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1 Percolation and self-avoiding walks

1.1 Percolation
Definition 1.1 (Bond percolation). Let d > 2 and p ∈ [0, 1]. Consider the lattice Zd (with edge set
Ed). Each edge e ∈ Ed is declared open with probability p and closed otherwise; states of different
edges are independent.

In other words, the configuration space is Ω = {0, 1}Ed, equipped with the product σ-algebra and
the product Pp of Bernoulli measures of parameter p. For e ∈ Ed, e is open in the configuration ω if
ω(e) = 1. The set of open edges of is η(ω) =

{
e ∈ Ed, ω(e) = 1

}
.
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Our aim will be to study the geometry of η(ω) as p varies.

Definition 1.2 (Connectivity and open clusters). Let x, y ∈ Zd. We say that x is connected to y,
and we write x↔ y (in ω) if there is an open path from x to y in the configuration ω. We also write
x↔∞ if x lies in some infinite open path.

The relation ↔ is an equivalence relation on Zd. For x ∈ Zd, the equivalence class of x is denoted
by Cx and called the open cluster at x. In particular, we write C = C0, where 0 is the origin of Zd.

Definition 1.3 (Percolation probability). The percolation probability is the function θ : [0, 1] →
[0, 1] defined by

θ(p) = Pp (|C| = +∞) = Pp (0↔∞) .

Proposition 1.4. The percolation probability is a nondecreasing function.

Proof. The idea is to couple percolation processes corresponding to different values of p by considering
independent and identically distributed random variables (Ue)e∈Ed with uniform law on [0, 1]. For
more details, see Theorem 1.20.

Definition 1.5 (Critical probability). The critical probability is defined by

pc = sup {p ∈ [0, 1], θ(p) = 0} .

By monotonicity, θ(p) = 0 for p < pc and θ(p) > 0 for p > pc.

Conjecture 1.6. θ (pc) = 0.
The result is known for d = 2 and d > 11.

Theorem 1.7. If d > 2, then 0 < pc < 1. Values of p with 0 < p < pc (resp. pc < p < 1) are called
subcritical (resp. supercritical).

Proof. We first show that pc > 0. To do this, denote by σn the number of self-avoiding walks (i.e.
paths visiting no vertex more than once) of length n in the lattice Zd and starting at 0. A basic
question will be to understand the asymptotic behaviour of (σn)n∈N. We will also denote by Nn the
random variable giving the number of open self-avoiding walks of length n in the percolation process.
Note that we have:

θ(p) = Pp (0↔∞) 6 Pp

⋂
n∈N

(Nn > 1)


6 lim sup
n→+∞

EpNn = lim sup
n→+∞

∑
π self-avoiding walk

of length n

Pp (π is open)

= lim sup
n→+∞

∑
π self-avoiding walk

of length n

pn = lim sup
n→+∞

σnp
n.

Now, we can give a crude upper-bound for σn by noticing that σn 6 (2d)(2d− 1)n−1. Therefore:

θ(p) 6 lim sup
n→+∞

2d
2d− 1 ((2d− 1)p)n .

This proves that θ(p) = 0 if p < 1
2d−1 , so pc >

1
2d−1 > 0.

We now show that pc < 1. Note first that Zd ⊆ Zd+1, so θ(p, d) 6 θ (p, d+ 1) and pc(d) >
pc (d+ 1). It is therefore sufficient to prove the result for d = 2, and so we shall assume that d = 2.
We denote by Γn the random variable giving the number of dual cycles of length n in the lattice Z2,
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containing 0 in their interior, and only traversing closed edges of Z2. We shall also write γn for the
total number of such cycles. We have:

1− θ(p) = Pp (|C| < +∞) 6 Pp

⋃
n∈N

(Γn > 1)


6
∑
n∈N

EpΓn =
∑
n∈N

γn(1− p)n.

But to each dual cycle containing 0, we may associate a self-avoiding walk of length (n− 1) starting
at one of the n vertices (0,−n), . . . , (0,−1). Thus γn 6 nσn−1, which gives:

1− θ(p) 6 4
9
∑
n∈N

n (3 (1− p))n −−→
p→1

0.

Hence, there exists p′ < 1 such that 1− θ(p) < 1 for p > p′. This implies that pc 6 p′ < 1.

Remark 1.8. The duality argument used in the above proof is called Peierls’ argument and comes
from statistical mechanics.

1.2 Self-avoiding walks
Notation 1.9. Let L be a lattice, i.e. a vertex-transitive graph: the group of graph automorphisms
of L acts transitively on the set of vertices of L. We denote by σn the number of self-avoiding walks
of length n starting at a point 0 ∈ L.

Our question will be to understand the asymptotic behaviour of (σn)n∈N.

Lemma 1.10. For all m,n ∈ N, we have σm+n 6 σmσn.
The sequence (log σn)n∈N is therefore subadditive.

Proof. Note that σmσn is the number of (not necessarily self-avoiding) walks of length m+n formed
of an m-step self-avoiding walk followed by an n-step self-avoiding walk. Since all self-avoiding walks
of length m+ n are of that type, it follows that σm+n 6 σmσn.

Note that we have used the fact that L is transitive.

Theorem 1.11 (Subadditive inequality theorem). Assume that f : N → N is subadditive: f(m +
n) 6 f(m) + f(n) for all m,n ∈ N. Then the sequence

(
f(n)
n

)
n>1

has a limit given by:

lim
n→+∞

f(n)
n

= inf
n>1

f(n)
n
∈ [−∞,+∞) .

Proof. We let ` = infn>1
f(n)
n
∈ [−∞,+∞) and we want to show that f(n)

n
−−−−→
n→+∞

`. We shall do the
proof in the case where ` > −∞. Let ε > 0 and pick n0 > 1 s.t.

` 6
f (n0)
n0

6 `+ ε.

Now, let M = sup06r<n0 |f(r)| and choose n1 > n0 such that 0 6 M
n1
6 ε. For n > n1, we can write

n = qn0 + r with q > 0 and 0 6 r < n0, so that

` 6
f(n)
n
6
qf (n0) + f(r)

n
6 f (n0) + f(r)

n1
6 `+ 2ε.

Corollary 1.12. There exists a constant κ = κ (L) > 1 such that log σn = (log κ)n (1 + o(1)), or in
other words:

σn = κn(1+o(1)).

The constant κ(L) is called the connective constant of L.
Our aim will now be to determine κ (L) for L = Zd and for other lattices.
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Example 1.13. For L = Z, we have σn = 2 for n > 1, so κ = 1.

Conjecture 1.14. It is believed that σn ∼ Aκnn11/32 for L = Z2. The exponent 11
32 is called the

critical exponent.
It is known that σn ∼ Aκn for L = Zd with d > 5.

1.3 Connective constant of the hexagonal lattice
Notation 1.15. We now want to determine the connective constant of the hexagonal lattice H.

We embed H in the complex plane as in Figure 1. We shall change slightly our notation for the
purpose of the proof and write σn for the number of self-avoiding walks between midpoints of edges
(rather than between vertices). Note that this is equal to the former σn+1, so the asymptotic behaviour
remains unchanged. We consider the generating function

Z(x) =
∑
n∈N

σnx
n =

∑
γ s.a.w. from a

x|γ|.

Our aim is to show that Z has radius of convergence χ = 1√
2+
√

2
. Given a self-avoiding walk γ, we

shall denote by T (γ) the turning angle of γ, i.e. the angle between the initial and the final directions
of γ.

0

i

ij ij2

Figure 1: The hexagonal lattice H ⊆ C

Lemma 1.16. Fix a bounded and simply-connected regionM of C. Given a midpoint z of H, define

F (z) = F x,σ(z) =
∑

γ s.a.w. a→ z in M
x|γ| exp (−iσT (γ)) .

Let v be a vertex of H and let p, q, r be the three neighbouring midpoints. If σ = 5
8 and x = χ = 1√

2+
√

2
,

then
(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0. (∗)

This is a discrete analyticity result.

Proof. For k ∈ {1, 2, 3}, let Pk be the set of all self-avoiding walks inM visiting exactly k points of
{p, q, r}.

Consider the set P3. Given γ ∈ P3, we may assume that p is the first point of {p, q, r} met by
γ, and we denote by ρ the subwalk of γ stopped at p. After p, the walk crosses the vertex v and
can either continue to the left (say, to r) or to the right (to q). If it continues to r, it then follows a
self-avoiding walk τ from r to q and must necessarily stop at q. To this walk γ corresponds another
walk γ which continues to q after v and then follows the walk τ in the reverse direction; denote that
walk by γ. This defines an involution · : P3 → P3 without fixed point, and note that the aggregate
contribution of γ and γ to the left-hand side of Equation (∗) is given by:

c
(
θe−iσ

4π
3 + θeiσ

4π
3
)

= 2c cos
(2π

3 (2σ + 1)
)
,
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where c = (p − v)x|ρ|+|τ |+1e−iσT (ρ) and θ = q−v
p−v = ei

2π
3 . If σ = 5

8 , then cos
(

2π
3 (2σ + 1)

)
= 0, so the

contributions of γ and γ cancel out, which implies that the contribution of P3 is 0.
Now consider P1 ∪ P2. Let γ ∈ P1, assume that p is the first point of {p, q, r} met by γ, let ρ be

the subwalk of γ stopped at p, and consider the two walks of P2 obtained from γ by either continuing
one step to q or one step to r. This defines a partition of P1 ∪P2 into subsets of cardinal 3, and the
contribution of each such subset to the left-hand side of (∗) is

c
(
1 + θxeiσ

π
3 + θxe−iσ

π
3
)
,

where c = (p− v)x|ρ|e−iσT (ρ) and θ = q−v
p−v = ei

2π
3 . We check that this contribution cancels out when

x = 1
2 cos(π8 ) = χ, which implies that the contribution of P1 ∪ P2 is also zero, and therefore Equation

(∗) holds.

Theorem 1.17. The hexagonal lattice H has connective constant κ (H) =
√

2 +
√

2.

Proof. We will show that Z has radius of convergence χ = 1√
2+
√

2
.

First step: Z(χ) = ∞. We shall work in a region M = Mm,n of the complex plane which is
a trapezium with a lower basis containing 2m + 1 midpoints of edges (the set of these points will
be denoted by Lm), two edges to the left and right making respective angles of π

6 and −π
6 from the

vertical, containing each n midpoints of edges (the sets of these points will be denoted by T−m,n and
T+
m,n respectively) and a horizontal upper basis (whose set of midpoints will be denoted by Um,n).

We assume moreover that a lies in the middle of Lm. Summing Equation (∗) of Lemma 1.16 over all
vertices v inM, we see that only terms corresponding to the boundary remain. We write

τ±m,n =
∑

γ:a→T±m,n

x|γ|, λm,n =
∑

γ:a→Lm
x|γ|, νm,n =

∑
γ:a→Um,n

x|γ|.

Hence, the sum of Equation (∗) overM yields (for σ = 5
8 and x = χ)

−iF (a)− i<
(
eiσπ

)
λm,n + iθe−iσ

2π
3 τ−m,n + iνm,n + iθeiσ

2π
3 τ+

m,n = 0.

Since F (a) = 1, we deduce that

αλm,n + β
(
τ+
m,n + τ−m,n

)
︸ ︷︷ ︸

τm,n

+νm,n = 1, (�)

with α = cos
(

3π
8

)
and β = cos

(
π
4

)
. Now, note that (λm,n) and (νm,n) are nondecreasing sequences

of m. By Equation (�), it follows that (τm,n) is a nonincreasing sequence of m. Therefore, we have
λm,n

↗−−−−→
m→+∞

λn, νm,n
↗−−−−→

m→+∞
νn and τm,n

↘−−−−→
m→+∞

τn, with

αλn + βτn + νn = 1. (♦)

Assume first that τn > 0 for some n > 0. Then τm,n > τn > 0 for all m, so Z(χ) > ∑m∈N τm,n = +∞.
If on the other hand τn = 0 for all n > 0, consider the quantity λn+1 − λn. This is the number of
paths that start at a and reach the horizontal strip comprised between heights n and n + 1 before
returning to height 0. Such a path can be decomposed into two paths starting at the top and ending
at the bottom, with one edge counted twice. Therefore

λn+1 − λn 6
1
χ
ν2
n+1.

Using the fact that αλn + νn = 1 (by (♦)), we obtain

νn 6 νn+1 + α

χ
ν2
n+1.

5



It follows by induction that νn > C
n
with C = min

{
ν1,

χ
α

}
, and therefore

Z(χ) >
∑
n∈N

νn >
∑
n>1

C

n
= +∞.

This proves that Z(χ) = +∞.
Second step: Z(x) < +∞ if 0 < x < χ. We will call bridge any self-avoiding walk (between

midpoints) starting at its lowest height and finishing at its highest height. Note that every half-
space self-avoiding walk can be decomposed into a sequence of bridges of decreasing heights T0 >
T1 > · · · > Ti (by choosing successive minima and maxima). Moreover, every full-space walk can be
decomposed into two half-space walks (by cutting at the maximum), and therefore into two sequences
of bridges with associated heights T0 > T1 > · · · > Ti and S0 > S1 > · · · > Sj. Therefore

Z(x) 6 2
∑

T0>···>Ti
S0>···>Sj

(νT0 · · · νTi)
(
νS0 · · · νSj

)
= 2

∏
n∈N

(1 + νn)
2

.

It is therefore sufficient to prove that the family (νn)n∈N is summable. But note that

νn(x) 6
(
x

χ

)n
νn(χ) 6

(
x

χ

)n
,

because νn(χ) 6 1 by Equation (♦). Hence ∑n∈N νn 6
∑
n∈N

(
x
χ

)n
< +∞ for 0 < x < χ, so

Z(x) < +∞.

1.4 Back to percolation
Proposition 1.18. The critical probability and the connective constant of Zd satisfy

1
κ(Zd) 6 pc(Zd) 6 1− 1

κ(Zd) .

Proof. In the proof of Theorem 1.7, we have seen that

θ(p) 6 lim sup
n→+∞

σnp
n.

But note that log (σnpn) ∼ n (log κ+ log p). Hence, if p < 1
κ
, then log κ+log p < 0 and σnpn −−−−→

n→+∞
0,

which implies that θ(p) = 0. This shows that pc > 1
κ
.

For the upper-bound in the case d = 2, we need to elaborate on the proof of Theorem 1.7. We
denote by Fm the event that there exists a closed cycle of the dual lattice of Z2 containing the box
Λ(m) = [−m,m]d in its interior. We have, as in the proof of Theorem 1.7,

1− θ(p) 6 Pp (Fm) 6
∞∑

n=4m
nσn−1(1− p)n.

If p > 1 − 1
κ
, then the above sum converges, and therefore one may find a value of m such that

Pp (Fm) 6 1
2 . Thus, θ(p) > 0, which proves that pc 6 1− 1

κ
.

For other values of d, note that pc(d) 6 pc(2) and κ(d) > κ(2). As a consequence, 1 − 1
κ(d) >

1− 1
κ(2) > pc(2) > pc(d).

Notation 1.19. Recall that the configuration space we use to model percolation is Ω = {0, 1}E, where
E is the set of edges. The set Ω is partially ordered by ω 6 ω′ ⇐⇒ ∀e ∈ E, ω(e) 6 ω′(e).

Theorem 1.20. Let f : Ω→ R be a nondecreasing integrable function. Then the function p 7→ Ep(f)
is nondecreasing.
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Proof. Model the percolation process as follows: let (Ue)e∈E be a family of independent and identically
distributed random variables following a uniform law on [0, 1]. For each edge e, set ηp(e) = 1 (Ue < p).
For a given p, (ηp(e))e∈E is a family of independent random variables following a Bernoulli law with
parameter p. Note moreover that p 6 p′ ⇒ ηp(e) 6 ηp′(e) for all e. Therefore:

Ep(f) = E (f (ηp)) 6 E (f (ηp′)) = Ep′(f).

Remark 1.21. Theorem 1.20 implies Proposition 1.4.

Definition 1.22 (Oriented percolation). Let d > 2 and p ∈ [0, 1]. Consider the lattice Zd (with edge
set Ed). Each edge e ∈ Ed is declared open with probability p and closed otherwise; states of different
edges are independent. As opposed to standard bond percolation, each edge is oriented to the North
or to the East. We define

~θ(p) = Pp (0 lies in an infinite oriented path) ,

and ~pc = sup
{
p ∈ [0, 1], ~θ(p) = 0

}
.

Theorem 1.23. 0 < ~pc < 1.

Proof. Clearly ~pc > pc > 0. For the other inequality, we use the same idea as in Theorem 1.7:
we count dual cycles which block oriented paths from 0 to ∞ (therefore, only edges going right or
downwards matter); this yields:

1− ~θ(p) 6
∑
n>4

4n−1(1− p)n/2 −−→
p→1

0.

2 Association and influence

2.1 The Holley and FKG inequalities
Definition 2.1 (Increasing sets and functions). Recall that the configuration space we use to model
percolation is Ω = {0, 1}E, where E is the set of edges. The set Ω is partially ordered by ω 6 ω′ ⇐⇒
∀e ∈ E, ω(e) 6 ω′(e).

• A subset A ⊆ Ω is called increasing if ω ∈ A and ω 6 ω′ =⇒ ω′ ∈ A.

• A subset A ⊆ Ω is called decreasing if Ω\A is increasing.

• A function f : Ω→ R is called increasing if ω 6 ω′ =⇒ f(ω) 6 f (ω′).

Note that a subset A is increasing iff the function 1A is increasing.

Definition 2.2 (Stochastic ordering). Let P be the set of probability measures on Ω, let µ, µ′ ∈ P.
We say that µ 6st µ′ if one of the following two equivalent conditions is satisfied:

(i) For all increasing subsets A ⊆ Ω, µ(A) 6 µ′(A).

(ii) For all increasing functions f : Ω → R, µ(f) 6 µ′(f) (where µ(f) is the integral of f relative
to µ, i.e. the expectation of f).

The partial order 6st is called the stochastic ordering.

Theorem 2.3 (Baby Strassen). For µ1, µ2 ∈ P, the following assertions are equivalent:

(i) µ1 6st µ2.

(ii) There exists a probability measure κ on Ω2 s.t.
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(a) The first marginal of κ is µ1 and the second one is µ2,
(b) κ(S) = 1 where S = {(ω1, ω2) ∈ Ω2, ω1 6 ω2}.

Proof. (ii)⇒ (i) Let A ⊆ Ω be an increasing event. Then

µ1(A) = κ (A× Ω) = κ ((A× Ω) ∩ S) 6 κ (A× A) 6 κ (Ω× A) = µ2(A).

Notation 2.4. For ω1, ω2 ∈ Ω, we define

(ω1 ∨ ω2) (e) = max {ω1(e), ω2(e)} and (ω1 ∧ ω2) (e) = min {ω1(e), ω2(e)} .

Given ω ∈ Ω and e ∈ E, define ωe, ωe ∈ Ω by ωe = ω ∨ 1{e} and ωe = ω ∧ 1Ω\{e}.
Theorem 2.5 (Holley). Let µ1, µ2 be two positive probability measures on Ω = {0, 1}E (i.e. µi(ω) > 0
for all ω ∈ Ω), with E finite. Assume that the following inequality is satisfied for all ω1, ω2 ∈ Ω:

µ2 (ω1 ∨ ω2)µ1 (ω1 ∧ ω2) > µ1 (ω1)µ2 (ω2) .

Then µ1 6st µ2.
Proof. First choose a positive probability measure µ on Ω and consider a Markov chain (Xt)t>0 in
continuous time on Ω with single edge-flips, i.e. with generator G defined by

G (ωe, ωe) = 1, G (ωe, ωe) = µ (ωe)
µ (ωe) ,

and G (ω, ω′) = 0 for all other pairs ω 6= ω′, and G(ω, ω) is such that ∑ω′∈ΩG (ω, ω′) = 0 for all
ω ∈ Ω. Therefore

µ(ω)G (ω, ω′) = µ (ω′)G (ω′, ω) .
It follows that the Markov chain (Xt)t>0 with generator G is reversible, irreducible, and has invariant
probability measure µ.

Now do the same thing with pairs: let µ1, µ2 be as in the statement of the theorem, let S =
{(π, ω) ∈ Ω2, π 6 ω}. Consider a Markov chain (Xt, Yt)t>0 on S ⊆ Ω2 s.t. (X0, Y0) = (0, 1) and with
generator H defined by

H ((πe, ω) , (πe, ωe)) = 1,

H ((π, ωe) , (πe, ωe)) = µ2 (ωe)
µ2 (ωe) ,

H ((πe, ωe) , (πe, ωe)) = µ1 (πe)
µ1 (πe) −

µ2 (ωe)
µ2 (ωe) .

Note that the positivity of H ((πe, ωe) , (πe, ωe)) follows from the fact that µ2 (πe ∨ ωe)µ1 (πe ∧ ωe) >
µ1 (πe)µ2 (ωe), which is true by assumption. Also note that (Xt)t>0 is now a Markov chain with
invariant probability measure µ1, and (Yt)t>0 is a Markov chain with invariant probability measure
µ2. Therefore, the unique invariant probability measure of (Xt, Yt)t>0 is some κ which has µ1 as first
marginal, µ2 as second, and κ(S) = 1. Theorem 2.3 implies that µ1 6st µ2.
Theorem 2.6 (FKG). Let µ be a positive probability measure on Ω = {0, 1}E, with E finite. Assume
that the following inequality holds for all ω1, ω2 ∈ Ω:

µ (ω1 ∨ ω2)µ (ω1 ∧ ω2) > µ (ω1)µ (ω2) .

Then µ (fg) > µ(f)µ(g) for all increasing functions f, g : Ω → R (or equivalently, µ (A ∩B) >
µ (A)µ (B) for all increasing events A,B ⊆ Ω).
Proof. Let µ1 = µ and µ2 be the probability measure defined by

µ2(ω) = g(ω)µ(ω)∑
ω′∈Ω g (ω′)µ (ω′) .

We may assume that g > 0 by replacing it by g + n for n large enough. Then µ1, µ2 satisfy the
hypotheses of Holley’s Theorem (Theorem 2.5), so µ1 6st µ2, which yields µ(fg) > µ(f)µ(g).
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2.2 Disjoint occurence and the BK inequality
Remark 2.7. The product measure Pp on Ω = {0, 1}E (with E finite) satisfies the FKG condition.
It follows from Theorem 2.6 that

Pp(A ∩B) > Pp(A)Pp(B),

for all increasing events A,B.

Notation 2.8. Let Ω = {0, 1}E with E finite. For ω ∈ Ω and F ⊆ E, define the cylinder event

C(ω, F ) =
{
ω′ ∈ Ω, ω|F = ω′|F

}
.

Moreover, denote ωF = ω|F × 0E\F ∈ Ω.

Definition 2.9 (Disjoint occurrence). Let Ω = {0, 1}E with E finite. Given A,B ⊆ Ω, define:

(i) A�B = {ω ∈ Ω, ∃F ⊆ E, C(ω, F ) ⊆ A and C (ω,E\F ) ⊆ B},

(ii) A ◦B =
{
ω ∈ Ω, ∃F ⊆ E, ωF ∈ A and ωE\F ∈ B

}
.

Hence A ◦B = A�B if A and B are increasing.

Theorem 2.10 (BK). Let Ω = {0, 1}E with E finite. If A,B ⊆ Ω are increasing events, then

Pp (A ◦B) 6 Pp(A)Pp(B).

Proof. Write E = {e1, . . . , eN}. Consider the duplicate sample space Ω×Ω′, where Ω′ = {0, 1}E = Ω;
we equip Ω × Ω′ with the product measure P̂ = Pp × Pp. For (ω, ω′) ∈ Ω × Ω′ and 1 6 j 6 N + 1,
define

ωj = (ω′ (e1) , . . . , ω′ (j − 1) , ω(j), . . . , ω(N)) ∈ Ω.
Define in addition Âj = {(ω, ω′) ∈ Ω× Ω′, ωj ∈ A} ⊆ Ω× Ω′ and B̂ = B × Ω′ ⊆ Ω× Ω′. Note that

• Â1 = A× Ω′ and B̂ = B × Ω′, so P̂
(
Â1 ◦ B̂

)
= Pp (A ◦B),

• ÂN+1 = Ω× A and B̂ = B × Ω′, so

P̂
(
ÂN+1 ◦ B̂

)
= P̂

 ⋃
F1,F2⊆E

{
(ω, ω′) , ω′F1 ∈ A and ωE\F2 ∈ B

} = P̂ (A×B) = Pp(A)Pp(B).

It is therefore enough to prove that P̂
(
Âj ◦ B̂

)
6 P̂

(
Âj+1 ◦ B̂

)
for all 1 6 j 6 N . To do this, fix

1 6 j 6 N and condition on the event Ш = {(ω, ω′) , ∀i 6= j, ω (ei) = µi and ω′ (ei) = νi}. Given
(ω, ω′) ∈Ш, there are three cases:

(i) Âj ◦ B̂ does not occur when ω (ej) = ω′ (ej) = 1, so P̂
(
Âj ◦ B̂ |Ш

)
= 0 6 P̂

(
Âj+1 ◦ B̂ |Ш

)
.

(ii) Âj ◦ B̂ occurs when ω (ej) = ω′ (ej) = 0. In that case, so does Âj+1 ◦ B̂, which implies that
P̂
(
Âj ◦ B̂ |Ш

)
6 P̂

(
Âj+1 ◦ B̂ |Ш

)
.

(iii) Neither of the two cases above hold. Since Âj ◦ B̂ does not depend on the value of ω′ (ej) and
since we assume that we are in none of the above cases, it follows that

P̂
(
Âj ◦ B̂ |Ш

)
= P̂ (ω (ej) = 1 |Ш) = p.

Likewise, since Âj+1 ◦ B̂ must occur when ω′ (ej) = 1, we have

P̂
(
Âj+1 ◦ B̂ |Ш

)
> P̂ (ω′ (ej) = 1 |Ш) = p.

Theorem 2.11 (Reimer). Let Ω = {0, 1}E with E finite. If A,B ⊆ Ω are any events, then

Pp (A�B) 6 Pp(A)Pp(B).
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2.3 Influence
Definition 2.12 (Influence). Let Ω = {0, 1}E with E finite. Given A ⊆ Ω and e ∈ E, the (absolute)
influence of e is defined by

IA(e) = Pp (1A (ωe) 6= 1A (ωe)) .
If A is an increasing event, then

IA(e) = Pp (Ae)− Pp (Ae) ,
where Ae = {ω ∈ Ω, ωe ∈ A} and Ae = {ω ∈ Ω, ωe ∈ A}.
Theorem 2.13. There exists an absolute constant c ∈ (0,+∞) s.t. for any finite set E, and for any
A ⊆ Ω = {0, 1}E, we have∑

e∈E
IA(e) > cP1/2 (A)P1/2

(
A
)

log
(

1
maxe∈E IA(e)

)
.

Remark 2.14. Let Ω = {0, 1}E with |E| = N < +∞. If m = maxe∈E IA(e), we have Nm >∑
e∈E IA(e), and therefore Theorem 2.13 implies that

− m

logm >
c

N
P1/2(A)P1/2

(
A
)
.

From this we can deduce that

max
e∈E

IA(e) > cP1/2(A)P1/2
(
A
) logN

N
.

Remark 2.15. Theorem 2.13 remains valid if P1/2 is replaced by any product measure on any finite
product (in particular by Pp on Ω = {0, 1}E).
Theorem 2.16 (Russo). Let Ω = {0, 1}E with E finite. For A ⊆ Ω, we have

d
dpPp(A) =

∑
e∈E

(Pp (Ae)− Pp (Ae)) .

Proof. Write Pp(A) = ∑
ω∈Ω 1A(ω)p|η(ω)|(1− p)N−|η(ω)| with N = |E| and η(ω) = {e ∈ E, ω(e) = 1}.

It follows that
d
dpPp(A) = 1

p(1− p)
∑
ω∈Ω

1A(ω) ((1− p) |η(ω)| − p (N − |η(ω)|)) p|η(ω)| (1− p)N−|η(ω)|

= 1
p(1− p)Ep [(1− p) |η|1A − p (N − |η|)1A]

= 1
p(1− p)Ep [|η|1A − pN1A]

= 1
p(1− p)

∑
e∈E

Ep
(
1{e open}1A − p1A

)
.

But note that
Ep
(
1{e open}1A

)
= Pp (A | e open)Pp (e open) = pPp (Ae) ,

and
Ep (p1A) = p (pPp (Ae) + (1− p)Pp (Ae)) .

Therefore Ep
(
1{e open}1A − p1A

)
= p(1− p) (Pp (Ae)− Pp (Ae)), from which the result follows.

Corollary 2.17. Let Ω = {0, 1}E with E finite. If A ⊆ Ω is an increasing event, then
d
dpPp(A) > cPp(A)Pp

(
A
)

log
(

1
maxe∈E IA(e)

)
.

It follows that if IA(e) does not depend on e, then d
dpPp(A) > cPp(A)Pp

(
A
)

logN , with N = |E|.
This means that the function p 7→ Pp(A) has a sharp threshold: it stays close to 0, then increases
very quickly and stays close to 1 (at least for large values of N).
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3 Further percolation
Notation 3.1. We return to bond percolation on Zd with d > 2.

Remark 3.2. Let Ж be the event that there exists an infinite open cluster. Note that the Kolmogorov
Zero-One Law implies that Pp (Ж) ∈ {0, 1} for all p. Moreover

θ(p) = Pp (|C0| = +∞) 6 Pp (Ж) = Pp

 ⋃
x∈Zd

(|Cx| = +∞)
 6 ∑

x∈Zd
Pp (|Cx| = +∞) =

∑
x∈Zd

θ(p).

It follows that:

• In the subcritical phase (0 6 p < pc), θ(p) = 0 and almost surely there is no infinite open
cluster.

• In the supercritical phase (pc < p 6 1), θ(p) > 0 and almost surely there exists an infinite open
cluster.

3.1 Subcritical phase
Notation 3.3. For n ∈ N, we shall write Λ(n) = [−n,+n]d ⊆ Zd and ∂Λ(n) = Λ(n)\Λ(n−1). Thus

θ(p) = Pp (0↔∞) = lim
n→+∞

Pp (0↔ ∂Λ(n)) .

Theorem 3.4. (i) For 0 6 p < pc, there exists ψ(p) > 0 s.t.

Pp (0↔ ∂Λ(n)) 6 e−nψ(p).

(ii) For pc < p 6 1, we have
θ(p) > p− pc

p (1− pc)
.

Proof. Given 0 ∈ S ⊆ Zd, |S| < +∞, we define the external edge boundary of S by

∆S = {e = 〈x, y〉 , x ∈ S, y 6∈ S} .

For e ∈ ∆S, we shall always write e = 〈x, y〉 with x ∈ S. For y ∈ Zd and n ∈ N, define

En(y) = (y ↔ ∂Λ(n)) ⊆ Ω,

and En = En(0), gp(n) = Pp (En). Also set

ϕp(S) = p
∑

〈x,y〉∈∆S
Pp (0↔ x in S) .

Now, choose L ∈ N in such a way that S ⊆ Λ(L). Then for every k, we have, using the BK Inequality
(Theorem 2.10),

gp(kL) 6
∑

e=〈x,y〉∈∆S
Pp ((0↔ x in S) ◦ (e open) ◦ (y ↔ ∂Λ(kL)))

(BK)
6

∑
e=〈x,y〉∈∆S

pPp (0↔ x in S)Pp (EkL(y))︸ ︷︷ ︸
6gp((k−1)L)

6 ϕp(S)gp ((k − 1)L) .

11



By induction, it follows that gp(kL) 6 ϕp(S)k. Let

p̃c = sup {p ∈ [0, 1], there exists a finite set S 3 0 with ϕp(S) < 1} .

If p < p̃c, pick S with ϕp(S) < 1. We have gp(n) 6 ϕp(S)bn/Lc, and since gp(n) < 1 for n > 1 and
p < 1, we have gp(n) 6 e−nψ(p) for some ψ(p) > 0.

Proving that pc = p̃c will imply (i). We shall actually prove that for p > p̃c, θ(p) > p−pc
p(1−pc) . This

will imply that θ(p) > 0 for p > p̃c, and therefore p̃c > pc. But we also know that if p > pc, then
there cannot exist a set S as in the definition of p̃c (otherwise we would have θ(p) = 0), so that
pc > p̃c and therefore p̃c = pc, which will prove both (i) and (ii).

So it suffices to prove that for p > p̃c, θ(p) > p−pc
p(1−pc) . We define a random variable S =

{x ∈ Λ(n), x 6↔ ∂Λ(n)}. We shall now estimate gp(n) = Pp (0↔ ∂Λ(n)) using Russo’s Formula
(Theorem 2.16):

d
dpgp(n) =

∑
e∈E

Pp (e is pivotal for {0↔ ∂Λ(n)})

= 1
1− p

∑
e∈E

Pp (e is pivotal for {0↔ ∂Λ(n)}, e is closed)

= 1
1− p

∑
e∈E

∑
S30

∆S3e

Pp
(
e is pivotal for {0↔ ∂Λ(n)}, e is closed, S = S

)

= 1
1− p

∑
S30

∑
e=〈x,y〉∈∆S

Pp
(
0 S↔ x, S = S

)

= 1
1− p

∑
S30

∑
e=〈x,y〉∈∆S

Pp
(
0 S↔ x

)
Pp
(
S = S

)

= 1
p (1− p)

∑
S30

Pp
(
S = S

) ∑
e=〈x,y〉∈∆S

pPp
(
0 S↔ x

)

= 1
p (1− p)

∑
S30

Pp
(
S = S

)
ϕp(S).

Now if p > p̃c, then ϕp(S) > 1 for all S, so that

d
dpgp(n) > 1

p(1− p)
∑
S30

Pp
(
S = S

)
= 1− gp(n)

p (1− p) .

Integrating this differential inequality yields

log
(

1− gp̃c(n)
1− gp(n)

)
> log

(
p

1− p ·
1− p̃c
p̃c

)
,

from which it follows that 1
1−gp(n) >

1−g
p̃c

(n)
1−gp(n) >

p
1−p ·

1−p̃c
p̃c

and therefore, for p > p̃c,

gp(n) > p− p̃c
p (1− p̃c)

.

Making n→ +∞ gives the claimed inequality.

3.2 Supercritical phase
Remark 3.5. We have seen (in Remark 3.2) that in the supercritical phase there is almost surely
an infinite open cluster. The next question is: how many infinite open clusters are there?
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Lemma 3.6. If A is a translation-invariant event, then P(A) ∈ {0, 1}, where P is any product
measure on Ω.

Proof. For ε > 0, a measure-theoretic argument shows that there is a finite set S ⊆ Zd and an event
AS defined on S only such that P (A4AS) < ε. Now choose a translation τ such that τS ∩ S = ∅.
Then AS is independent of τAS. But AS approximates A and τAS approximates τA = A, so we can
deduce that P(A) = P(A ∩ A) = P(A)2, and therefore P(A) ∈ {0, 1}.
Theorem 3.7. Let N be the number of infinite open clusters. Then for all p ∈ [0, 1], we have either
Pp (N = 0) = 1 or Pp (N = 1) = 1.
Proof. If θ(p) = 0, then Pp (N = 0) = 1, so we henceforth assume that θ(p) > 0 and we wish to prove
that Pp (N = 1) = 1.

First step: there exists kp ∈ N ∪ {∞} s.t. Pp (N = kp) = 1. Note that N is invariant w.r.t.
translations of the configuration. Moreover, Pp is a product measure; it follows from Lemma 3.6 that
Pp (N > n) ∈ {0, 1} for all n, so it suffices to set kp = sup {n ∈ N, Pp (N > n) = 1}.

Second step: kp 6∈ N>2. Suppose for contradiction that 2 6 kp < +∞. For n ∈ N, let Cn be the
event that Λn intersects at least two distinct infinite open clusters. Since limn→+∞ Pp (Cn) = 1, there
exists an n such that Pp (Cn) > 1

2 . By making all the edges inside Λn open, we have

Pp (N 6 kp − 1) > 1
2p
|E(Λn)| > 0,

a contradiction.
Third step: kp 6= ∞. Suppose for contradiction that 3 6 kp 6 ∞. Consider the box Ln ={

x ∈ Zd, ‖x‖1 6 n
}
. As before, there exists an n such that the probability that Ln intersects at least

three distinct infinite open clusters is at least 1
2 . We now say that a point x ∈ Zd is a trifurcation

if x ↔ ∞ and if the removal of x and its adjacent edges breaks Cx into three distinct infinite open
clusters and no finite cluster. Let Tx be the event that x is a trifurcation. Pick points x, y, z ∈ ∂Ln
such that x, y, z lie in distinct infinite open clusters off Ln. Given x, y, z, there exists a configuration
ωx,y,z inside Ln such that 0 is a trifurcation when ωx,y,z occurs. Therefore

Pp (T0) > 1
2 (min {p, 1− p})|E(Ln)| > 0.

Now, in a situation where 0 is a trifurcation, we can produce a graph of trifurcations; this graph is
a forest of degree 3. A graph-theoretic argument then shows that there exists an α > 0 such that

]trifurcations in ∂Ln
]trifurcations in Ln

> α > 0.

Thus
|Sn| > E (]trifurcations in ∂Ln) > αE (]trifurcations in Ln) = α |Ln|Pp (T0) .

We deduce the existence of a constant C > 0 such that nd−1 > Cnd, which gives a contradiction for
large values of n.
Corollary 3.8. If p > pc, then for all vertices x, y,

Pp (x↔ y) > θ(p)2 > 0.

Proof. By Theorem 3.7 and the FKG inequality (Theorem 2.6), we have

Pp (x↔ y) > Pp (x↔ y, x↔∞, y ↔∞) = Pp (x↔∞, y ↔∞)
(FKG)
> θ(p)2 > 0.

Theorem 3.9 (Slab Critical Point Theorem). When d > 3, define a slab of thickness k + 1 by

Sk = {0, 1, . . . , k}d−2 × Z2 ⊆ Zd.

We have pc (Sk) > pc, so pc (Sk) −−−−→
k→+∞

p̂c > pc.
In fact, p̂c = pc.
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3.3 Exact critical probabilities
Lemma 3.10. For bond percolation on Z2, θ

(
1
2

)
= 0.

Proof. We assume for contradiction that θ
(

1
2

)
> 0. By Theorem 3.7, there is P1/2-almost surely a

unique infinite open cluster. We denote by T (n) the box [0, n]2, with edges labelled ` (left), r (right),
b (bottom) and t (top). Choose n0 large enough so that, for n > n0,

P1/2 (∂T (n)↔∞) > 1−
(1

8

)4
.

Let n = n0 + 1. Let Ag be the event that the edge labelled g is joined to∞ off T (n). We have, using
the FKG inequality (Theorem 2.6),(1

8

)4
> P1/2 (∂T (n) 6↔ ∞) = P1/2

(
A
` ∩ Ar ∩ Ab ∩ At

) (FKG)
> P1/2

(
A
g
)4
.

It follows that P1/2 (Ag) > 7
8 for all g. Now consider the dual box T (n)∨ ' [0, n− 1]2 with n−1 > n0,

and let Ag∨ be the event that the edge labelled g is joined to ∞ by a dual open path off T (n)∨. As
before, we have P1/2 (Ag∨) > 7

8 . Therefore

1− P1/2
(
A` ∩ Ar ∩ Ab∨ ∩ At∨

)
6 4 · 1

8 = 1
2 .

But the event A`∩Ar∩Ab∨∩At∨ has probability zero because it contradicts the uniqueness of infinite
open clusters in both the primal and the dual lattice. This is a contradiction.

Theorem 3.11. For bond percolation on Z2, pc = 1
2 .

Proof. (>) Follows from Lemma 3.10. (6) Assume for contradiction that pc > 1
2 . Consider the box

Bn = [0, n+ 1]× [0, n] ⊆ Z2 and let An be the event that Bn has a left-to-right open crossing (i.e. an
open path connecting the left boundary of Bn to its right boundary). Consider the dual box B∨n of
Bn. We take the convention that an open edge in Z2 is always crossed by a dual closed edge, and vice
versa. Let A∨n be the event that B∨n has a bottom-to-top open crossing. Note that exactly one of An
and A∨n must occur; moreover, B∨n has the same geometry as Bn, so P1/2 (An) = P1/2 (A∨n). It follows
that P1/2 (An) = 1

2 . But if pc > 1
2 , then

1
2 is subcritical, so by Theorem 3.4 P1/2 (An) 6 (n+ 1) e−γn

for some γ > 0, which gives a contradiction for large n.

3.4 RSW theory
Notation 3.12. Let T be the triangular lattice, which we embed in the plane by

T =
{
mi + nj, (m,n) ∈ Z2

}
,

where i = (1, 0) and j = 1
2

(
1,
√

3
)
.

In this section, we shall study site percolation on T, i.e. each vertex is coloured black with
probability p, white otherwise.

We also introduce the following notations:

• Ra,b is the subgraph of T induced by vertices in [0, a]× [0, b], L (Ra,b) (resp. R (Ra,b)) is the set
of vertices of T at distance at most 1

2 from the left (resp. right) edge of [0, a]× [0, b].

• Ha,b is the event that L (Ra,b) is connected to R (Ra,b) by a black path in Ra,b.

We fix p = 1
2 and P = P1/2.

Lemma 3.13. P (H2a,b) > 1
4P (Ha,b).
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Proof. Consider the box [0, a]× [0, b] and the reflection ρ whose axis is the vertical line at a. Given
a path g from the left to the right edge of [0, a] × [0, b], we define Ug to be the part of [0, a] × [0, b]
that lies under g and let

Jg = Ug ∩ ∂ ([0, a]× [0, b]) .
We denote by Bg (resp. Wρg) the event that g (resp. ρg) is connected to ρJg (resp. Jg) by a path
of Ug ∩ ρUg that intersects g ∪ ρg only once and every vertex (except possibly the endvertex on g)
is black (resp. white). We observe that Bg ∪ Wρg must occur (by a duality argument). But by
symmetry, P (Bg) = P (Wg), which implies that

P (Bg) = P (Wg) >
1
2 .

Moreover, if L (resp. R) is the left (resp. right) edge of the box [0, 2a]× [0, b], and J is the union of
the left and bottom edges of the box [0, a]× [0, b], then

P (H2a,b) > P (L↔ ρJ, R↔ J)
(FKG)
> P (L↔ ρJ)2 .

Now let γ be the random variable denoting the highest left-right black crossing in he rectangle Ra,b.
We have

P (L↔ ρJ) >
∑
g

P (γ = g,Bg) =
∑
g

P (γ = g)P (Bg) >
1
2
∑
g

P (γ = g) = 1
2P (Ha,b) .

It follows that P (H2a,b) > P (L↔ ρJ)2 > 1
4P (Ha,b).

Corollary 3.14. P
(
H2ka,b

)
>
(

1
4

)2k−1
P (Ha,b).

Lemma 3.15. P
(
Ha,a/

√
3

)
> 1

2 for a > 1.
Proof. Use a self-duality argument to show that there exists a left-right crossing in the rhombus of
dimensions

(
a, a√

3

)
with probability 1

2 .

3.5 Cardy’s formula
Theorem 3.16 (Cardy’s formula). Consider a Jordan curve bounding a domain D in the plane with
four points b, a, c, x on the boundary. Assume the plane is covered by a triangular lattice with mesh
δ. By Riemann’s Theorem, there exists a conformal map from D̊ to an equilateral triangle such that
a, b, c are sent to vertices A,B,C of that triangle. Let X be the image of x under that map (X lies
on the boundary of the triangle). Then

P (ac↔ bx in D) −−→
δ→0

|BX| .

Sketch of proof. We set δ = 1
n
and we shall make n → +∞. Let τ = e2iπ/3, let A1 = A = 0,

Aτ = B = 1, Aτ2 = C = eiπ/3. For z ∈ T (T is the triangle ABC), let En
i (z) be the event that there

exists a black path from Aτ i−1Aτ i+1 to Aτ i−1Aτ i separating z from Aτ iAτ i+1 . Let Hn
i (z) = P (En

i (z)),
extended to T by interpolation. Then there exist C, α such that∣∣∣Hn

j (z)−Hn
j (z′)

∣∣∣ 6 C |z − z′|α ,

for all z, z′, j, n. By the Arzelà-Ascoli Theorem, any sequence of functions in
(
Hn
j

)
n∈N

has a conver-
gent subsequence (for uniform convergence). Now we want to show that there is only one possible
limit of convergent subsequence, and this will imply convergence. We define

G1 = H1 +H2 +H3,

G2 = H1 + τH2 + τ 2H3.

Then a theorem says that G1, G2 are analytic functions of z. Since G1 is real-valued, it follows that
it is constant. And < (G2) = 1

2 (3H1 − 1), so H1 is harmonic and may be derived explicitly.
The rest of the proof uses the so-called exploration process.
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4 The Ising, Potts and random cluster models

4.1 The models
Definition 4.1 (Ising model). Let G = (V,E) be a finite connected graph. Define Σ = {±1}V ; a
spin vector is an element σ = (σx)x∈V ∈ Σ. The hamiltonian of a spin vector is defined by

H(σ) = −J
∑
〈x,y〉∈E

σxσy − h
∑
x∈V

σx,

where J, h ∈ R are parameters. The (Lenz) Ising model is the probability measure λ = λβ on Σ
defined by

λ(σ) = 1
Z
e−βH(σ),

where β > 0 is a parameter (corresponding to the inverse temperature) and Z = ∑
σ∈Σ e

−βH(σ) is the
partition function.

We normally take h = 0. The case J > 0 is called the ferromagnet while the case J < 0 is called
the antiferromagnet. In this course, we will take J > 0 (i.e. adjacent vertices tend to be in the same
state) and even J = 1 for simplicity. Therefore

λ(σ) ∝ exp
β ∑

〈x,y〉∈E
σxσy

 .
Definition 4.2 (Potts model). The Potts model is the generalisation of the Ising model obtained
by replacing {±1} by {1, 2, . . . , q}. Thus the state space is Σ = {1, 2, . . . , q}V and the probability
measure satisfies

π(σ) ∝ exp
β ∑

〈x,y〉∈E
1 (σx = σy)

 .
Note that, when q = 2, πβ = λβ/2.

Definition 4.3 (Random cluster model). Consider as before a finite graph G = (V,E) and let
Ω = {0, 1}E. Let p ∈ [0, 1], q > 0. The random cluster model is the probability measure ϕp,q on Ω
defined by

ϕp,q(ω) ∝ qk(ω) ∏
e∈E

pω(e)(1− p)1−ω(e),

where k(ω) is the number of open components (including isolated vertices) of the configuration ω
(again, the edge e is called open if ω(e) = 1, closed otherwise).

For q = 1, the random cluster model is simply bond percolation on G.

4.2 Link with percolation
Notation 4.4. We are going to construct a coupling of the Potts model and the random cluster model
on a finite connected graph G = (V,E) when q ∈ N>2. We define a probability measure µ on Σ× Ω
by

µ(σ, ω) ∝ Pp(ω)1F (σ, ω),
where Pp is the probability measure on Ω for standard edge percolation, and

F = {(σ, ω) ∈ Σ× Ω, ∀e = 〈x, y〉 ∈ E, ω(e) = 1⇒ σx = σy} .

In other words, we are adding to bond percolation the constraint that whenever an edge is open, its
endpoints have the same state.

Proposition 4.5. Properties of the measure µ on Σ× Ω:
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(i) The marginal on Σ is the Potts model with parameter β = − log (1− p).

(ii) The marginal on Ω is the random cluster model.

(iii) The conditional law given ω is the model where each cluster receives a uniform spin indepen-
dently.

(iv) The conditional law given σ is the model where, for e = 〈x, y〉, if σx 6= σy then ω(e) = 0,
otherwise ω(e) = 1 with probability p, independently of other edges.

Definition 4.6 (Correlation and connection functions). (i) The correlation function of the Potts
model is given by

τ(x, y) = π (σx = σy)−
1
q
.

(ii) The connection function of the random cluster model is given by

ϕ(x↔ y).

Theorem 4.7. Assume that q ∈ N>2, let β > 0 and p = 1− e−β. Then

τβ,q(x, y) =
(

1− 1
q

)
ϕp,q (x↔ y) .

This gives a strong link between correlation in the Potts model and connection in the random cluster
model.

Proof. We have

τ(x, y) = π (σx = σy)−
1
q

=
∑
ω∈Ω

µ (σ, ω)
(
1 (σx = σy)−

1
q

)

=
∑
ω∈Ω

ϕ(ω)
∑
σ∈Σ

µ (σ | ω)
(
1 (σx = σy)−

1
q

)

=
∑
ω∈Ω

ϕ(ω)
(
1
(
x

ω↔ y
)(

1− 1
q

)
+ 1

(
x 6 ω↔ y

)
· 0
)

=
(

1− 1
q

)
ϕ (x↔ y) .

Proposition 4.8. The random cluster model ϕp,q has the following properties:

(i) FKG inequality. If q > 1, then ϕp,q is positively associated.

(ii) Comparison inequalities.

(a) If q′ > max{q, 1} and p′ 6 p, then ϕp′,q′ 6st ϕp,q.
(b) If q′ > max{q, 1} and p′

q′(1−p′) >
p

q(1−p) , then ϕp′,q′ >st ϕp,q.

Proof. (i) Use the FKG inequality (Theorem 2.6). (ii) Use the Holley inequality (Theorem 2.5).
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4.3 Negative association
Definition 4.9 (Edge-negative association). A probability measure ϕ on {0, 1}E is said to be edge-
negatively associated if for all edges e, f , we have

ϕ (ω(e) = 1, ω(f) = 1) 6 ϕ (ω(e) = 1)ϕ (ω(f) = 1) .

Remark 4.10. Proposition 4.8 leads to the following question: is ϕp,q edge-negatively associated for
q < 1?

Theorem 4.11. Let G be a finite connected graph. Then the measure ϕp,q converges weakly to

• The uniform connected subgraph measure UCS if p = 1
2 and q → 0,

• The uniform spanning tree measure UST if p, q, q
p
→ 0,

• The uniform forest measure UF if p = q → 0.

Proof. We prove the result for the uniform forest. We write η(ω) = {e ∈ E, ω(e) = 1} and we assume
that p = q. Then

ϕp,q(ω) ∝ p|η(ω)|(1− p)|E\η(ω)|qk(ω) ∝ p|η(ω)|+k(ω)

(1− p)|η(ω)| .

Note that |η(ω)|+ k(ω) > |V | with equality iff there are no cycles. the result follows.

Theorem 4.12. UST is edge-negatively associated.

Conjecture 4.13. UCS and UF are edge-negatively associated.

4.4 Infinite volume limits for the random cluster model
Remark 4.14. The random cluster model is well-defined for finite graphs, but we want to extend
the definition to infinite graphs, for instance Zd.

Notation 4.15. We work on Zd, with d > 2. Given a bounded region Λ ⊆ Zd, we have a random
cluster measure ϕΛ,p,q on Λ. We add a boundary condition: either b = 0 and all edges outside Λ are
closed, or b = 1 and all edges outside Λ are open. We now define the measure ϕbΛ,p,q in the same
manner as ϕΛ,p,q, but by taking into account connectivity through the boundary when counting open
clusters.

Theorem 4.16. For q > 1 and b ∈ {0, 1}, the measures
(
ϕbΛ,p,q

)
Λ⊆Zd

converge weakly to a measure
ϕbp,q as Λ→ Zd.

The measure ϕbp,q is called the infinite volume measure.

Proof. We assume that b = 1 (the proof is similar if b = 0). To prove weak convergence, it suffices
to prove that

(
ϕ1

Λ,p,q(A)
)

Λ⊆Zd
converges for all increasing cylinder events A. But, if Λ ⊆ Λ′ ⊆ Zd,

then we have, using Proposition 4.8,

ϕ1
Λ,p,q(A) = ϕ1

Λ′,p,q (A | every edge of Λ′\Λ is open)
(FKG)
> ϕ1

Λ′,p,q(A).

Therefore the limit exists by monotonicity.

Remark 4.17. An infinite volume measure can also be defined using the so-called DLR method.

Definition 4.18 (Percolation probability for the random cluster model). Given b ∈ {0, 1}, q > 1
and p ∈ [0, 1], we define

θb(p, q) = ϕbp,q (0↔∞) .
By Proposition 4.8, θb(p, q) is nondecreasing in p, and we define

pbc(q) = sup
{
p ∈ [0, 1], θb(p, q) = 0

}
.
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Theorem 4.19. There exists a countable subset Dq ⊆ [0, 1] such that

∀p ∈ [0, 1]\Dq, ϕ0
p,q = ϕ1

p,q.

Corollary 4.20. p1
c(q) = p0

c(q).

Proof. Assume for contradiction that p1
c(q) 6= p0

c(q) with, say, p1
c(q) < p0

c(q). Then, in the open
interval (p1

c(q), p0
c(q)), we would have θ1(q) > 0 = θ0(q), and therefore ϕ1

p,q 6= ϕ0
p,q, contradicting

Theorem 4.19.

Definition 4.21 (Order parameter for the Potts model). For the Potts model with q states, we define
the order parameter by

M(β, q) = lim
Λ→Zd

(
π1

Λ,q (σ0 = 1)− 1
q

)
=
(

1− 1
q

)
θ1(p, q),

where π1
Λ,q is the probability measure conditioned by the event that all vertices off Λ have state 1.

There is a critical parameter βc = − log (1− pc(q)).

Theorem 4.22. For q > 1, 0 < pc(q) < 1.

Proof. The comparison inequalities (Proposition 4.8) imply that

ϕ1
p′,1 6st ϕ

1
p,q 6st ϕp,1,

where p′ = p
p+q(1−p) . It follows that 0 < pc(1) 6 pc(q) 6 qpc(1)

1+(q−1)pc(1) < 1, using the fact that
0 < pc(1) < 1 by Theorem 1.7.

Theorem 4.23. When d = 2 and q > 1,

pc(q) =
√
q

1 +√q .

Proof. Define a dual random cluster measure on the square lattice, with dual parameter p∨ satisfying
p∨

1−p∨ = q 1−p
p
, and show that this mapping p 7→ p∨ has the unique value p =

√
q

1+√q as a fixed point.
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