',1}^1 \leqslant_{st} \varphi_{p,q}^1 \leqslant_{st} \varphi_{p,1},$$

where $p' = \frac{p}{p+q(1-p)}$. It follows that $0 < p_c(1) \leq p_c(q) \leq \frac{qp_c(1)}{1+(q-1)p_c(1)} < 1$, using the fact that $0 < p_c(1) < 1$ by Theorem 1.7.

Theorem 4.23. When d = 2 and $q \ge 1$,

$$p_c(q) = \frac{\sqrt{q}}{1 + \sqrt{q}}.$$

Proof. Define a dual random cluster measure on the square lattice, with dual parameter p^{\vee} satisfying $\frac{p^{\vee}}{1-p^{\vee}} = q\frac{1-p}{p}$, and show that this mapping $p \mapsto p^{\vee}$ has the unique value $p = \frac{\sqrt{q}}{1+\sqrt{q}}$ as a fixed point. \Box

References

[1] G.R. Grimmett. Probability on Graphs.