Metric Embeddings

Lectures by András Zsák Notes by Alexis Marchand

University of Cambridge Lent 2020 Part III course

Contents

1	Defi	nitions, examples and motivation	2			
	1.1	Metric spaces	2			
	1.2	Isometric, Lipschitz and bilipschitz embeddings	4			
	1.3	Examples of embeddings	5			
	1.4	The sparsest cut problem	7			
	1.5	Coarse and uniform embeddings	9			
2	Fréc	thet embeddings, Aharoni's Theorem	11			
	2.1	Isometric embeddings into ℓ_{∞}	11			
	2.2	Background on Ramsey theory and graphs	11			
	2.3	Lower bound on $m_{\infty}(n)$	12			
	2.4	Nonlinear Hahn-Banach Theorem	13			
	2.5	More background on Ramsey theory and graphs	13			
	2.6	Gap between n and $m_{\infty}(n)$	14			
	2.7	Upper bound on $m_p(n)$	16			
	2.8	Aharoni's Theorem	17			
3	Bou	rgain's Embedding Theorem	19			
	3.1	Dvoretzky's Theorem	19			
	3.2	Padded decompositions and existence of scaled embeddings	20			
	3.3	Existence of padded decompositions	22			
	3.4	Glueing Lemma and Bourgain's Embedding Theorem	23			
4	Low	Lower bounds on distortion and Poincaré inequalities 2				
	4.1	John's Lemma	27			
	4.2	Poincaré inequalities	28			
	4.3	Hahn-Banach Theorem	29			
	4.4	Hahn-Banach Separation Theorem	30			
	4.5	Optimality of Poincaré inequalities	32			
	4.6	Discrete Fourier analysis on the Hamming cube	33			
	4.7	Poincaré inequality for L_2 -valued functions on H_n	35			
	4.8	Linear codes	36			
	4.9	Poincaré inequality for L_1 -valued functions on \mathbb{F}_2^n/C^{\perp}	38			
	4.10	Optimality of Bourgain's Embedding Theorem	39			

5	Din	nension reduction	40
	5.1	Preliminary results on Gaussian random variables	40
	5.2	Johnson-Lindenstrauss Lemma	41
	5.3	Diamond graphs	42
	5.4	No dimension reduction in ℓ_1	
6	Rib	e programme	47
	6.1	Local properties of Banach spaces	47
	6.2	Weak-* topology for Banach spaces	48
	6.3	Characterisation of reflexivity in terms of convex hulls	50
	6.4	Ultrafilters	51
	6.5	Ultraproducts and ultrapowers	
	6.6	Isomorphic characterisation of super-reflexivity	
	6.7	Uniform convexity	
	6.8	Finite tree property	
	6.9	Metric characterisation of super-reflexivity	
R	efere	nces	58

1 Definitions, examples and motivation

1.1 Metric spaces

Definition 1.1 (Metric space). A metric space is a set M together with a metric, i.e. a function $d: M \times M \to \mathbb{R}_+$ such that

- (i) $\forall x \in M, d(x, x) = 0,$
- (ii) $\forall x, y \in M, d(x, y) = d(y, x),$
- (iii) $\forall x, y, z \in M, d(x, z) \leq d(x, y) + d(y, z),$

(iv) $\forall x, y \in M, d(x, y) = 0 \Longrightarrow x = y.$

If d satisfies conditions (i), (ii) and (iii) only, it is called a semimetric.

Example 1.2 (Graphs and graph distance). A graph is a pair G = (V, E), where V is a set and $E \subseteq V^{(2)} = \{\rho \subseteq V, |\rho| = 2\}$. Elements of V are called vertices and elements of E are called edges. Given $e = \{x, y\} \in E$ (which we shall also denote by xy or yx), we say that x, y are the end vertices of e. We also write $x \sim y$ to mean that $xy \in E$.

A walk in G from x_0 to x_n is a sequence x_0, x_1, \ldots, x_n of vertices of G such that $x_{i-1} \sim x_i$ for all $1 \leq i \leq n$. The length of the walk is n. If $x_i \neq x_j$ whenever 1 < j - i < n, the walk is called a path from x_0 to x_n . We say that G is connected if there is a walk (equivalently, a path) between any two vertices of G.

The graph distance d_G on V is defined as follows: $d_G(x, y)$ is the minimal length of a path in G from x to y.

For example:

• K_n is the complete graph on *n* vertices (i.e. any two vertices are connected).

The graph distance is given by $d_{K_n}(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$.

• P_n is the path of length $n: V = \{x_0, x_1, ..., x_n\}$ and $E = \{x_{i-1}x_i, 1 \le i \le n\}$.

The graph distance is given by $d_{P_n}(x_i, x_j) = |i - j|$.

• C_n is the cycle of length $n: V = \{x_1, ..., x_n\}$ and $E = \{x_i x_{i+1}, 1 \le i < n\} \cup \{x_1 x_n\}.$

• B_n is the rooted binary tree of depth n.

• H_n is the Hamming cube: $V = \{0, 1\}^n$ and $x \sim y$ iff $|\{i, x_i \neq y_i\}| = 1$. The graph distance is given by $d_{H_n}(x, y) = |\{i, x_i \neq y_i\}|$.

Example 1.3 (Word metric on a group). Let G be a group generated by some subset S. We always assume that $e \notin S$ and that S is symmetric: $x^{-1} \in S$ for all $x \in S$. The word metric on G is defined by

$$d_G(x,y) = \min\left\{n \in \mathbb{N}, \exists a_1, \dots, a_n \in S, x^{-1}y = a_1 \cdots a_n\right\}.$$

The Cayley graph C(G, S) has vertex set G and $x \sim y$ iff $x^{-1}y \in S$. The graph distance on G is exactly the word metric.

Example 1.4 (Cut semimetric). A cut on a set M is a partitioning of M into S and $M \setminus S$. The corresponding cut semimetric d_S is given by

$$d_{S}(x,y) = \begin{cases} 0 & \text{if } x, y \in S \text{ or } x, y \in M \setminus S \\ 1 & \text{otherwise} \end{cases}$$

Definition 1.5 (Normed space). A normed space is a vector space V over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} equipped with a norm, *i.e.* a function $\|\cdot\| : V \to \mathbb{R}_+$ such that

- (i) $\forall x \in V, \forall \lambda \in \mathbb{K}, \|\lambda x\| = |\lambda| \cdot \|x\|,$
- (ii) $\forall x, y \in V, ||x + y|| \leq ||x|| + ||y||,$

(iii) $\forall x \in V, ||x|| = 0 \Longrightarrow x = 0.$

- Then d(x, y) = ||x y|| defines a metric on V. If V is complete, then it is called a Banach space. If $|| \cdot ||$ satisfies conditions (i) and (ii) only, then it is called a seminorm. Given a normed space V, we define:
 - The closed unit ball of V: $B_V = \{x \in V, \|x\| \leq 1\},\$
 - The unit sphere of $V: S_V = \{x \in V, ||x|| = 1\}.$
- **Example 1.6** (Classical sequence spaces). ℓ_p^n is the space \mathbb{R}^n together with the norm $\|\cdot\|_p$ for $1 \leq p \leq \infty$.
 - $\ell_p = \left\{ (x_i)_{i \ge 1}, \sum_{i=1}^{\infty} |x_i|^p < \infty \right\}$ together with the norm $\left\| \cdot \right\|_p$ for $1 \le p < \infty$.
 - $\ell_{\infty} = \{(x_i)_{i \ge 1} \text{ bounded}\}$ together with the norm $\|\cdot\|_{\infty}$.
 - More generally, for a set S, l_∞(S) is the space of bounded functions S → ℝ together with the norm ||·||_∞.
 - $c_0 = \left\{ (x_i)_{i \ge 1}, x_i \xrightarrow[i \to \infty]{} 0 \right\}, a closed subspace of <math>\ell_{\infty}$.

Example 1.7 (Classical function spaces). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

- $L_p(\mu) = \{f : \Omega \to \mathbb{R} \text{ measurable}, \int_{\Omega} |f|^p d\mu < \infty\}$ together with the norm $\|\cdot\|_p$.
- $L_{\infty}(\mu) = \{f : \Omega \to \mathbb{R} \text{ measurable and essentially bounded}\}$ together with the norm $\|\cdot\|_{\infty}$.
- If $\Omega = [0, 1]$ and μ is the Lebesgue measure, we write L_p for $L_p(\mu)$.
- For a compact space K, $\mathcal{C}(K)$ is the space of continuous functions $K \to \mathbb{R}$, a closed subspace of $\ell_{\infty}(K)$.

Definition 1.8 (Hilbert space). An inner product space is a vector space V with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ (symmetric, bilinear, positive definite). Then V becomes a normed space with $||x|| = \sqrt{\langle x, x \rangle}$. If V is complete for this norm, it is called a Hilbert space.

1.2 Isometric, Lipschitz and bilipschitz embeddings

Definition 1.9 (Isometric, Lipschitz and bilipschitz embeddings). Let $f : M \to N$ be a map between metric spaces.

- (i) f is isometric (or an isometric embedding) if d(f(x), f(y)) = d(x, y) for all $x, y \in M$.
- (ii) f is Lipschitz if there exists $b \ge 0$ such that $d(f(x), f(y)) \le b \cdot d(x, y)$ for all $x, y \in M$. The Lipschitz constant of f is defined by

$$\operatorname{Lip}(f) = \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)}$$

(iii) f is a bilipschitz embedding if there exist a, b > 0 such that

$$a \cdot d(x, y) \leqslant d\left(f(x), f(y)\right) \leqslant b \cdot d(x, y),\tag{*}$$

for all $x, y \in M$. The distortion of f is defined by

dist
$$(f) = \inf \left\{ \frac{b}{a}, a, b > 0, (*) \text{ holds for } f \right\}.$$

- **Remark 1.10.** (i) If $f: M \to N$ is a bilipschitz embedding with a = b, then f is a scaled isometric embedding.
 - (ii) The definitions of Lipschitz and bilipschitz embeddings also make sense for semimetrics.
 - (iii) If f is a bilipschitz embedding satisfying (*), then f is Lipschitz with $\operatorname{Lip}(f) \leq b$; moreover f is injective and $f^{-1}: f(M) \to M$ is Lipschitz with $\operatorname{Lip}(f^{-1}) \leq \frac{1}{a}$. We have in addition

$$\operatorname{dist}(f) = \operatorname{Lip}(f) \operatorname{Lip}\left(f^{-1}\right).$$

Definition 1.11 (Morphisms of normed spaces). Let $T : X \to Y$ be a linear map between normed spaces.

- (i) The following assertions are equivalent:
 - (a) T is continuous.
 - (b) T is bounded, i.e. there exists $C \ge 0$ such that $||Tx|| \le C ||x||$ for all $x \in X$.
 - (c) T is Lipschitz.

In that case, we define $||T|| = \operatorname{Lip}(T) = \sup_{x \in B_X} ||Tx||$.

- (ii) We say that $T: X \to Y$ is an isomorphism if T is a bijection, and both T and T^{-1} are bounded.
- (iii) We say that T is an isomorphic embedding or an into isomorphism if one of the following two equivalent assertions is satisfied:
 - (a) T is an isomorphism between X and T(X).
 - (b) T is bilipschitz.
- (iv) We say that T is an isometric (isomorphic) embedding if ||Tx|| = ||x|| for all $x \in X$.

Notation 1.12. Let X, Y be normed spaces.

- (i) We write $X \hookrightarrow_C Y$, and we say that X C-embeds into Y if there is an isomorphic embedding $T: X \to Y$ with $dist(T) = ||T|| \cdot ||T^{-1}|| = C$.
- (ii) Hence $X \hookrightarrow_1 Y$ means that there is an isometric embedding $X \to Y$.
- (iii) We write $X \sim Y$ if X, Y are isomorphic.
- (iv) We write $X \cong Y$ if X, Y are isometrically isomorphic.

1.3 Examples of embeddings

Example 1.13. (i) $\ell_p^n \hookrightarrow_1 \ell_p$ by $(x_i)_{1 \leq i \leq n} \longmapsto (x_1, \dots, x_n, 0, \dots, 0, \dots).$

(ii) $\ell_p \hookrightarrow_1 L_p$ by $(x_i)_{i \ge 1} \longmapsto \sum_{i=1}^{\infty} \frac{x_i}{\lambda(A_i)^{1/p}} \mathbb{1}_{A_i}$, where $(A_i)_{i \ge 1}$ are pairwise disjoint measurable sets of positive measure.

Proposition 1.14. If (Ω, μ) is a measure space and $X \subseteq L_p(\Omega, \mu)$ is separable, then $X \hookrightarrow_1 L_p$.

Proposition 1.15. For all $n \in \mathbb{N}$ and for all $1 \leq p \leq \infty$, $\ell_2^n \hookrightarrow_1 L_p$.

Proof. First case: $1 \leq p < \infty$. Let $B = B_{\ell_2^n}$ and $S = S_{\ell_2^n}$ and let λ be the Lebesgue measure on B. Since λ is rotation invariant, the value of

$$\int_{B} \left| \langle x, \omega \rangle \right|^{p} \, \mathrm{d}\lambda(\omega)$$

is the same for all $x \in S$ – call it α . Define $T : \ell_2^n \to L_p(B, \lambda)$ by

$$(Tx)(\omega) = \frac{\langle x, \omega \rangle}{\alpha^{1/p}}$$

Then T is linear and

$$||Tx||_p^p = \int_B \frac{|\langle x, \omega \rangle|^p}{\alpha} \, \mathrm{d}\lambda(\omega) = ||x||_2^p$$

for all $x \in \ell_2^n$. Hence $\ell_2^n \hookrightarrow_1 L_p(B, \lambda) \hookrightarrow_1 L_p$ by Proposition 1.14.

Second case: $p = \infty$. Use Proposition 1.17 below and Example 1.13.(ii).

Definition 1.16 (Dual space). Let X be a normed space. The dual space X^* of X is defined by

 $X^* = \mathcal{B}(X, \mathbb{R}) = \{f : X \to \mathbb{R} \text{ linear and bounded}\};\$

it is equipped with the norm defined by $||f|| = \sup_{x \in B_X} ||f(x)||$.

By the Hahn-Banach Theorem, for all $x \in X$, there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||. It follows that

$$||x|| = \max_{g \in S_{X^*}} g(x).$$

Proposition 1.17. Let X be a separable normed space. Then $X \hookrightarrow_1 \ell_{\infty}$.

Proof. Let $\{x_n, n \in \mathbb{N}\}$ be dense in X. For all $n \in \mathbb{N}$, choose $f_n \in S_{X^*}$ such that $f_n(x_n) = ||x_n||$ (by Hahn-Banach). Define $T: X \to \ell_{\infty}$ by

$$Tx = \left(f_n(x)\right)_{n \in \mathbb{N}}$$

Given $x \in X$, we have

$$||f_n(x)|| \le ||f_n|| \cdot ||x|| = ||x||$$

for all x, so T is well-defined, and it is linear and bounded with $||T|| \leq 1$. Moreover, for $n \in \mathbb{N}$, $||Tx_n|| = ||x_n||$, so T is isometric on a dense subset, and it follows by continuity that T is isometric. \Box

Remark 1.18. The argument of Proposition 1.17 shows that, for any normed space X, there is a set S such that $X \hookrightarrow_1 \ell_{\infty}(S)$ (for instance, take $S = S_{X^*}$).

Corollary 1.19. Let M be a finite metric space. If M embeds into L_2 with distortion $\leq D$, then M embeds into L_p with distortion $\leq D$ for all $1 \leq p \leq \infty$.

Proof. This is a consequence of Proposition 1.15.

Remark 1.20. Given a finite subset M of $L_1(\Omega, \mu)$, a natural idea to embed M into \mathbb{R} would be to consider $f \mapsto \int_{\Omega} f d\mu$. Then we would have

$$\left|\int_{\Omega} f \, \mathrm{d}\mu - \int_{\Omega} g \, \mathrm{d}\mu\right| \leqslant \int_{\Omega} |f - g| \, \mathrm{d}\mu,$$

with equality if and only if $f \leq g$ or $g \leq f$. This idea leads to the following proposition.

Proposition 1.21. If M is an n-element subset of $L_1(\Omega, \mu)$, then $M \hookrightarrow_1 \ell_1^{n!}$.

Proof. Let $M = \{f_1, \ldots, f_n\}$. There exists a partition $\Omega = \coprod_{\pi \in \mathfrak{S}_n} \Omega_{\pi}$ of Ω such that

$$\Omega_{\pi} \subseteq \left\{ \omega \in \Omega, \ f_{\pi(1)}(\omega) \leqslant f_{\pi(2)}(\omega) \leqslant \cdots \leqslant f_{\pi(n)}(\omega) \right\}.$$

Then

$$|f_i - f_j|| = \int_{\Omega} |f_i - f_j| \, \mathrm{d}\mu = \sum_{\pi \in \mathfrak{S}_n} \int_{\Omega_\pi} |f_i - f_j| \, \mathrm{d}\mu = \sum_{\pi \in \mathfrak{S}_n} \left| \int_{\Omega_\pi} f_i \, \mathrm{d}\mu - \int_{\Omega_\pi} f_j \, \mathrm{d}\mu \right|$$

Now define $T: M \to \ell_1^{n!}$ by $Tf_i = \left(\int_{\Omega_\pi} f_i \, \mathrm{d}\mu\right)_{\pi \in \mathfrak{S}_n}$; the above computation shows that T is an isometric embedding.

(i) The cycle C_4 embeds bilipschitzly into ℓ_2^2 with distortion $\sqrt{2}$, but it does not Example 1.22. embed isometrically. This is because ℓ_2 has the unique midpoint property: for all $x, y \in \ell_2$, there is at most one point $y \in \ell_2$ such that

$$d(x,y) = d(y,z) = \frac{1}{2}d(x,z).$$

 C_4 does not have this property.

(ii) Any n-element set in a Hilbert space embeds isometrically into ℓ_2^{n-1} , but we cannot do better in general. However, we shall prove that for any $\varepsilon > 0$, there exists C > 0 such that any n-element set in a Hilbert space embeds into ℓ_2^m , where $m = c \log n$, with distortion less than $1 + \varepsilon$.

Remark 1.23. If M is a finite metric space, N is a metric space and $|N| \ge |M|$, then M embeds bilipschitzly into N.

Definition 1.24 (Uniformly bilipschitz embeddings). Given families $(M_{\alpha})_{\alpha \in A}$ and $(N_{\alpha})_{\alpha \in A}$ of metric spaces, embeddings $f_{\alpha}: M_{\alpha} \to N_{\alpha}$ are called uniformly bilipschitz if

$$\sup_{\alpha\in A} \operatorname{dist}\left(f_{\alpha}\right) < \infty.$$

1.4The sparsest cut problem

Definition 1.25 (Sparsest cut problem). Let G = (V, E) be a finite connected graph. We are given two functions:

- The capacity $C: E \to \mathbb{R}_+$,
- The demand $D: V \times V \to \mathbb{R}_+$.

A cut of G is a partioning $(S, V \setminus S)$ of V. The capacity and the demand of the cut are defined by

$$C\left(S,V\backslash S\right) = \sum_{\substack{uv \in E \\ u \in S \\ v \notin S}} C(uv) \qquad and \qquad D\left(S,V\backslash S\right) = \sum_{\substack{u \in S \\ v \notin S}} D(u,v)$$

respectively. If $D(S, V \setminus S) \neq 0$, the sparsity of the cut is $\frac{C(S, V \setminus S)}{D(S, V \setminus S)}$. The problem is to minimize the sparsity over all cuts. This is NP-hard.

Remark 1.26. Here is a reformulation of the sparsest cut problem: minimize

$$\frac{\sum_{uv \in E} C(uv) d_S(u, v)}{\sum_{u,v \in V} D(u, v) d_S(u, v)}$$

over all cuts with nonzero demand, where d_S is the cut semimetric (c.f. Example 1.4). We denote by $\varphi^*(C, D)$ this minimum.

To linearize this problem, we try instead to minimize the quantity

$$\sum_{uv \in E} C(uv) d(u, v)$$

over all semimetrics d satisfying $\sum_{u,v\in V} D(u,v)d(u,v) = 1$. This is a linear programming problem. We denote by $\varphi(C, D)$ the minimum and d_{\min} a semimetric that achieves it.

We have clearly $\varphi(C, D) \leq \varphi^*(C, D)$.

Lemma 1.27. Let (M, d) be a finite semimetric space. Then (M, d) embeds isometrically into L_1 if and only if d is a nonnegative linear combination of cut semimetrics.

Proof. Note that, by Example 1.13 and Proposition 1.21, (M, d) embeds isometrically into L_1 if and only if it embeds isometrically into ℓ_1^k for some integer k.

 (\Leftarrow) We assume that there are cuts $(S_i, M \setminus S_i)_{1 \le i \le k}$ and nonnegative reals $(\alpha_i)_{1 \le i \le k}$ s.t.

$$d = \sum_{i=1}^{k} \alpha_i d_{S_i}$$

Define

$$f: x \in M \longmapsto (\alpha_i \mathbb{1}_{S_i}(x))_{1 \leq i \leq k} \in \ell_1^k,$$

and check that $||f(x) - f(y)||_1 = d(x, y)$.

 (\Rightarrow) Assume that there is an isometric embedding $f: M \to \ell_1^k$ for some $k \in \mathbb{N}$. For $1 \leq i \leq k$, enumerate the set $\{f(x)_i, x \in M\}$ as $\beta_{i1} < \cdots < \beta_{im_i}$ and let

$$S_{ij} = \{x \in M, \ f(x)_i < \beta_{ij}\}$$

for $1 \leq j \leq m_i$. Now fix $x, y \in M$ and $1 \leq i \leq k$. Suppose that $f(x)_i = \beta_{ij_1} \leq f(y)_i = \beta_{ij_2}$. Hence $x \in S_{ij}$ for $j > j_1$ and $y \in S_{ij}$ for $j > j_2$, which means that

$$d_{S_{ij}}(x,y) = 1 \iff j_1 < j \leqslant j_2.$$

Therefore

$$\sum_{j=2}^{m_i} \left(\beta_{i,j} - \beta_{i,j-1}\right) d_{S_{ij}}(x,y) = \sum_{j=j_1+1}^{j_2} \left(\beta_{i,j} - \beta_{i,j-1}\right) = \beta_{i,j_2} - \beta_{i,j_1} = \left|f(x)_i - f(y)_i\right|,$$

so that

$$\sum_{i=1}^{k} \sum_{j=2}^{m_i} \left(\beta_{i,j} - \beta_{i,j-1}\right) d_{S_{ij}}(x,y) = \|f(x) - f(y)\|_1 = d(x,y).$$

Theorem 1.28. Assume that the vertex set V together with the minimizing semimetric d_{\min} embeds into L_1 with distortion at most K. Then

$$\frac{1}{K}\varphi^*(C,D) \leqslant \varphi(C,D) \leqslant \varphi^*(C,D).$$

Proof. Let $f: (V, d_{\min}) \to L_1$ be an embedding with $\operatorname{dist}(f) \leq K$. Define a semimetric d on V by $d(x, y) = \|f(x) - f(y)\|_1$. Since $\operatorname{dist}(f) \leq K$, there exists a > 0 such that

$$ad_{\min}(x,y) \leq d(x,y) \leq Kad_{\min}(x,y)$$

for all $x, y \in V$. By Lemma 1.27, there are cuts $(S_i, V \setminus S_i)_{1 \leq i \leq k}$ and nonnegative reals $(\alpha_i)_{1 \leq i \leq k}$, such that

$$d = \sum_{i=1}^{k} \alpha_i d_{S_i}.$$

Then

$$\varphi(C,D) = \frac{\sum_{uv \in E} C(uv) d_{\min}(u,v)}{\sum_{u,v \in V} D(u,v) d_{\min}(u,v)}$$

$$\geqslant \frac{1}{K} \frac{\sum_{uv \in E} C(uv) d(u,v)}{\sum_{u,v \in V} D(u,v) d(u,v)} = \frac{1}{K} \underbrace{\frac{\sum_{i=1}^{k} \alpha_i \sum_{uv \in E} C(uv) d_{S_i}(u,v)}{\sum_{i=1}^{k} \alpha_i \sum_{uv \in V} D(u,v) d_{S_i}(u,v)}}_{\delta_i}$$

$$= \frac{1}{K} \underbrace{\frac{\sum_{i=1}^{k} \gamma_i}{\sum_{i=1}^{k} \delta_i}}_{K = 1} \geqslant \frac{1}{K} \underbrace{\frac{\sum_{i\in I} \frac{\gamma_i}{\delta_i} \delta_i}{\sum_{i\in I} \delta_i}} \geqslant \frac{1}{K} \min_{i\in I} \frac{\gamma_i}{\delta_i} \geqslant \frac{1}{K} \varphi^*(C,D),$$

where $I = \{1 \leq i \leq k, \delta_i > 0\}.$

1.5 Coarse and uniform embeddings

Definition 1.29 (Coarse and uniform embeddings). Let $f : M \to N$ be a map between metric spaces. Assume there exist (not necessarily strictly) increasing functions $\rho_1, \rho_2 : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\rho_1\left(d(x,y)\right) \leqslant d\left(f(x), f(y)\right) \leqslant \rho_2\left(d(x,y)\right) \tag{(*)}$$

for all $x, y \in M$.

- (i) We say that f is a coarse embedding if (*) is satisfied with $\lim_{+\infty} \rho_1 = +\infty$.
- (ii) We say that f is a uniform embedding if one of the following two equivalent conditions is satisfied:
 - (a) The inequality (*) is satisfied with $\lim_{0^+} \rho_2 = 0$ and $\rho_1(t) > 0$ for t > 0.
 - (b) The inequality (*) is satisfied, f is uniformly continuous, injective, and $f^{-1}: f(M) \to M$ is uniformly continuous.

Example 1.30. The projection $f : \mathbb{R} \times [0,1] \to \mathbb{R}$ is a coarse embedding, with $\rho_1(t) = \max(0, t-1)$ and $\rho_2(t) = t$.

Proposition 1.31. For $1 < q < \infty$, there exists a map $T : L_1(\Omega, \mu) \to L_q(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ which is simultaneously a uniform and coarse embedding.

Proof. Define T as follows: for $f \in L_1(\Omega, \mu)$,

$$Tf(\omega, t) = \begin{cases} +1 & \text{if } 0 < t \leq f(\omega) \\ -1 & \text{if } f(\omega) \leq t \leq 0 \\ 0 & \text{otherwise} \end{cases}$$

Hence $Tf \in L_{\infty}(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ and, for $f, g \in L_1(\Omega, \mu)$,

$$|Tf(\omega, t) - Tg(\omega, t)| = \begin{cases} 1 & \text{if } t \in [f(\omega), g(\omega)] \\ 0 & \text{otherwise} \end{cases}$$

Therefore,

$$\|Tf - Tg\|_q^q = \int_{\Omega} \int_{\mathbb{R}} |Tf(\omega, t) - Tg(\omega, t)|^q \, \mathrm{d}t \, \mathrm{d}\mu(\omega) = \int_{\Omega} |f(\omega) - g(\omega)| \, \mathrm{d}\mu(\omega) = \|f - g\|_1.$$

This shows that $Tf \in L_q(\Omega \times \mathbb{R}, \mu \otimes \lambda)$, and $T: L_1(\Omega, \mu) \to L_q(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ is simultaneously a uniform and a coarse embedding (with $\rho_1(t) = \rho_2(t) = t^{1/q}$).

Lemma 1.32. For all $0 < \alpha < 2\beta$, there exists a constant $c_{\alpha,\beta} > 0$ such that

$$\int_{\mathbb{R}} \frac{\left(1 - \cos\left(tx\right)\right)^{\beta}}{\left|t\right|^{\alpha+1}} \, \mathrm{d}t = c_{\alpha,\beta} \left|x\right|^{\alpha}.$$

Proof. We first check that the integrand is integrable. We have $(1 - \cos(tx))^{\beta} = \mathcal{O}_0(|t|^{2\beta})$, so the integrand is $\mathcal{O}_0(|t|^{2\beta-\alpha-1})$, which is integrable near 0 because $2\beta - \alpha - 1 > -1$. Likewise, $(1 - \cos(tx))^{\beta} = \mathcal{O}_{\pm\infty}(1)$, so the integrand is $\mathcal{O}_{\pm\infty}(|t|^{-\alpha-1})$, which is integrable near $\pm\infty$ because $-\alpha - 1 < -1$. Now let

$$f(x) = \int_{\mathbb{R}} \frac{(1 - \cos(tx))^{\beta}}{|t|^{\alpha+1}} dt$$

For x > 0, we have

$$f(x) = x^{\alpha} \int_{\mathbb{R}} \frac{(1 - \cos(tx))^{\beta}}{|tx|^{\alpha+1}} x \, \mathrm{d}t = x^{\alpha} \int_{\mathbb{R}} \frac{(1 - \cos(s))^{\beta}}{|s|^{\alpha+1}} \, \mathrm{d}s = x^{\alpha} f(1).$$

Moreover, f(0) = 0, and f(-x) = f(x) for all x. It follows that $f(x) = |x|^{\alpha} f(1)$ for all x. **Proposition 1.33.** For $1 \leq p < q < \infty$, there exists a map $T : L_p(\Omega, \mu) \to L_q(\Omega \times \mathbb{R}, \mu \otimes \lambda; \mathbb{C})$ which is simultaneously a coarse and uniform embedding.

Proof. Define T by

$$Tf(\omega, t) = \frac{1 - e^{itf(\omega)}}{|t|^{(p+1)/q}}$$

Note that, for $\vartheta \in \mathbb{R}$, $\left|1 - e^{i\vartheta}\right| = \sqrt{2} \left(1 - \cos \vartheta\right)^{1/2}$. Therefore, using Lemma 1.32,

$$\|Tf\|_{q}^{q} = \int_{\Omega} \int_{\mathbb{R}} \frac{2^{q/2} \left(1 - \cos\left(tf(\omega)\right)\right)^{q/2}}{|t|^{p+1}} \, \mathrm{d}t \, \mathrm{d}\mu(\omega) = 2^{q/2} c_{p,q/2} \int_{\Omega} |f(\omega)|^{p} \, \mathrm{d}\mu(\omega) = 2^{q/2} c_{p,q/2} \, \|f\|_{p}^{p}.$$

Moreover, given $f, g \in L_p(\Omega)$, we have $\left|e^{itf(\omega)} - e^{itg(\omega)}\right| = \left|1 - e^{it(f(\omega) - g(\omega))}\right|$. Applying the above computation with f replaced by (f - g) yields

$$||Tf - Tf||_q^q = 2^{q/2} c_{p,q/2} ||f - g||_p^p.$$

Corollary 1.34. For $1 \leq p < q < \infty$, there exists a map $T : L_p \to L_q$ which is simultaneously a coarse and uniform embedding.

Proof. Apply Proposition 1.33 with $(\Omega, \mu) = ([0, 1], \lambda)$ to get an embedding $L_p \to L_q([0, 1] \times \mathbb{R}; \mathbb{C})$. Then define an embedding $L_q([0, 1] \times \mathbb{R}; \mathbb{C}) \hookrightarrow_2 L_q([-1, 1] \times \mathbb{R})$ by

$$f \longmapsto \widetilde{f}(s,t) = \begin{cases} \Re \left(f(s,t) \right) & \text{if } s \in (0,1] \\ \Im \left(f(s,t) \right) & \text{if } s \in [-1,0) \end{cases}$$

Since $L_q([-1,1] \times \mathbb{R})$ is separable, it embeds isometrically into L_q by Proposition 1.14.

Definition 1.35 (Uniformly coarse embeddings). Given families $(M_{\alpha})_{\alpha \in A}$ and $(N_{\alpha})_{\alpha \in A}$ of metric spaces, embeddings $f_{\alpha} : M_{\alpha} \to N_{\alpha}$ are called uniformly coarse if there exist increasing functions $\rho_1, \rho_2 : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{+\infty} \rho_1 = +\infty$ and

$$\rho_1(d(x,y)) \leqslant d(f_\alpha(x), f_\alpha(y)) \leqslant \rho_2(d(x,y))$$

for all $\alpha \in A$ and $x, y \in M_{\alpha}$.

Theorem 1.36 (Yu). If M is a uniformly discrete metric space with bounded geometry and M coarsely embeds into a Hilbert space, then the coarse geometric Baum-Connes Conjecture holds for M.

Theorem 1.37 (Kasparov, Yu). If M is a uniformly discrete metric space with bounded geometry and M coarsely embeds into a uniformly convex Banach space, then the coarse geometric Novikov Conjecture holds for M.

2 Fréchet embeddings, Aharoni's Theorem

2.1 Isometric embeddings into ℓ_{∞}

Theorem 2.1. Let M be a metric space.

- (i) $M \hookrightarrow_1 \ell_{\infty}(M)$.
- (ii) If M is finite with |M| = n, then $M \hookrightarrow_1 \ell_{\infty}^{n-1}$.
- (iii) If M is separable, then $M \hookrightarrow_1 \ell_{\infty}$.

Proof. (i) Fix $x_0 \in M$ and define $f: M \to \ell_{\infty}(M)$ by

$$f(x) = d(\cdot, x) - d(\cdot, x_0) \in \mathbb{R}^M.$$

For $y \in M$, we have

$$f(x)(y)| = |d(y,x) - d(y,x_0)| \le d(x,x_0),$$

so $f(x) \in \ell_{\infty}(M)$. Now for $x, z \in M$,

$$\|f(x) - f(z)\|_{\infty} = \|d(\cdot, x) - d(\cdot, z)\|_{\infty} \leq d(x, z), \|f(x) - f(z)\|_{\infty} \geq |f(x)(x) - f(z)(x)| = d(x, z),$$

hence $||f(x) - f(z)||_{\infty} = d(x, z).$

(ii) If $M = \{x_0, \ldots, x_{n-1}\}$, then the function $f : M \to \ell_{\infty}^{n-1}$ defined by $f(x) = (d(x_i, x_0))_{1 \le i \le n-1}$ works.

(iii) If M is separable, then it has a countable dense susper $S \subseteq M$. Two possible proofs:

- S embeds isometrically into ℓ_{∞} by (i), and this extends to an isometric embedding $M \hookrightarrow_1 \ell_{\infty}$.
- There is an isometric embedding $f: M \hookrightarrow_1 \ell_{\infty}(M)$ by (i). But X = Span f(M) is a Banach space, so by Proposition 1.17, $X \hookrightarrow_1 \ell_{\infty}$.

Definition 2.2 (m_{∞}) . For $n \ge 1$, we define $m_{\infty}(n)$ to be the smallest integer m such that every n-element metric space embeds isometrically into ℓ_{∞}^m . Theorem 2.1 implies that

$$m_{\infty}(n) \leqslant n-1$$

2.2 Background on Ramsey theory and graphs

Theorem 2.3 (Ramsey). For all $t \ge 1$, there is an integer $n \ge 1$ such that, if edges of K_n are red-blue coloured, then there is a monochromatic copy of K_t in K_n .

We denote by R(t) the least n that works. It is easy to prove that $R(t) \leq 4^t$. It is also known that $R(t) \geq c^t$ for some c > 1.

More generally, given graphs H_1, H_2 , we denote by $R(H_1, H_2)$ the least n such that, whenever edges of K_n are red-blue coloured, then there is either a red copy of H_1 or a blue copy of H_2 inside K_n .

In particular, $R(t) = R(K_t, K_t)$, and $R(H_1, H_2) \leq R(\max\{|H_1|, |H_2|\})$.

Definition 2.4 (Bipartite graphs). A graph G = (V, E) is called bipartite if there is a partition $V = V_1 \cup V_2$ such that, for all $x, y \in V$ with $xy \in E$, we have either $x \in V_1, y \in V_2$ or $x \in V_2, y \in V_1$. The sets V_1, V_2 are then called vertex classes.

If $E = \{xy, x \in V_1, y \in V_2\}$, then G is the complete bipartite graph with vertex classes V_1, V_2 , denoted by K_{V_1,V_2} or $K_{|V_1|,|V_2|}$.

Example 2.5. $K_{2,2} = C_4$.

Definition 2.6 (Complement of a graph). Given a graph G, its complement \overline{G} has vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G}) = V^{(2)} \setminus E(G)$.

Notation 2.7. If G = (V, E) is a graph, we define a metric ρ on V by

$$\rho(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } xy \in E \\ 2 & \text{otherwise} \end{cases}$$

2.3 Lower bound on $m_{\infty}(n)$

Lemma 2.8. Let G be a graph such that $(G, \rho) \hookrightarrow_1 \ell_{\infty}^k$. Then the edge set of \overline{G} can be covered by at most k complete bipartite subgraphs of \overline{G} .

Proof. Let $f: (G, \rho) \to \ell_{\infty}^k$ be isometric. For $1 \leq i \leq k$, let $\alpha_i = \max_{x \in G} f(x)_i$ and $\beta_i = \min_{x \in G} f(x)_i$. Then

$$\alpha_i - \beta_i = \max_{x,y \in G} \left(f(x)_i - f(y)_i \right) \leqslant \max_{x,y \in G} \| f(x) - f(y) \|_{\infty} = \max_{x,y \in G} \rho(x,y) \leqslant 2.$$

We set $I = \{i \in \{1, \ldots, k\}, \alpha_i - \beta_i = 2\}$. We thus have

$$xy \in E\left(\overline{G}\right) \iff \rho(x,y) = 2 \iff \exists i \in I, \ |f(x)_i - f(y)_i| = 2$$
$$\iff \exists i \in I, \ (f(x)_i = \alpha_i \text{ and } f(y)_i = \beta_i) \text{ or } (f(x)_i = \beta_i \text{ and } f(y)_i = \alpha_i).$$

Hence, if $V_i^1 = \{x \in V, f(x)_i = \alpha_i\}$ and $V_i^2 = \{x \in V, f(x)_i = \beta_i\}$, then

$$E\left(\overline{G}\right) = \bigcup_{i \in I} E\left(K_{V_i^1, V_i^2}\right).$$

Lemma 2.9 (Spencer). There exists $\alpha > 0$ such that

$$R\left(C_4, K_t\right) > \alpha \left(\frac{t}{\log t}\right)^{3/2}$$

Theorem 2.10 (Ball). There exists C > 0 such that for all $n \ge 2$,

$$m_{\infty}(n) \ge n - Cn^{2/3} \log n$$

Proof. Note that there exists b > 0 such that for all n, if $t = \lfloor bn^{2/3} \log n \rfloor$, then

$$n < \alpha \left(\frac{t}{\log t}\right)^{3/2}.$$

Now fix $n \ge 2$ and let $t = \lfloor bn^{2/3} \log n \rfloor$. By Lemma 2.9, $n < R(C_4, K_t)$. Therefore, there exists a red-blue colouring of K_n without a red C_4 or a blue K_t . We let G be the blue graph and $k = m_{\infty}(n)$. Therefore, $(G, \rho) \hookrightarrow_1 \ell_{\infty}^k$ by definition, so Lemma 2.8 implies that the red graph \overline{G} is covered by at most k complete bipartite subgraphs $K_{V_1^1,V_1^2}, \ldots, K_{V_k^1,V_k^2}$. Since $C_4 = K_{2,2} \not\subseteq \overline{G}$, one vertex class in each of the complete bipartite subgraphs is of size 1, so we may assume that $|V_i^1| = 1$ for all i. If $S = \bigcup_{i=1}^k V_i^1$, then there is no edge in \overline{G} between vertices of $V \setminus S$, i.e. the graph induced by G on $V \setminus S$ is complete. Since $K_t \not\subseteq G$ and $|S| \leq k$, it follows that $n - k \leq |V| - |S| = |V \setminus S| \leq t - 1$, so

$$k = m_{\infty}(n) \ge n - t + 1 \ge n - Cn^{2/3} \log n$$

for some constant C.

Remark 2.11. Since $R(t) \ge c^t$ for some c > 1, the method used to prove Theorem 2.10 won't give a lower bound better than $n - C \log n$ on $m_{\infty}(n)$.

2.4 Nonlinear Hahn-Banach Theorem

Remark 2.12. We aim to prove that $n - m_{\infty}(n) \xrightarrow[n \to \infty]{} +\infty$.

Lemma 2.13 (Nonlinear Hahn-Banach Theorem). Let M be a metric space, $A \subseteq M$, and $f : A \to \mathbb{R}$ a L-Lipschitz map. Then there is a L-Lipschitz extension $\tilde{f} : M \to \mathbb{R}$ of f.

Proof. Fix $x_0 \in M \setminus A$ and define

$$\widetilde{f}: x \in A \cup \{x_0\} \longmapsto \begin{cases} f(x) & \text{if } x \in A \\ \alpha & \text{if } x = x_0 \end{cases}$$

We need to choose a value of $\alpha \in \mathbb{R}$ such that $|\alpha - f(x)| \leq Ld(x_0, x)$ for all $x \in A$, i.e.

$$f(y) - Ld(y, x_0) \leqslant \alpha \leqslant f(x) + Ld(x, x_0)$$

for all $x, y \in A$. Such an α exists if and only if

$$f(y) - Ld(y, x_0) \leqslant f(x) + Ld(x, x_0) \tag{*}$$

for all $x, y \in A$. To prove (*), note that

$$f(y) - f(x) \leqslant Ld(x, y) \leqslant Ld(x, x_0) + Ld(y, x_0)$$

for all $x, y \in A$.

Now if $M \setminus A$ is finite or countable, apply the above argument recursively to get an extension to M. In the general case, use Zorn's Lemma to get a maximal extension $(\widetilde{M}, \widetilde{f})$; the above will imply that $\widetilde{M} = M$.

Proposition 2.14. If M is a finite metric space and $A \subseteq M$, then

$$A \hookrightarrow_1 \ell_{\infty}^{|A|-k} \Longrightarrow M \hookrightarrow_1 \ell_{\infty}^{|M|-k}.$$

Proof. Let $f = (f_1, \ldots, f_{|A|-k}) : A \longrightarrow \ell_{\infty}^{|A|-k}$ be isometric. Then each map $f_i : A \to \mathbb{R}$ is 1-Lipschitz, so by Lemma 2.13, there is a 1-Lipschitz extension $g_i : M \to \mathbb{R}$ for $1 \le i \le |A| - k$. Now enumerate $M \setminus A$ as $\{y_i, |A| - k < i \le |M| - k\}$ and define

$$g_i: x \in M \longmapsto d(x, y_i) \in \mathbb{R}$$

for $|A| - k < i \leq |M| - k$. Then $g = (g_1, \ldots, g_{|M|-k}) : M \longrightarrow \ell_{\infty}^{|M|-k}$ is an isometric embedding. \Box

2.5 More background on Ramsey theory and graphs

Notation 2.15. For $s \ge 2$ and $n \in \mathbb{N}$, let

$$K_n^{(s)} = \{A \subseteq \{1, \dots, n\}, |A| = s\}.$$

For instance, $K_n^{(2)} = E(K_n)$.

Proposition 2.16. For all $s, t, c \ge 1$, there exists $n \ge 1$ such that, if $K_n^{(s)}$ is c-coloured, then there is a monochromatic copy of $K_t^{(s)}$, i.e. $A \subseteq \{1, \ldots, n\}$ with |A| = t such that $A^{(s)} = \{B \subseteq A, |B| = s\}$ is monochromatic.

Definition 2.17 (Trees). A tree T is a connected acyclic graph. Equivalently, for all $x, y \in T$, there is a unique path from x to y.

If diam $(T) = \max_{x,y\in T} d(x,y) \leq 4$ (for the graph distance), then there is a vertex $c \in T$ such that $d(x,c) \leq 2$ for all x. Call this vertex c a centre of T. Vertices in $\Gamma(c) = \{a \in T, ac \in E\}$ are called main vertices. Every other vertex is connected to a unique main vertex.

Definition 2.18 (Orientation of a graph). An orientation of a graph G is an assignment of a direction \overrightarrow{xy} or \overrightarrow{yx} to each edge $xy \in E$.

The orientation is called alternating if for all $x \in V(G)$, either all edges incident to x are oriented out of x (i.e. in the direction \overrightarrow{xy}) or towards x.

A connected graph has either zero or two alternating orientations. A tree always has exactly two.

2.6 Gap between n and $m_{\infty}(n)$

Definition 2.19 (Generic metric space). A metric space $(\{x_1, \ldots, x_n\}, d)$ is generic if the $\binom{n}{2}$ distances $(d(x_i, x_j))_{1 \le i < j \le n}$ are linearly independent over \mathbb{Q} .

Given three distinct points x, y, z in a generic metric space, we have d(x, z) < d(x, y) + d(y, z).

Theorem 2.20. For all integers $k \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $m_{\infty}(n) \le n-k$. In other words, $n - m_{\infty}(n) \xrightarrow[n \to \infty]{} +\infty$.

Proof. Step 1: we can restrict to generic metric spaces. Consider an arbitrary metric space $M = (\{x_1, \ldots, x_n\}, d)$. For $j \ge 1$ and $1 \le r < s \le n$, we can pick $\alpha_{rs} \in \left(\frac{1}{2j}, \frac{1}{j}\right)$ such that $d_j(x_r, x_s) = d(x_r, x_s) + \alpha_{rs}$ defines a generic metric. If for all j there is an isometric embedding $f_j : (M, d_j) \to \ell_{\infty}^m$ for some m, then we may assume without loss of generality that $\operatorname{Im} f_j$ is bounded independently of j. By compactness, after passing to a subsequence, we have

$$f_j\left(x_r\right) \xrightarrow[j \to \infty]{} f\left(x_r\right)$$

for all r. Thus $f:(M,d) \to \ell_{\infty}^m$ is also an isometric embedding.

From now on, M is an *n*-element generic metric space, and the elements of M are real numbers (but d is not the distance induced by \mathbb{R}).

Step 2: characterisation of isometric embeddings in terms of Lipschitz graphs. Given a 1-Lipschitz map $f: M \to \mathbb{R}$, we define its Lipschitz graph $\mathcal{G}(f)$ with vertex set M and such that

$$xy \in E \iff |f(x) - f(y)| = d(x, y).$$

An edge xy is given the orientation \overrightarrow{xy} if and only if f(x) - f(y) = d(x, y). (For instance, if $f = d(\cdot, a)$, then $\mathcal{G}(f)$ is a tree of diameter 2 centred at a; this is because f(x) - f(y) < d(x, y) for $x \neq y$ in $M \setminus \{a\}$ since d is generic.) Now a map $f : M \to \ell_{\infty}^m$ is an isometric embedding if and only if its coordinates $(f_i : M \to \mathbb{R})_{1 \leq i \leq m}$ are 1-Lipschitz and for all $x \neq y$, there exists $1 \leq i \leq m$ such that $xy \in E(\mathcal{G}(f_i))$. It follows that $M \hookrightarrow_1 \ell_{\infty}^m$ if and only if the edges of the complete graph on M can be covered by at most m such Lipschitz graphs.

Step 3: sufficient condition for a map to be 1-Lipschitz. Let T be a tree on M with diam $(T) \leq 4$. Fix a vertex $x_0 \in T$, a real $\alpha \in \mathbb{R}$, and an alternating orientation of T. Consider the unique $f: M \to \mathbb{R}$ satisfying $f(x_0) = \alpha$ and f(x) - f(y) = d(x, y) for all $\overrightarrow{xy} \in E$. Then f is 1-Lipschitz if the following condition is satisfied:

$$d(w, x) + d(y, z) < d(x, y) + d(w, z),$$
 (\$\$

for all paths wxyz in T. Consider indeed two vertices $x, y \in T$. We need $|f(x) - f(y)| \leq d(x, y)$.

- If x = y or $xy \in E$, this is true by construction of f.
- If there is a path xzy, then

$$|f(x) - f(y)| = |f(x) - f(z) + f(z) - f(y)| = |d(x, z) - d(z, y)| < d(x, y),$$

the last inequality being strict by genericity of the metric.

• If there is a path xwzy, then

$$\begin{split} |f(x) - f(y)| &= |f(x) - f(w) + f(w) - f(z) + f(z) - f(y)| \\ &= |d(x, w) - d(w, z) + d(z, y)| \\ &= \begin{cases} d(x, w) - d(w, z) + d(z, y) \stackrel{(\diamondsuit)}{<} d(x, y) \\ \text{or} & -d(x, w) + d(w, z) - d(z, y) \stackrel{(\bigtriangleup)}{<} d(x, z) - d(z, y) \stackrel{(\bigtriangleup)}{<} d(x, y) \end{cases}, \end{split}$$

where (Δ) refers to the triangle inequality, which is strict in a generic metric space.

• If there is a path *xuwzy*, the reasoning is similar.

We say that a tree T on M is *admissible* if it has diameter at most 4 and satisfies (\diamondsuit) .

Step 4: given distinct points c, a_1, \ldots, a_ℓ in M, there is a unique admissible tree T on M with centre c and main vertices a_1, \ldots, a_ℓ . Indeed, such a tree T is admissible if and only if each vertex $x \in M \setminus \{c, a_1, \ldots, a_\ell\}$ is joined to a main vertex $a \in \{a_1, \ldots, a_\ell\}$ such that, for all main vertices $b \neq a$, we have d(x, a) + d(c, b) < d(a, c) + d(x, b), or in other words,

$$d(x, a) - d(a, c) < d(x, b) - d(b, c).$$

Hence, there is a unique possible choice of edge xa, where a is chosen to minimise (d(x, a) - d(a, c)). This tree T will be denoted by $T(c; a_1, \ldots, a_\ell)$.

Step 5. We colour $M^{(4)}$ with colour set \mathfrak{S}_3 as follows: given w < x < y < z in M (recall that elements of M are assumed to be real numbers, so they are ordered), let

$$R_{1} = d(w, x) + d(y, z),$$

$$R_{2} = d(w, y) + d(x, z),$$

$$R_{3} = d(w, z) + d(x, y).$$

We give wxyz the colour i, j, k (i.e. the element of \mathfrak{S}_3 given by $1 \mapsto i, 2 \mapsto j$ and $3 \mapsto k$) if $R_i > R_j > R_k$. This defines a 6-colouring of $M^{(4)}$.

Main claim: for all $k \in \mathbb{N}$, for all $c \in \mathfrak{S}_3$, there is a $t_c \in \mathbb{N}$ such that every monochromatic metric space of size t_c and colour c can be covered by at most $t_c - k$ admissible trees.

Proof of the claim.

• Case 1: c = 2, 1, 3. In this case, we show that there is no monochromatic metric space M of colour c and size at least 5 (therefore, $t_c = 5$ will work). Indeed, assume otherwise and pick u < w < x < y < z in M. We have

$$d(u, w) + d(x, y) > d(u, y) + d(w, x),$$

$$d(w, x) + d(y, z) > d(w, z) + d(x, y),$$

$$d(u, y) + d(w, z) > d(u, w) + d(y, z).$$

Summing these inequalities yields 0 > 0, a contradiction.

- Case 2: c = 3, 1, 2. Just replace > by < in the first case.
- Case 3: c = 1, 3, 2. We then claim that, if for all M monochromatic of colour c and of size n, all but m edges of K_M can be covered by s admissible trees, then for all M' monochromatic of colour c and of size n + 2, all but m 1 edges of K_{M'} can be covered by s + 2 admissible trees. To prove this mini-claim, we take M' monochromatic of colour c and of size n + 2, we write M' = M ∪ {a', b'}, where a < a' < b' < b and M ∩ ((a, a'] ∪ [b', b)) = Ø. By assumption, M can be covered by s admissible trees; by Step 4 we may extend them to the whole of M'. We then add the two trees T (a; a', b) and T (b; a', b'). Hence every x ∈ M' \ {a, a', b} is joined to a' in T (a; a', b) and every x ∈ M' \ {b, a', b'} is joined to b' in T (b; a', b'). This proves the mini-claim. To apply it, we start with |M| = k, s = 0 and m = ^k₂ and we apply the mini-claim n times to get M' with t_c = |M'| = k + 2 ^k₂ = k², s = 2 ^k₂ = t_c k and m = 0.
- Case 4: c = 1, 2, 3. We prove the main claim by induction on k. For $k = 1, t_c = 1$ will do. Let $k \ge 1$ and assume t_c works for k. We prove that $2t_c + 3$ works for k + 1. Take

$$M = \{-1, 0, 1, 2, \dots, t_c + 1, t_c + 2, \dots, 2t_c + 1\}.$$

Consider T(0; -1, 2), T(1; 0, 2) and $T(t_c + 1 + i; i, i + 1)$ for $1 \le i \le t_c$. These cover all edges except perhaps edges between vertices in $\{t_c + 2, \ldots, 2t_c + 1\}$. Those can be covered by $t_c - k$ trees by the induction hypothesis. Therefore, we need $2t_c + t_c - k = 2t_c + 2 - k = |M| - (k + 1)$.

- Case 5: c = 2, 3, 1. We show that $t_c = 2k$ works for k by writing $M = \{-k, \ldots, -1, 1, \ldots, k\}$ and considering the trees $T(-i; -k, -k+1, \ldots, -i-1, 1, \ldots, k)$ for $1 \le i \le k$.
- Case 6: c = 3, 2, 1. We show that $t_c = 4k+1$ works for k by writing $M = \{0, 1, \dots, 4k\}$ and considering the trees T(0; i, 4k+1-i) for $1 \le i \le 2k$ and $T(i; 2k+i, 2k+i+1, \dots, 4k+1-i)$ for $1 \le i \le k$.

Step 6. Let $t = \max_{c \in \mathfrak{S}_3} t_c$. By Ramsey theory (Proposition 2.16), there exists $N \in \mathbb{N}$ such that, if $K_N^{(4)}$ is 6-coloured, then there is a monochromatic copy of $K_t^{(4)}$. So given $n \ge N$ and an *n*-element generic metric space M, there is a colour $c \in \mathfrak{S}_3$ and a subset $A \subseteq M$ of cardinal t_c such that A is monochromatic. By the claim, the complete graph on A can be covered by |A| - k admissible trees, so by Step 2, $A \hookrightarrow_1 \ell_{\infty}^{|A|-k}$, and by Proposition 2.14, $M \hookrightarrow_1 \ell_{\infty}^{|M|-k}$, so that $m_{\infty}(n) \le n-k$. \Box

2.7 Upper bound on $m_p(n)$

Definition 2.21 (m_p) . Note that $m_{\infty}(n)$ can be defined equivalently as the least integer m such that every n-element subset of some space $L_{\infty}(\Omega, \mu)$ embeds isometrically into ℓ_{∞}^m (compare with Definition 2.2).

For $1 \leq p \leq \infty$, we define similarly $m_p(n)$ to be the least integer m such that every n-element subset of some space $L_p(\Omega, \mu)$ embeds isometrically into ℓ_p^m .

Remark 2.22. Proposition 1.21 implies that

$$m_1(n) \leqslant n!,$$

and Example 1.22.(ii) implies that

$$m_2(n) = n - 1.$$

Moreover, Theorems 2.1 and 2.10 imply that

$$n - Cn^{2/3} \log n \leqslant m_{\infty}(n) \leqslant n - 1.$$

Lemma 2.23 (Caratheodory's Theorem). Given $L \subseteq \mathbb{R}^N$,

conv
$$L = \left\{ \sum_{i=0}^{N} t_i x_i, (x_0, \dots, x_N) \in L^{N+1}, (t_0, \dots, t_N) \in (\mathbb{R}_+)^{N+1}, \sum_{i=0}^{N} t_i = 1 \right\}.$$

In particular, $\operatorname{conv} L$ is compact if L is compact.

Proof. Given $x \in \text{conv } L$, we write $x = \sum_{i=1}^{m} t_i x_i$ with $x_i \in L$, $t_i \ge 0$ and $\sum_{i=1}^{m} t_i = 1$, and we assume that m > N + 1 (otherwise the result is obvious). Then x_1, \ldots, x_m are affinely dependent (i.e. $x_1 - x_2, \ldots, x_1 - x_m$ are linearly dependent), so there exist $\lambda_1, \ldots, \lambda_m$ not all zero such that $\sum_{i=1}^{m} \lambda_i = 0$ and $\sum_{i=1}^{m} \lambda_i x_i = 0$. For any s > 0, we have $\sum_{i=1}^{m} (t_i - s\lambda_i) = 1$ and $\sum_{i=1}^{m} (t_i - s\lambda_i) x_i = x$. If $\lambda_i \le 0$, then $t_i - s\lambda_i \ge 0$, so we take

$$s = \min\left\{\frac{t_i}{\lambda_i}, \ \lambda_i > 0\right\}.$$

Now $t_i - s\lambda_i \ge 0$ for all *i* and there is at least one *i* such that $t_i - s\lambda_i = 0$. Therefore, we can decrease *m* as long as m > N + 1, which proves the result.

Theorem 2.24. For $1 \leq p < \infty$ and for $n \geq 2$, we have

$$m_p(n) \leqslant \binom{n}{2}.$$

Proof. Fix $n \ge 2$. Given an *n*-tuple $M = (x_1, \ldots, x_n)$ in some space $L_p(\Omega, \mu)$, let

$$\theta_M = \left(\|x_i - x_j\|_p^p \right)_{1 \le i < j \le n} \in \mathbb{R}^N,$$

where $N = {n \choose 2}$. Consider the set C of such θ_M for all n-tuples M in some $L_p(\Omega, \mu)$.

The set C is a cone in \mathbb{R}^N , i.e. $t\theta \in C$ for all t > 0 and $\theta \in C$. Moreover, C is stable by addition: if $M = (x_1, \ldots, x_n)$ is a *n*-tuple in $L_p(\Omega, \mu)$ and $M' = (x'_1, \ldots, x'_n)$ is a *n*-tuple in $L_p(\Omega', \mu')$, then $\theta_M + \theta_{M'} = \theta_N$ where $N = ((x_1, x'_1), \ldots, (x_n, x'_n))$ in $L_p(\Omega \amalg \Omega')$. Hence, C is convex.

Say that an element $\theta \in C$ is linear if there exists $(t_1, \ldots, t_n) \in \mathbb{R}^n$ such that $\theta_{ij} = |t_i - t_j|^p$ for all $1 \leq i < j \leq n$. Define

$$K = C \cap \left\{ \theta \in \mathbb{R}^N, \sum_{1 \leq i < j \leq n} \theta_{ij} = 1 \right\},$$

$$L = \left\{ \theta \in K, \ \theta \text{ is linear} \right\} = \left\{ \left(|t_i - t_j|^p \right)_{1 \leq i < j \leq n}, \ (t_1, \dots, t_n) \in \mathbb{R}^n, \ \sum_{1 \leq i < j \leq n} |t_i - t_j|^p = 1 \right\}.$$

The set L is compact, and K is convex, so conv $L \subseteq K$.

Given $\theta = \theta_M \in K$, with $M = (x_1, \ldots, x_n)$ in $L_p(\Omega, \mu)$, we can approximate each x_i with simple functions y_i such that $\varphi = \left(\|y_i - y_j\|_p^p \right)_{1 \leq i < j \leq n} \in K$. Hence we have a measurable partition $\Omega = \bigcup_{r=1}^R A_r$ such that $y_{i|A_r}$ is constant for all i, r. We let

$$\varphi_r = \left(\left\| y_{i|A_r} - y_{j|A_r} \right\|_p^p \right)_{1 \le i < j \le r}$$

Then φ_r is linear and $\varphi = \sum_{i=1}^R \varphi_r$. Now if $\alpha_r = \sum_{1 \leq i < j \leq n} (\varphi_r)_{ij}$, then $\sum_{r=1}^R \alpha_r = 1$ and

$$\varphi = \sum_{r=1}^{R} \alpha_r \left(\frac{\varphi_r}{\alpha_r}\right) \in \operatorname{conv} L.$$

This shows that $K \subseteq \overline{\operatorname{conv} L}$. But Caratheodory's Theorem (Lemma 2.23) implies that $\overline{\operatorname{conv} L} = \operatorname{conv} L$, and therefore

 $K = \operatorname{conv} L.$

Now pick $\theta \in C$, write $\theta = \sum_{r=1}^{N} \theta_r$, where θ_r is linear for all r (note that $\left\{\theta, \sum_{1 \leq i < j \leq n} \theta_{ij} = 1\right\}$ is (N-1)-dimensional). For each r, there exist $t_{ri} \in \mathbb{R}$ such that $\theta_r = (|t_{ri} - t_{rj}|^p)_{1 \leq i < j \leq n}$. If $\theta = \theta_M$, $M = (x_1, \ldots, x_n)$ in $L_p(\Omega, \mu)$, define $f: M \to \ell_p^N$ by $f(x_i) = (t_{ri})_{1 \leq r \leq N}$. Thus, for $1 \leq i < j \leq n$,

$$\|f(x_i) - f(x_j)\|_p^p = \sum_{r=1}^N |t_{ri} - t_{rj}|^p = \sum_{r=1}^N (\theta_r)_{ij} = \theta_{ij} = \|x_i - x_j\|_p^p.$$

Remark 2.25. For $1 \leq p < 2$, Theorem 2.24 is essentially optimal: we can show that

$$m_p\left(2n+1\right) \geqslant n.$$

2.8 Aharoni's Theorem

Remark 2.26. Given Banach spaces X and Y, if X bilipschitzly embeds into Y, must X isomorphically embed into Y?

The answer is yes if Y is separable and isomorphic to the dual of some Banach space W. But Aharoni's Theorem will show that the answer is no in general.

Notation 2.27. (i) In a metric space M, for $x \in M$ and $\delta > 0$, let

$$B_{\delta}(x) = \{ y \in M, \ d(y, x) \leq \delta \}.$$

A subset $A \subseteq M$ is said to be δ -dense in M if for all $x \in M$, $d(x, A) < \delta$.

(ii) Given a set S, let

$$c_0(S) = \{ f \in \ell_\infty(S), \forall \varepsilon > 0, |\{ s \in S, |f(s)| > \varepsilon \} | < \infty \}$$

Hence $c_0 = c_0(\mathbb{N}) \cong c_0(S)$ if S is countably infinite.

Lemma 2.28. Let M be a separable metric space, $\lambda > 2$, a > 0, $N \subseteq M$. Then there is a collection $(M_i)_{i \in I}$ (with $I \subseteq \mathbb{N}$) of subsets of N such that

- (i) $\forall x \in N, \exists i \in I, d(x, M_i) < a.$
- (ii) $\forall x \in M, |\{i \in I, d(x, M_i) < (\lambda 1)a\}| < \infty.$
- (iii) $\forall i \in I$, diam $(M_i) \leq 2\lambda a$.

Proof. By rescaling the distance in M, we may assume that a = 1. Since M is separable, so is N, and therefore there are countable sets $Z \subseteq N$ that is 1-dense in N and $Y \subseteq M$ that is 1-dense in M. By replacing Y by $Z \cup Y$, we may assume that $Z \subseteq Y$. We enumerate Y as $\{y_i, i \in I\}$ (with $I \subseteq \mathbb{N}$) and we set

$$M_i = (B_\lambda(y_i) \cap Z) \setminus \left(\bigcup_{j < i} M_j\right).$$

Therefore, for all $i \in I$, $M_i \subseteq Z \subseteq N$. We now check (i) – (iii).

(iii) For all $i \in I$, $M_i \subseteq B_\lambda(y_i)$, so diam $(M_i) \leq 2\lambda = 2\lambda a$.

(i) Given $x \in N$, there is $i \in I$ such that $y_i \in Z$ and $d(x, y_i) < 1$. Thus $y_i \in B_\lambda(y_i) \cap Z \subseteq A_\lambda(y_i)$ $\bigcup_{1 \leq i \leq i} M_i$, so there exists $j \leq i$ such that $d(x, M_i) < 1 = a$.

(ii) Given $x \in M$, there exists $i_0 \in I$ such that $d(x, y_{i_0}) < 1$. If $d(x, M_i) < \lambda - 1$ for some i, then $d(y_{i_0}, M_i) < \lambda$. Now for $i > i_0$ and $y \in M_i$, the facts that $y_{i_0} \in \bigcup_{j \leqslant i_0} M_j$ and $M_i \cap$ $\left(\bigcup_{j\leq i_0} M_j\right) = \emptyset$ imply that $d(y_{i_0}, y) \geq \lambda$, so $d(y_{i_0}, M_i) \geq \lambda$ and $d(x, M_i) \geq \lambda - 1$. Therefore, the set $\{i \in I, d(x, M_i) < \lambda - 1\}$ has at most i_0 elements.

Theorem 2.29 (Aharoni). For any $\varepsilon > 0$, any separable metric space embeds into c_0 with distortion at most $3 + \varepsilon$.

Proof. Given a separable metric space M and $\varepsilon > 0$, choose $\lambda > 2$ and $\eta > 0$ such that

$$\frac{3\lambda}{\lambda-2}(1+\eta) < 3+\varepsilon.$$

For $k \in \mathbb{Z}$, let $a_k = (1 + \eta)^{-k}$. Fix a centre $c \in M$ and let

$$M_k = M \backslash B_{3\lambda a_k/2}(c).$$

Apply Lemma 2.28 to M and $N = M_k$, $a = a_k$, to get subsets $(M_{ki})_{i \in I}$ as in the lemma. Set $S = \mathbb{Z} \times I$. For $(k, i) \in S$, define

$$f_{ki}: x \in M \longmapsto \max\left\{0, \left(\lambda - 1\right)a_k - d\left(x, M_{ki}\right)\right\} \in \mathbb{R}_+,$$

and let $f: x \in M \mapsto (f_{ki}(x))_{k,i\in S} \in (\mathbb{R}_+)^S$. We first prove that $f(x) \in c_0(S)$ for all $x \in M$. Since $(\lambda - 1) a_k \xrightarrow{k \to \infty} 0$, it is enough to show that for any $s \in \mathbb{Z}$, the set $T_s = \{(k, i) \in S, f_{ki}(x) \ge (\lambda - 1)a_s\}$ is finite. For k > s, so have

$$f_{ki}(x) \leqslant (\lambda - 1)a_k < (\lambda - 1)a_s,$$

so $(k,i) \notin T_s$ for all $(k,i) \in S$ with k > s. Since $a_k \xrightarrow[k \to -\infty]{} +\infty$, there is r < s such that $d(x,c) < \left(\frac{\lambda}{2} + 1\right)a_r$. Hence, for k < r, $d(x,c) < \left(\frac{\lambda}{2} + 1\right)a_k$, so for all $i \in I$,

$$d(x, M_{ki}) \ge d\left(x, M \setminus B_{3\lambda a_k/2}(c)\right) \ge \frac{3\lambda a_k}{2} - d(x, c) > (\lambda - 1)a_k$$

Therefore, for all $(k,i) \in S$ with k < r, $f_{ki}(x) = 0$ and $x \notin T_s$. Finally, by Lemma 2.28, for each $k \in \mathbb{Z}$, the set

$$\{i \in I, f_{ki}(x) > 0\} = \{i \in I, d(x, M_{ki}) < (\lambda - 1) a_k\}$$

is finite, so $T_s \subseteq \bigcup_{k=r}^s \{i \in I, f_{ki}(x) > 0\}$ is finite.

Thus, we have a map $f: M \to c_0(S)$, and f is clearly 1-Lipschitz. To find a lower bound, fix $x \neq y$ in M and choose $k \in \mathbb{Z}$ such that

$$3\lambda a_k < d(x, y) \leq 3\lambda a_k (1+\eta).$$

By the triangle inequality, both x and y cannot belong to $B_{3\lambda a_k/2}(c)$, so we may assume without loss of generality that $x \in M_k$. By Lemma 2.28, there exists $i \in I$ such that $d(x, M_{ki}) < a_k$, so

 $f_{ki}(x) \ge (\lambda - 1)a_k - a_k = (\lambda - 2)a_k.$

Pick $w \in M_{ki}$ such that $d(x, w) < a_k$. For any $z \in M_{ki}$, we have

$$d(y,z) \ge d(y,x) - d(x,w) - d(w,z) \ge 3\lambda a_k - a_k - \operatorname{diam} M_{ki} \ge (\lambda - 1) a_k,$$

so $d(y, M_{ki}) \ge (\lambda - 1) a_k$ and $f_{ki}(y) = 0$. Therefore

$$\left\|f(x) - f(y)\right\|_{\infty} \ge \left|f_{ki}(x) - f_{ki}(y)\right| \ge (\lambda - 2) a_k = \frac{3\lambda a_k(1 + \eta)}{3\lambda(1 + \eta)} (\lambda - 2) > \frac{d(x, y)}{3 + \varepsilon}.$$

Remark 2.30. The above proof of Aharoni's Theorem shows that $M \hookrightarrow_{3+\varepsilon} c_0^+$, where $c_0^+(S) = \{f \in c_0(S), \forall x \in S, f(x) \in \mathbb{R}_+\}$. We can actually show that

$$\sup_{\substack{M \\ bilipschitz}} \inf_{\substack{f:M \to c_0^+ \\ bilipschitz}} \operatorname{dist}(f) = 3 \quad and \quad \sup_{\substack{M \\ bilipschitz}} \inf_{\substack{f:M \to c_0 \\ bilipschitz}} \operatorname{dist}(f) = 2.$$

3 Bourgain's Embedding Theorem

3.1 Dvoretzky's Theorem

Definition 3.1 (Distortion of a metric space). For metric spaces X, Y, define

$$c_Y(X) = \inf_{\substack{f: X \to Y \\ bilipschitz}} \operatorname{dist}(f)$$

The L_p -distortion of X is $c_p(X) = c_{L_p}(X)$, the euclidean distortion of X is $c_2(X) = c_{L_2}(X)$. Corollary 1.19 implies that, for any finite metric space X,

$$c_p(X) \leqslant c_2(X).$$

Theorem 3.2 (Dvoretzky). For every $n \in \mathbb{N}$ and for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that every Banach space Y with dim $Y \ge N$ contains a $(1 + \varepsilon)$ -isomorphic copy of ℓ_2^n .

Remark 3.3. (i) The integer N of Dvoretzky's Theorem can be taken at most $\exp\left(\frac{Cn}{\varepsilon^2}\right)$ for some absolute constant C.

(ii) Dvoretzky's Theorem implies that

$$c_Y(X) \leqslant c_2(X)$$

for every finite metric space X and every infinite-dimensional Banach space Y.

3.2 Padded decompositions and existence of scaled embeddings

Definition 3.4 (Partitions and clusters). We fix a metric space X with |X| = n. We denote by \mathcal{P}_X the set of partitions of X. For $P \in \mathcal{P}_X$, the elements of P are called clusters. For $x \in X$, we let P(x) be the unique cluster to which it belongs.

Definition 3.5 (Stochastic (padded) decompositions). A stochastic decomposition of a finite metric space X is a probability measure Ψ on \mathcal{P}_X . The support of Ψ is

$$\operatorname{Supp} \Psi = \{ P \in \mathcal{P}_X, \ \Psi(P) > 0 \}$$

Given $\Delta > 0$ and $\varepsilon : X \to (0,1]$, we say that Ψ is an (ε, Δ) -padded decomposition if for all $P \in \text{Supp } \Psi$,

- (i) $\forall C \in P$, diam $C < \Delta$,
- (ii) $\forall x \in X, \ \Psi(d(x, X \setminus P(x)) \ge \varepsilon(x)\Delta) \ge \frac{1}{2}.$

Definition 3.6 (ℓ_q -sum). Given a collection $(X_i)_{i \in I}$ of Banach spaces (with $I \subseteq \mathbb{N}$), define $(\bigoplus_{i \in I} X_i)_q$ to be the space of sequences $(x_i)_{i \in I} \in \prod_{i \in I} X_i$ such that $\sum_{i \in I} ||x_i||^q < \infty$. This is a Banach space with norm $|| \cdot ||_q$ defined by

$$\left\| (x_i)_{i \in I} \right\|_q = \left(\sum_{i \in I} \| x_i \|^q \right)^{1/q}$$

This definition also makes sense when $q = \infty$ (replacing $\sum_{i \in I} ||x_i||^q$ by $\sup_{i \in I} ||x_i||$).

Moreover, there is a subspace $(\bigoplus_{i \in I} X_i)_{c_0}$ of sequences $(x_i)_{i \in I} \in (\bigoplus_{i \in I} X_i)_{\infty}$ such that $||x_i|| \xrightarrow[i \to \infty]{} 0$. Note that, if $X_i = \ell_q(S_i)$ for all i, then $(\bigoplus_{i \in I} \ell_q(S_i))_q \cong \ell_q(\prod_{i \in I} S_i)$.

Lemma 3.7. Let Ψ be an (ε, Δ) -padded decomposition of a finite metric space X and let $1 \leq q < \infty$. Then there is a 1-Lipschitz map $f: X \to \ell_q$ such that

- (i) $\forall x \in X, \|f(x)\|_q \leq \Delta$,
- (ii) $\forall x, y \in X, \ d(x, y) \in [\Delta, 2\Delta) \Longrightarrow ||f(x) f(y)||_q \ge \frac{1}{16}\varepsilon(x)d(x, y).$

Proof. Fix $P \in \text{Supp } \Psi$, and let $C_1, C_2, \ldots, C_{m(P)}$ be the clusters of P. Let $U_1, U_2, \ldots, U_{2^{m(P)}}$ be all possible unions of the $(C_i)_{1 \leq i \leq m(P)}$. For $1 \leq j \leq 2^{m(P)}$, define $f_{P,j} : X \to \mathbb{R}$ by

$$f_{P,j}(x) = \begin{cases} \min \left\{ \Delta, d\left(x, X \setminus P(x)\right) \right\} & \text{if } x \in U_j \\ 0 & \text{otherwise} \end{cases}.$$

We have $0 \leq f_{P,j}(x) \leq \Delta$ for all $x \in X$. Let $x, y \in X$.

- If $P(x) \neq P(y)$, then $0 \leq f_{P,j}(x) \leq d(x, X \setminus P(x)) \leq d(x, y)$ and similarly for y.
- If $P(x) = P(y), x, y \in U_j$, then $|f_{P,j}(x) f_{P,j}(y)| \le |d(x, X \setminus P(x)) d(y, X \setminus P(x))| \le d(x, y)$.
- If P(x) = P(y), $x, y \notin U_j$, then $f_{P,j}(x) = f_{P,j}(y) = 0$.

This shows that $f_{P,j}$ is 1-Lipschitz.

Now define $f_P: X \to \ell_q^{2^{m(P)}}$ by

$$f_P(x) = \left(2^{-m(P)/q} f_{P,j}(x)\right)_{1 \le j \le 2^{m(P)}}$$

Hence, for all x,

$$\|f_P(x)\|_q = \left(\sum_{j=1}^{2^{m(P)}} 2^{-m(P)} f_{P,j}(x)^q\right)^{1/q} \leq \Delta,$$

and for $x, y \in X$,

$$\left\|f_P(x) - f_P(y)\right\|_q = \left(\sum_{j=1}^{2^{m(P)}} 2^{-m(P)} \left|f_{P,j}(x) - f_{P,j}(y)\right|^q\right)^{1/q} \leqslant d(x,y),$$

so f_P is 1-Lipschitz.

Finally, define $f: X \to \left(\bigoplus_{P \in \text{Supp } \Psi} \ell_q^{2^{m(P)}}\right)_q \hookrightarrow_1 \ell_q$ by

$$f(x) = \left(\Psi(P)^{1/q} f_P(x)\right)_{P \in \operatorname{Supp} \Psi}.$$

Hence $||f(x)||_q \leq \Delta$ for all x, and f is 1-Lipschitz. Fix $x, y \in X$ such that $d(x, y) \in [\Delta, 2\Delta)$. Let

$$E = \{ P \in \operatorname{Supp} \Psi, \ d(x, X \setminus P(x)) \ge \varepsilon(x) \Delta \}$$

Fix $P \in E$. If $x \in U_j \not\supseteq y$, then

$$|f_{P,j}(x) - f_{P,j}(y)| = \min \left\{ \Delta, d\left(x, X \setminus P(x)\right) \right\} \ge \varepsilon(x)\Delta.$$

Note that $P(x) \neq P(y)$ because $\forall C \in P$, diam $(C) < \Delta \leq d(x, y)$. Therefore, for one quarter of all possible values of j, we have $x \in U_j \not\ni y$. Hence,

$$\|f_P(x) - f_P(y)\|_q \ge \left(\sum_{x \in U_j \not\ni y} 2^{-m(P)} |f_{P,j}(x) - f_{P,j}(y)|^q\right)^{1/q} \ge \frac{\varepsilon(x)\Delta}{4^{1/q}}$$

It follows finally that

$$\begin{split} \|f(x) - f(y)\|_q &\geqslant \left(\sum_{P \in E} \Psi(P) \left\|f_P(x) - f_P(y)\right\|_q^q\right)^{1/q} \geqslant \frac{\varepsilon(x)\Delta}{4^{1/q}} \Psi(E) \\ &\geqslant \frac{\varepsilon(x)\Delta}{4^{1/q} \cdot 2} \geqslant \frac{\varepsilon(x)}{4^{1/q} \cdot 4} d(x,y) \geqslant \frac{1}{16} \varepsilon(x) d(x,y). \end{split}$$

Definition 3.8 (Relevant scales). Given a finite metric space X, we define

$$S(X) = \left\{ \ell \in \mathbb{Z}, \ \exists x, y \in X, \ d(x, y) \in \left[2^{\ell}, 2^{\ell+1}\right) \right\}$$

Elements of S(X) are called relevant scales. We denote R(X) = |S(X)|.

Example 3.9. If X is a finite connected graph with the graph distance, then $R(X) \leq \lceil \log_2 |X| \rceil$.

Definition 3.10 (Scale- τ embedding). Given $K, \tau > 0$, a map $f : X \to Y$ is called a scale- τ embedding with deficiency K if f is 1-Lipschitz and

$$d(f(x), f(y)) \ge \frac{1}{K}d(x, y),$$

for all $x, y \in X$ such that $d(x, y) \in [\tau, 2\tau)$.

Proposition 3.11. Given K > 0 and $1 \leq q < \infty$, assume that for all $\ell \in S(X)$, there exists $f_{\ell}: X \to \ell_q$ a scale- 2^{ℓ} embedding with deficiency K. Then

$$c_q(X) \leqslant K \cdot R(X)^{1/q}.$$

Proof. Define $f: X \to \left(\bigoplus_{\ell \in S(X)} \ell_q\right)_q \cong \ell_q$ by

$$f(x) = (f_{\ell}(x))_{\ell \in S(X)}.$$

Then, for all $x \neq y$ in X,

$$\|f(x) - f(y)\|_q = \left(\sum_{\ell \in S(X)} \|f_\ell(x) - f_\ell(y)\|_q^q\right)^{1/q} \leqslant R(X)^{1/q} d(x, y).$$

Moreover, there exists $\ell \in S(X)$ such that $d(x, y) \in [2^{\ell}, 2^{\ell+1})$, so

$$||f(x) - f(y)||_q \ge ||f_\ell(x) - f_\ell(y)||_q \ge \frac{1}{K}d(x,y).$$

Therefore $c_q(X) \leq \operatorname{dist}(f) \leq K \cdot R(X)^{1/q}$.

Notation 3.12. Given functions a, b defined on a set S with values in \mathbb{R}_+ , we write $a \leq b$ if

$$\exists C \in \mathbb{R}_+, \, \forall s \in S, \, a(s) \leqslant Cb(s).$$

Corollary 3.13. If for all $\ell \in S(X)$ there is an $(\varepsilon, 2^{\ell})$ -padded decomposition of X with $\varepsilon(x) \ge \frac{1}{K}$, then, for all $1 \le q < \infty$,

$$c_q(X) \leqslant K \cdot R(X)^{1/q}$$

Remark 3.14. Corollary 3.13 actually yields

$$c_q(X) \leqslant K \cdot R(X)^{\min\left\{\frac{1}{2}, \frac{1}{q}\right\}}$$

because $c_q(X) \leq c_2(X)$ by Corollary 1.19.

3.3 Existence of padded decompositions

Theorem 3.15. For all $\ell \in \mathbb{Z}$, there is an $(\varepsilon, 2^{\ell})$ -padded decomposition of X with

$$\varepsilon(x) = \frac{1}{16} \left(1 + \log \left(\frac{|B_{2^{\ell}}(x)|}{|B_{2^{\ell-3}}(x)|} \right) \right)^{-1}.$$

Proof. Fix $\ell \in \mathbb{Z}$ and set $\Delta = 2^{\ell}$. Fix an ordering < on X. Pick a pair $(\pi, \alpha) \in \mathfrak{S}_X \times \left(\frac{1}{4}, \frac{1}{2}\right)$ uniformly and independently at random. To this pair, there corresponds an element $P \in \mathcal{P}_X$ with clusters

$$C_y = B_{\alpha\Delta}(y) \setminus \bigcup_{\pi(z) < \pi(y)} B_{\alpha\Delta}(z),$$

for $y \in X$ (where we throw away the empty clusters). This gives a random partition, so we have a stochastic decomposition (formally, we are taking a pushforward of the product probability measure on $\mathfrak{S}_X \times \left(\frac{1}{4}, \frac{1}{2}\right)$). We now show that this decomposition is (ε, Δ) -padded, where ε is as in the statement of the theorem. Note that

diam
$$(C_y) \leq 2\alpha \Delta < \Delta$$
,

for all $y \in X$.

Now fix $x \in X$ and let $t \leq \frac{\Delta}{8}$. Let B be the event that $d(x, X \setminus P(x)) < t$. Our aim is to show that $\mathbb{P}(B) \leq \frac{1}{2}$ for $t = \varepsilon(x)\Delta$. Note that

$$B = \{B_t(x) \not\subseteq P(x)\} = \bigcap_{y \in X} \{B_t(x) \not\subseteq C_y\}$$

Let $y \in X$ such that $B_t(x) \cap C_y \neq \emptyset$; then $B_t(x) \cap B_{\alpha\Delta}(y) \neq \emptyset$, so $d(x, y) \leq \alpha\Delta + t \leq \frac{\Delta}{2} + \frac{\Delta}{8} < \Delta$, so $y \in B_{\Delta}(x)$. We denote by y_1, \ldots, y_b the elements of $B_{\Delta}(x)$ in order of increasing distance to x. Now let $y \in X$ such that $d(x, y) \leq \alpha\Delta + t$, with $\pi(y)$ minimal for <. Then, by minimality, $B_t(x)$ is disjoint from $\bigcup_{\pi(z) < \pi(y)} C_z = \bigcup_{\pi(z) < \pi(y)} B_{\alpha\Delta}(z)$.

This shows that, for the above choice of y, $B_t(x) \subseteq C_y$ if and only if $B_t(x) \subseteq B_{\alpha\Delta}(y)$. Now if B happens, then $B_t(x) \not\subseteq B_{\alpha\Delta}(y)$ for some y which can be taken as above, and hence

$$d(x,y) > \alpha \Delta - t \geqslant \frac{\Delta}{4} - \frac{\Delta}{8} = \frac{\Delta}{8}.$$

Let $a = |B_{\Delta/8}(x)|$, then $B_{\Delta/8}(x) = \{y_1, \ldots, y_a\}$ with the above notations. So $y = y_k$ for some $a < k \leq b$. This proves that

$$B \subseteq \bigcup_{k=a+1}^{b} E_k,$$

where E_k is the event that $\alpha \Delta - t < d(x, y_k) \leq \alpha \Delta + t$ with $\pi(y_k)$ minimal for <. Let

$$I_{k} = [d(x, y_{k}) - t, d(x, y_{k}) + t).$$

Then $E_k \subseteq \{\alpha \Delta \in I_k\}$, so

$$\mathbb{P}(B) \leqslant \sum_{k=a+1}^{b} \mathbb{P}(E_k) = \sum_{k=a+1}^{b} \mathbb{P}(E_k \mid \alpha \Delta \in I_k) \mathbb{P}(\alpha \Delta \in I_k).$$

If $\alpha \Delta \in I_k$, then $d(x, y_j) \leq d(x, y_k) \leq \alpha \Delta + t$ for all $1 \leq j \leq k$. If in addition E_k occurs, we must have $\pi(y_k) < \pi(y_j)$ for j < k, so

$$\mathbb{P}(B) \leqslant \sum_{k=a+1}^{b} \mathbb{P}\left(\forall j < k, \ \pi\left(y_{k}\right) < \pi\left(y_{j}\right) \mid \alpha\Delta \in I_{k}\right) \mathbb{P}\left(\alpha\Delta \in I_{k}\right)$$
$$= \sum_{k=a+1}^{b} \mathbb{P}\left(\forall j < k, \ \pi\left(y_{k}\right) < \pi\left(y_{j}\right)\right) \mathbb{P}\left(\alpha\Delta \mid I_{k}\right)$$
$$\leqslant \sum_{k=a+1}^{b} \frac{1}{k} \cdot \frac{8t}{\Delta} \leqslant \frac{8t}{\Delta} \log\left(\frac{b}{a}\right) \leqslant \frac{1}{2},$$

if $t = \varepsilon(x)\Delta$.

Remark 3.16. Note that, in Theorem 3.15, $\varepsilon(x) \gtrsim \frac{1}{\log|X|}$, so Corollary 3.13 yields

$$c_2(X) \lesssim (\log |X|) \sqrt{R(X)}.$$

3.4 Glueing Lemma and Bourgain's Embedding Theorem

Notation 3.17. For $x, y \in X$ and $\ell \in \mathbb{Z}$, define

$$\gamma_{\ell}(x,y) = \begin{cases} x & \text{if } |B_{2^{\ell}}(x)| \ge |B_{2^{\ell}}(y)| \\ y & \text{otherwise} \end{cases}$$

Lemma 3.18. Assume that for all $\ell \in \mathbb{Z}$, there is a 1-Lipschitz map $h_{\ell} : X \to \ell_q$ (with $1 \leq q < \infty$) such that $\|h_{\ell}(x)\|_q \leq 2^{\ell}$ for all $x \in X$. Then there exists $H : X \to \ell_q$ such that

(i) $\operatorname{Lip}(H) \lesssim (\log |X|)^{1/q}$,

- [l
		L

(ii) For all $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in [2^{\ell}, 2^{\ell+1})$, we have

$$\|H(x) - H(y)\|_{q} \ge \left(\log_{2} \frac{|B_{2^{\ell+1}}(\gamma_{\ell-3}(x,y))|}{|B_{2^{\ell-3}}(\gamma_{\ell-3}(x,y))|}\right)^{1/q} \|h_{\ell}(x) - h_{\ell}(y)\|_{q}$$

Proof. Let $\rho : \mathbb{R} \to \mathbb{R}_+$ be the piecewise affine function defined by $\rho_{|(-\infty,1/16]} = \rho_{|[16,+\infty)} = 0$ and $\rho_{|[1/8,8]} = 1$. Note that $\operatorname{Lip}(\rho) \leq 16$. Fix $t \in \{0, 1, \dots, \lceil \log_2 n \rceil - 1\}$ where n = |X|. For $x \in X$, let

$$R(x,t) = \sup\left\{R > 0, \ |B_R(x)| \le 2^t\right\}$$

The map $x \mapsto R(x,t)$ is 1-Lipschitz: given $x, y \in X$, if $|B_R(x)| \leq 2^t$, then $|B_{R-d(x,y)}(y)| \leq 2^t$, so that $R(y,t) \geq R - d(x,y)$. By taking the supremum over R, we have $R(y,t) \geq R(x,t) - d(x,y)$, from which it follows by symmetry that

$$|R(x,t) - R(y,t)| \le d(x,y)$$

Define

$$H_t: x \in X \longmapsto \left(\rho\left(\frac{R(x,t)}{2^\ell}\right)h_\ell(x)\right)_{\ell \in \mathbb{Z}} \in \left(\bigoplus_{\ell \in \mathbb{Z}} \ell_q\right)_q \cong \ell_q.$$

This is well-defined: if $x \in X$, then $\rho\left(\frac{R(x,t)}{2^{\ell}}\right) = 0$ if $R(x,t) \leq 2^{\ell-4}$ or $R(x,t) \geq 2^{\ell+4}$. Choose $m \in \mathbb{Z}$ such that $2^m \leq R(x,t) < 2^{m+1}$. Then $\rho\left(\frac{R(x,t)}{2^{\ell}}\right) = 0$ if $\ell \geq m+5$ or $\ell \leq m-4$. It follows that $H_t(x)$ has at most eight nonzero coordinates, so $H_t(x) \in (\bigoplus_{\ell \in \mathbb{Z}} \ell_q)_q$.

Next, we show that H_t is Lipschitz with $\operatorname{Lip}(H_t) \leq 16 \cdot 17$. Indeed, for $\ell \in \mathbb{Z}$,

$$\begin{split} \left\| \rho\left(\frac{R(x,t)}{2^{\ell}}\right) h_{\ell}(x) - \rho\left(\frac{R(y,t)}{2^{\ell}}\right) h_{\ell}(y) \right\|_{q} &\leq \left| \rho\left(\frac{R(x,t)}{2^{\ell}}\right) - \rho\left(\frac{R(y,t)}{2^{\ell}}\right) \right\| h_{\ell}(x)\|_{q} \\ &\quad + \rho\left(\frac{R(y,t)}{2^{\ell}}\right) \|h_{\ell}(y) - h_{\ell}(x)\|_{q} \\ &\leq 16 \left| \frac{R(x,t)}{2^{\ell}} - \frac{R(y,t)}{2^{\ell}} \right| \|h_{\ell}(x)\|_{q} + \|h_{\ell}(x) - h_{\ell}(y)\|_{q} \\ &\leq \frac{16}{2^{\ell}} d(x,y) \cdot 2^{\ell} + d(x,y) = 17d(x,y). \end{split}$$

Since both $H_t(x)$ and $H_t(y)$ have at most eight nonzero coordinates, H_t is $(16 \cdot 17)$ -Lipschitz. Now define

$$H: x \in X \longmapsto (H_t(x))_{0 \le t < \lceil \log_2 n \rceil} \in \left(\bigoplus_{t=0}^{\lceil \log_2 n \rceil - 1} \ell_q \right)_q \cong \ell_q.$$

It is clear that $\operatorname{Lip}(H) \lesssim (\log n)^{1/q}$, proving (i).

For (ii), fix $x, y \in X$ and choose $\ell \in \mathbb{Z}$ such that $d(x, y) \in [2^{\ell}, 2^{\ell+1})$. Thus the inequality

$$\|H_t(x) - H_t(y)\|_q \ge \|h_\ell(x) - h_\ell(y)\|_q$$
 (*)

holds provided that $\rho\left(\frac{R(x,t)}{2^{\ell}}\right) = \rho\left(\frac{R(y,t)}{2^{\ell}}\right) = 1$, which holds if $R(x,t), R(y,t) \in \left[2^{\ell-3}, 2^{\ell+3}\right]$. This will follow if $|B_{2^{\ell-3}}(x)| \leq 2^t$ and $|B_{2^{\ell+3}}(x)| > 2^t$, and similarly for y. So (*) holds for all t such that

$$2^{t} \in [|B_{2^{\ell-3}}(x)|, |B_{2^{\ell+3}}(x)|) \cap [|B_{2^{\ell-3}}(y)|, |B_{2^{\ell+3}}(y)|)$$

Without loss of generality, we may assume that $\gamma_{\ell-3}(x,y) = x$ (i.e. $|B_{2^{\ell-3}}(x)| \ge |B_{2^{\ell-3}}(y)|$). Since $d(x,y) < 2^{\ell+1}$, we have $B_{2^{\ell+1}}(x) \subseteq B_{2^{\ell+3}}(y)$, so (*) holds if $2^t \in [|B_{2^{\ell-3}}(x)|, |B_{2^{\ell+1}}(x)|)$. Hence,

$$\|H(x) - H(y)\|_{q} = \left(\sum_{t=0}^{\lceil \log_{2} n \rceil - 1} \|H_{t}(x) - H_{t}(y)\|_{q}^{q}\right)^{1/q} \ge \left(\log_{2} \frac{|B_{2^{\ell+1}}(x)|}{|B_{2^{\ell-3}}(x)|}\right)^{1/q} \|h_{\ell}(x) - h_{\ell}(y)\|_{q}.$$

Lemma 3.19. Let $1 \leq q < \infty$. Then there exists $H: X \to \ell_q$ such that

(i) Lip(H) ≤ (log |X|)^{1/q},
(ii) For all x, y ∈ X and l ∈ Z such that d(x, y) ∈ [2^l, 2^{l+1}), if log₂ |B_{2^{l-1}(x)}|/|B_{2^{l-2}(x)}| < 1, then ||H(x) - H(y)||_q ≥ d(x, y).

Proof. Fix $t \in \{1, 2, ..., \lceil \log_2 n \rceil\}$ where n = |X|. Let W be a random subset of X where each $x \in X$ is placed in W independently at random with probability 2^{-t} . Let \mathbb{P}_t be the resulting probability measure on the power set $\mathcal{P}(X)$. Hence

$$\mathbb{P}_t(W) = 2^{-t|W|} \left(1 - 2^{-t}\right)^{n-|W|}$$

for any $W \subseteq X$. Note that there is an isomorphism

$$L_q\left(\mathcal{P}(X),\mathbb{P}_t\right)\cong \ell_q^{2^n}$$

given by $g \mapsto \left(\mathbb{P}_t(W)^{1/q}g(W)\right)_{W \in \mathcal{P}(X)}$. Define

$$H_t: x \in X \longmapsto (d(x, W))_{W \in \mathcal{P}(X)} \in L_q(\mathcal{P}(X), \mathbb{P}_t) \cong \ell_q^{2^n}.$$

Then for all $x, y \in X$,

$$\|H_t(x) - H_t(y)\|_q = \left(\int_{\mathcal{P}(X)} |d(x, W) - d(y, W)|^q \, \mathrm{d}\mathbb{P}_t(W)\right)^{1/q} \leqslant d(x, y),$$

so H_t is 1-Lipschitz.

Now define

$$H: x \in X \longmapsto (H_t(x))_{1 \le t \le \lceil \log_2 n \rceil} \in \left(\bigoplus_{t=1}^{\lceil \log_2 n \rceil} \ell_q^{2^n} \right)_q \hookrightarrow_{\cong} \ell_q.$$

Then $\operatorname{Lip}(H) \lesssim (\log n)^{1/q}$, showing (i).

For (ii), fix $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in [2^{\ell}, 2^{\ell+1})$ and $\log_2 \frac{|B_{2^{\ell-1}}(x)|}{|B_{2^{\ell-2}}(x)|} < 1$. Fix $s \in \{1, 2, \dots, \lceil \log_2 n \rceil\}$ s.t. $|B_{2^{\ell-1}}(x)| \in [2^{s-1}, 2^s]$. Note that $|B_{2^{\ell-2}}(x)| \in [2^{s-2}, 2^s]$. Consider the four events:

$$E_x = \left\{ W \in \mathcal{P}(X), \ d(x, W) \leq 2^{\ell-2} \right\} = \left\{ W \in \mathcal{P}(X), \ W \cap B_{2^{\ell-2}}(x) \neq \varnothing \right\},$$

$$F_x = \left\{ W \in \mathcal{P}(X), \ d(x, W) > 2^{\ell-1} \right\} = \left\{ W \in \mathcal{P}(X), \ W \cap B_{2^{\ell-1}}(x) = \varnothing \right\},$$

$$E_y = \left\{ W \in \mathcal{P}(X), \ d(y, W) \leq \frac{3}{2} 2^{\ell-2} \right\} = \left\{ W \in \mathcal{P}(X), \ W \cap B_{\frac{3}{2} 2^{\ell-2}}(y) \neq \varnothing \right\},$$

$$F_y = \mathcal{P}(X) \setminus E_y = \left\{ W \in \mathcal{P}(X), \ W \cap B_{\frac{3}{2} 2^{\ell-2}}(y) = \varnothing \right\}.$$

Since $d(x,y) \ge 2^{\ell}$, $B_{2^{\ell-1}}(x) \cap B_{\frac{3}{2}2^{\ell-2}}(y) = \emptyset$, and hence any of E_x, F_x is independent from E_y, F_y . Using the fact that $\left(\left(1-\frac{1}{k}\right)^k\right)_{k\ge 1}$ is increasing and converges to e^{-1} , we have

$$\mathbb{P}_{s}(E_{x}) = 1 - \left(1 - 2^{-s}\right)^{\left|B_{2^{\ell-2}}(x)\right|} \ge 1 - \left(1 - 2^{-s}\right)^{2^{s-2}} \ge 1 - e^{-1/4} > 0,$$

$$\mathbb{P}_{s}(F_{x}) = \left(1 - 2^{-s}\right)^{\left|B_{2^{\ell-1}}(x)\right|} \ge \left(1 - 2^{-s}\right)^{2^{s}} \ge \left(1 - \frac{1}{2}\right)^{2} = \frac{1}{4} > 0.$$

Therefore,

$$\begin{split} \left\| H(x) - H(y) \right\|_{q} &\geq \left\| H_{s}(x) - H_{s}(y) \right\|_{q} \\ &= \left(\int_{\mathcal{P}(X)} \left| d(x, W) - d(y, W) \right|^{q} \, \mathrm{d}\mathbb{P}_{s}(W) \right)^{1/q} \\ &\geq \left(\int_{E_{x} \cap F_{y}} \left| d(x, W) - d(y, W) \right|^{q} \, \mathrm{d}\mathbb{P}_{s}(W) + \int_{E_{y} \cap F_{x}} \left| d(x, W) - d(y, W) \right|^{q} \, \mathrm{d}\mathbb{P}_{s}(W) \right)^{1/q} \\ &\geq \left(2^{(\ell-3)q} \mathbb{P}_{s}\left(F_{y}\right) + 2^{(\ell-3)q} \mathbb{P}_{s}\left(E_{y}\right) \right)^{1/q} \quad \text{because } \mathbb{P}_{s}\left(E_{x} \cap F_{y}\right) = \mathbb{P}_{s}\left(E_{x}\right) \mathbb{P}_{s}\left(F_{y}\right), \text{ etc.} \\ &\geq 2^{\ell+1} \geq d(x, y). \qquad \Box$$

Theorem 3.20 (Glueing Lemma). Let $1 \leq q < \infty$ and K > 0. Assume that for all $\ell \in \mathbb{Z}$, there is a scale- 2^{ℓ} embedding $f_{\ell}: X \to \ell_q$ of deficiency K and such that $\|f_{\ell}(x)\| \leq 2^{\ell}$ for all $x \in X$. Then

$$c_q(X) \lesssim K^{1-1/q} \left(\log |X| \right)^{1/q}$$

Proof. Apply Lemma 3.18 with $h_{\ell} = f_{\ell}$ to get H which we will call $F : X \to \ell_q$ such that $\operatorname{Lip}(F) \leq (\log n)^{1/q}$ (where n = |X|) and, for all $x, y \in X$ and $\ell \in \mathbb{Z}$, if $d(x, y) \in [2^{\ell}, 2^{\ell+1})$, then

$$\|F(x) - F(y)\|_{q} \ge \left(\log_{2} \frac{|B_{2^{\ell+1}}(\gamma_{\ell-3}(x,y))|}{|B_{2^{\ell-3}}(\gamma_{\ell-3}(x,y))|}\right)^{1/q} \underbrace{\|f_{\ell}(x) - f_{\ell}(y)\|_{q}}_{\ge \frac{1}{K}d(x,y)}$$

From Theorem 3.15 and Lemma 3.7, we get for all $\ell \in \mathbb{Z}$ a 1-Lipschitz map $g_{\ell} : X \to \ell_q$ such that $\|g_{\ell}(x)\|_q \leq 2^{\ell}$ and for all $x, y \in X$, if $d(x, y) \in [2^{\ell}, 2^{\ell+1})$, then

$$||g_{\ell}(x) - g_{\ell}(y)|| \gtrsim \left(1 + \log\left(\frac{|B_{2^{\ell}}(x)|}{|B_{2^{\ell-3}}(x)|}\right)\right)^{-1} d(x, y).$$

Apply Lemma 3.18 with $h_{\ell} = g_{\ell}$ to get H which we call G satisfying (i) and (ii) of Lemma 3.18. Let H be the function from Lemma 3.19. Define

$$\Phi: x \in X \longmapsto (F(x), G(x), H(x)) \in (\ell_q \oplus \ell_q \oplus \ell_q)_q \cong \ell_q.$$

Clearly, $\operatorname{Lip}(\Phi) \lesssim (\log n)^{1/q}$.

Fix $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in \left[2^{\ell}, 2^{\ell+1}\right)$. Let $A = \frac{|B_{2^{\ell+1}}(x)|}{|B_{2^{\ell-3}}(x)|}$ and assume for example that $\gamma_{\ell-3}(x, y) = x$. If A < 1, then by Lemma 3.19, $\|H(x) - H(y)\|_q \gtrsim d(x, y)$. If $A \ge 1$, then

$$\begin{aligned} \|F(x) - F(y)\|_q &\ge A^{1/q} \frac{1}{K} d(x, y), \\ \|G(x) - G(y)\|_q &\ge \frac{A^{1/q}}{1+A} d(x, y). \end{aligned}$$

Considering the cases $A \ge K$ and $A \le K$, we get a lower bound $(K^{1-1/q})^{-1} d(x, y)$, so dist $(\Phi) \lesssim K^{1-1/q} (\log n)^{1/q}$.

Corollary 3.21 (Bourgain's Embedding Theorem). For any finite metric space X,

$$c_2(X) \lesssim \log |X|$$
.

Proof. By Theorem 3.15, there exists an $(\varepsilon, 2^{\ell})$ -padded decomposition of X for all $\ell \in \mathbb{Z}$, with $\varepsilon(x) \gtrsim \frac{1}{\log|X|}$. By Lemma 3.7, for all $\ell \in \mathbb{Z}$, there exists a scale- 2^{ℓ} embedding $f_{\ell} : X \to \ell_2$ with deficiency $K \lesssim \log |X|$ and $||f_{\ell}(x)|| \leq 2^{\ell}$ for all $x \in X$. It follows by Theorem 3.20 that

$$c_2(X) \lesssim (\log |X|)^{1-1/2} (\log |X|)^{1/2} = \log |X|.$$

4 Lower bounds on distortion and Poincaré inequalities

4.1 John's Lemma

Remark 4.1. Bourgain's Embedding Theorem (Corollary 3.21) shows that $c_2(X) \leq \log |X|$ for any finite metric space X. One might wonder if this is the best possible.

Definition 4.2 (Banach-Mazur distance). Given two normed spaces X, Y, we define the Banach-Mazur distance between them by

$$d(X,Y) = \inf_{\substack{T:X \to Y\\ linear \ isomorphism}} \|T\| \cdot \|T^{-1}\| \in [1,\infty] \,.$$

Proposition 4.3. Let X, Y, Z be normed spaces.

- (i) $d(X,Z) \leq d(X,Y)d(Y,Z)$.
- (ii) If $X \cong Y$ (isometric isomorphism), then d(X, Y) = 1, but the converse is false in general.

Definition 4.4 (Banach-Mazur compactum). Let \mathcal{M}_n be the class of isometric isomorphism types of *n*-dimensional normed spaces. On \mathcal{M}_n , log *d* is a metric such that \mathcal{M}_n is compact. It is called the Banach-Mazur compactum.

Theorem 4.5 (John's Lemma). If X is an n-dimensional normed space, then

$$d\left(X,\ell_2^n\right) \leqslant \sqrt{n}$$

Proof. We may assume that X is \mathbb{R}^n with some norm $\|\cdot\|$. Let

$$K = B_X = \{x \in X, \|x\| \le 1\}$$

Note that K is a convex and symmetric (i.e. -K = K) body (i.e. it is compact with nonempty interior). Conversely, if K is a symmetric convex body, then K is the unit ball of a norm $\|\cdot\|$ on \mathbb{R}^n defined by

$$||x|| = \inf \{t > 0, x \in tK\}$$

An *ellipsoid* is a subset $E \subseteq \mathbb{R}^n$ such that $E = T(B_{\ell_2^n})$, where $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism. Now note that

$$d(X, \ell_2^n) \leqslant \sqrt{n} \iff \exists E \text{ ellipsoid}, \ n^{-1/2}E \subseteq K \subseteq E.$$

Therefore, the theorem we want to prove is equivalent to: for every symmetric convex body $K \subseteq \mathbb{R}^n$, there is an ellipsoid $E \subseteq \mathbb{R}^n$ such that $n^{-1/2}E \subseteq K \subseteq E$.

Let $K \subseteq \mathbb{R}^n$ be a symmetric convex body. By compactness, there exists an ellipsoid E of minimal volume such that $K \subseteq E$. By applying a linear isomorphism, we may assume without loss of generality that $E = B_{\ell_2^n}$. Now assume for contradiction that $n^{-1/2}E \not\subseteq K$. Then there exists $z \in \partial K = S_X$ such that $\|z\|_2 < \frac{1}{\sqrt{n}}$. By Hahn-Banach, there is a linear functional $f : \mathbb{R}^n \to \mathbb{R}$ such that f(z) = 1 and $\|f(x)\| \leq 1$ for all $x \in K$. Consider

$$H = \{ x \in \mathbb{R}^n, \ f(x) = 1 \} \ni z$$

K lies between H and -H. After applying a rotation, we may assume without loss of generality that

$$H = \left\{ x \in \mathbb{R}^n, \ x_1 = \frac{1}{c} \right\}$$

for some $c > \sqrt{n}$ (because *H* contains a point *z* with $||z||_2 < \frac{1}{\sqrt{n}}$). Given a > b > 0, consider the ellipsoid

$$E_{a,b} = \left\{ x \in \mathbb{R}^n, \ a^2 x_1^2 + \sum_{i=2}^n b^2 x_i^2 \leqslant 1 \right\},\$$

i.e. the image of $E = B_{\ell_2^n}$ under the linear map with matrix diag $(a^{-1}, b^{-1}, \ldots, b^{-1})$. It follows that

$$\operatorname{vol}(E_{a,b}) = \frac{1}{ab^{n-1}}\operatorname{vol}(E).$$

For $x \in K \subseteq E$, we have

$$a^{2}x_{1}^{2} + \sum_{i=2}^{n} b^{2}x_{i}^{2} \leqslant \left(a^{2} - b^{2}\right)x_{1}^{2} + b^{2} \left\|x\right\|_{2}^{2} \leqslant \frac{a^{2} - b^{2}}{c^{2}} + b^{2}.$$

We claim that there exist a > b > 0 such that $\frac{a^2-b^2}{c^2} + b^2 \leq 1$ and $ab^{n-1} > 1$. If the claim is true, then vol $(E_{a,b}) < \text{vol}(E)$ and $K \subseteq E_{a,b}$, contradicting the minimality of vol(E).

To prove the claim, fix $a \in (0, c)$ and set $b = \sqrt{\frac{c^2 - a^2}{c^2 - 1}}$. Then $\frac{a^2 - b^2}{c^2} + b^2 = 1$; let $f(a) = ab^{n-1} = a\left(\frac{c^2 - a^2}{c^2 - 1}\right)^{\frac{n-1}{2}}$. We have f(1) = 1 and

$$f'(a) = \left(\frac{c^2 - a^2}{c^2 - 1}\right)^{\frac{n-1}{2}} + a\frac{n-1}{2} \cdot \frac{-2a}{c^2 - 1} \left(\frac{c^2 - a^2}{c^2 - 1}\right)^{\frac{n-3}{2}}$$
$$= \left(\frac{c^2 - a^2}{c^2 - 1}\right)^{\frac{n-3}{2}} \left(\frac{c^2 - a^2}{c^2 - 1} - \frac{(n-1)a^2}{c^2 - 1}\right)$$
$$= \left(\frac{c^2 - a^2}{c^2 - 1}\right)^{\frac{n-3}{2}} \frac{c^2 - na^2}{c^2 - 1}.$$

Since $c^2 > n$, f'(1) > 0, so there exists a > 1 such that f(a) > f(1) = 1. This concludes the proof.

- **Remark 4.6.** (i) If X, Y are n-dimensional normed spaces, then $d(X,Y) \leq n$. In fact, Gluskin proved that diam $\mathcal{M}_n \gtrsim n$. Therefore, according to John's Lemma, ℓ_2^n can be thought of as the centre of \mathcal{M}_n .
 - (ii) For a finite metric space X, the analogue of dimension is $\log |X|$. By analogy with John's Lemma, one might hope that $c_2(X) \lesssim \sqrt{\log |X|}$.

4.2 Poincaré inequalities

Definition 4.7 (Poincaré inequality). Let X, Y be metric spaces. A Poincaré inequality for functions $f: X \to Y$ is an inequality of the form

$$\sum_{u,v\in X} a_{uv} \Psi\left(d\left(f(u), f(v)\right)\right) \geqslant \sum_{u,v\in X} b_{uv} \Psi\left(d\left(f(u), f(v)\right)\right),\tag{*}$$

where a, b are finitely-supported functions $X \times X \to \mathbb{R}_+$ and Ψ is an increasing function $\mathbb{R}_+ \to \mathbb{R}_+$. The Poincaré ratio is defined by

$$P_{a,b,\Psi}(X) = \frac{\sum_{u,v \in X} b_{uv} \Psi\left(d(u,v)\right)}{\sum_{u,v \in X} a_{uv} \Psi\left(d(u,v)\right)},$$

whenever this makes sense.

Proposition 4.8. Let $\Psi(t) = t^p$, with $1 \leq p < \infty$. Assume that X, Y are metric spaces satisfying the Poincaré inequality (*) for some a, b, for all maps $f : X \to Y$. Then

$$c_Y(X) \ge \left(P_{a,b,t^p}(X)\right)^{1/p}.$$

Proof. Let $f: X \to Y$ be a bilipschitz embedding. Then

$$1 \ge \frac{\sum_{u,v \in X} b_{uv} \left(d \left(f(u), f(v) \right) \right)^p}{\sum_{u,v \in X} a_{uv} \left(d \left(f(u), f(v) \right)^p \right)} \ge \frac{1}{\operatorname{dist}(f)^p} \frac{\sum_{u,v \in X} b_{uv} \left(d(u,v) \right)^p}{\sum_{u,v \in X} a_{uv} \left(d(u,v) \right)^p} = \frac{P_{a,b,t^p}(X)}{\left(\operatorname{dist}(f)\right)^p}.$$

Hence $\operatorname{dist}(f) \ge (P_{a,b,t^p}(X))^{1/p}$. Taking the infimum over all f gives the result.

Example 4.9 (Short Diagonal Lemma). In ℓ_2 ,

$$\|x_1 - x_3\|_2^2 + \|x_2 - x_4\|_2^2 \leq \|x_1 - x_2\|_2^2 + \|x_2 - x_3\|_2^2 + \|x_3 - x_4\|_2^2 + \|x_4 - x_1\|_2^2,$$

for all $x_1, \ldots, x_4 \in \ell_2$. This is a Poincaré inequality for functions $C_4 \to \ell_2$. By Proposition 4.8,

$$c_2\left(C_4\right) \geqslant \sqrt{2}.$$

In fact, $c_2(C_4) = \sqrt{2}$.

4.3 Hahn-Banach Theorem

Definition 4.10 (Positive homogeneous and subadditive functionals). Let X be a real vector space. A functional $p: X \to \mathbb{R}$ is said to be

- (i) Positive homogeneous if p(tx) = tp(x) for all $t \ge 0$ and $x \in X$,
- (ii) Subadditive if $p(x+y) \leq p(x) + p(y)$ for all $x, y \in X$.

For instance, a seminorm on X is both positive homogeneous and subadditive.

Theorem 4.11 (Hahn-Banach). Let X be a real vector space and $p: X \to \mathbb{R}$ be a positive homogeneous subadditive functional. If Y is a subspace of X and $g: Y \to \mathbb{R}$ is a linear map such that $g \leq p_{|Y}$, then there exists a linear map $f: X \to \mathbb{R}$ such that $f_{|Y} = g$ and $f \leq p$.

Proof. The proof is similar to that of Lemma 2.13.

Consider the set \mathcal{P} of pairs (Z, h), where Z is a subspace of X containing $Y, h : Z \to \mathbb{R}$ is linear, $h_{|Y} = g$ and $h \leq p_{|Z}$. This is a poset with $(Z_1, h_1) \leq (Z_2, h_2)$ if and only if $Z_1 \subseteq Z_2$ and $h_{2|Z_1} = h_1$. Note that $(Y, g) \in \mathcal{P}$, so $\mathcal{P} \neq \emptyset$. Moreover, given a nonempty chain $\mathcal{C} = \{(Z_i, h_i), i \in I\} \subseteq \mathcal{P}$, set $Z = \bigcup_{i \in I} Z_i$ and define $h : Z \to \mathbb{R}$ by $h_{|Z_i} = h_i$ for all $i \in I$. Hence (Z, h) is an upper bound for \mathcal{C} .

By Zorn's Lemma, \mathcal{P} has a maximal element (W, k). It suffices to show that W = X. Assume not and take $x_0 \in X \setminus W$; let $W_1 = W \oplus \mathbb{R} x_0$. Given $\alpha \in \mathbb{R}$ (to be chosen later), define $k_1 : W_1 \to \mathbb{R}$ by

$$k_1\left(w + \lambda x_0\right) = k(w) + \lambda \alpha$$

for $w \in W$ and $\lambda \in \mathbb{R}$. If we can choose α in such a way that $k_1 \leq p_{|W_1}$, then we will have $(W, k) < (W_1, k_1)$, which will contradict the maximality of (W, k). Note that k is linear and p is positive homogeneous, so it suffices to find $\alpha \in \mathbb{R}$ such that, for all $w \in W$,

$$k_1(w + x_0) \leq p(w + x_0)$$
 and $k_1(w - x_0) \leq p(w - x_0)$.

In other words, we need $k(w) + \alpha \leq p(w + x_0)$ and $k(w) - \alpha \leq p(w - x_0)$ for all $w \in W$, or equivalently,

$$k(z) - p(z - x_0) \leq \alpha \leq -k(w) + p(w + x_0)$$

for all $w, z \in W$. Therefore, it suffices to show that

$$\sup_{z \in W} (k(z) - p(z - x_0)) \leq \inf_{w \in W} (-k(w) + p(w + x_0)).$$

But this is true because, for $w, z \in W$,

$$k(z) + k(w) = k(z+w) \le p(z+w) = p(z-x_0+w+x_0) \le p(z-x_0) + p(w+x_0).$$

Corollary 4.12 (Hahn-Banach Extension Theorem). Let X be a real normed space.

- (i) If Y is a subspace of X and $g \in Y^*$, then there exists $f \in X^*$ such that $f_{|Y} = g$ and ||f|| = ||g||.
- (ii) Given $x_0 \in X \setminus \{0\}$, there exists $f \in S_{X^*}$ such that $f(x_0) = ||x_0||$.

Proof. (i) Define $p(x) = ||g|| \cdot ||x||$. Then p is a seminorm (hence it is positive homogeneous and subadditive), and we have $g(y) \leq p(y)$ for all $y \in Y$. By Theorem 4.11, there exists $f: X \to \mathbb{R}$ linear such that $f_{|Y} = g$ and $f(x) \leq ||g|| \cdot ||x||$. Applying the last inequality to -x yields $-f(x) \leq ||g|| \cdot ||x||$, from which it follows that $|f(x)| \leq ||g|| \cdot ||x||$, i.e. $f \in X^*$ and $||f|| \leq ||g||$. But $f_{|Y} = g$, so ||f|| = ||g||.

(ii) Let $Y = \mathbb{R}x_0$ and define $g: Y \to \mathbb{R}$ by $g(\lambda x_0) = \lambda ||x_0||$ for $\lambda \in \mathbb{R}$. Then $g \in Y^*$ and ||g|| = 1, so by (i), there exists $f \in S_{X^*}$ such that $f_{|Y} = g$; in particular $f(x_0) = ||x_0||$.

Remark 4.13. If Z is a complex vector space, let $Z_{\mathbb{R}}$ be Z viewed as a real vector space. Then for a complex normed space, the map $(X^*)_{\mathbb{R}} \to (X_{\mathbb{R}})^*$ given by $f \mapsto \Re(f)$ is an isometric embedding. This allows one to extend the Hahn-Banach Theorem to the complex case.

4.4 Hahn-Banach Separation Theorem

Definition 4.14 (Minkowski functional). Given a normed space X and a convex subset $C \subseteq X$ with $0 \in \mathring{C}$, the Minkowski functional of C is

$$\mu_C : x \in X \longmapsto \inf \{t > 0, \ x \in tC\} \in \mathbb{R}.$$

This is well-defined due to the fact that $0 \in \check{C}$.

Example 4.15. If $C = B_X$, then $\mu_C = \|\cdot\|$.

Lemma 4.16. Let X be a normed space and $C \subseteq X$ be a convex subset with $0 \in \mathring{C}$. Then the Minkowski functional μ_C is positive homogeneous and subadditive. Moreover,

$$\{x \in X, \ \mu_C(x) < 1\} \subseteq C \subseteq \{x \in X, \ \mu_C(x) \leq 1\},\$$

where the first inclusion is an equality if C is open, and the second one is an equality if C is closed.

Proof. Positive homogeneity. Let $t \ge 0$ and $x \in X$. If t = 0, then $0 \in sC$ for all s > 0, so $\mu_C(0) = 0$. If t > 0, then for any s > 0, we have $tx \in sC$ if and only if $x \in \frac{s}{t}C$, so $\mu_C(tx) = t\mu_C(x)$.

Subadditivity. Fix $x, y \in X$ and let $s > \mu_C(x)$ and $t > \mu_C(y)$. By definition, there exists $\mu_C(x) \leq s' \leq s$ such that $x \in s'C$. Thus

$$\frac{x}{s} = \frac{s'}{s} \cdot \frac{x}{s'} + \left(1 - \frac{s'}{s}\right) \cdot 0 \in C$$

since C is convex, so $x \in sC$. Similarly, $y \in tC$. Therefore,

$$\frac{x+y}{s+t} = \frac{s}{s+t} \cdot \frac{x}{s} + \frac{t}{s+t} \cdot \frac{y}{t} \in C.$$

This shows that $\mu_C(x+y) \leq s+t$. By taking the infimum over s and t, we obtain $\mu_C(x+y) \leq \mu_C(x) + \mu_C(y)$.

Inclusions. If $\mu_C(x) < 1$, then by the above, $x \in C$, so $\{x, \mu_C(x) < 1\} \subseteq C$. If $x \in C$, then $\mu_C(x) \leq 1$ by definition, so $C \subseteq \{x, \mu_C(x) \leq 1\}$.

Equality case when C is open. If $x \in C$, then since $\left(1 + \frac{1}{n}\right) x \xrightarrow[n \to \infty]{} x$ and C is open, there exists $n \ge 1$ such that $\left(1 + \frac{1}{n}\right) x \in C$, so $x \in \frac{n}{n+1}C$ and $\mu_C(x) \le \frac{n}{n+1} < 1$.

Equality case when C is closed. If $\mu_C(x) \leq 1$, then $\mu_C\left(\frac{n}{n+1}x\right) \leq \frac{n}{n+1} < 1$ for all $n \geq 1$, so $\frac{n}{n+1}x \in C$ for all $n \geq 1$. Since $\frac{n}{n+1}x \xrightarrow[n \to \infty]{} x$ and C is closed, $x \in C$.

Remark 4.17. In Lemma 4.16, if C is symmetric, then μ_C is in fact a seminorm. If in addition C is bounded, then μ_C is a norm. We used this in the proof of John's Lemma (Theorem 4.5).

Theorem 4.18. Let X be a real normed space. Let C be an open convex subset of X containing 0 and let $x_0 \in X \setminus C$. Then there exists $f \in X^*$ such that $f(x) < f(x_0)$ for all $x \in C$ (note in particular that $f \neq 0$).

Proof. Let $Y = \mathbb{R}x_0$ and define $g: Y \to \mathbb{R}$ by $g(\lambda x_0) = \lambda \mu_C(x_0)$. Then g is linear, and we have

$$\forall \lambda \ge 0, g(\lambda x_0) = \lambda \mu_C(x_0) = \mu_C(\lambda x_0), \\ \forall \lambda \le 0, g(\lambda x_0) = \lambda \mu_C(x_0) \le 0 \le \mu_C(\lambda x_0)$$

so $g \leq \mu_{C|Y}$. But μ_C is positive homogeneous and subadditive by Lemma 4.16, so Theorem 4.11 implies that there exists $f: X \to \mathbb{R}$ linear such that $f_{|Y} = g$ and $f \leq \mu_C$.

Since $x_0 \notin C$, $\mu_C(x_0) \ge 1$. Therefore, as C is open, we have

$$\forall x \in C, \ f(x) \leq \mu_C(x) < 1 \leq \mu_C(x_0) = f(x_0).$$

Furthermore, $0 \in C = \mathring{C}$, so there exists $\delta > 0$ such that $\delta B_X \subseteq C$, hence $|f(x)| \leq 1$ on δB_X , so $f \in X^*$.

Corollary 4.19 (Hahn-Banach Separation Theorem). Let A, B be nonempty disjoint convex sets in a normed space X.

(i) If A is open, then there exist $f \in X^*$ and $\alpha \in \mathbb{R}$ such that, for all $a \in A$ and $b \in B$,

$$f(a) < \alpha \leqslant f(b).$$

(ii) If A is compact and B is closed, then there exists $f \in X^*$ and $\alpha \in \mathbb{R}$ such that

$$\sup_{A} f < \alpha < \inf_{B} f$$

In both cases, the hyperplane $\{x \in X, f(x) = \alpha\}$ separates A and B.

Proof. (i) Fix $a_0 \in A$ and $b_0 \in B$, set $x_0 = -a_0 + b_0$. Let

$$C = A - B + x_0 = \{(a - b) + x_0, a \in A, b \in B\}.$$

Then C is convex and open (because A is open), $0 \in C$ and $x_0 \notin C$ (since $A \cap B = \emptyset$). By Theorem 4.18, there exists $f \in X^*$ such that, for all $x \in C$, $f(x) < f(x_0)$. Hence, for all $a \in A$ and for all $b \in B$,

$$f\left(a - b + x_0\right) < f\left(x_0\right),$$

or in other words f(a) < f(b). Set $\alpha = \inf_B f$. Certainly $f(b) \ge \alpha$ for all $b \in B$. Also, $f(a) \le \alpha$ for all $a \in A$. Since $f \ne 0$, we can fix $u \in X$ such that f(u) > 0. Now for $a \in A$, since A is open, there exists $n \ge 1$ such that $a + \frac{1}{n}u \in A$; it follows that

$$f(a) < f(a) + \frac{1}{n}f(u) = f\left(a + \frac{1}{n}u\right) \leq \alpha.$$

(ii) For $a \in A$, d(a, B) > 0 since B is closed and $a \notin B$. Since A is compact, we set

$$\delta = \inf_{a \in A} d\left(a, B\right) > 0$$

Then $A' = \{x \in X, d(x, A) < \delta\}$ is an open convex set with $A' \cap B = \emptyset$. By (i), there exists $f \in X^*$ and $\beta \in \mathbb{R}$ such that

$$f(a') < \beta \leqslant f(b)$$

for all $a' \in A'$ and $b \in B$. As A is compact, $\sup_A f < \beta \leq \inf_B f$, so it suffices to choose $\sup_A f < \alpha < \beta$.

4.5 Optimality of Poincaré inequalities

Theorem 4.20. Let $1 \leq p < \infty$ and let X be a finite metric space. Then

$$c_p(X) = \sup (P_{a,b,t^p}(X))^{1/p},$$

where the supremum is taken over all nonnegative nontrivial $X \times X$ matrices a, b for which the Poincaré inequality

$$\sum_{u,v\in X} a_{uv} \|f(u) - f(v)\|_p^p \ge \sum_{u,v\in X} b_{uv} \|f(u) - f(v)\|_p^p,$$
(*)

holds for all functions $f: X \to L_p$.

Proof. The inequality (\geq) follows from Proposition 4.8. It remains to prove (\leq) .

Note that, taking $a_{uv} = b_{uv} = 1$ for all $u, v \in X$, the inequality (*) holds trivially, and $P_{a,b,t^p}(X) = 1$, so if $c_p(X) = 1$, then we are done.

Now assume that $1 < c < c_p(X)$. Write $X = \{x_1, \ldots, x_n\}$. Consider the set

$$B = \left\{ \left(\|f(x_i) - f(x_j)\|_p^p \right)_{1 \le i < j \le n}, \ f: X \to L_p \right\} \subseteq \mathbb{R}^N,$$

with $N = \binom{n}{2}$. From the proof of Theorem 2.24, we know that *B* is a cone (and hence *B* is convex), and $B \neq \emptyset$ (for instance, $0 \in B$). Let

$$A = \left\{ \left(\theta_{ij}\right)_{1 \leq i < j \leq n} \in \mathbb{R}^N, \ \exists r > 0, \ \forall i, j, \ r \cdot d \left(x_i, x_j\right)^p < \theta_{ij} < rc^p \cdot d \left(x_i, x_j\right) \right\}.$$

Then A is open, convex, and nonempty since c > 1. Moreover, $A \cap B = \emptyset$ since $c < c_p(X)$. By the Hahn-Banach Separation Theorem (Corollary 4.19), there exists a linear map $\lambda : \mathbb{R}^N \to \mathbb{R}$ and an $\alpha \in \mathbb{R}$ such that

$$\lambda(\theta) < \alpha \leqslant \lambda(\varphi)$$

for all $\theta \in A$ and $\varphi \in B$. Note that $0 \in B$, so $\alpha \leq 0$. Moreover, by continuity of λ , $\lambda(\theta) \leq \alpha$ for all $\theta \in \overline{A}$. But $0 \in \overline{A}$, so $0 \leq \alpha$; hence $\alpha = 0$. Now we can write $\lambda = (\lambda_{ij})_{1 \leq i \leq n}$, where

$$\lambda(\theta) = \sum_{1 \leqslant i < j \leqslant n} \lambda_{ij} \theta_{ij}.$$

Set $a_{ij} = \max{\{\lambda_{ij}, 0\}}$ and $b_{ij} = \max{\{-\lambda_{ij}, 0\}}$, so that $\lambda_{ij} = a_{ij} - b_{ij}$. For $f: X \to L_p$, we have

$$\sum_{1 \leq i < j \leq n} \lambda_{ij} \left\| f\left(x_i\right) - f\left(x_j\right) \right\|_p^p \ge 0,$$

or in other words,

$$\sum_{1 \le i < j \le n} a_{ij} \| f(x_i) - f(x_j) \|_p^p \ge \sum_{1 \le i < j \le n} b_{ij} \| f(x_i) - f(x_j) \|_p^p.$$

This is a Poincaré inequality. Define

$$\theta_{ij} = \begin{cases} c^p \cdot d \left(x_i, x_j \right)^p & \text{if } \lambda_{ij} \ge 0\\ d \left(x_i, x_j \right)^p & \text{if } \lambda_{ij} < 0 \end{cases}$$

Then $\theta = (\theta_{ij})_{1 \leq i < j \leq n} \in \overline{A}$, so

$$0 \ge \lambda(\theta) = \sum_{1 \le i < j \le n} a_{ij} c^p \cdot d(x_i, x_j)^p - \sum_{1 \le i < j \le n} b_{ij} \cdot d(x_i, x_j)^p,$$

which proves that $P_{a,b,t^p}(X) \ge c^p$.

4.6 Discrete Fourier analysis on the Hamming cube

Notation 4.21. Recall that the Hamming cube is the graph $H_n = \{0,1\}^n$, where $x = (x_i)_{1 \le i \le n}$ and $y = (y_i)_{1 \le i \le n}$ are joined by an edge if and only if $|\{i \in \{1, ..., n\}, x_i \ne y_i\}| = 1$. This makes H_n a metric space with the graph distance d:

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

Hence, H_n is isometrically a subset of ℓ_1^n .

 H_n is also a probability space with the uniform distribution μ :

$$\mu(\{x\}) = 2^{-n}$$

Thinking of $\{0,1\}$ as the field \mathbb{F}_2 , H_n is the n-dimensional vector space \mathbb{F}_2^n over \mathbb{F}_2 ; in particular, H_n is an abelian group. Let $(e_i)_{1 \leq i \leq n}$ be the standard basis of $H_n = \mathbb{F}_2^n$.

Definition 4.22 (Rademacher functions and Walsh functions). For $1 \leq j \leq n$, define

$$r_j: x \in H_n \longmapsto (-1)^{x_j} \in \mathbb{R}.$$

 r_j is the j-th Rademacher function. Note that r_1, \ldots, r_n are independent and identically distributed random variables on (H_n, μ) with $\{\pm 1\}$ -valued Bernoulli distributions with parameter $\frac{1}{2}$.

For $A \subseteq \{1, \ldots, n\}$, we define $w_A : H_n \to \mathbb{R}$ by

$$w_A = \prod_{j \in A} r_j.$$

The functions $(w_A)_{A \subseteq \{1,\dots,n\}}$ are called the Walsh functions. These are in fact the characters of H_n , *i.e.* the homomorphisms $H_n \to \mathbb{S}^1$.

Lemma 4.23. The Walsh functions form an orthonormal basis of $L_2(H_n, \mu)$

Proof. Since $r_j^2 = 1$ for all j, we have, for $A, B \subseteq \{1, \ldots, n\}$,

$$w_A w_B = \prod_{j \in A} r_j \cdot \prod_{j \in B} r_j = \prod_{j \in A \triangle B} r_j = w_{A \triangle B}.$$

Hence,

$$\langle w_A, w_A \rangle = \int_{H_n} w_A w_A \, \mathrm{d}\mu = \int_{H_n} w_{\varnothing} \, \mathrm{d}\mu = 1$$

Likewise, if $A \neq B$, using the independence of the $(r_j)_{1 \leq j \leq n}$,

$$\langle w_A, w_B \rangle = \int_{H_n} w_{A \triangle B} \, \mathrm{d}\mu = \prod_{j \in A \triangle B} \underbrace{\int_{H_n} r_j \, \mathrm{d}\mu}_{=0} = 0.$$

This proves the result since dim $L_2(H_n, \mu) = 2^n$.

Definition 4.24 (Fourier coefficients). Given a function $f : H_n \to \mathbb{R}$, define

$$\hat{f}_A = \langle f, w_A \rangle = \int_{H_n} f w_A \, \mathrm{d}\mu \in \mathbb{R}.$$

The real numbers $(\hat{f}_A)_{A \subseteq \{1,\dots,n\}}$ are called the Fourier coefficients of f.

More generally, given a Banach space X and a function $f : H_n \to X$, we can define $\hat{f}_A = \int_{H_n} f w_A \, d\mu$.

Lemma 4.25. (i) Let $f \in L_2(H_n, \mu)$. Then for all $x \in H_n$,

$$f(x) = \sum_{A \subseteq \{1,\dots,n\}} \hat{f}_A w_A(x).$$

Moreover, we have Parseval's identity:

$$\int_{H_n} |f(x)|^2 \, \mathrm{d}\mu(x) = \sum_{A \subseteq \{1, \dots, n\}} \left| \hat{f}_A \right|^2.$$

(ii) Let $f: H_n \to X$, where X is a Banach space. Then for all $x \in H_n$,

$$f(x) = \sum_{A \subseteq \{1,\dots,n\}} \hat{f}_A w_A(x).$$

If in addition X is a Hilbert space, then we have Parseval's identity:

$$\int_{H_n} \|f(x)\|^2 \, \mathrm{d}\mu(x) = \sum_{A \subseteq \{1,\dots,n\}} \left\| \hat{f}_A \right\|^2.$$

Proof. (i) Follows from Lemma 4.23.

(ii) Let $x \in H_n$ be fixed. Given $\varphi \in X^*$, we have

$$\varphi\left(\hat{f}_{A}\right) = \int_{H_{n}} \varphi\left(f(x)\right) w_{A}(x) \, \mathrm{d}\mu(x) = \widehat{\left(\varphi \circ f\right)}_{A}$$

for all $A \subseteq \{1, \ldots, n\}$. It follows by (i) that

$$\varphi(f(x)) = \sum_{A \subseteq \{1,\dots,n\}} \widehat{(\varphi \circ f)}_A w_A(x) = \varphi\left(\sum_{A \subseteq \{1,\dots,n\}} \widehat{f}_A w_A(x)\right).$$

Since this is true for all $\varphi \in X^*$, the Hahn-Banach Theorem implies that $f(x) = \sum_{A \subseteq \{1, \dots, n\}} \hat{f}_A w_A(x)$.

If X is a Hilbert space, then we may assume without loss of generality that dim X is finite (because H_n is finite). Fix an orthonormal basis v_1, \ldots, v_k of X. Then, for $1 \leq j \leq k$, let $f_j(x) = \langle f(x), v_j \rangle$. The above implies that

$$(\widehat{f_j})_A = \left\langle \widehat{f}_A, v_j \right\rangle.$$

Using Parseval's identity in the Hilbert space X and in $L_2(H_n, \mu)$ (by (i)), we have

$$\int_{H_n} \|f(x)\|^2 \, \mathrm{d}\mu(x) = \int_{H_n} \sum_{j=1}^k |f_j(x)|^2 \, \mathrm{d}\mu(x) = \sum_{j=1}^k \sum_{A \subseteq \{1,\dots,n\}} \left| (\widehat{f_j})_A \right|^2$$
$$= \sum_{A \subseteq \{1,\dots,n\}} \sum_{j=1}^k \left| \left\langle \widehat{f}_A, v_j \right\rangle \right|^2 = \sum_{A \subseteq \{1,\dots,n\}} \left\| \widehat{f}_A \right\|^2.$$

Definition 4.26 (Difference operators). Let X be a Banach space. For each $1 \leq j \leq n$, we define a difference operator ∂_j as follows: for all $f : H_n \to X$, we set

$$\partial_j f : x \in H_n \longmapsto \frac{1}{2} \left(f \left(x + e_j \right) - f(x) \right) \in X.$$

Lemma 4.27. (i) For $1 \leq j \leq n$ and $A \subseteq \{1, \ldots, n\}$,

$$\partial_j w_A(x) = -\mathbb{1}_A(j) w_A(x)$$

(ii) Given a Banach space X and $f: H_n \to X$,

$$\widehat{(\partial_j f)}_A = -\mathbb{1}_A(j)\widehat{f}_A.$$

(iii) Given a Hilbert space X and $f: H_n \to X$,

$$\sum_{j=1}^{n} \int_{H_n} \|\partial_j f(x)\|^2 \, \mathrm{d}\mu(x) = \sum_{A \subseteq \{1,\dots,n\}} |A| \cdot \left\| \hat{f}_A \right\|^2.$$

Proof. (i) Note that the Rademacher functions satisfy

$$r_i(x+e_j) = \begin{cases} -r_i(x) & \text{if } j=i \\ +r_i(x) & \text{if } j \neq i \end{cases}.$$

Hence,

$$w_A(x+e_j) = \prod_{i \in A} r_i(x+e_j) = \begin{cases} -w_A(x) & \text{if } j \in A \\ +w_A(x) & \text{if } j \notin A \end{cases}$$

Hence $\partial_j w_A(x) = -\mathbb{1}_A(j) w_A(x)$. (ii) We have

$$\begin{split} \widehat{(\partial_j f)}_A &= \int_{H_n} (\partial_j f) \, (x) w_A(x) \, \mathrm{d}\mu(x) \\ &= \frac{1}{2} \int_{H_n} f \, (x + e_j) \, w_A(x) \, \mathrm{d}\mu(x) - \frac{1}{2} \int_{H_n} f(x) w_A(x) \, \mathrm{d}\mu(x) \\ &= \frac{1}{2} \int_{H_n} f(x) w_A \, (x + e_j) \, \mathrm{d}\mu(x) - \frac{1}{2} \int_{H_n} f(x) w_A(x) \, \mathrm{d}\mu(x) \\ &= \int_{H_n} f(x) \, (\partial_j w_A) \, (x) \, \mathrm{d}\mu(x) \\ &= -\mathbb{1}_A(j) \widehat{f}_A. \end{split}$$

(iii) Using (ii) and Lemma 4.25, we have

$$\sum_{j=1}^{n} \int_{H_{n}} \left\| \partial_{j} f(x) \right\|^{2} \mathrm{d}\mu(x) = \sum_{j=1}^{n} \sum_{A \subseteq \{1,\dots,n\}} \left\| \widehat{(\partial_{j} f)}_{A} \right\|^{2} = \sum_{A \subseteq \{1,\dots,n\}} \sum_{j=1}^{n} \left\| \widehat{(\partial_{j} f)}_{A} \right\|^{2} = \sum_{A \subseteq \{1,\dots,n\}} |A| \cdot \left\| \widehat{f}_{A} \right\|^{2}. \square$$

Poincaré inequality for L_2 -valued functions on H_n 4.7

Theorem 4.28. Let $e = e_1 + \cdots + e_n \in H_n$. Then, for all $f : H_n \to L_2$, we have

$$\int_{H_n} \|f(x+e) - f(x)\|^2 \, \mathrm{d}\mu(x) \leqslant 4 \sum_{j=1}^n \int_{H_n} \|\partial_j f(x)\|^2 \, \mathrm{d}\mu(x).$$

Proof. For $A \subseteq \{1, \ldots, n\}$, note that $w_A(x+e) = (-1)^{|A|} w_A(x)$. Hence, using Lemmas 4.25 and 4.27,

$$\begin{split} \int_{H_n} \|f(x+e) - f(x)\|^2 \, \mathrm{d}\mu(x) &= \int_{H_n} \left\| \sum_{A \subseteq \{1,\dots,n\}} \hat{f}_A w_A(x+e) - \sum_{A \subseteq \{1,\dots,n\}} \hat{f}_A w_A(x) \right\|^2 \, \mathrm{d}\mu(x) \\ &= 4 \int_{H_n} \left\| \sum_{|A| \text{ odd}} \hat{f}_A w_A(x) \right\|^2 \, \mathrm{d}\mu(x) = 4 \sum_{|A| \text{ odd}} \left\| \hat{f}_A \right\|^2 \\ &\leqslant 4 \sum_{A \subseteq \{1,\dots,n\}} |A| \cdot \left\| \hat{f}_A \right\|^2 = 4 \sum_{j=1}^n \int_{H_n} \|\partial_j f(x)\|^2 \, \mathrm{d}\mu(x). \end{split}$$

Corollary 4.29. $c_2(H_n) = \sqrt{n}$.

Proof. The obvious embedding $H_n \subseteq \ell_2^n$ yields $c_2(H_n) \leq \sqrt{n}$. Now Theorem 4.28 gives a Poincaré inequality for functions $H_n \to L_2$, so Proposition 4.8 yields a lower bound on $C_2(H_n)$ obtained from the Poincaré ratio:

$$c_2 (H_n)^2 \ge \frac{\int_{H_n} d(x+e,x)^2 d\mu(x)}{4\sum_{j=1}^n \int_{H_n} \frac{1}{4} d(x+e_j,x)^2 d\mu(x)} = \frac{n^2}{n} = n.$$

Remark 4.30. Since $|H_n| = 2^n$, we have $c_2(H_n) = \sqrt{\log |H_n|}$. Compare with the upper bound $c_2(X) \leq \log |X|$ in Bourgain's Embedding Theorem (Theorem 3.21).

Remark 4.31. From now on, we think of H_n as the n-dimensional vector space \mathbb{F}_2^n over \mathbb{F}_2 .

Theorem 4.32. For every $f : \mathbb{F}_2^n \to L_2$, we have

$$\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \|f(x) - f(y)\|^{2} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \leq 2 \left(\min_{\substack{A \neq \varnothing \\ \hat{f}_{A} \neq 0}} |A| \right)^{-1} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}f(x)\|^{2} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(x) + \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}f(x)\|^{2} \, \mathrm{d}\mu(x) +$$

Proof. Without loss of generality, after replacing f with $f - \hat{f}_{\emptyset} w_{\emptyset}$, we may assume that $\hat{f}_{\emptyset} = 0$ (recall that $w_{\emptyset}(x) = 1$ for all x). Then, using Parseval's identity,

$$\begin{split} \int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \|f(x) - f(y)\|^{2} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) &= \int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \left(\|f(x)\|^{2} + \|f(y)\|^{2} - 2 \left\langle f(x), f(y) \right\rangle \right) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \\ &= 2 \sum_{A \subseteq \{1, \dots, n\}} \left\| \hat{f}_{A} \right\|^{2} - 2 \int_{\mathbb{F}_{2}^{n}} \left\langle f(y), \underbrace{\int_{\mathbb{F}_{2}^{n}} f(x) \, \mathrm{d}\mu(x)}_{\hat{f}_{\varnothing}} \right\rangle \, \mathrm{d}\mu(y) \\ &= 2 \sum_{A \subseteq \{1, \dots, n\}} \left\| \hat{f}_{A} \right\|^{2} - 2 \int_{\mathbb{F}_{2}^{n}} \left\langle f(y), \underbrace{\int_{\mathbb{F}_{2}^{n}} f(x) \, \mathrm{d}\mu(x)}_{\hat{f}_{\varnothing}} \right\rangle \, \mathrm{d}\mu(y) \end{split}$$

Now by Lemma 4.27,

$$\sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}f(x)\|^{2} \, \mathrm{d}\mu(x) = \sum_{A \subseteq \{1,\dots,n\}} |A| \cdot \left\| \hat{f}_{A} \right\|^{2} \geqslant \left(\min_{\substack{A \neq \varnothing \\ \hat{f}_{A} \neq 0}} |A| \right) \sum_{A \subseteq \{1,\dots,n\}} \left\| \hat{f}_{A} \right\|^{2}.$$

4.8 Linear codes

Definition 4.33 (Linear codes). A linear code of \mathbb{F}_2^n is a subspace C of \mathbb{F}_2^n . We let

$$d(C) = \min_{x \in C \setminus \{0\}} d(x, 0) = d(0, C \setminus \{0\}).$$

For $x, y \in \mathbb{F}_2^n$, let

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

This defines a symmetric bilinear form on \mathbb{F}_2^n ; however, $\langle x, x \rangle = 0$ does not imply x = 0. For a subset $S \subseteq \mathbb{F}_2^n$, let

$$S^{\perp} = \{ x \in \mathbb{F}_2^n, \, \forall s \in S, \, \langle x, s \rangle = 0 \} \,.$$

Lemma 4.34. If $C \subseteq \mathbb{F}_2^n$ is a linear code, then

$$\dim C + \dim C^{\perp} = n.$$

Moreover, $C^{\perp\perp} = C$.

Proof. Let $m = \dim C$ and let v_1, \ldots, v_m be a basis of C. Define $\theta : \mathbb{F}_2^n \to \mathbb{F}_2^m$ by

$$\theta(x) = (\langle x, v_i \rangle)_{1 \le i \le m}.$$

Hence, $\operatorname{Ker} \theta = C^{\perp}$, so $n = \dim C^{\perp} + \operatorname{rk} \theta$. Therefore, it suffices to prove that θ is onto.

For $1 \leq j \leq m$, let $f_j : \mathbb{F}_2^n \to \mathbb{F}_2$ be a linear map such that $f_j(v_i) = \delta_{ij}$. Set $y_i = f_j(e_i)$ and $y = (y_1, \ldots, y_n) \in \mathbb{F}_2^n$. Then $f_j(x) = \sum_{i=1}^n x_i f_j(e_i) = \langle x, y \rangle$, so $\theta(y) = (f_j(v_i))_{1 \leq i \leq n}$. This is the *j*-th standard basis vector of \mathbb{F}_2^m , so θ is onto, proving that $\operatorname{rk} \theta = \dim C$ and therefore $n = \dim C + \dim C^{\perp}$. By definition, $C \subseteq C^{\perp \perp}$, and

$$\dim C^{\perp\perp} = n - \dim C^{\perp} = \dim C,$$

so $C = C^{\perp \perp}$.

Lemma 4.35. There exists $\delta \in (0, \frac{1}{2})$ and $N \in \mathbb{N}$ such that, for all $n \ge N$,

$$(\lfloor \delta n \rfloor + 1) \binom{n}{\lfloor \delta n \rfloor} \leq 2^{n/8}.$$

Proof. First choose $\delta \in (0, \frac{1}{2})$ such that $\delta \left(2 + \log \frac{2}{\delta}\right) < \frac{\log 2}{8}$. Then choose $N \in \mathbb{N}$ such that $\lfloor \delta n \rfloor \geq \frac{1}{2} \delta n$ for all $n \geq N$.

Now let $n \ge N$ and set $m = \lfloor \delta n \rfloor$. If m = 0, it is clear that $(m+1) \binom{n}{m} = 1 \le 2^{n/8}$. Assume that $m \ge 1$. Then

$$\binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m!} \leqslant \frac{n^m}{m!},$$

and

$$\log(m!) = \sum_{j=1}^{m} \log j \ge \int_{1}^{m} \log t \, dt = [t \log t - t]_{1}^{m} = m \log m - m + 1 \ge m \log m - m,$$

so $m! \ge \left(\frac{m}{e}\right)^m$ and $\binom{n}{m} \le \left(\frac{en}{m}\right)^m$. It follows that

$$\log\left((m+1)\binom{n}{m}\right) \leqslant \underbrace{\log(m+1)}_{\leqslant m} + \log\left(\left(\frac{en}{m}\right)^m\right) \leqslant \underbrace{m}_{\leqslant \delta n} \left(2 + \log \underbrace{\frac{n}{m}}_{\leqslant \frac{2}{\delta}}\right)$$
$$\leqslant \delta n \left(2 + \log \frac{2}{\delta}\right) \leqslant \frac{n}{8} \log 2.$$

Lemma 4.36. There exists $\alpha > 0$ such that for all $n \ge 1$, there is a linear code $C \subseteq \mathbb{F}_2^n$ with $\dim C \ge \frac{n}{4}$ and $d(C) \ge \alpha n$.

Proof. Choose $\delta \in (0, \frac{1}{2})$ and $N \in \mathbb{N}$ as in Lemma 4.35. If $1 \leq n \leq N$, choose any linear code C with dim $C \geq \frac{n}{4}$; then

$$d(C) \ge 1 \ge \frac{n}{N}$$

Now assume that n > N. We claim that there is a linear code C in \mathbb{F}_2^n with dim $C \ge \frac{n}{4}$ and $d(C) \ge \delta n$; hence, setting $\alpha = \min\left\{\frac{1}{N}, \delta\right\}$ will do.

To prove the claim, we show by induction on $k \leq \left|\frac{n}{4}\right|$ that there is a linear code $C_k \subseteq \mathbb{F}_2^n$ with dim $C_k = k$ and $d(C_k) \geq \delta n$; taking $C = C_{\lceil \frac{n}{4} \rceil}$ will complete the proof. This is true for k = 1 (because \mathbb{F}_2^n has a point at a distance at least δn from 0). Assume that C_1, \ldots, C_k have

Ľ		

been constructed, with $k < \frac{n}{4}$. We seek a suitable $x \in \mathbb{F}_2^n \setminus C_k$ such that $d(C_{k+1}) \ge \delta n$, where $C_{k+1} = C_k + \mathbb{F}_2 x = C_k \cup (C_k + x)$. We estimate the number of unsuitable vectors x: for $v \in C_k$, then

$$|\{x \in \mathbb{F}_2^n, \, d(x+v,0) < \delta n\}| = |\{x \in \mathbb{F}_2^n, \, d(x,0) < \delta n\}| = \sum_{\ell=0}^{\lceil \delta n \rceil - 1} \binom{n}{\ell} \leqslant (m+1)\binom{n}{m},$$

where $m = \lfloor \delta n \rfloor \leq \frac{n}{2}$. It follows that

$$\left| \{ x \in \mathbb{F}_2^n, \ \exists v \in C_k, \ d(x+v,0) < \delta n \} \right| = \left| \bigcup_{v \in C_k} \{ x \in \mathbb{F}_2^n, \ d(x+v,0) < \delta n \} \right| \leq 2^k (m+1) \binom{n}{m}$$

If $2^k(m+1)\binom{n}{m} < 2^n - 2^k$, then $|\{x \in \mathbb{F}_2^n, \forall v \in C_k, d(x+v,0) \ge \delta n\}| > 2^k = |C_k|$ and therefore there is a suitable x. In other words, we need

$$(m+1)\binom{n}{m} < 2^{n-k} - 1.$$

But since $k < \frac{n}{4}$, we have $2^{n-k} - 1 > 2^{3n/4} - 1 \ge 2^{n/8}$, so we are done by choice of δ and N.

4.9 Poincaré inequality for L_1 -valued functions on \mathbb{F}_2^n/C^{\perp}

Notation 4.37. In this section, $C \subseteq \mathbb{F}_2^n$ is an arbitrary linear code. We denote by $q : \mathbb{F}_2^n \to \mathbb{F}_2^n/C^{\perp}$ the quotient map, and we let $\tilde{\mu}$ be the image measure induced by μ and q:

$$\widetilde{\mu}(E) = \mu\left(q^{-1}(E)\right).$$

Moreover, we denote by ρ the quotient metric on \mathbb{F}_2^n/C^{\perp} :

$$\rho\left(qx,qy\right) = d\left(x + C^{\perp}, y + C^{\perp}\right) = d\left(x - y, C^{\perp}\right) = \min_{v \in C^{\perp}} d\left(x - y, v\right).$$

Lemma 4.38. For every $h : \mathbb{F}_2^n/C^{\perp} \to L_2$ and for every $\emptyset \subsetneq A \subseteq \{1, \ldots, n\}$ with |A| < d(C), we have $\widehat{(h \circ q)}_A = 0$.

Proof. Let $f = h \circ q$. Set $v = \sum_{i \in A} e_i \neq 0$. We have d(v, 0) = |A| < d(C), so $v \notin C = C^{\perp \perp}$, i.e. there exists $w \in C^{\perp}$ such that $\langle v, w \rangle = 1$. Now

$$\begin{aligned} \hat{f}_A &= \int_{\mathbb{F}_2^n} f(x) w_A(x) \, \mathrm{d}\mu(x) = \int_{\mathbb{F}_2^n} f(x+w) w_A(x+w) \, \mathrm{d}\mu(x) \\ &= \int_{\mathbb{F}_2^n} f(x) \prod_{j \in A} r_j(x+w) \, \mathrm{d}\mu(x) = \int_{\mathbb{F}_2^n} f(x) \prod_{j \in A} (-1)^{w_j} r_j(x) \, \mathrm{d}\mu(x) \\ &= \int_{\mathbb{F}_2^n} f(x) (-1)^{\langle v, w \rangle} w_A(x) \, \mathrm{d}\mu(x) = -\hat{f}_A, \end{aligned}$$

so $\hat{f}_A = 0$.

Theorem 4.39. For every $h : \mathbb{F}_2^n/C^{\perp} \to L_1$, we have

$$\int_{\mathbb{F}_2^n/C^\perp \times \mathbb{F}_2^n/C^\perp} \|h(u) - h(v)\|_1 \, \mathrm{d}\widetilde{\mu}(u) \, \mathrm{d}\widetilde{\mu}(v) \leqslant \frac{1}{d(C)} \sum_{j=1}^n \int_{\mathbb{F}_2^n/C^\perp} \|\partial_j h(u)\|_1 \, \mathrm{d}\widetilde{\mu}(u), \tag{*}$$

where $\partial_j h(u) = \frac{1}{2} \left(h \left(u + q e_j \right) - h(u) \right)$ for $u \in \mathbb{F}_2^n / C^{\perp}$.

Proof. Let $f = h \circ q$. Then (*) is equivalent to

$$\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \|f(x) - f(y)\|_{1} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \leqslant \frac{1}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}f(x)\|_{1} \, \mathrm{d}\mu(x)$$

The proof of Proposition 1.31 implies the existence of a map $T: L_1 \to L_2$ such that

$$||a - b||_1 = ||Ta - Tb||_2^2$$

Therefore, by Theorem 4.32 and Lemma 4.38

$$\begin{split} \int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \|f(x) - f(y)\|_{1} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) &= \int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \|T \circ f(x) - T \circ f(y)\|_{2}^{2} \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \\ &\leqslant 2 \left(\min_{\substack{A \neq \varnothing}\\(\widehat{Tf})_{A} \neq 0} |A| \right)^{-1} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}Tf(x)\|_{2}^{2} \, \mathrm{d}\mu(x) \\ &\leqslant \frac{2}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}Tf(x)\|_{2}^{2} \, \mathrm{d}\mu(x) \\ &= \frac{1}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \|\partial_{j}f(x)\|_{1} \, \mathrm{d}\mu(x), \end{split}$$

because $\|\partial_j Tf(x)\|_2^2 = \frac{1}{4} \|Tf(x+e_j) - Tf(x)\|_2^2 = \frac{1}{4} \|f(x+e_j) - f(x)\| = \frac{1}{2} \|\partial_j f(x)\|_1.$

4.10 Optimality of Bourgain's Embedding Theorem

Lemma 4.40. There exists $\beta > 0$ such that for all $n \ge 1$, if dim $C \ge \frac{n}{4}$, then

$$\mu\left(\{y\in\mathbb{F}_2^n,\,\rho\left(qx,qy\right)\geqslant\beta n\}\right)\geqslant\frac{1}{2},$$

for all $x \in \mathbb{F}_2^n$, where ρ is the induced metric on \mathbb{F}_2^n/C^{\perp} .

Proof. Let $\delta \in (0, \frac{1}{2})$ and $N \in \mathbb{N}$ be as in Lemma 4.35. Without loss of generality, we may assume that $N \ge 8$ and x = 0. Then for $1 \le n \le N$, we have

$$\mu\left(\left\{y \in \mathbb{F}_{2}^{n}, \ \rho\left(qy,0\right) \geqslant \frac{n}{N}\right\}\right) = \mu\left(\mathbb{F}_{2}^{n} \setminus C^{\perp}\right) = \frac{2^{n} - \left|C^{\perp}\right|}{2^{n}} = \frac{2^{n} - 2^{n-\dim C}}{2^{n}} \geqslant \frac{2^{n} - 2^{n-1}}{2^{n}} = \frac{1}{2}$$

Now assume that n > N. For $v \in C^{\perp}$, note that

$$|\{y \in \mathbb{F}_2^n, \, d(y,v) < \delta n\}| \leqslant \sum_{\ell=0}^{\lceil \delta n \rceil - 1} \binom{n}{\ell} \leqslant (m+1)\binom{n}{m},$$

where $m = \lfloor \delta n \rfloor$. It follows that

$$\begin{split} |\{y \in \mathbb{F}_2^n, \ \rho\left(qy, 0\right) < \delta n\}| &= \left|\left\{y \in \mathbb{F}_2^n, \ \exists v \in C^{\perp}, \ d(y, v) < \delta n\right\}\right| \\ &\leqslant \left|C^{\perp}\right| (m+1) \binom{n}{m} \\ &\leqslant 2^{3n/4} 2^{n/8} = 2^{7n/8} \leqslant \frac{2^n}{2}, \end{split}$$

because $n > N \ge 8$. Hence, $\beta = \min\left\{\delta, \frac{1}{N}\right\}$ works.

Theorem 4.41. There exists $\eta > 0$ and a sequence $(X_n)_{n \ge 1}$ of finite metric spaces such that $|X_n| \xrightarrow[n \to \infty]{} \infty$ and, for all $n \ge 1$,

$$c_1(X_n) \ge \eta \log |X_n|.$$

Proof. By Lemma 4.36, for every $n \ge 1$, there is a linear code C in \mathbb{F}_2^n with dim $C \ge \frac{n}{4}$ and $d(C) \ge \alpha n$. Let $X_n = \mathbb{F}_2^n / C^{\perp}$, with the quotient metric ρ . We have

$$|X_n| = 2^{n - \dim C^{\perp}} = 2^{\dim C} \ge 2^{n/4} \xrightarrow[n \to \infty]{} \infty.$$

By Proposition 4.8, a lower bound on $C_1(X_n)$ is given by the Poincaré ratio corresponding to the inequality in Theorem 4.39. Hence,

$$c_{1}(X_{n}) \geq \left(\int_{X_{n}\times X_{n}}\rho(u,v) \,\mathrm{d}\tilde{\mu}(u) \,\mathrm{d}\tilde{\mu}(v)\right) / \left(\frac{1}{d(C)}\sum_{j=1}^{n}\int_{X_{n}}\frac{\rho\left(u+qe_{j},u\right)}{2} \,\mathrm{d}\tilde{\mu}(u)\right)$$
$$= \left(\int_{\mathbb{F}_{2}^{n}\times\mathbb{F}_{2}^{n}}\rho(qx,qy) \,\mathrm{d}\mu(x) \,\mathrm{d}\mu(y)\right) / \left(\frac{1}{2d(C)}\sum_{j=1}^{n}\int_{\mathbb{F}_{2}^{n}}\rho\left(q\left(x+e_{j}\right),x\right) \,\mathrm{d}\mu(x)\right).$$

It is clear that the denominator is at most $\frac{n}{2d(C)} \leq \frac{n}{2\alpha n} = \frac{1}{2\alpha}$. Moreover, Lemma 4.40 implies that, for each $x \in \mathbb{F}_2^n$,

$$\int_{\mathbb{F}_2^n} \rho\left(qx, qy\right) \, \mathrm{d}\mu(y) \ge \frac{\beta n}{2},$$

so the numerator is at least $\frac{\beta n}{2}$, from which it follows that

$$c_1(X_n) \ge \frac{\beta n}{2} \cdot \frac{2\alpha}{1} = \alpha \beta n \ge \alpha \beta \log_2 |X_n|.$$

Remark 4.42. Recall that $c_2(X) \ge c_1(X)$ for any finite metric space (c.f. Definition 3.1). Therefore, Theorem 4.41 implies that the upper bound in Bourgain's Embedding Theorem (Theorem 3.21) is the best possible up to a constant.

5 Dimension reduction

5.1 Preliminary results on Gaussian random variables

Proposition 5.1. (i) If $Z \sim \mathcal{N}(0,1)$, then Z has probability density function $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

(ii) If Z_1, \ldots, Z_n are independent and identically distributed random variables with law $\mathcal{N}(0,1)$, and $x \in \ell_2^n$ with $||x||_2 = 1$, then $\sum_{i=1}^n x_i Z_i \sim \mathcal{N}(0,1)$.

Lemma 5.2. Let X be a random variable with $\mathbb{E}(X) = 0$. Assume that for some C > 0 and $u_0 > 0$, we have $\mathbb{E}(e^{uX}) \leq e^{Cu^2}$ for all $0 \leq u \leq u_0$. Then

$$\mathbb{P}\left(X > t\right) \leqslant e^{-\frac{t^2}{4C}}$$

for $0 \leq t \leq 2Cu_0$.

Proof. Note that, if $0 < u \leq u_0$,

$$\mathbb{P}(X > t) = \mathbb{P}\left(e^{uX} > e^{ut}\right) \leqslant e^{-ut}\mathbb{E}\left(e^{uX}\right) \leqslant e^{-ut+Cu^2}.$$

Now if $0 \leq t \leq 2Cu_0$, apply the above inequality with $u = \frac{t}{2C}$ to obtain

$$\mathbb{P}(X > t) \leqslant e^{-\frac{t^2}{2C} + \frac{t^2}{4C}} = e^{-\frac{t^2}{4C}}.$$

Lemma 5.3. Assume that $Z \sim \mathcal{N}(0,1)$. Then there are absolute constants C > 0 and $u_0 > 0$ such that

$$\mathbb{E}\left(e^{u\left(Z^{2}-1\right)}\right) \leqslant e^{Cu^{2}} \quad and \quad \mathbb{E}\left(e^{u\left(1-Z^{2}\right)}\right) \leqslant e^{Cu^{2}}$$

for $0 \leq u \leq u_0$.

Proof. We have

$$\mathbb{E}\left(e^{u\left(1-Z^{2}\right)}\right) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{u\left(1-x^{2}\right)} e^{-x^{2}/2} \, \mathrm{d}x = e^{u} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{1}{2}(2u+1)x^{2}} \, \mathrm{d}x$$
$$= \frac{e^{u}}{\sqrt{2u+1}} \cdot \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{y^{2}}{2}} \, \mathrm{d}y = \frac{e^{u}}{\sqrt{2u+1}}$$
$$= \exp\left(u - \frac{1}{2}\log\left(2u+1\right)\right) = \exp\left(u^{2} + \mathcal{O}\left(u^{3}\right)\right),$$

and a similar computation shows that $\mathbb{E}\left(e^{u\left(Z^2-1\right)}\right) \leq \exp\left(u^2 + \mathcal{O}\left(u^3\right)\right).$

5.2 Johnson-Lindenstrauss Lemma

Remark 5.4. We want to embed n-elements subsets of ℓ_2 into ℓ_2^k with low distortion. To do this, we will take a random linear map $T : \ell_2^n \to \ell_2^k$ and show that, for each $x \in \ell_2^n$, we have

$$(1-\varepsilon) \|x\|_2 \leqslant \|Tx\|_2 \leqslant (1+\varepsilon) \|x\|_2$$

with high probability. It will follow that, given $x_1, \ldots, x_n \in \ell_2^n$, we have

$$(1 - \varepsilon) ||x_i - x_j||_2 \leq ||Tx_i - Tx_j||_2 \leq (1 + \varepsilon) ||x_i - x_j||_2$$

for all i, j with positive probability. In particular, there will be a suitable map $\{x_1, \ldots, x_n\} \to \ell_2^k$.

Lemma 5.5 (Random Projection). Let $k, n \in \mathbb{N}$ and $\varepsilon \in (0, 1)$. Define a linear map $T : \ell_2^n \to \ell_2^k$ by the $k \times n$ matrix $\left(\frac{1}{\sqrt{k}}Z_{ij}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}}$, where the $(Z_{ij})_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}}$ are independent and identically distributed random variables with $Z_{ij} \sim \mathcal{N}(0, 1)$ for all i, j. Then there exists a constant c > 0 (independent of k, n, ε) such that, for all $x \in \ell_2^n$,

$$\mathbb{P}\left(\left(1-\varepsilon\right)\|x\|_{2} \leqslant \|Tx\|_{2} \leqslant \left(1+\varepsilon\right)\|x\|_{2}\right) \geqslant 1-2e^{-ck\varepsilon^{2}}$$

Proof. Fix $x \in \ell_2^n$. We may assume without loss of generality that $||x||_2 = 1$. Then

$$(Tx)_i = \frac{1}{\sqrt{k}} \sum_{j=1}^n x_j Z_{ij}$$

for $1 \leq i \leq k$. Let $Z_i = \sum_{j=1}^n x_j Z_{ij}$; then Z_1, \ldots, Z_n are independent and identically distributed random variables with law $\mathcal{N}(0, 1)$. Therefore,

$$\mathbb{E}\left(\|Tx\|_{2}^{2}\right) = \sum_{i=1}^{k} \mathbb{E}\left(\left|(Tx)_{i}\right|^{2}\right) = \frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left(Z_{i}^{2}\right) = 1.$$

Let $W = \frac{1}{\sqrt{k}} \sum_{i=1}^{k} (Z_i^2 - 1)$. Then $\mathbb{E}(W) = 0$ (and in fact $\operatorname{Var}(W) = 1$). Fix C, u_0 as given by Lemma 5.3. Without loss of generality, we may assume that $2Cu_0 \ge 1$. Hence, if $0 \le u \le \sqrt{k}u_0$,

$$\mathbb{E}\left(e^{uW}\right) = \prod_{i=1}^{k} e^{\frac{u}{\sqrt{k}}\left(Z_{i}^{2}-1\right)} \leqslant \prod_{i=1}^{k} e^{\frac{Cu^{2}}{k}} = e^{Cu^{2}},$$

and similarly $\mathbb{E}\left(e^{-uW}\right) \leqslant e^{Cu^2}$ if $0 \leqslant u \leqslant \sqrt{ku_0}$. Therefore, by Lemma 5.2,

$$\mathbb{P}(W > t) \leqslant e^{-\frac{t^2}{4C}}$$
 and $\mathbb{P}(W < -t) \leqslant e^{-\frac{t^2}{4C}}$

for $0 \leq t \leq \underbrace{2Cu_0}_{\geqslant 1} \sqrt{k}$. Hence,

$$\begin{split} \mathbb{P}\left(1-\varepsilon \leqslant \|Tx\|_{2} \leqslant 1+\varepsilon\right) &= \mathbb{P}\left((1-\varepsilon)^{2} \leqslant \|Tx\|_{2}^{2} \leqslant (1+\varepsilon)^{2}\right) \\ &\geqslant \mathbb{P}\left(1-\varepsilon \leqslant \frac{1}{k}\sum_{i=1}^{k}Z_{i}^{2} \leqslant 1+\varepsilon\right) \\ &= \mathbb{P}\left(1-\varepsilon \leqslant \frac{1}{\sqrt{k}}W+1 \leqslant 1+\varepsilon\right) \\ &= \mathbb{P}\left(-\varepsilon\sqrt{k} \leqslant W \leqslant \varepsilon\sqrt{k}\right) \\ &\geqslant 1-2e^{-\frac{\varepsilon^{2}k}{4C}}. \end{split}$$

Theorem 5.6 (Johnson-Lindenstrauss). There exists a constant C > 0 such that, for all $k, n \in \mathbb{N}$ and $\varepsilon \in (0,1)$, if $k \ge C\varepsilon^{-2} \log n$, then any n-element subset of ℓ_2 embeds into ℓ_2^k with distortion at most $\frac{1+\varepsilon}{1-\varepsilon}$.

Proof. Choose C > 0 sufficiently large so that, if $k, n \in \mathbb{N}$ and $\varepsilon \in (0, 1)$ satisfy $k \ge C\varepsilon^{-2} \log n$, then

$$1 - 2e^{-ck^2} \ge 1 - \frac{1}{n^2},$$

where c is the constant of Lemma 5.5. Clearly, C depends only on c. Now let $T : \ell_2^n \to \ell_2^k$ be as in Lemma 5.5. Then, for each $x \in \ell_2^n$,

$$\mathbb{P}\left(\left(1-\varepsilon\right)\|x\|_{2} \leqslant \|Tx\|_{2} \leqslant \left(1+\varepsilon\right)\|x\|_{2}\right) \ge 1-\frac{1}{n^{2}}.$$

Hence, given $x_1, \ldots, x_n \in \ell_2$, we may assume without loss of generality that $x_1, \ldots, x_n \in \ell_2^n$, so that

$$\mathbb{P}\left(\bigcap_{1\leqslant i,j\leqslant n} (1-\varepsilon) \left\|x_i - x_j\right\|_2 \leqslant \left\|Tx_i - Tx_j\right\|_2 \leqslant (1+\varepsilon) \left\|x_i - x_j\right\|_2\right) \ge 1 - \binom{n}{2} \frac{1}{n^2} > 0,$$

so there is a linear map T that has $\frac{1+\varepsilon}{1-\varepsilon}$ -distortion on $\{x_1,\ldots,x_n\}$.

5.3 Diamond graphs

Remark 5.7. We aim to prove that dimension reduction as in the Johnson-Lindenstrauss Lemma does not work in ℓ_1 .

Definition 5.8 (Diamond graphs). The diamond graphs $(D_n)_{n\geq 0}$ are defined as follows:

- D₀ consists of two vertices joined by an edge.
- D_{n+1} is obtained from D_n by replacing every edge xy in D_n with a diamond xvyu, where u, v are new vertices.

We write $E_n = E(D_n)$ and $V_n = V(D_n)$. Hence, for every $n \ge 0$,

$$|E_n| = 4^n,$$

$$|V_n| = 2 + 2 |E_0| + 2 |E_1| + \dots + 2 |E_{n-1}|$$

$$= \frac{2}{3} (4^n + 2).$$

Observe that $|V_n| \leq 4^n$ for all $n \geq 1$.

We write $d_n = d_{D_n}$. For every $n \ge m \ge 0$ and for every $x, y \in D_m$, we have

$$d_n(x,y) = 2^{n-m} d_m(x,y)$$

We also define sets $(A_n)_{n \ge 1}$ of non-edges: for $n \ge 1$, D_n consists of copies of D_1 of the form xuyv, where $xy \in E_{n-1}$, $u, v \in V_n \setminus V_{n-1}$. Let A_n consists of all such pairs uv.

We label the vertices as follows:

We shall also write $D_n(\ell r)$ for D_n . Hence, $D_{n+1}(\ell r)$ consists of four copies of D_n : $D_n(t\ell)$, $D_n(tr)$, $D_n(b\ell)$ and $D_n(br)$. If e, f are two of the edges $t\ell$, tr, $b\ell$, br, then

$$V(D_n(e)) \cap V(D_n(f)) = e \cap f.$$

Note that $d_n(\ell, r) = 2^n$ for $n \ge 0$ and $d_n(t, b) = 2^n$ for $n \ge 1$. Moreover, for $x \in D_n$,

$$d_n(\ell, x) + d_n(x, r) = 2^n.$$

Lemma 5.9. Let G be a connected graph and let $f : G \to X$ be a map to a metric space satisfying $d_X(f(u), f(v)) \leq C$ for all $uv \in E(G)$. Then f is C-Lipschitz.

Proof. Let $a, b \in V(G)$. Then there exists a path $a = u_0, \ldots, u_m = b$ in G with $m = d_G(a, b)$. Therefore,

$$d_X(f(a), f(b)) \leqslant \sum_{i=0}^{m-1} \underbrace{d_X(f(u_i), f(u_{i+1}))}_{\leqslant C} \leqslant mC = C \cdot d_G(a, b). \qquad \Box$$

Lemma 5.10. For all $n \ge 0$, D_n embeds into $\ell_1^{2^n}$ with distortion at most 2.

Proof. Recall that the Hamming cubes embed isometrically into ℓ_1 . Therefore, it suffices to construct embeddings $f_n : D_n \to H_{k2^n}$ (with $k \ge 1$), which we do by induction on $n \ge 0$. Let $f_0 : D_0 \to H_k \subseteq \ell_1^k$ be such that $f_0(\ell), f_0(r)$ are neighbours in H_k . So f_0 is isometric (and we may choose $k = 1, f_0(\ell) = 0$ and $f_0(r) = 1$).

Assume $f_n: D_n \to H_{k2^n} \subseteq \ell_1^{k2^n}$ has been defined. We define $f_{n+1}: D_{n+1} \to H_{k2^{n+1}} \subseteq \ell_1^{k2^{n+1}}$ as follows:

- For $x \in D_n$, we let $f_{n+1}(x) = (f_n(x), f_n(x))$,
- If $xy \in E_n$ and u, v are the corresponding new vertices in D_{n+1} , we let

$$f_{n+1}(u) = (f_n(x), f_n(y))$$
 and $f_{n+1}(v) = (f_n(y), f_n(x))$.

Observe that, for $x, y \in D_n$, $||f_{n+1}(x) - f_{n+1}(y)||_1 = 2 ||f_n(x) - f_n(y)||_1$. Hence, for $n \ge m \ge 0$ and $x, y \in D_m$,

$$||f_n(x) - f_n(y)||_1 = 2^{n-m} ||f_m(x) - f_m(y)||_1$$

We first show that for all $n \ge 0$ and for all $xy \in E_n$,

$$||f_n(x) - f_n(y)||_1 = 1 = d_n(x, y).$$

We prove this equality by induction on n: the result is clear if n = 0. Assume $n \ge 1$. An edge in D_n is of the form xu, where there exists $xy \in E_{n-1}$, and u, v are the corresponding new vertices in D_n . Therefore,

$$\|f_n(x) - f_n(u)\|_1 = \|(f_{n-1}(x), f_{n-1}(x)) - (f_{n-1}(x), f_{n-1}(y))\|_1 = \|f_{n-1}(x) - f_{n-1}(y)\|_1 = 1$$

It follows by Lemma 5.9 that f_n is 1-Lipschitz for all $n \ge 0$.

We next show that for all $n \ge 0$ and for all $x, y \in D_n$,

$$||f_n(x) - f_n(y)||_1 \ge \frac{1}{2}d_n(x, y).$$
 (*)

Note that, by the above, for all $n \ge m \ge 0$, if $xy \in E_m$, then

$$\|f_n(x) - f_n(y)\|_1 = 2^{n-m} \|f_m(x) - f_m(y)\|_1 = 2^{n-m} d_m(x,y) = d_n(x,y).$$

We proceed to prove (*) by induction on n. Note that f_0, f_1 are isometric, so (*) holds for n = 0, 1. Now let $n \ge 2$ and assume that (*) holds for n - 1. Fix $x, y \in D_n$ and recall that D_n consists of four copies of D_{n-1} . Hence, we have three cases:

• Case 1: x, y are in the same copy, say $x, y \in D_{n-1}(t\ell)$. Define $g_0 : D_0(t\ell) \to H_{2k}$ by $g_0(u) = f_1(u)$, then define $g_m : D_m \to H_{k2^m}$ inductively, starting with g_0 and proceeding in the same way as f_m was defined from f_0 . An easy induction shows that $g_{n-1} = f_{n|D_{n-1}(t\ell)}$. By the induction hypothesis,

$$\|f_n(x) - f_n(y)\|_1 = \|g_{n-1}(x) - g_{n-1}(y)\|_1 \ge \frac{1}{2}d_{D_{n-1}(t\ell)}(x,y) \ge \frac{1}{2}d_n(x,y)$$

• Case 2: x, y are in neighbouring copies, say $x \in D_{n-1}(t\ell)$ and $y \in D_{n-1}(tr)$. We then have

$$\begin{aligned} \|f_n(x) - f_n(y)\|_1 &\ge \|f_n(\ell) - f_n(r)\|_1 - \|f_n(\ell) - f_n(x)\|_1 - \|f_n(y) - f_n(r)\|_1 \\ &\ge 2^{n-1} \|f_1(\ell) - f_1(r)\|_1 - d_n(x,\ell) - d_n(y,r) \\ &= 2^n - d_n(x,\ell) - d_n(y,r) \\ &= \left(2^{n-1} - d_{D_{n-1}(t\ell)}(x,\ell)\right) + \left(2^{n-1} - d_{D_{n-1}(tr)}(y,r)\right) \\ &= d_n(x,t) + d_n(t,y) = d_n(x,y). \end{aligned}$$

• Case 3: x, y are in opposite copies, say $x \in D_{n-1}(t\ell)$ and $y \in D_{n-1}(br)$. We then have

$$d_n(x,y) = \min\left\{d_n(x,\ell) + 2^{n-1} + d_n(b,y), d_n(x,t) + 2^{n-1} + d_n(r,y)\right\} \leqslant 2^n$$

since $d_n(x,\ell) + d_n(b,y) + d_n(x,t) + d_n(r,y) = 2^n$. Assume without loss of generality that $d_n(x,t) + d_n(y,b) \leq d_n(x,\ell) + d_n(y,r)$, from which it follows that $d_n(x,t) + d_n(y,b) \leq 2^{n-1}$. Then

$$\begin{aligned} \|f_n(x) - f_n(y)\|_1 &\ge \|f_n(t) - f_n(b)\|_1 - \|f_n(t) - f_n(x)\|_1 - \|f_n(y) - f_n(b)\|_1 \\ &\ge 2^n - d_n(x,t) - d_n(y,b) \ge 2^{n-1} \ge \frac{1}{2} d_n(x,y). \end{aligned}$$

5.4 No dimension reduction in ℓ_1

Lemma 5.11 (Reverse Hölder inequality). Let 0 < r < 1 and s < 0 such that $1 = \frac{1}{s} + \frac{1}{r}$. Given real numbers $(a_i)_{i \in I}$ and $(b_i)_{i \in I}$ with $b_i \neq 0$, we have

$$\left(\sum_{i\in I} |a_i|^r\right)^{1/r} \left(\sum_{i\in I} |b_i|^s\right)^{1/s} \leqslant \sum_{i\in I} |a_ib_i|.$$

Proof. Apply Hölder's inequality with $p = \frac{1}{r}$ and $q = \frac{1}{1-r} = -\frac{s}{r}$:

$$\left(\sum_{i\in I} |a_i|^r\right)^{1/r} = \left(\sum_{i\in I} |a_ib_i|^r |b_i|^{-r}\right)^{1/r} \leqslant \left(\sum_{i\in I} |a_ib_i|\right) \left(\sum_{i\in I} |b_i|^s\right)^{-1/s}.$$

Lemma 5.12 (Short Diagonal Lemma in L_p). Let $1 . For all <math>x_1, \ldots, x_4 \in L_p$, we have

$$\|x_1 - x_3\|_p^2 + (p-1)\|x_2 - x_4\|_p^2 \leq \|x_1 - x_2\|_p^2 + \|x_2 - x_3\|_p^2 + \|x_3 - x_4\|_p^2 + \|x_4 - x_1\|_p^2$$

Proof. We may assume without loss of generality that $x_1, \ldots, x_4 \in \ell_p^k$ for some k (for example, k = 6 will do by Theorem 2.24). We now claim that the following inequality holds for all $x, y \in \ell_p^k$:

$$\|x\|_{p}^{2} + (p-1)\|y\|_{p}^{2} \leq \frac{1}{2} \left(\|x+y\|_{p}^{2} + \|x-y\|_{p}^{2}\right).$$
(*)

If this is true, then we apply the inequality (*) to the pairs $(x, y) = (x_2 + x_4 - 2x_1, x_4 - x_2)$ and $(x, y) = (x_2 + x_4 - 2x_3, x_4 - x_2)$ to get

$$||x_{2} + x_{4} - 2x_{1}||_{p}^{2} + (p-1) ||x_{2} - x_{4}||_{p}^{2} \leq 2 ||x_{4} - x_{1}||_{p}^{2} + 2 ||x_{2} - x_{1}||_{p}^{2}, ||x_{2} + x_{4} - 2x_{3}||_{p}^{2} + (p-1) ||x_{2} - x_{4}||_{p}^{2} \leq 2 ||x_{4} - x_{3}||_{p}^{2} + 2 ||x_{2} - x_{3}||_{p}^{2}.$$

Taking the average of the two above inequalities and using the convexity of $z \mapsto ||z||_p^2$ yields

$$\begin{aligned} \|x_1 - x_3\|_p^2 + (p-1) \|x_2 - x_4\|_p^2 &= \left\|\frac{x_2 + x_4 - 2x_3}{2} + \frac{2x_1 - x_2 - x_4}{2}\right\|_p^2 + (p-1) \|x_2 - x_4\|_p^2 \\ &\leqslant \frac{1}{2} \left(\|x_2 + x_4 - 2x_3\|_p^2 + \|2x_1 - x_2 - x_4\|_p^2\right) + (p-1) \|x_2 - x_4\|_p^2 \\ &\leqslant \|x_1 - x_2\|_p^2 + \|x_2 - x_3\|_p^2 + \|x_3 - x_4\|_p^2 + \|x_4 - x_1\|_p^2. \end{aligned}$$

Therefore, it suffices to prove (*).

Note that, for $a, b \ge 0$, the function $q \in [1, \infty) \mapsto \left(\frac{a^q + b^q}{2}\right)^{1/q}$ is increasing, so (*) will follow from

$$||x||_{p}^{2} + (p-1) ||y||_{p}^{2} \leq \left(\frac{||x+y||_{p}^{p} + ||x-y||_{p}^{p}}{2}\right)^{2/p}$$

To prove this, define

$$L(t) = ||x||_{p} + (p-1) ||y||_{p}^{2} t^{2},$$

$$R(t) = H(t)^{2/p},$$

$$H(t) = \frac{1}{2} \left(||x + ty||_{p}^{p} + ||x - ty||_{p}^{p} \right) = \frac{1}{2} \sum_{i=1}^{k} \left(|x_{i} + ty_{i}|^{p} + |x_{i} - ty_{i}|^{p} \right).$$

From now on, we assume that $x \neq 0$ and $y \neq 0$. We want $L(1) \leq R(1)$. Note that $L(0) = R(0) = ||x||_p^2$. We differentiate:

$$L'(t) = 2(p-1) ||y||_p^2 t,$$

$$R'(t) = \frac{2}{p} H(t)^{\frac{2}{p}-1} H'(t)$$

$$= \frac{2}{p} H(t)^{\frac{2}{p}-1} \frac{p}{2} \sum_{i=1}^k \left(|x_i + ty_i|^{p-1} \operatorname{sgn} (x_i + ty_i) y_i - |x_i - ty_i|^{p-1} \operatorname{sgn} (x_i - ty_i) y_i \right).$$

Note that L'(0) = R'(0) = 0. We differentiate again:

$$L''(t) = 2(p-1) \|y\|_p^2;$$

for R'', we let $I = \{i \in \{1, ..., k\}, x_i \neq 0 \text{ or } y_i \neq 0\} \neq \emptyset$ because $x \neq 0$ and $y \neq 0$. For $i \in I$, there is at most one value of t such that $x_i + ty_i = 0$. Therefore, there is some subdivision $0 = t_0 < t_1 < \cdots < t_m = 1$ of [0, 1] such that $x_i + ty_i \neq 0$ for all $i \in I$ and for all $t \in \bigcup_{j=1}^m (t_{j-1}, t_j)$. For such t, we have

$$\begin{aligned} R''(t) &= \frac{2}{p} \left(\frac{2}{p} - 1 \right) H(t)^{\frac{2}{p}-2} \left(H'(t) \right)^2 + \frac{2}{p} H(t)^{\frac{2}{p}-1} H''(t) \\ &\geqslant \frac{2}{p} H(t)^{\frac{2}{p}-1} H''(t) \\ &= \frac{2}{p} H(t)^{\frac{2}{p}-1} \frac{p}{2} \left(p - 1 \right) \sum_{i \in I} \left(|x_i + ty_i|^{p-2} y_i^2 + |x_i - ty_i|^{p-2} y_i^2 \right). \end{aligned}$$

We now apply reverse Hölder (Lemma 5.11) with $a_i = y_i^2$, $b_i = |x_i \pm ty_i|^{p-2}$, $r = \frac{p}{2}$ and $s = \frac{1}{1-2/p} = \frac{p}{p-2}$ to get

$$\begin{aligned} R''(t) &\ge H(t)^{\frac{2}{p}-1}(p-1)\left(\sum_{i\in I}|y_i|^p\right)^{2/p} \left(\left(\sum_{i\in I}|x_i+ty_i|^p\right)^{\frac{p-2}{p}} + \left(\sum_{i\in I}|x_i-ty_i|^p\right)^{\frac{p-2}{p}}\right) \\ &\ge H(t)^{\frac{2}{p}-1}(p-1)\left\|y\right\|_p^2 2\left(\frac{\|x+ty\|_p^{p-2} + \|x-ty\|_p^{p-2}}{2}\right) \\ &\ge H(t)^{\frac{2}{p}-1}2(p-1)\left\|y\right\|_p^2 \left(\frac{\|x+ty\|_p^p + \|x-ty\|_p^p}{2}\right)^{\frac{p-2}{2}} \\ &= 2(p-1)\left\|y\right\|_p^2 \\ &= L''(t). \end{aligned}$$

Hence, for each $1 \leq j \leq m$, $(R-L)'' \geq 0$ on (t_{j-1}, t_j) , so (R-L)' is increasing on [0, 1]. But (R-L)'(0) = 0, so $(R-L)' \geq 0$ on [0, 1] and (R-L) is increasing on [0, 1]. It follows that

$$R(1) - L(1) \ge R(0) - L(0) = 0.$$

Corollary 5.13. For $1 and <math>n \in \mathbb{N}$,

$$c_p\left(D_n\right) \geqslant \sqrt{1 + (p-1)n}.$$

Proof. Note that D_n consists of copies xuyv of D_1 , where $xy \in E_{n-1}$ and $u, v \in V_n \setminus V_{n-1}$. Now apply Lemma 5.12 for a function $f: D_n \to L_p$:

$$\begin{aligned} \|f(x) - f(u)\|_{p}^{2} + \|f(u) - f(y)\|_{p}^{2} + \|f(y) - f(v)\|_{p}^{2} + \|f(v) - f(x)\|_{p}^{2} \\ & \ge \|f(x) - f(y)\|_{p}^{2} + (p-1)\|f(u) - f(v)\|_{p}^{2}. \end{aligned}$$

Summing over all copies of D_1 in D_n , we get

$$\sum_{xy\in E_n} \|f(x) - f(y)\|_p^2 \ge \sum_{xy\in E_{n-1}} \|f(x) - f(y)\|_p^2 + (p-1) \sum_{xy\in A_n} \|f(x) - f(y)\|_p^2$$
$$\ge \dots \ge \|f(\ell) - f(r)\|_p^2 + (p-1) \sum_{xy\in A_1\cup\dots\cup A_n} \|f(x) - f(y)\|_p^2.$$

This is a Poincaré inequality, so it gives a lower bound on the distortion by Proposition 4.8:

$$c_p \left(D_n \right)^2 \ge \frac{d_n(\ell, r)^2 + (p-1)\sum_{k=1}^n 4^{k-1} 4^{n-k+1}}{|E_n|} = 1 + (p-1)n.$$

Lemma 5.14. Given $k \ge 2$, the identity $r_p : \ell_1^k \to \ell_p^k$ (with $p = 1 + \frac{1}{\log_2 k}$) has distortion at most 2.

Proof. For $x \in \mathbb{R}^k$, we have $\|x\|_p \leq \|x\|_1 = \sum_{i=1}^k (1 \cdot |x_i|) \leq k^{1-\frac{1}{p}} \|x\|_p$, so the distortion is at most

$$k^{1-\frac{1}{p}} = k^{\frac{1/\log_2 k}{1+1/\log_2 k}} = k^{\frac{1}{\log_2 k+1}} = 2^{\frac{\log_2 k}{\log_2 k+1}} \leqslant 2.$$

Theorem 5.15. For all $n \in \mathbb{N}$, there is a subset X of ℓ_1 of size $|X| = N \ge n$ such that, if $X \hookrightarrow_D \ell_1^k$, then $k \ge n^{\frac{1}{32D^2}}$.

Proof. Let $n \in \mathbb{N}$. By Lemma 5.10, there is an embedding $f: D_n \to \ell_1$ with distortion at most 2. Set $X = f(D_n)$, so $|X| = |D_n| \leq 4^n$. Assume that $g: X \to \ell_1^k$ has distortion at most D. Then the composite $D_n \xrightarrow{f} X \xrightarrow{g} \ell_1^k \xrightarrow{i_p} \ell_p^k$ (with $p = 1 + \frac{1}{\log_2 k}$) has distortion at most 4D by Lemma 5.14. By Corollary 5.13, $4D \ge \sqrt{1 + (p-1)n}$, or in other words,

$$16D^2 \geqslant \frac{n}{\log_2 k} \geqslant \frac{\frac{1}{2}\log_2 |X|}{\log_2 k},$$

so $\log_2 k \ge \frac{\log_2 |X|}{32D^2}$ and hence $k \ge |X|^{\frac{1}{32D^2}}$.

6 Ribe programme

6.1 Local properties of Banach spaces

Definition 6.1 (Banach-Mazur distance). Given two normed spaces X, Y, we define the Banach-Mazur distance between them by

$$d(X,Y) = \inf_{\substack{T:X \to Y\\ linear \ isomorphism}} \|T\| \cdot \|T^{-1}\| \in [1,\infty].$$

Definition 6.2 (Finite representability). Let X and Y be Banach spaces.

- (i) We say that X is finitely representable in Y if for all $\lambda > 1$ and for all finite-dimensional subspaces $E \subseteq X$, there exists a subspace $F \subseteq Y$ such that $d(E, F) < \lambda$.
- (ii) We say that X is crudely finitely representable in Y if there exists $\lambda > 1$ s.t. for all finitedimensional subspaces $E \subseteq X$, there exists a subspace $F \subseteq Y$ such that $d(E, F) < \lambda$.

Example 6.3. (i) Every X is finitely representable in c_0 .

(ii) ℓ_2 is finitely representable in every infinite-dimensional X by Dvoretzky's Theorem (Theorem 3.2).

Definition 6.4 (Local property). A local property of a Banach space is one that depends only on its finite-dimensional subspaces.

Example 6.5. Let X be a Banach space.

(i) For $1 \leq p \leq 2$, we say that X has type p if there exists C > 0 s.t. for all $n \in \mathbb{N}$, for all $x_1, \ldots, x_n \in X$,

$$\mathbb{E}\left(\left\|\sum_{i=1}^{n}\varepsilon_{i}x_{i}\right\|\right) \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1/p}$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are $\{\pm 1\}$ -valued independent uniform random variables.

(ii) For $2 \leq q \leq \infty$, we say that X has cotype q if there exists C > 0 s.t. for all $n \in \mathbb{N}$, for all $x_1, \ldots, x_n \in X$,

$$\mathbb{E}\left(\left\|\sum_{i=1}^{n}\varepsilon_{i}x_{i}\right\|\right) \geq \frac{1}{C}\left(\sum_{i=1}^{n}\|x_{i}\|^{q}\right)^{1/q}.$$

47

Having type p or cotype q are local properties of Banach spaces.

For instance, every X has type 1 and cotype ∞ ; ℓ_2 has type 2 and cotype 2 with C = 1.

Remark 6.6. If X is crudely finitely representable in Y and Y has some local property, then so does X.

Theorem 6.7 (Ribe). If Banach spaces X, Y are uniformly homeomorphic, then X is crudely finitely representable in Y and Y is crudely finitely representable in X.

Remark 6.8. Theorem 6.7 implies that local properties of Banach spaces depend only on the metric structure.

This idea leads to the Ribe programme:

- (i) Find metric characterisations of local properties of Banach spaces.
- (ii) Find metric analogues of local properties of Banach spaces.

We aim here to find a metric characterisation of super-reflexivity.

6.2 Weak-* topology for Banach spaces

Definition 6.9 (Reflexivity and super-reflexivity). Given a Banach space X, there is a (not necessarily surjective) isometric isomorphism $X \to X^{**}$ given by $x \mapsto \hat{x}$, where $\hat{x}(f) = f(x)$. The image of X in X^{**} is a closed subspace, which we identify with X. We say that X is reflexive if $X = X^{**}$.

We say that X is super-reflexive if every Y finitely representable in X is reflexive.

A super-reflexive Banach space is reflexive.

Remark 6.10. There exists a Banach space J such that $J \cong J^{**}$ but J^{**}/J has dimension 1.

Example 6.11. Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_1^n)_{\ell_2}$. Then X is reflexive; however, ℓ_1 is finitely representable in X, and not reflexive, so X is not super-reflexive.

Definition 6.12 (Weak topology). The weak topology on a Banach space X is defined as follows: $\mathcal{U} \subseteq X$ is w-open if for all $x \in \mathcal{U}$, there exist $n \in \mathbb{N}$, $f_1, \ldots, f_n \in X^*$ and $\varepsilon > 0$ such that

 $\{y \in X, \forall i \in \{1, \ldots, n\}, |f_i(y - x)| < \varepsilon\} \subseteq \mathcal{U}.$

This is the weakest topology on X for which every $f \in X^*$ is continuous. In particular, it is contained in the normed topology on X.

Proposition 6.13. Let C be a convex subset of a Banach space X. Then C is $\|\cdot\|$ -closed iff C is w-closed.

Proof. (\Leftarrow) The weak topology is contained in the normed topology.

(⇒) Assume that C is $\|\cdot\|$ -closed. If $x \notin C$, then by the Hahn-Banach Theorem (Corollary 4.19), there exists $f \in X^*$ such that $\sup_C f < f(x)$. Hence, $\{y \in X, f(y) > \sup_C f\}$ is a w-neighbourhood of x disjoint from C.

Definition 6.14 (Weak-* topology). The weak-* topology on X^* is defined as follows: $\mathcal{U} \subseteq X^*$ is w*-open if for all $f \in \mathcal{U}$, there exist $n \in \mathbb{N}, x_1, \ldots, x_n \in X$ and $\varepsilon > 0$ such that

 $\{g \in X^*, \forall i \in \{1, \dots, n\} | (g - f) (x_i) | < \varepsilon\} \subseteq \mathcal{U}.$

This is the weakest topology on X^* for which every $x \in X \subseteq X^{**}$ is continuous. In particular, it is contained in the weak topology on X^* .

Theorem 6.15 (Banach-Alaoglu). Let X be a Banach space. Then $B_{X^*} = \{f \in X^*, \|f\| \leq 1\}$ is w*-compact.

Proof. Let $K = \prod_{x \in X} [-\|x\|, + \|x\|]$ with the product topology. Note that K is compact by Tychonoff's Theorem. Now consider

$$\varphi: f \in B_{X^*} \longmapsto (f(x))_{x \in X} \in K.$$

If B_{X^*} is equipped with the weak-* topology, then φ is a homeomorphism onto its image. Moreover,

$$\varphi(B_{X^*}) = \bigcap_{\substack{x,y \in X \\ a,b \in \mathbb{R}}} \left\{ (\lambda_x)_{x \in X}, \ \lambda_{ax+by} - a\lambda_x - b\lambda_y = 0 \right\}$$

so $\varphi(B_{X^*})$ is closed, hence compact.

Lemma 6.16 (Local reflexivity). Let X be a Banach space. Let $E \subseteq X^*$ be finite-dimensional, let $\varphi \in X^{**}$ and $M > \|\varphi\|$. Then there exists $x \in X$ such that $\|x\| < M$ and $\hat{x}_{|E} = \varphi_{|E}$.

Proof. Fix a basis f_1, \ldots, f_n of E, and define $T: X \to \mathbb{R}^n$ by

$$Tx = (f_i(x))_{1 \le i \le n}$$

Let $C = \{Tx, ||x|| < M\}$; we need $(\varphi(f_i))_{1 \leq i \leq n} \in C$.

Note that T is a bounded linear map and C is convex. We show that T is onto: if not, then there exists $a \in (\operatorname{Im} T)^{\perp} \setminus \{0\}$, i.e. such that $\sum_{i=1}^{n} a_i f_i(x) = 0$ for all $x \in X$; hence $\sum_{i=1}^{n} a_i f_i = 0$, a contradiction. Therefore, T is onto. By the Open Mapping Theorem, C is open. Assume for contradiction that $(\varphi(f_i))_{1 \leq i \leq n} \notin C$. Then by Hahn-Banach, there exists $a \in \mathbb{R}^n \setminus \{0\}$ such that

$$\sum_{i=1}^{n} a_i f_i(x) < \sum_{i=1}^{n} a_i \varphi(f_i)$$

for all $x \in X$ with ||x|| < M. It follows that

$$\left\|\sum_{i=1}^{n} a_{i} f_{i}\right\| \cdot M \leqslant \varphi\left(\sum_{i=1}^{n} a_{i} f_{i}\right) \leqslant \left\|\varphi\right\| \cdot \left\|\sum_{i=1}^{n} a_{i} f_{i}\right\|.$$

Since $\sum_{i=1}^{n} a_i f_i \neq 0$, we get $M \leq ||\varphi||$, a contradiction.

Theorem 6.17 (Goldstine). Let X be a Banach space. Then, in X^{**} ,

$$\overline{B}_X^{w*} = B_{X^{**}}.$$

Proof. (\subseteq) Since $B_X \subseteq B_{X^{**}}$ and $B_{X^{**}}$ is *w**-closed by Banach-Alaoglu (Theorem 6.15), it follows that $\overline{B}_X^{w*} \subseteq B_{X^{**}}$.

 (\supseteq) Fix $\psi \in B_{X^{**}}$ and let \mathcal{U} be a *w**-neighbourhood of ψ . Then there are $n \in \mathbb{N}, f_1, \ldots, f_n \in X^*$ and $\varepsilon > 0$ such that

$$\{\chi \in X^{**}, \forall i \in \{1, \dots, n\}, |(\chi - \psi)(f_i)| < \varepsilon\} \subseteq \mathcal{U}.$$

Fix $\delta > 0$ to be chosen later. By Lemma 6.16, there exists $x \in X$ such that $||x|| < 1 + \delta$ and $f_i(x) = \psi(f_i)$ for all *i*. If $||x|| \leq 1$, then $x \in B_X \cap \mathcal{U}$, so we are done. Otherwise, ||x|| > 1 and

$$\left|\frac{\hat{x}}{\|x\|}(f_i) - \psi(f_i)\right| = \left|\frac{f_i(x)}{\|x\|} - f_i(x)\right| = \frac{|f_i(x)|}{\|x\|} |1 - \|x\|| \le \delta \|f_i\|$$

for all *i*. We can choose δ such that $\delta ||f_i|| < \varepsilon$ for all *i*; hence $\frac{x}{||x||} \in B_X \cap \mathcal{U}$.

Corollary 6.18. A Banach space X is reflexive if and only if B_X is w-compact.

Proof. (\Rightarrow) If X is reflexive, then $X = X^{**}$, so $(X, w) = (X^{**}, w^*)$, so $(B_X, w) = (B_{X^{**}}, w^*)$, which is compact by Banach-Alaoglu (Theorem 6.15).

(\Leftarrow) The restriction to X of the weak-* topology on X^{**} is the weak topology. So B_X is weak-* compact in X^{**} by assumption, and in particular B_X is weak-* closed. Hence (by Theorem 6.17) $B_{X^{**}} = \overline{B}_X^{w*} = B_X$ and hence $X^{**} = X$.

6.3 Characterisation of reflexivity in terms of convex hulls

Theorem 6.19. Given a Banach space X, the following assertions are equivalent:

(ii)
$$\forall \theta \in (0,1), \exists (x_i)_{i \ge 1} \in B_X, \exists (f_i)_{i \ge 1} \in B_{X^*}, \forall i, j \ge 1, f_i (x_j) = \begin{cases} \theta & \text{if } i \le j \\ 0 & \text{if } i > j \end{cases}$$

(iii) $\exists \theta \in (0,1), \exists (x_i)_{i \ge 1} \in B_X, \exists (f_i)_{i \ge 1} \in B_{X^*}, \forall i, j \ge 1, f_i (x_j) = \begin{cases} \theta & \text{if } i \le j \\ 0 & \text{if } i > j \end{cases}$

(iv) $\forall \theta \in (0,1), \exists (x_i)_{i \ge 1} \in B_X, \forall n \in \mathbb{N}, d (\operatorname{Conv} \{x_1, \dots, x_n\}, \operatorname{Conv} \{x_{n+1}, x_{n+2}, \dots\}) \ge \theta.$

(v)
$$\exists \theta \in (0,1), \exists (x_i)_{i \ge 1} \in B_X, \forall n \in \mathbb{N}, d (\operatorname{Conv} \{x_1, \dots, x_n\}, \operatorname{Conv} \{x_{n+1}, x_{n+2}, \dots\}) \ge \theta.$$

Proof. (i) \Rightarrow (ii) Since X is non-reflexive, it is a proper closed subspace of X^{**} , so by Hahn-Banach there exists $T \in X^{***}$ such that ||T|| = 1 and $T_{|X} = 0$. Fix $\theta \in (0, 1)$ and choose $\varphi \in X^{**}$ such that $||\varphi|| < 1$ and $\lambda = T\varphi > \theta$. Then

$$\theta < \lambda = T\varphi \leqslant ||T|| \cdot ||\varphi|| = ||\varphi|| < 1,$$

i.e. $\theta < \lambda < 1$. Moreover, since $\|\varphi\| > \theta$, there exists $f_1 \in B_{X^*}$ s.t. $\varphi(f_1) = \theta$. Then

$$\theta = \varphi(f_1) \leqslant \|\varphi\| \cdot \|f_1\| < \|f_1\|,$$

and hence there is $x_1 \in B_X$ such that $f_1(x_1) = \theta$.

Assume now that for some $n \ge 1$, we have found $(x_i)_{1 \le i \le n} \in B_X$ and $(f_i)_{1 \le i \le n} \in B_{X^*}$ such that

$$f_i(x_j) = \begin{cases} \theta & \text{if } 1 \leqslant i \leqslant j \leqslant n \\ 0 & \text{if } 1 \leqslant j < i \leqslant n \end{cases},$$

and $\varphi(f_i) = \theta$ for $1 \leq i \leq n$. Since $Tx_i = 0$ for $1 \leq i \leq n$ and $T\varphi = \lambda$ and $||T|| = 1 < \frac{\lambda}{\theta}$, Lemma 6.16 implies the existence of $g \in X^*$ s.t $||g|| < \frac{\lambda}{\theta}$ and $g(x_i) = 0$ for $1 \leq i \leq n$ and $\varphi(g) = \lambda$. Set $f_{n+1} = \frac{\theta}{\lambda}g \in B_{X^*}$, so that $f_{n+1}(x_i) = 0$ for $1 \leq i \leq n$ and $\varphi(f_{n+1}) = \theta$. Since $\varphi(f_i) = \theta$ for $1 \leq i \leq n+1$ and $||\varphi|| < 1$, Lemma 6.16 implies the existence of $x_{n+1} \in B_X$ such that $f_i(x_{n+1}) = \theta$ for $1 \leq i \leq n+1$. Now the construction continues inductively.

(ii) \Rightarrow (iii) and (iv) \Rightarrow (v) Obvious.

(ii) \Rightarrow (iv) and (iii) \Rightarrow (v) Fix $\theta \in (0, 1)$. Assume that there are $(x_i)_{1 \leq i \leq n} \in B_X$ and $(f_i)_{1 \leq i \leq n} \in B_{X^*}$ such that (ii) (or (iii)) holds. Given $n \in \mathbb{N}$ and finite convex combinations $\sum_{i=1}^n t_i x_i$ and $\sum_{i=n+1}^\infty t_i x_i$, we have

$$\left\|\sum_{i=n+1}^{\infty} t_i x_i - \sum_{i=1}^{n} t_i x_i\right\| \ge \left|f_{n+1}\left(\sum_{i=n+1}^{\infty} t_i x_i - \sum_{i=1}^{n} t_i x_i\right)\right| = \sum_{i=n+1}^{\infty} \theta t_i = \theta,$$

which proves that $d(\operatorname{Conv} \{x_1, \ldots, x_n\}, \operatorname{Conv} \{x_{n+1}, x_{n+2}, \ldots\}) \ge \theta$.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$ Assume that there is $\theta \in (0, 1)$ and $(x_i)_{i \ge 1} \in B_X$ such that (\mathbf{v}) holds. Assume for contradiction that X is reflexive. For $n \in \mathbb{N}$, let

$$C_n = \operatorname{Conv} \left\{ x_{n+1}, x_{n+2}, \dots \right\}.$$

Then the $\|\cdot\|$ -closure \overline{C}_n is a $\|\cdot\|$ -closed, hence *w*-closed subset of B_X . Moreover, $\overline{C}_1 \supseteq \overline{C}_2 \supseteq \cdots$, and $\overline{C}_n \neq \emptyset$ for all *n*. Since B_X is *w*-compact by Corollary 6.18, we have

$$\bigcap_{n \ge 0} \overline{C}_n \neq \emptyset$$

Pick $x \in \bigcap_{n \ge 0} \overline{C}_n$. Since $x \in \overline{C}_1$, there is $y \in C_1$ such that $||x - y|| < \frac{\theta}{3}$. Choose $n \ge 1$ such that $y \in \text{Conv} \{x_1, \ldots, x_n\}$. Since $x \in \overline{C}_n$, there is $z \in C_n$ such that $||x - z|| < \frac{\theta}{3}$. Then

$$d(\text{Conv}\{x_1,\ldots,x_n\},\text{Conv}\{x_{n+1},x_{n+2},\ldots\}) \le ||y-z|| < \frac{2}{3}\theta,$$

a contradiction.

6.4 Ultrafilters

Definition 6.20 (Filter). Fix a set $I \neq \emptyset$. A filter on I is a family $\mathcal{F} \subseteq \mathcal{P}(I)$ such that

- (i) $I \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$.
- (ii) If $A \subseteq B \subseteq I$ with $A \in \mathcal{F}$, then $B \in \mathcal{F}$.
- (iii) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

Example 6.21. Let $I \neq \emptyset$.

- (i) For $i \in I$, $\mathcal{U}_i = \{A \subseteq I, i \in A\}$ is a filter the principal filter at *i*.
- (ii) If I is infinite, then $\{A \subseteq I, I \setminus A \text{ is finite}\}$ is a filter the cofinite filter.

Definition 6.22 (Convergence along a filter). Let X be a topological space, $f : I \to X$ be a function and \mathcal{F} be a filter on I. For $x \in X$, we write $x = \lim_{\mathcal{F}} f$ if for all neighbourhoods U of x in X, the set $\{i \in I, f(i) \in U\}$ is in \mathcal{F} .

Note that if X is Hausdorff, $x = \lim_{\mathcal{F}} f$ and $y = \lim_{\mathcal{F}} f$, then x = y.

- **Example 6.23.** (i) If $I = \mathbb{N}$ and \mathcal{F} is the cofinite filter on \mathbb{N} , then convergence along \mathcal{F} is the usual notion of convergence of sequences.
 - (ii) If $\mathcal{F} = \mathcal{U}_i$ for some $i \in I$, then $f(i) = \lim_{\mathcal{F}} f$ holds for all $f : I \to X$.

Definition 6.24 (Ultrafilter). Let I be a nonempty set. An ultrafilter on I is a maximal filter on I: it is a filter \mathcal{U} such that, if \mathcal{F} is a filter and $\mathcal{U} \subseteq \mathcal{F}$, then $\mathcal{U} = \mathcal{F}$.

Example 6.25. Any principal filter $\mathcal{U}_i = \{A \subseteq I, i \in A\}$ is an ultrafilter. If I is finite, these are the only ultrafilters. Otherwise, a free ultrafilter is an ultrafilter that is not principal. For instance, any ultrafilter containing the cofinite filter is free.

Proposition 6.26. Any filter is contained in an ultrafilter.

Proof. Use Zorn's Lemma.

Lemma 6.27. Let \mathcal{U} be an ultrafilter. If $A \cup B \in \mathcal{U}$, then $A \in \mathcal{U}$ or $B \in \mathcal{U}$.

Proof. Assume that there exist $C, D \in \mathcal{U}$ such that $A \cap C = B \cap D = \emptyset$. Then $(A \cup B) \cap (C \cap D) = \emptyset$, which is impossible because $A \cup B, C \cap D \in \mathcal{U}$. We may therefore assume without loss of generality that $A \cap C \neq \emptyset$ for all $C \in \mathcal{U}$. Therefore $\mathcal{F} = \{D \subseteq I, \exists C \in \mathcal{U}, D \supseteq A \cap C\}$ is a filter on I, and $\mathcal{F} \supseteq \mathcal{U}$ so $\mathcal{F} = \mathcal{U}$. In particular, $A \in \mathcal{F} = \mathcal{U}$.

Remark 6.28. (i) Every free ultrafilter contains the cofinite filter.

(ii) For an ultrafilter \mathcal{U} , define

$$\mu: A \in \mathcal{P}(I) \longmapsto \begin{cases} 0 & \text{if } A \notin \mathcal{U} \\ 1 & \text{if } A \in \mathcal{U} \end{cases}.$$

Then μ is a finitely-additive measure.

Lemma 6.29. Let \mathcal{U} be an ultrafilter on a set I and let K be a compact topological space. Then for every $f: I \to K$, there exists $x \in K$ such that

$$x = \lim_{\mathcal{U}} f.$$

In particular, for every bounded function $f: I \to \mathbb{R}$, there is a unique $x \in \mathbb{R}$ such that $x = \lim_{\mathcal{U}} f$.

Proof. If this were not the case, then for every $x \in K$, there would be an open neighbourhood V_x of x s.t. $A_x = \{i \in I, f(i) \in V_x\} \notin \mathcal{U}$. Since K is compact, there is a finite $F \subseteq X$ such that $\bigcup_{x \in F} V_x = K$. Then $\bigcup_{x \in F} A_x = I \in \mathcal{U}$, and by Lemma 6.27, there exists $x \in F$ such that $A_x \in \mathcal{U}$. This is a contradiction.

Remark 6.30. Given bounded functions $f, g: I \to \mathbb{R}$ and an ultrafilter \mathcal{U} on I, we have

$$\lim_{\mathcal{U}} (f+g) = \lim_{\mathcal{U}} f + \lim_{\mathcal{U}} g \qquad and \qquad \lim_{\mathcal{U}} (fg) = \left(\lim_{\mathcal{U}} f\right) \left(\lim_{\mathcal{U}} g\right).$$

Moreover, if $f(i) \leq g(i)$ for all $i \in I$, then $\lim_{\mathcal{U}} f \leq \lim_{\mathcal{U}} g$.

6.5 Ultraproducts and ultrapowers

Definition 6.31 (Ultraproducts). Fix a set $I \neq \emptyset$ and an ultrafilter \mathcal{U} on I. Given Banach spaces $(X_i)_{i \in I}$, we set

$$\left(\bigoplus_{i\in I} X_i\right)_{\infty} = \left\{x\in\prod_{i\in I} X_i, \sup_{i\in I} \|x_i\| < \infty\right\}.$$

This is a Banach space with norm $||x|| = \sup_{i \in I} ||x_i||$. We define

$$\|x\|_{\mathcal{U}} = \lim_{\mathcal{U}} \|x_i\|.$$

This defines a seminorm on $(\bigoplus_{i \in I} X_i)_{\infty}$. It follows that

$$\mathcal{N}_{\mathcal{U}} = \left\{ x \in \left(\bigoplus_{i \in I} X_i\right)_{\infty}, \ \|x\|_{\mathcal{U}} = 0 \right\}$$

is a closed subspace of $(\bigoplus_{i \in I} X_i)_{\infty}$. The quotient is denoted by

$$\left(\prod_{i\in I} X_i\right)_{\mathcal{U}} = \left(\bigoplus_{i\in I} X_i\right)_{\infty} / \mathcal{N}_{\mathcal{U}}$$

It is a normed space with $||x_{\mathcal{U}}||_{\mathcal{U}} = ||x||_{\mathcal{U}}$, where for $x \in (\bigoplus_{i \in I} X_i)_{\infty}$, $x_{\mathcal{U}} = x + \mathcal{N}_{\mathcal{U}} \in (\prod_{i \in I} X_i)_{\mathcal{U}}$. Moreover, this norm is complete, so $(\prod_{i \in I} X_i)_{\mathcal{U}}$ is a Banach space – called the ultraproduct of the $(X_i)_{i \in I}$.

If $X_i = X$ for all $i \in I$, where X is some Banach space, then $(\prod_{i \in I} X_i)_{\mathcal{U}}$ is denoted by $X^{\mathcal{U}}$ – called an ultrapower of X.

Proposition 6.32. Any ultrapower $X^{\mathcal{U}}$ of a Banach space X is finitely representable in X.

Proof. Let *E* be a finite-dimensional subspace of $X^{\mathcal{U}}$. Choose a basis e_1, \ldots, e_n of *E*. For each $1 \leq k \leq n$, fix $(x_{k,i})_{i \in I}$ a bounded sequence in *X* such that $e_k = ((x_{k,i})_{i \in I})_{\mathcal{U}}$. Hence, for all $(\lambda_k)_{1 \leq k \leq n} \in \mathbb{R}^n$,

$$\sum_{k=1}^{n} \lambda_k e_k = \left(\left(\sum_{k=1}^{n} \lambda_k x_{k,i} \right)_{i \in I} \right)_{\mathcal{U}}.$$

Fix $\varepsilon > 0$. We seek an injective linear map $T : E \to X$ such that $||T|| ||T^{-1}|| < 1 + \varepsilon$. Choose $\delta \in \left(0, \frac{1}{3}\right)$ such that $\frac{1+\delta}{1-3\delta} < 1 + \varepsilon$. Let $S \subseteq \mathbb{R}^n$ be a finite set such that

$$\widetilde{S} = \left\{ \sum_{k=1}^{n} \lambda_k e_k, \ (\lambda_k)_{1 \leqslant k \leqslant n} \in S \right\}$$

is a δ -net for $S_E = \{x \in E, \|x\| = 1\}$. For all $(\lambda_k)_{1 \leq k \leq n}$ in S, we have

$$\lim_{\mathcal{U}} \left\| \sum_{k=1}^{n} \lambda_k x_{k,i} \right\| = \left\| \sum_{k=1}^{n} \lambda_k e_k \right\|_{\mathcal{U}} = 1$$

it follows that

$$\left\{i \in I, \ 1-\delta < \left\|\sum_{k=1}^n \lambda_k x_{k,i}\right\| < 1+\delta\right\} \in \mathcal{U}.$$

Since S is finite, the intersection of these sets (for $(\lambda_k)_{1 \leq k \leq n} \in S$) is in \mathcal{U} ; in particular, their intersection is nonempty, so there exists $i_0 \in I$ such that, for all $(\lambda_k)_{1 \leq k \leq n} \in S$,

$$1 - \delta < \left\| \sum_{k=1}^{n} \lambda_k x_{k,i_0} \right\| < 1 + \delta.$$

Now define

$$T:\left(\sum_{k=1}^{n}\mu_{k}e_{k}\right)\in E\longmapsto\left(\sum_{k=1}^{n}\mu_{k}x_{k,i_{0}}\right)\in X.$$

Given $x \in S_E$, there exists $z \in \tilde{S}$ such that $||x - z|| \leq \delta$. Hence

$$||Tx|| \le ||Tz|| + ||T(x-z)|| \le 1 + \delta + ||T|| \cdot \delta.$$

Taking the supremum over $x \in S_E$ yields $||T|| \leq 1 + \delta + \delta ||T||$, i.e. $||T|| \leq \frac{1+\delta}{1-\delta}$. It follows that

$$||Tx|| \ge ||Tz|| - ||T(x-z)|| \ge 1 - \delta - \frac{1+\delta}{1-\delta}\delta = \frac{1-3\delta}{1-\delta}.$$

Therefore $||T^{-1}|| \leq \frac{1-\delta}{1-3\delta}$, and $||T|| ||T^{-1}|| \leq \frac{1+\delta}{1-3\delta} < 1+\varepsilon$.

6.6 Isomorphic characterisation of super-reflexivity

Theorem 6.33. Let X be a Banach space. Then the following assertions are equivalent:

- (i) X is super-reflexive.
- (ii) Every Y crudely finitely representable in X is reflexive.

Proof. (ii) \Rightarrow (i) OK because every Y finitely representable in X is crudely finitely representable and hence reflexive.

(i) \Rightarrow (ii) Assume Y is non-reflexive and crudely finitely representable in X. Fix $\theta \in (0, 1)$. By Theorem 6.19, there is a sequence $(y_i)_{i\geq 1}$ in B_Y such that for all n,

$$d\left(\operatorname{Conv}\left\{y_{1},\ldots,y_{n}\right\},\left\{y_{n+1},y_{n+2},\ldots\right\}\right) \geq \theta.$$

There exists $\lambda > 1$ such that for any finite-dimensional subspace $E \subseteq Y$, there is a linear map $T: E \to X$ such that

$$\frac{1}{\lambda} \|y\| \leqslant \|Ty\| \leqslant \|y\|$$

for all $y \in E$. In particular, for $N \in \mathbb{N}$, there is a linear map $T_N : \text{Span}(y_1, \ldots, y_N) \to X$ such that $\frac{1}{\lambda} \|y\| \leq \|T_N y\| \leq \|y\|$ for all $y \in \text{Span}(y_1, \ldots, y_N)$. Set

$$x_{N,i} = T_N\left(y_i\right) \in B_X$$

for $1 \leq i \leq N$. Note that for $1 \leq m < n \leq N$ and for convex combinations $\sum_{i=1}^{m} t_i x_{N,i}$ and $\sum_{i=m+1}^{n} t_i x_{N,i}$, we have

$$\left\|\sum_{i=1}^{m} t_i x_{N,i} - \sum_{i=m+1}^{n} t_i x_{N,i}\right\| \ge \frac{1}{\lambda} \left\|\sum_{i=1}^{m} t_i y_i - \sum_{i=m+1}^{n} t_i y_i\right\| \ge \frac{\theta}{\lambda}.$$

Now fix a free ultrafilter \mathcal{U} on \mathbb{N} and define

$$\widetilde{x}_{N,i} = \begin{cases} x_{N,i} & \text{if } i \leqslant N \\ 0 & \text{otherwise} \end{cases},$$

and set $\tilde{x}_i = \left((\tilde{x}_{N,i})_{N \ge 1} \right)_{\mathcal{U}}$. Given $1 \le m < n$ and convex combinations $z = \sum_{i=1}^m t_i \tilde{x}_i$ and $w = \sum_{i=m+1}^n t_i \tilde{x}_i$ in $X^{\mathcal{U}}$, we have

$$\left\|\sum_{i=1}^{m} t_i \tilde{x}_{N,i} - \sum_{i=m+1}^{n} t_i \tilde{x}_{N,i}\right\| \ge \frac{\theta}{\lambda}$$

for all $N \ge n$; it follows that $||z - w|| \ge \frac{\theta}{\lambda}$. Thus,

$$d \left(\operatorname{Conv} \left\{ \widetilde{x}_1, \ldots, \widetilde{x}_m \right\}, \operatorname{Conv} \left\{ \widetilde{x}_{m+1}, \widetilde{x}_{m+2}, \ldots \right\} \right) \ge \frac{\theta}{\lambda}.$$

By Theorem 6.19, $X^{\mathcal{U}}$ is non-reflexive. But it is finitely representable in X by Proposition 6.32; hence X is not super-reflexive.

6.7 Uniform convexity

Definition 6.34 (Strict convexity and uniform convexity). Let X be a Banach space.

- (i) X is strictly convex if for all $x, y \in S_X$ with $x \neq y$, $\left\|\frac{x+y}{2}\right\| < 1$.
- (ii) X is uniformly convex if for all $\varepsilon \in (0,2]$, there exists $\delta > 0$ such that for all $x, y \in S_X$ with $||x-y|| \ge \varepsilon$, we have

$$\left\|\frac{x+y}{2}\right\| \leqslant 1 - \delta.$$

The module of uniform convexity of X is the function $\delta_X : [0,2] \to \mathbb{R}_+$ defined by

$$\delta_X(\varepsilon) = \inf_{\substack{x,y \in S_X \\ \|x-y\| \ge \varepsilon}} \left(1 - \left\| \frac{x+y}{2} \right\| \right).$$

Example 6.35. (i) ℓ_2 is uniformly convex.

- (ii) c_0, ℓ_1, ℓ_∞ are not strictly convex.
- (iii) Let $1 < p_n < 2$ such that $p_n \xrightarrow[n \to \infty]{} 1$ and set $X = \left(\bigoplus_{n \ge 1} \ell_{p_n}^2\right)_{\ell_2}$. Then X is strictly convex but not uniformly convex. However, X is isomorphic to $\left(\bigoplus_{n \ge 1} \ell_2^2\right)_{\ell_2} \cong \ell_2$, so uniform convexity is not an isomorphic property.

Proof. (i) Given $x, y \in S_{\ell_2}$ with $||x - y|| \ge \varepsilon$, we have $4 = 2 ||x||^2 + 2 ||y||^2 = ||x + y||^2 + ||x - y||^2 \ge ||x + y||^2 + \varepsilon^2$, so

$$\left\|\frac{x+y}{2}\right\| \leqslant \sqrt{1-\frac{\varepsilon^2}{4}} \sim 1-\frac{\varepsilon^2}{8}.$$

Remark 6.36. Let X be a Banach space. Recall from Theorem 6.17 that $\overline{B}_X^{w*} = B_{X^{**}}$. In fact, if dim $X = \infty$, then $\overline{S}_X^{w*} = B_{X^{**}}$.

Proof. Let $\varphi \in B_{X^{**}}$ and let \mathcal{U} be a *w**-neighbourhood of φ . Without loss of generality, there exist $f_1, \ldots, f_n \in X^*$ and $\varepsilon > 0$ such that

$$\mathcal{U} = \left\{ \psi \in X^{**}, \forall i \in \{1, \dots, n\}, \left| (\psi - \varphi) (f_i) \right| < \varepsilon_i \right\}.$$

Choose $x \in B_X \cap \mathcal{U}$. Since dim $X = \infty$, take $z \in \bigcap_{i=1}^n \operatorname{Ker} f_i \setminus \{0\}$. Then $x + \lambda z \in \mathcal{U}$ for all $\lambda \in \mathbb{R}$, and there exists $\lambda \in \mathbb{R}$ such that $||x + \lambda z|| = 1$.

Theorem 6.37 (Milman-Pettis). If a Banach space X is uniformly convex, then X is reflexive.

Proof. We assume without loss of generality that dim $X = \infty$. It suffices to show that $S_{X^{**}} \subseteq X$. Let $\varphi \in S_{X^{**}}$, $\varepsilon \in (0, 2)$ and $\delta = \delta_X(\varepsilon) > 0$. Hence, for all $x, y \in S_X$ with $||x + y|| \ge 2 - \delta$,

$$1 - \left\|\frac{x+y}{2}\right\| \leqslant \frac{\delta}{2} < \delta,$$

and hence $||x - y|| < \varepsilon$. Choose $f_{\varepsilon} \in B_{X^*}$ such that $\varphi(f_{\varepsilon}) > 1 - \frac{\delta}{2}$ and let

$$V_{\varepsilon} = \left\{ \psi \in X^{**}, \ \psi \left(f_{\varepsilon} \right) \ge 1 - \frac{\delta}{2} \right\};$$

this is a *w**-closed neighbourhood of φ . Hence, $W_{\varepsilon} = V_{\varepsilon} \cap S_X$ is a nonempty (by Remark 6.36) and $\|\cdot\|$ -closed neighbourhood of φ . Also, given $x, y \in W_{\varepsilon}$, we have

$$||x+y|| \ge f_{\varepsilon} (x+y) \ge 2-\delta,$$

and hence $||x - y|| < \varepsilon$. Thus diam $W_{\varepsilon} \leq \varepsilon$.

Now, for $n \ge 1$, let

$$A_n = \bigcap_{k=1}^n W_{1/k} = \left\{ x \in S_X, \, \forall k \in \{1, \dots, n\}, \, f_{1/k}(x) \ge 1 - \frac{1}{2} \delta_X\left(\frac{1}{k}\right) \right\}$$

Hence, A_n is a nonempty and $\|\cdot\|$ -closed subset of X with diam $A_n \leq \frac{1}{n}$. Moreover, $A_n \supseteq A_{n+1}$ for all n. By completeness of X, there exists $x \in S_X$ such that $\bigcap_{n \geq 1} A_n = \{x\}$.

We now show that $\varphi = \hat{x}$. If not, then there exists $g \in X^*$ such that $\eta = \varphi(g) - g(x) > 0$. Consider

$$B_n = A_n \cap \left\{ \psi \in X^{**}, \ |\varphi(g) - \psi(g)| \leq \frac{\eta}{2} \right\}$$

The set B_n is nonempty, $\|\cdot\|$ -closed, and diam $B_n \leq \text{diam } A_n \xrightarrow[n \to \infty]{} 0$. Hence, $\bigcap_{n \geq 1} B_n = \{x\}$ and $|\varphi(g) - g(x)| \leq \frac{n}{2}$, a contradiction.

Theorem 6.38 (Enflo). If $(X, \|\cdot\|)$ is a super-reflexive Banach space, then there is an equivalent norm $\|\|\cdot\|\|$ on X such that $(X, \|\|\cdot\|\|)$ is uniformly convex.

Recall that the norms $\|\cdot\|$ and $\|\|\cdot\|\|$ are equivalent if $id_X : (X, \|\cdot\|) \to (X, \|\|\cdot\|)$ is an isomorphism.

Example 6.39. The space $\ell_2 \oplus_2 \ell_1^2$ is not strictly convex, but it is isomorphic to $\ell_2 \oplus_2 \ell_2^2 \cong \ell_2$, so it is super-reflexive.

6.8 Finite tree property

Definition 6.40 (Binary tree). The binary tree B_n of depth n is the graph with vertex set $\bigcup_{k=0}^n \{0,1\}^k$ and where $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_k) \in \{0,1\}^k$ is joined to $(\varepsilon_1, \ldots, \varepsilon_k, i)$ for $i \in \{0,1\}$.

Given $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_k) \in \{0, 1\}^k$ and $\delta = (\delta_1, \ldots, \delta_\ell) \in \{0, 1\}^\ell$, we write $\varepsilon \preccurlyeq \delta$ if $k \leqslant \ell$ and $\varepsilon_i = \delta_i$ for $1 \leqslant i \leqslant k$. We also let $|\varepsilon| = k$ denote the length of ε .

Definition 6.41 (Finite tree property). A Banach space X has the finite tree property if there exists $\theta > 0$ such that for all $n \ge 1$, there exist $(x_{\varepsilon})_{\varepsilon \in B_n}$ in B_X such that

$$x_{\varepsilon} = \frac{1}{2} (x_{\varepsilon 0} + x_{\varepsilon_1})$$
 and $||x_{\varepsilon} - x_{\varepsilon,i}|| \ge \theta$

for all $\varepsilon \in B_n$ and $i \in \{0, 1\}$.

Definition 6.42 (Strongly exposed point). Given a convex set C in a Banach space Z, a point $w \in C$ is strongly exposed if there exists $f \in Z^*$ such that

- (i) For all $u \in C \setminus \{w\}$, f(u) < f(w).
- (ii) diam $\{u \in C, f(w) \varepsilon < f(u)\} \xrightarrow[\varepsilon \to 0]{} 0.$

Theorem 6.43. Every nonempty w-compact convex subset of a separable Banach space has a strongly exposed point.

Theorem 6.44. For a Banach space X, the following assertions are equivalent:

- (i) X is not super-reflexive.
- (ii) X has the finite tree property.
- (iii) There exists $\theta > 0$ such that for all $n \in \mathbb{N}$, there exist $(x_i)_{1 \le i \le n}$ in B_X such that

$$\left\|\sum_{i=1}^{n} a_i x_i\right\| \ge \theta \left|\sum_{i=\ell}^{m} a_i\right|$$

for all $(a_i)_{1 \leq i \leq n}$ in \mathbb{R} and $1 \leq \ell \leq m \leq n$.

Proof. (i) \Rightarrow (ii) Assume that there is a non-reflexive space Z which is finitely representable in X. Fix $\theta \in (0, 1)$. By Theorem 6.19, there is a sequence $(z_n)_{n \ge 1}$ in B_Z such that, for all n,

$$d\left(\operatorname{Conv}\left\{z_{1},\ldots,z_{n}\right\},\operatorname{Conv}\left\{z_{n+1},z_{n+2},\ldots\right\}\right) \geq \theta.$$

For $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in B_n$, let $k(\varepsilon) = 1 + \sum_{i=1}^n 2^{n-i} \varepsilon_i$; for $\delta \in B_n$, let

$$I_{\delta} = \{k(\varepsilon), \ \varepsilon \succcurlyeq \delta, \ |\varepsilon| = n\}.$$

Set $z_{\delta} = 2^{|\delta|-n} \sum_{k \in I_{\delta}} z_k$. Since $|I_{\delta}| = 2^{n-|\delta|}$, we have $z_k \in \text{Conv} \{z_k, k \in I_{\delta}\} \subseteq B_Z$. Moreover, for $\delta \in B_{n-1}$, we have $I_{\delta} = I_{\delta,0} \amalg I_{\delta,1}$ and moreover $k < \ell$ for all $k \in I_{\delta,0}$ and $\ell \in I_{\delta,1}$. It follows that

$$z_{\delta} = \frac{1}{2} \left(z_{\delta,0} + z_{\delta,1} \right),$$

and for $i \in \{0, 1\}$,

$$||z_{\delta} - z_{\delta,i}|| = \frac{1}{2} ||z_{\delta,0} - z_{\delta,1}|| \ge \frac{1}{2} d \left(\operatorname{Conv} \{ z_k, \ k \in I_{\delta,0} \}, \operatorname{Conv} \{ z_k, \ k \in I_{\delta,1} \} \right) \ge \frac{\theta}{2}.$$

Hence Z has the finite tree property, and so does X since Z is finitely representable in X.

(ii) \Rightarrow (i) Assume that there exists $\theta > 0$ such that for all $n \ge 1$, there exists $\left\{ x_{\varepsilon}^{(n)}, \varepsilon \in B_n \right\} \subseteq B_X$ with $x_{\varepsilon}^{(n)} = \frac{1}{2} \left(x_{\varepsilon,0}^{(n)} + x_{\varepsilon,1}^{(n)} \right)$ for all $\varepsilon \in B_{n-1}$, and $\left\| x_{\varepsilon}^{(n)} - x_{\varepsilon,i}^{(n)} \right\| \ge \theta$ for $i \in \{0,1\}$. Let \mathcal{U} be a free ultrafilter on \mathbb{N} , and let $B_{\infty} = \bigcup_{k \ge 0} B_k$ be the infinite binary tree. Set

$$\tilde{x}_{\varepsilon}^{(n)} = \begin{cases} x_{\varepsilon}^{(n)} & \text{if } |\varepsilon| \leq n \\ 0 & \text{otherwise} \end{cases},$$

and $\tilde{x}_{\varepsilon} = \left(\left(\tilde{x}_{\varepsilon}^{(n)} \right)_{n \ge 1} \right)_{\mathcal{U}} \in X^{\mathcal{U}}$. It is easy to see that $\tilde{x}_{\varepsilon} = \frac{1}{2} \left(\tilde{x}_{\varepsilon,0} + \tilde{x}_{\varepsilon,1} \right)$ and $\| \tilde{x}_{\varepsilon} - \tilde{x}_{\varepsilon,i} \| \ge \theta$ for all $\varepsilon \in B_{\infty}$ and $i \in \{0, 1\}$. Let

$$Z = \overline{\operatorname{Span}} \{ \widetilde{x}_{\varepsilon}, \, \varepsilon \in B_{\infty} \} \subseteq X^{\mathcal{U}}.$$

This is a separable subspace of $X^{\mathcal{U}}$. Assume for contradiction that X is super-reflexive. Then Z is reflexive by Proposition 6.32. It follows by Corollary 6.18 that B_Z is w-compact. Let

$$C = \overline{\operatorname{Conv}} \{ x_{\varepsilon}, \ \varepsilon \in B_{\infty} \} \subseteq B_Z.$$

Then C is a $\|\cdot\|$ -closed convex subset of B_Z , and hence C is w-compact. By Theorem 6.43, C has a strongly exposed point w, so there exists $f \in Z^*$ such that f(u) < f(w) for all $u \in C \setminus \{w\}$, and there exists $\eta > 0$ such that

diam {
$$u \in C$$
, $f(w) - \eta < f(u)$ } $< \frac{\theta}{2}$.

Since $\{u \in C, f(u) \leq f(w) - \eta\} \subsetneq C$ is $\|\cdot\|$ -closed and convex, it cannot contain $\{\tilde{x}_{\varepsilon}, \varepsilon \in B_{\infty}\}$, so there exists $\varepsilon \in B_{\infty}$ such that $f(\tilde{x}_{\infty}) > f(w) - \eta$. Therefore $\frac{1}{2}(f(\tilde{x}_{\varepsilon,0}) + f(\tilde{x}_{\varepsilon,1})) = f(\tilde{x}_{\varepsilon})$, so there exists $i \in \{0, 1\}$ such that $f(\tilde{x}_{\varepsilon,i}) > f(w) - \eta$. Thus $\|\tilde{x}_{\varepsilon} - \tilde{x}_{\varepsilon,i}\| < \frac{\theta}{2}$, a contradiction.

(i) \Rightarrow (iii) Assume that there exists Z non-reflexive, finitely representable in X. By Theorem 6.19, there exist $\theta \in (0,1), (z_i)_{i \ge 1} \in B_Z$ and $(h_i)_{i \ge 1} \in B_{Z^*}$ such that

$$h_i(z_j) = \begin{cases} \theta & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}$$

Given scalars $(a_i)_{1 \leq i \leq n} \in \mathbb{R}$,

$$\sum_{i=\ell}^{n} a_{i} \bigg| = \frac{1}{\theta} \left| h_{\ell} \left(\sum_{i=1}^{n} a_{i} z_{i} \right) \right| \leqslant \frac{1}{\theta} \left\| \sum_{i=1}^{n} a_{i} z_{i} \right\|.$$

If $1 \leq \ell \leq m \leq n$, then

$$\left|\sum_{i=\ell}^{m} a_i\right| \leqslant \left|\sum_{i=\ell}^{n} a_i\right| + \left|\sum_{i=m+1}^{n} a_i\right| \leqslant \frac{2}{\theta} \left\|\sum_{i=1}^{n} a_i z_i\right\|.$$

Since Z is finitely representable in X, for all $\lambda > \frac{2}{\theta}$ and for all $n \ge 1$, there exist $x_1, \ldots, x_n \in B_X$ such that

$$\left|\sum_{i=\ell}^{m} a_i\right| \leqslant \lambda \left\|\sum_{i=1}^{n} a_i x_i\right\|$$

for all $(a_i)_{1 \leq i \leq n} \in \mathbb{R}$ and $1 \leq \ell \leq m \leq n$.

(iii) \Rightarrow (i) Assume that there exists $\theta > 0$ such that for all $n \ge 1$, there exist $x_1^{(n)}, \ldots, x_n^{(n)} \in B_X$ such that

$$\left\|\sum_{i=1}^{n} a_{i} x_{i}^{(n)}\right\| \ge \theta \left|\sum_{i=\ell}^{m} a_{i}\right|$$

for all $(a_i)_{1 \leq i \leq n} \in \mathbb{R}$ and $1 \leq \ell \leq m \leq n$. Given a free ultrafilter \mathcal{U} on \mathbb{N} , the usual process yields an infinite sequence $(\tilde{x}_i)_{i \geq 1} \in B_{X^{\mathcal{U}}}$ such that for all $n \in \mathbb{N}$, $(a_i)_{1 \leq i \leq n} \in \mathbb{R}$ and $1 \leq \ell \leq m \leq n$,

$$\left\|\sum_{i=1}^{n} a_i \widetilde{x}_i\right\| \ge \theta \left|\sum_{i=\ell}^{m} a_i\right|.$$

It follows that for every $i \in \mathbb{N}$, we can extend

$$h_i\left(\widetilde{x}_j\right) = \begin{cases} \theta & \text{if } i \leqslant j \\ 0 & \text{if } i > j \end{cases}$$

to a well-defined linear functional on $X^{\mathcal{U}}$ with $||h_i|| \leq 1$ (by Hahn-Banach). Now by Theorem 6.19, $X^{\mathcal{U}}$ is not reflexive. But by Proposition 6.32, $X^{\mathcal{U}}$ is finitely representable in X, so X is not super-reflexive.

Remark 6.45. Let S be the set of sequence $(a_i)_{i \ge 1}$ in \mathbb{R} such that $\sum_{i=1}^{\infty} a_i$ is convergent. This becomes a normed space with

$$||a|| = \sup_{1 \le \ell \le m} \left| \sum_{i=\ell}^m a_i \right|.$$

This is called the summing norm. Note that S is isomorphic to c_0 via the map $a \mapsto (\sum_{i=n}^{\infty} a_i)_{n \ge 1}$.

6.9 Metric characterisation of super-reflexivity

Theorem 6.46. Let X be a Banach space. Then the following assertions are equivalent:

- (i) X is not super-reflexive.
- (ii) The sequence $(D_n)_{n\geq 1}$ of diamond graphs embeds uniformly bilipschitzly into X.

Sketch of proof. (ii) \Rightarrow (i) Assume that there are $f_n : D_n \to X$ with $\sup_{n \ge 1} \operatorname{dist}(f_n) < \infty$. Without loss of generality, there exists $\delta > 0$ such that, for all n and for all $x, y \in D_n$,

$$\delta 2^{-n} d_n(x, y) \leq ||f_n(x) - f_n(y)|| \leq 2^{-n} d_n(x, y).$$

Fix n and write $f = f_n$. Let $x_{\emptyset} = f(t) - f(b) \in B_X$. Note that

$$\begin{aligned} \|[(f(t) - f(\ell)) - (f(\ell) - f(b))] - [(f(t) - f(r)) - (f(r) - f(b))]\| \\ &= \|2(f(r) - f(\ell))\| \ge 2\delta 2^{-n} d_n(\ell, r) = 2\delta. \end{aligned}$$

Without loss of generality, $\|(f(t) - f(\ell)) - (f(\ell) - f(b))\| \ge \delta$. Let $x_0 = 2(f(\ell) - f(b))$ and $x_1 = 2(f(t) - f(\ell))$. Then $x_{\emptyset} = \frac{1}{2}(x_0 + x_1)$, and $\|x_{\emptyset} - x_0\| = \frac{1}{2}\|x_1 - x_0\| \ge \delta$. Then continue inductively. (i) \Rightarrow (ii) Assume that there exist $\theta > 0$ satisfying Theorem 6.44.(iii). Then define $f_n : D_n \rightarrow \{0, 1\}^{2^n} \subset \ell^{2^n}$ as follows: f(t) = 1, f(b) = 0, then if $x_0 \in E$, we assume that $f_{0-1}(x) \in C$.

 $\{0,1\}^{2^n} \subseteq \ell_1^{2^n}$ as follows: $f_0(t) = 1$, $f_0(b) = 0$, then if $xy \in E_{n-1}$, we assume that $f_{n-1}(x)$, $f_{n-1}(y) \in \{0,1\}^{2^{n-1}}$ differ in one component, say the *j*-th one. Consider $D_1(xy) = \{x, y, u, v\}$, and set $(f_n(u))_{2i-1} = (f_n(v))_{2i} = (f_{n-1}(x))_i$, etc. \Box

References

- [1] J. Matoušek. Lecture notes on metric embeddings.
- [2] M.I. Ostrovskii. Metric Embeddings.