Metric Embeddings

Lectures by András Zsák
Notes by Alexis Marchand

University of Cambridge
Lent 2020
Part III course

Contents

1 Definitions, examples and motivation 2
1.1 Metric spaces 2
1.2 Isometric, Lipschitz and bilipschitz embeddings 4
1.3 Examples of embeddings 5
1.4 The sparsest cut problem 7
1.5 Coarse and uniform embeddings 9
2 Fréchet embeddings, Aharoni's Theorem 11
2.1 Isometric embeddings into ℓ_{∞} 11
2.2 Background on Ramsey theory and graphs 11
2.3 Lower bound on $m_{\infty}(n)$ 12
2.4 Nonlinear Hahn-Banach Theorem 13
2.5 More background on Ramsey theory and graphs 13
2.6 Gap between n and $m_{\infty}(n)$ 14
2.7 Upper bound on $m_{p}(n)$ 16
2.8 Aharoni's Theorem 17
3 Bourgain's Embedding Theorem 19
3.1 Dvoretzky's Theorem 19
3.2 Padded decompositions and existence of scaled embeddings 20
3.3 Existence of padded decompositions 22
3.4 Glueing Lemma and Bourgain's Embedding Theorem 23
4 Lower bounds on distortion and Poincaré inequalities 27
4.1 John's Lemma 27
4.2 Poincaré inequalities 28
4.3 Hahn-Banach Theorem 29
4.4 Hahn-Banach Separation Theorem 30
4.5 Optimality of Poincaré inequalities 32
4.6 Discrete Fourier analysis on the Hamming cube 33
4.7 Poincaré inequality for L_{2}-valued functions on H_{n} 35
4.8 Linear codes 36
4.9 Poincaré inequality for L_{1}-valued functions on $\mathbb{F}_{2}^{n} / C^{\perp}$ 38
4.10 Optimality of Bourgain's Embedding Theorem 39
5 Dimension reduction 40
5.1 Preliminary results on Gaussian random variables 40
5.2 Johnson-Lindenstrauss Lemma 41
5.3 Diamond graphs 42
5.4 No dimension reduction in ℓ_{1} 44
6 Ribe programme 47
6.1 Local properties of Banach spaces 47
6.2 Weak-* topology for Banach spaces 48
6.3 Characterisation of reflexivity in terms of convex hulls 50
6.4 Ultrafilters 51
6.5 Ultraproducts and ultrapowers 52
6.6 Isomorphic characterisation of super-reflexivity 53
6.7 Uniform convexity 54
6.8 Finite tree property 56
6.9 Metric characterisation of super-reflexivity 58
References 58

1 Definitions, examples and motivation

1.1 Metric spaces

Definition 1.1 (Metric space). A metric space is a set M together with a metric, i.e. a function $d: M \times M \rightarrow \mathbb{R}_{+}$such that
(i) $\forall x \in M, d(x, x)=0$,
(ii) $\forall x, y \in M, d(x, y)=d(y, x)$,
(iii) $\forall x, y, z \in M, d(x, z) \leqslant d(x, y)+d(y, z)$,
(iv) $\forall x, y \in M, d(x, y)=0 \Longrightarrow x=y$.

If d satisfies conditions (i), (ii) and (iii) only, it is called a semimetric.
Example 1.2 (Graphs and graph distance). A graph is a pair $G=(V, E)$, where V is a set and $E \subseteq V^{(2)}=\{\rho \subseteq V,|\rho|=2\}$. Elements of V are called vertices and elements of E are called edges. Given $e=\{x, y\} \in E$ (which we shall also denote by $x y$ or $y x$), we say that x, y are the end vertices of e. We also write $x \sim y$ to mean that $x y \in E$.
A walk in G from x_{0} to x_{n} is a sequence $x_{0}, x_{1}, \ldots, x_{n}$ of vertices of G such that $x_{i-1} \sim x_{i}$ for all $1 \leqslant i \leqslant n$. The length of the walk is n. If $x_{i} \neq x_{j}$ whenever $1<j-i<n$, the walk is called a path from x_{0} to x_{n}. We say that G is connected if there is a walk (equivalently, a path) between any two vertices of G.

The graph distance d_{G} on V is defined as follows: $d_{G}(x, y)$ is the minimal length of a path in G from x to y.

For example:

- K_{n} is the complete graph on n vertices (i.e. any two vertices are connected).

K_{5}

The graph distance is given by $d_{K_{n}}(x, y)=\left\{\begin{array}{ll}0 & \text { if } x=y \\ 1 & \text { otherwise }\end{array}\right.$.

- P_{n} is the path of length $n: V=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and $E=\left\{x_{i-1} x_{i}, 1 \leqslant i \leqslant n\right\}$.

The graph distance is given by $d_{P_{n}}\left(x_{i}, x_{j}\right)=|i-j|$.

- C_{n} is the cycle of length $n: V=\left\{x_{1}, \ldots, x_{n}\right\}$ and $E=\left\{x_{i} x_{i+1}, 1 \leqslant i<n\right\} \cup\left\{x_{1} x_{n}\right\}$.

- B_{n} is the rooted binary tree of depth n.

- H_{n} is the Hamming cube: $V=\{0,1\}^{n}$ and $x \sim y$ iff $\left|\left\{i, x_{i} \neq y_{i}\right\}\right|=1$.

The graph distance is given by $d_{H_{n}}(x, y)=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|$.
Example 1.3 (Word metric on a group). Let G be a group generated by some subset S. We always assume that $e \notin S$ and that S is symmetric: $x^{-1} \in S$ for all $x \in S$. The word metric on G is defined by

$$
d_{G}(x, y)=\min \left\{n \in \mathbb{N}, \exists a_{1}, \ldots, a_{n} \in S, x^{-1} y=a_{1} \cdots a_{n}\right\} .
$$

The Cayley graph $C(G, S)$ has vertex set G and $x \sim y$ iff $x^{-1} y \in S$. The graph distance on G is exactly the word metric.

Example 1.4 (Cut semimetric). A cut on a set M is a partitioning of M into S and $M \backslash S$. The corresponding cut semimetric d_{S} is given by

$$
d_{S}(x, y)=\left\{\begin{array}{ll}
0 & \text { if } x, y \in S \text { or } x, y \in M \backslash S \\
1 & \text { otherwise }
\end{array} .\right.
$$

Definition 1.5 (Normed space). A normed space is a vector space V over $\mathbb{K}=\mathbb{R}$ or \mathbb{C} equipped with a norm, i.e. a function $\|\cdot\|: V \rightarrow \mathbb{R}_{+}$such that
(i) $\forall x \in V, \forall \lambda \in \mathbb{K},\|\lambda x\|=|\lambda| \cdot\|x\|$,
(ii) $\forall x, y \in V,\|x+y\| \leqslant\|x\|+\|y\|$,
(iii) $\forall x \in V,\|x\|=0 \Longrightarrow x=0$.

Then $d(x, y)=\|x-y\|$ defines a metric on V. If V is complete, then it is called a Banach space. If $\|\cdot\|$ satisfies conditions (i) and (ii) only, then it is called a seminorm.
Given a normed space V, we define:

- The closed unit ball of $V: B_{V}=\{x \in V,\|x\| \leqslant 1\}$,
- The unit sphere of V : $S_{V}=\{x \in V,\|x\|=1\}$.

Example 1.6 (Classical sequence spaces). - ℓ_{p}^{n} is the space \mathbb{R}^{n} together with the norm $\|\cdot\|_{p}$ for $1 \leqslant p \leqslant \infty$.

- $\ell_{p}=\left\{\left(x_{i}\right)_{i \geqslant 1}, \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}$ together with the norm $\|\cdot\|_{p}$ for $1 \leqslant p<\infty$.
- $\ell_{\infty}=\left\{\left(x_{i}\right)_{i \geqslant 1}\right.$ bounded $\}$ together with the norm $\|\cdot\|_{\infty}$.
- More generally, for a set $S, \ell_{\infty}(S)$ is the space of bounded functions $S \rightarrow \mathbb{R}$ together with the norm $\|\cdot\|_{\infty}$.
- $c_{0}=\left\{\left(x_{i}\right)_{i \geqslant 1}, x_{i} \underset{i \rightarrow \infty}{ } 0\right\}$, a closed subspace of ℓ_{∞}.

Example 1.7 (Classical function spaces). Let $(\Omega, \mathcal{F}, \mu\}$ be a measure space.

- $L_{p}(\mu)=\left\{f: \Omega \rightarrow \mathbb{R}\right.$ measurable, $\left.\int_{\Omega}|f|^{p} \mathrm{~d} \mu<\infty\right\}$ together with the norm $\|\cdot\|_{p}$.
- $L_{\infty}(\mu)=\{f: \Omega \rightarrow \mathbb{R}$ measurable and essentially bounded $\}$ together with the norm $\|\cdot\|_{\infty}$.
- If $\Omega=[0,1]$ and μ is the Lebesgue measure, we write L_{p} for $L_{p}(\mu)$.
- For a compact space $K, \mathcal{C}(K)$ is the space of continuous functions $K \rightarrow \mathbb{R}$, a closed subspace of $\ell_{\infty}(K)$.

Definition 1.8 (Hilbert space). An inner product space is a vector space V with an inner product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ (symmetric, bilinear, positive definite). Then V becomes a normed space with $\|x\|=\sqrt{\langle x, x\rangle}$. If V is complete for this norm, it is called a Hilbert space.

1.2 Isometric, Lipschitz and bilipschitz embeddings

Definition 1.9 (Isometric, Lipschitz and bilipschitz embeddings). Let $f: M \rightarrow N$ be a map between metric spaces.
(i) f is isometric (or an isometric embedding) if $d(f(x), f(y))=d(x, y)$ for all $x, y \in M$.
(ii) f is Lipschitz if there exists $b \geqslant 0$ such that $d(f(x), f(y)) \leqslant b \cdot d(x, y)$ for all $x, y \in M$. The Lipschitz constant of f is defined by

$$
\operatorname{Lip}(f)=\sup _{x \neq y} \frac{d(f(x), f(y))}{d(x, y)}
$$

(iii) f is a bilipschitz embedding if there exist $a, b>0$ such that

$$
\begin{equation*}
a \cdot d(x, y) \leqslant d(f(x), f(y)) \leqslant b \cdot d(x, y) \tag{*}
\end{equation*}
$$

for all $x, y \in M$. The distortion of f is defined by

$$
\operatorname{dist}(f)=\inf \left\{\frac{b}{a}, a, b>0,(*) \text { holds for } f\right\}
$$

Remark 1.10. (i) If $f: M \rightarrow N$ is a bilipschitz embedding with $a=b$, then f is a scaled isometric embedding.
(ii) The definitions of Lipschitz and bilipschitz embeddings also make sense for semimetrics.
(iii) If f is a bilipschitz embedding satisfying $(*)$, then f is Lipschitz with $\operatorname{Lip}(f) \leqslant b$; moreover f is injective and $f^{-1}: f(M) \rightarrow M$ is Lipschitz with $\operatorname{Lip}\left(f^{-1}\right) \leqslant \frac{1}{a}$. We have in addition

$$
\operatorname{dist}(f)=\operatorname{Lip}(f) \operatorname{Lip}\left(f^{-1}\right)
$$

Definition 1.11 (Morphisms of normed spaces). Let $T: X \rightarrow Y$ be a linear map between normed spaces.
(i) The following assertions are equivalent:
(a) T is continuous.
(b) T is bounded, i.e. there exists $C \geqslant 0$ such that $\|T x\| \leqslant C\|x\|$ for all $x \in X$.
(c) T is Lipschitz.

In that case, we define $\|T\|=\operatorname{Lip}(T)=\sup _{x \in B_{X}}\|T x\|$.
(ii) We say that $T: X \rightarrow Y$ is an isomorphism if T is a bijection, and both T and T^{-1} are bounded.
(iii) We say that T is an isomorphic embedding or an into isomorphism if one of the following two equivalent assertions is satisfied:
(a) T is an isomorphism between X and $T(X)$.
(b) T is bilipschitz.
(iv) We say that T is an isometric (isomorphic) embedding if $\|T x\|=\|x\|$ for all $x \in X$.

Notation 1.12. Let X, Y be normed spaces.
(i) We write $X \hookrightarrow_{C} Y$, and we say that $X C$-embeds into Y if there is an isomorphic embedding $T: X \rightarrow Y$ with $\operatorname{dist}(T)=\|T\| \cdot\left\|T^{-1}\right\|=C$.
(ii) Hence $X \hookrightarrow_{1} Y$ means that there is an isometric embedding $X \rightarrow Y$.
(iii) We write $X \sim Y$ if X, Y are isomorphic.
(iv) We write $X \cong Y$ if X, Y are isometrically isomorphic.

1.3 Examples of embeddings

Example 1.13. (i) $\ell_{p}^{n} \hookrightarrow_{1} \ell_{p}$ by $\left(x_{i}\right)_{1 \leqslant i \leqslant n} \longmapsto\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0, \ldots\right)$.
(ii) $\ell_{p} \hookrightarrow_{1} L_{p}$ by $\left(x_{i}\right)_{i \geqslant 1} \longmapsto \sum_{i=1}^{\infty} \frac{x_{i}}{\lambda\left(A_{i}\right)^{1 / p}} \mathbb{1}_{A_{i}}$, where $\left(A_{i}\right)_{i \geqslant 1}$ are pairwise disjoint measurable sets of positive measure.

Proposition 1.14. If (Ω, μ) is a measure space and $X \subseteq L_{p}(\Omega, \mu)$ is separable, then $X \hookrightarrow_{1} L_{p}$.
Proposition 1.15. For all $n \in \mathbb{N}$ and for all $1 \leqslant p \leqslant \infty$, $\ell_{2}^{n} \hookrightarrow_{1} L_{p}$.

Proof. First case: $1 \leqslant p<\infty$. Let $B=B_{\ell_{2}^{n}}$ and $S=S_{\ell_{2}^{n}}$ and let λ be the Lebesgue measure on B. Since λ is rotation invariant, the value of

$$
\int_{B}|\langle x, \omega\rangle|^{p} \mathrm{~d} \lambda(\omega)
$$

is the same for all $x \in S$ - call it α. Define $T: \ell_{2}^{n} \rightarrow L_{p}(B, \lambda)$ by

$$
(T x)(\omega)=\frac{\langle x, \omega\rangle}{\alpha^{1 / p}} .
$$

Then T is linear and

$$
\|T x\|_{p}^{p}=\int_{B} \frac{|\langle x, \omega\rangle|^{p}}{\alpha} \mathrm{~d} \lambda(\omega)=\|x\|_{2}^{p}
$$

for all $x \in \ell_{2}^{n}$. Hence $\ell_{2}^{n} \hookrightarrow_{1} L_{p}(B, \lambda) \hookrightarrow_{1} L_{p}$ by Proposition 1.14.
Second case: $p=\infty$. Use Proposition 1.17 below and Example 1.13.(ii).
Definition 1.16 (Dual space). Let X be a normed space. The dual space X^{*} of X is defined by

$$
X^{*}=\mathcal{B}(X, \mathbb{R})=\{f: X \rightarrow \mathbb{R} \text { linear and bounded }\} ;
$$

it is equipped with the norm defined by $\|f\|=\sup _{x \in B_{X}}\|f(x)\|$.
By the Hahn-Banach Theorem, for all $x \in X$, there exists $f \in X^{*}$ such that $\|f\|=1$ and $f(x)=\|x\|$. It follows that

$$
\|x\|=\max _{g \in S_{X^{*}}} g(x) .
$$

Proposition 1.17. Let X be a separable normed space. Then $X \hookrightarrow_{1} \ell_{\infty}$.
Proof. Let $\left\{x_{n}, n \in \mathbb{N}\right\}$ be dense in X. For all $n \in \mathbb{N}$, choose $f_{n} \in S_{X^{*}}$ such that $f_{n}\left(x_{n}\right)=\left\|x_{n}\right\|$ (by Hahn-Banach). Define $T: X \rightarrow \ell_{\infty}$ by

$$
T x=\left(f_{n}(x)\right)_{n \in \mathbb{N}} .
$$

Given $x \in X$, we have

$$
\left\|f_{n}(x)\right\| \leqslant\left\|f_{n}\right\| \cdot\|x\|=\|x\|
$$

for all x, so T is well-defined, and it is linear and bounded with $\|T\| \leqslant 1$. Moreover, for $n \in \mathbb{N}$, $\left\|T x_{n}\right\|=\left\|x_{n}\right\|$, so T is isometric on a dense subset, and it follows by continuity that T is isometric.

Remark 1.18. The argument of Proposition 1.17 shows that, for any normed space X, there is a set S such that $X \hookrightarrow_{1} \ell_{\infty}(S)$ (for instance, take $S=S_{X^{*}}$).

Corollary 1.19. Let M be a finite metric space. If M embeds into L_{2} with distortion $\leqslant D$, then M embeds into L_{p} with distortion $\leqslant D$ for all $1 \leqslant p \leqslant \infty$.

Proof. This is a consequence of Proposition 1.15.
Remark 1.20. Given a finite subset M of $L_{1}(\Omega, \mu)$, a natural idea to embed M into \mathbb{R} would be to consider $f \mapsto \int_{\Omega} f \mathrm{~d} \mu$. Then we would have

$$
\left|\int_{\Omega} f \mathrm{~d} \mu-\int_{\Omega} g \mathrm{~d} \mu\right| \leqslant \int_{\Omega}|f-g| \mathrm{d} \mu,
$$

with equality if and only if $f \leqslant g$ or $g \leqslant f$. This idea leads to the following proposition.
Proposition 1.21. If M is an n-element subset of $L_{1}(\Omega, \mu)$, then $M \hookrightarrow_{1} \ell_{1}^{n!}$.

Proof. Let $M=\left\{f_{1}, \ldots, f_{n}\right\}$. There exists a partition $\Omega=\amalg_{\pi \in \mathfrak{S}_{n}} \Omega_{\pi}$ of Ω such that

$$
\Omega_{\pi} \subseteq\left\{\omega \in \Omega, f_{\pi(1)}(\omega) \leqslant f_{\pi(2)}(\omega) \leqslant \cdots \leqslant f_{\pi(n)}(\omega)\right\}
$$

Then

$$
\left\|f_{i}-f_{j}\right\|=\int_{\Omega}\left|f_{i}-f_{j}\right| \mathrm{d} \mu=\sum_{\pi \in \mathfrak{S}_{n}} \int_{\Omega_{\pi}}\left|f_{i}-f_{j}\right| \mathrm{d} \mu=\sum_{\pi \in \mathfrak{S}_{n}}\left|\int_{\Omega_{\pi}} f_{i} \mathrm{~d} \mu-\int_{\Omega_{\pi}} f_{j} \mathrm{~d} \mu\right| .
$$

Now define $T: M \rightarrow \ell_{1}^{n!}$ by $T f_{i}=\left(\int_{\Omega_{\pi}} f_{i} \mathrm{~d} \mu\right)_{\pi \in \mathfrak{S}_{n}}$; the above computation shows that T is an isometric embedding.

Example 1.22. (i) The cycle C_{4} embeds bilipschitzly into ℓ_{2}^{2} with distortion $\sqrt{2}$, but it does not embed isometrically. This is because ℓ_{2} has the unique midpoint property: for all $x, y \in \ell_{2}$, there is at most one point $y \in \ell_{2}$ such that

$$
d(x, y)=d(y, z)=\frac{1}{2} d(x, z) .
$$

C_{4} does not have this property.
(ii) Any n-element set in a Hilbert space embeds isometrically into ℓ_{2}^{n-1}, but we cannot do better in general. However, we shall prove that for any $\varepsilon>0$, there exists $C>0$ such that any n-element set in a Hilbert space embeds into ℓ_{2}^{m}, where $m=c \log n$, with distortion less than $1+\varepsilon$.

Remark 1.23. If M is a finite metric space, N is a metric space and $|N| \geqslant|M|$, then M embeds bilipschitzly into N.

Definition 1.24 (Uniformly bilipschitz embeddings). Given families $\left(M_{\alpha}\right)_{\alpha \in A}$ and $\left(N_{\alpha}\right)_{\alpha \in A}$ of metric spaces, embeddings $f_{\alpha}: M_{\alpha} \rightarrow N_{\alpha}$ are called uniformly bilipschitz if

$$
\sup _{\alpha \in A}^{\operatorname{dist}}\left(f_{\alpha}\right)<\infty .
$$

1.4 The sparsest cut problem

Definition 1.25 (Sparsest cut problem). Let $G=(V, E)$ be a finite connected graph. We are given two functions:

- The capacity $C: E \rightarrow \mathbb{R}_{+}$,
- The demand $D: V \times V \rightarrow \mathbb{R}_{+}$.
A cut of G is a partioning $(S, V \backslash S)$ of V. The capacity and the demand of the cut are defined by

$$
C(S, V \backslash S)=\sum_{\substack{u v \in E \\ u \in S \\ v \notin S}} C(u v) \quad \text { and } \quad D(S, V \backslash S)=\sum_{\substack{u \in S \\ v \notin S}} D(u, v)
$$

respectively. If $D(S, V \backslash S) \neq 0$, the sparsity of the cut is $\frac{C(S, V \backslash S)}{D(S, V \backslash S)}$.
The problem is to minimize the sparsity over all cuts. This is $N P$-hard.
Remark 1.26. Here is a reformulation of the sparsest cut problem: minimize

$$
\frac{\sum_{u v \in E} C(u v) d_{S}(u, v)}{\sum_{u, v \in V} D(u, v) d_{S}(u, v)}
$$

over all cuts with nonzero demand, where d_{S} is the cut semimetric (c.f. Example 1.4).
We denote by $\varphi^{*}(C, D)$ this minimum.

To linearize this problem, we try instead to minimize the quantity

$$
\sum_{u v \in E} C(u v) d(u, v)
$$

over all semimetrics d satisfying $\sum_{u, v \in V} D(u, v) d(u, v)=1$. This is a linear programming problem. We denote by $\varphi(C, D)$ the minimum and $d_{\min }$ a semimetric that achieves it.

We have clearly $\varphi(C, D) \leqslant \varphi^{*}(C, D)$.
Lemma 1.27. Let (M, d) be a finite semimetric space. Then (M, d) embeds isometrically into L_{1} if and only if d is a nonnegative linear combination of cut semimetrics.

Proof. Note that, by Example 1.13 and Proposition 1.21, (M, d) embeds isometrically into L_{1} if and only if it embeds isometrically into ℓ_{1}^{k} for some integer k.
(\Leftarrow) We assume that there are cuts $\left(S_{i}, M \backslash S_{i}\right)_{1 \leqslant i \leqslant k}$ and nonnegative reals $\left(\alpha_{i}\right)_{1 \leqslant i \leqslant k}$ s.t.

$$
d=\sum_{i=1}^{k} \alpha_{i} d_{S_{i}}
$$

Define

$$
f: x \in M \longmapsto\left(\alpha_{i} \mathbb{1}_{S_{i}}(x)\right)_{1 \leqslant i \leqslant k} \in \ell_{1}^{k},
$$

and check that $\|f(x)-f(y)\|_{1}=d(x, y)$.
(\Rightarrow) Assume that there is an isometric embedding $f: M \rightarrow \ell_{1}^{k}$ for some $k \in \mathbb{N}$. For $1 \leqslant i \leqslant k$, enumerate the set $\left\{f(x)_{i}, x \in M\right\}$ as $\beta_{i 1}<\cdots<\beta_{i m_{i}}$ and let

$$
S_{i j}=\left\{x \in M, f(x)_{i}<\beta_{i j}\right\}
$$

for $1 \leqslant j \leqslant m_{i}$. Now fix $x, y \in M$ and $1 \leqslant i \leqslant k$. Suppose that $f(x)_{i}=\beta_{i j_{1}} \leqslant f(y)_{i}=\beta_{i j_{2}}$. Hence $x \in S_{i j}$ for $j>j_{1}$ and $y \in S_{i j}$ for $j>j_{2}$, which means that

$$
d_{S_{i j}}(x, y)=1 \Longleftrightarrow j_{1}<j \leqslant j_{2} .
$$

Therefore

$$
\sum_{j=2}^{m_{i}}\left(\beta_{i, j}-\beta_{i, j-1}\right) d_{S_{i j}}(x, y)=\sum_{j=j_{1}+1}^{j_{2}}\left(\beta_{i, j}-\beta_{i, j-1}\right)=\beta_{i, j_{2}}-\beta_{i, j_{1}}=\left|f(x)_{i}-f(y)_{i}\right|
$$

so that

$$
\sum_{i=1}^{k} \sum_{j=2}^{m_{i}}\left(\beta_{i, j}-\beta_{i, j-1}\right) d_{S_{i j}}(x, y)=\|f(x)-f(y)\|_{1}=d(x, y)
$$

Theorem 1.28. Assume that the vertex set V together with the minimizing semimetric $d_{\min }$ embeds into L_{1} with distortion at most K. Then

$$
\frac{1}{K} \varphi^{*}(C, D) \leqslant \varphi(C, D) \leqslant \varphi^{*}(C, D)
$$

Proof. Let $f:\left(V, d_{\min }\right) \rightarrow L_{1}$ be an embedding with $\operatorname{dist}(f) \leqslant K$. Define a semimetric d on V by $d(x, y)=\|f(x)-f(y)\|_{1}$. Since $\operatorname{dist}(f) \leqslant K$, there exists $a>0$ such that

$$
a d_{\min }(x, y) \leqslant d(x, y) \leqslant K a d_{\min }(x, y)
$$

for all $x, y \in V$. By Lemma 1.27, there are cuts $\left(S_{i}, V \backslash S_{i}\right)_{1 \leqslant i \leqslant k}$ and nonnegative reals $\left(\alpha_{i}\right)_{1 \leqslant i \leqslant k}$, such that

$$
d=\sum_{i=1}^{k} \alpha_{i} d_{S_{i}}
$$

Then

$$
\begin{aligned}
\varphi(C, D) & =\frac{\sum_{u v \in E} C(u v) d_{\min }(u, v)}{\sum_{u, v \in V} D(u, v) d_{\min }(u, v)} \\
& \geqslant \frac{1}{K} \frac{\sum_{u v \in E} C(u v) d(u, v)}{\sum_{u, v \in V} D(u, v) d(u, v)}=\frac{1}{K} \frac{\sum_{i=1}^{k} \overbrace{\sum_{i=1}^{k} \sum_{\sum_{u v \in E} C(u v) d_{S_{i}}(u, v)}^{\alpha_{i} \sum_{\sum_{u, v \in V} D(u, v) d_{S_{i}}(u, v)}^{\gamma_{i}}}}^{\underbrace{}_{\delta_{i}}}}{} \\
& =\frac{1}{K} \frac{\sum_{i=1}^{k} \gamma_{i}}{\sum_{i=1}^{k} \delta_{i}} \geqslant \frac{1}{K} \frac{\sum_{i \in I} \frac{\gamma_{i}}{\delta_{i}} \delta_{i}}{\sum_{i \in I} \delta_{i}} \geqslant \frac{1}{K} \min _{i \in I} \frac{\gamma_{i}}{\delta_{i}} \geqslant \frac{1}{K} \varphi^{*}(C, D),
\end{aligned}
$$

where $I=\left\{1 \leqslant i \leqslant k, \delta_{i}>0\right\}$.

1.5 Coarse and uniform embeddings

Definition 1.29 (Coarse and uniform embeddings). Let $f: M \rightarrow N$ be a map between metric spaces. Assume there exist (not necessarily strictly) increasing functions $\rho_{1}, \rho_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
\rho_{1}(d(x, y)) \leqslant d(f(x), f(y)) \leqslant \rho_{2}(d(x, y)) \tag{*}
\end{equation*}
$$

for all $x, y \in M$.
(i) We say that f is a coarse embedding if (*) is satisfied with $\lim _{+\infty} \rho_{1}=+\infty$.
(ii) We say that f is a uniform embedding if one of the following two equivalent conditions is satisfied:
(a) The inequality $(*)$ is satisfied with $\lim _{0+} \rho_{2}=0$ and $\rho_{1}(t)>0$ for $t>0$.
(b) The inequality (*) is satisfied, f is uniformly continuous, injective, and $f^{-1}: f(M) \rightarrow M$ is uniformly continuous.

Example 1.30. The projection $f: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ is a coarse embedding, with $\rho_{1}(t)=\max (0, t-1)$ and $\rho_{2}(t)=t$.

Proposition 1.31. For $1<q<\infty$, there exists a map $T: L_{1}(\Omega, \mu) \rightarrow L_{q}(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ which is simultaneously a uniform and coarse embedding.

Proof. Define T as follows: for $f \in L_{1}(\Omega, \mu)$,

$$
T f(\omega, t)= \begin{cases}+1 & \text { if } 0<t \leqslant f(\omega) \\ -1 & \text { if } f(\omega) \leqslant t \leqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

Hence $T f \in L_{\infty}(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ and, for $f, g \in L_{1}(\Omega, \mu)$,

$$
|T f(\omega, t)-T g(\omega, t)|= \begin{cases}1 & \text { if } t \in[f(\omega), g(\omega)] \\ 0 & \text { otherwise }\end{cases}
$$

Therefore,

$$
\|T f-T g\|_{q}^{q}=\int_{\Omega} \int_{\mathbb{R}}|T f(\omega, t)-T g(\omega, t)|^{q} \mathrm{~d} t \mathrm{~d} \mu(\omega)=\int_{\Omega}|f(\omega)-g(\omega)| \mathrm{d} \mu(\omega)=\|f-g\|_{1}
$$

This shows that $T f \in L_{q}(\Omega \times \mathbb{R}, \mu \otimes \lambda)$, and $T: L_{1}(\Omega, \mu) \rightarrow L_{q}(\Omega \times \mathbb{R}, \mu \otimes \lambda)$ is simultaneously a uniform and a coarse embedding (with $\rho_{1}(t)=\rho_{2}(t)=t^{1 / q}$).

Lemma 1.32. For all $0<\alpha<2 \beta$, there exists a constant $c_{\alpha, \beta}>0$ such that

$$
\int_{\mathbb{R}} \frac{(1-\cos (t x))^{\beta}}{|t|^{\alpha+1}} \mathrm{~d} t=c_{\alpha, \beta}|x|^{\alpha}
$$

Proof. We first check that the integrand is integrable. We have $(1-\cos (t x))^{\beta}=\mathcal{O}_{0}\left(|t|^{2 \beta}\right)$, so the integrand is $\mathcal{O}_{0}\left(|t|^{2 \beta-\alpha-1}\right)$, which is integrable near 0 because $2 \beta-\alpha-1>-1$. Likewise, $(1-\cos (t x))^{\beta}=\mathcal{O}_{ \pm \infty}(1)$, so the integrand is $\mathcal{O}_{ \pm \infty}\left(|t|^{-\alpha-1}\right)$, which is integrable near $\pm \infty$ because $-\alpha-1<-1$. Now let

$$
f(x)=\int_{\mathbb{R}} \frac{(1-\cos (t x))^{\beta}}{|t|^{\alpha+1}} \mathrm{~d} t
$$

For $x>0$, we have

$$
f(x)=x^{\alpha} \int_{\mathbb{R}} \frac{(1-\cos (t x))^{\beta}}{|t x|^{\alpha+1}} x \mathrm{~d} t=x^{\alpha} \int_{\mathbb{R}} \frac{(1-\cos (s))^{\beta}}{|s|^{\alpha+1}} \mathrm{~d} s=x^{\alpha} f(1)
$$

Moreover, $f(0)=0$, and $f(-x)=f(x)$ for all x. It follows that $f(x)=|x|^{\alpha} f(1)$ for all x.
Proposition 1.33. For $1 \leqslant p<q<\infty$, there exists a map $T: L_{p}(\Omega, \mu) \rightarrow L_{q}(\Omega \times \mathbb{R}, \mu \otimes \lambda ; \mathbb{C})$ which is simultaneously a coarse and uniform embedding.
Proof. Define T by

$$
T f(\omega, t)=\frac{1-e^{i t f(\omega)}}{\left.|t|\right|^{(p+1) / q}}
$$

Note that, for $\vartheta \in \mathbb{R},\left|1-e^{i \vartheta}\right|=\sqrt{2}(1-\cos \vartheta)^{1 / 2}$. Therefore, using Lemma 1.32,

$$
\|T f\|_{q}^{q}=\int_{\Omega} \int_{\mathbb{R}} \frac{2^{q / 2}(1-\cos (t f(\omega)))^{q / 2}}{|t|^{p+1}} \mathrm{~d} t \mathrm{~d} \mu(\omega)=2^{q / 2} c_{p, q / 2} \int_{\Omega}|f(\omega)|^{p} \mathrm{~d} \mu(\omega)=2^{q / 2} c_{p, q / 2}\|f\|_{p}^{p}
$$

Moreover, given $f, g \in L_{p}(\Omega)$, we have $\left|e^{i t f(\omega)}-e^{i t g(\omega)}\right|=\left|1-e^{i t(f(\omega)-g(\omega))}\right|$. Applying the above computation with f replaced by $(f-g)$ yields

$$
\|T f-T f\|_{q}^{q}=2^{q / 2} c_{p, q / 2}\|f-g\|_{p}^{p}
$$

Corollary 1.34. For $1 \leqslant p<q<\infty$, there exists a map $T: L_{p} \rightarrow L_{q}$ which is simultaneously a coarse and uniform embedding.
Proof. Apply Proposition 1.33 with $(\Omega, \mu)=([0,1], \lambda)$ to get an embedding $L_{p} \rightarrow L_{q}([0,1] \times \mathbb{R} ; \mathbb{C})$. Then define an embedding $L_{q}([0,1] \times \mathbb{R} ; \mathbb{C}) \hookrightarrow_{2} L_{q}([-1,1] \times \mathbb{R})$ by

$$
f \longmapsto \widetilde{f}(s, t)=\left\{\begin{array}{ll}
\Re(f(s, t)) & \text { if } s \in(0,1] \\
\Im(f(s, t)) & \text { if } s \in[-1,0)
\end{array} .\right.
$$

Since $L_{q}([-1,1] \times \mathbb{R})$ is separable, it embeds isometrically into L_{q} by Proposition 1.14.
Definition 1.35 (Uniformly coarse embeddings). Given families $\left(M_{\alpha}\right)_{\alpha \in A}$ and $\left(N_{\alpha}\right)_{\alpha \in A}$ of metric spaces, embeddings $f_{\alpha}: M_{\alpha} \rightarrow N_{\alpha}$ are called uniformly coarse if there exist increasing functions $\rho_{1}, \rho_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $\lim _{+\infty} \rho_{1}=+\infty$ and

$$
\rho_{1}(d(x, y)) \leqslant d\left(f_{\alpha}(x), f_{\alpha}(y)\right) \leqslant \rho_{2}(d(x, y))
$$

for all $\alpha \in A$ and $x, y \in M_{\alpha}$.
Theorem $1.36(\mathrm{Yu})$. If M is a uniformly discrete metric space with bounded geometry and M coarsely embeds into a Hilbert space, then the coarse geometric Baum-Connes Conjecture holds for M.

Theorem 1.37 (Kasparov, Yu). If M is a uniformly discrete metric space with bounded geometry and M coarsely embeds into a uniformly convex Banach space, then the coarse geometric Novikov Conjecture holds for M.

2 Fréchet embeddings, Aharoni's Theorem

2.1 Isometric embeddings into ℓ_{∞}

Theorem 2.1. Let M be a metric space.
(i) $M \hookrightarrow_{1} \ell_{\infty}(M)$.
(ii) If M is finite with $|M|=n$, then $M \hookrightarrow_{1} \ell_{\infty}^{n-1}$.
(iii) If M is separable, then $M \hookrightarrow_{1} \ell_{\infty}$.

Proof. (i) Fix $x_{0} \in M$ and define $f: M \rightarrow \ell_{\infty}(M)$ by

$$
f(x)=d(\cdot, x)-d\left(\cdot, x_{0}\right) \in \mathbb{R}^{M}
$$

For $y \in M$, we have

$$
|f(x)(y)|=\left|d(y, x)-d\left(y, x_{0}\right)\right| \leqslant d\left(x, x_{0}\right),
$$

so $f(x) \in \ell_{\infty}(M)$. Now for $x, z \in M$,

$$
\begin{aligned}
& \|f(x)-f(z)\|_{\infty}=\|d(\cdot, x)-d(\cdot, z)\|_{\infty} \leqslant d(x, z), \\
& \|f(x)-f(z)\|_{\infty} \geqslant|f(x)(x)-f(z)(x)|=d(x, z),
\end{aligned}
$$

hence $\|f(x)-f(z)\|_{\infty}=d(x, z)$.
(ii) If $M=\left\{x_{0}, \ldots, x_{n-1}\right\}$, then the function $f: M \rightarrow \ell_{\infty}^{n-1}$ defined by $f(x)=\left(d\left(x_{i}, x_{0}\right)\right)_{1 \leqslant i \leqslant n-1}$ works.
(iii) If M is separable, then it has a countable dense susbet $S \subseteq M$. Two possible proofs:

- S embeds isometrically into ℓ_{∞} by (i), and this extends to an isometric embedding $M \hookrightarrow_{1} \ell_{\infty}$.
- There is an isometric embedding $f: M \hookrightarrow_{1} \ell_{\infty}(M)$ by (i). But $X=\overline{\operatorname{Span} f(M)}$ is a Banach space, so by Proposition 1.17, $X \hookrightarrow_{1} \ell_{\infty}$.

Definition $2.2\left(m_{\infty}\right)$. For $n \geqslant 1$, we define $m_{\infty}(n)$ to be the smallest integer m such that every n-element metric space embeds isometrically into ℓ_{∞}^{m}. Theorem 2.1 implies that

$$
m_{\infty}(n) \leqslant n-1
$$

2.2 Background on Ramsey theory and graphs

Theorem 2.3 (Ramsey). For all $t \geqslant 1$, there is an integer $n \geqslant 1$ such that, if edges of K_{n} are red-blue coloured, then there is a monochromatic copy of K_{t} in K_{n}.

We denote by $R(t)$ the least n that works. It is easy to prove that $R(t) \leqslant 4^{t}$. It is also known that $R(t) \geqslant c^{t}$ for some $c>1$.

More generally, given graphs H_{1}, H_{2}, we denote by $R\left(H_{1}, H_{2}\right)$ the least n such that, whenever edges of K_{n} are red-blue coloured, then there is either a red copy of H_{1} or a blue copy of H_{2} inside K_{n}.

In particular, $R(t)=R\left(K_{t}, K_{t}\right)$, and $R\left(H_{1}, H_{2}\right) \leqslant R\left(\max \left\{\left|H_{1}\right|,\left|H_{2}\right|\right\}\right)$.
Definition 2.4 (Bipartite graphs). A graph $G=(V, E)$ is called bipartite if there is a partition $V=V_{1} \cup V_{2}$ such that, for all $x, y \in V$ with $x y \in E$, we have either $x \in V_{1}, y \in V_{2}$ or $x \in V_{2}, y \in V_{1}$. The sets V_{1}, V_{2} are then called vertex classes.

If $E=\left\{x y, x \in V_{1}, y \in V_{2}\right\}$, then G is the complete bipartite graph with vertex classes V_{1}, V_{2}, denoted by $K_{V_{1}, V_{2}}$ or $K_{\left|V_{1}\right|,\left|V_{2}\right|}$.

Example 2.5. $K_{2,2}=C_{4}$.

Definition 2.6 (Complement of a graph). Given a graph G, its complement \bar{G} has vertex set $V(\bar{G})=V(G)$ and edge set $E(\bar{G})=V^{(2)} \backslash E(G)$.

Notation 2.7. If $G=(V, E)$ is a graph, we define a metric ρ on V by

$$
\rho(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x y \in E . \\ 2 & \text { otherwise }\end{cases}
$$

2.3 Lower bound on $m_{\infty}(n)$

Lemma 2.8. Let G be a graph such that $(G, \rho) \hookrightarrow_{1} \ell_{\infty}^{k}$. Then the edge set of \bar{G} can be covered by at most k complete bipartite subgraphs of \bar{G}.

Proof. Let $f:(G, \rho) \rightarrow \ell_{\infty}^{k}$ be isometric. For $1 \leqslant i \leqslant k$, let $\alpha_{i}=\max _{x \in G} f(x)_{i}$ and $\beta_{i}=\min _{x \in G} f(x)_{i}$. Then

$$
\alpha_{i}-\beta_{i}=\max _{x, y \in G}\left(f(x)_{i}-f(y)_{i}\right) \leqslant \max _{x, y \in G}\|f(x)-f(y)\|_{\infty}=\max _{x, y \in G} \rho(x, y) \leqslant 2 .
$$

We set $I=\left\{i \in\{1, \ldots, k\}, \alpha_{i}-\beta_{i}=2\right\}$. We thus have

$$
\begin{aligned}
x y \in E(\bar{G}) & \Longleftrightarrow \rho(x, y)=2 \Longleftrightarrow \exists i \in I,\left|f(x)_{i}-f(y)_{i}\right|=2 \\
& \Longleftrightarrow \exists i \in I,\left(f(x)_{i}=\alpha_{i} \text { and } f(y)_{i}=\beta_{i}\right) \text { or }\left(f(x)_{i}=\beta_{i} \text { and } f(y)_{i}=\alpha_{i}\right) .
\end{aligned}
$$

Hence, if $V_{i}^{1}=\left\{x \in V, f(x)_{i}=\alpha_{i}\right\}$ and $V_{i}^{2}=\left\{x \in V, f(x)_{i}=\beta_{i}\right\}$, then

$$
E(\bar{G})=\bigcup_{i \in I} E\left(K_{V_{i}^{1}, V_{i}^{2}}\right)
$$

Lemma 2.9 (Spencer). There exists $\alpha>0$ such that

$$
R\left(C_{4}, K_{t}\right)>\alpha\left(\frac{t}{\log t}\right)^{3 / 2}
$$

Theorem 2.10 (Ball). There exists $C>0$ such that for all $n \geqslant 2$,

$$
m_{\infty}(n) \geqslant n-C n^{2 / 3} \log n .
$$

Proof. Note that there exists $b>0$ such that for all n, if $t=\left\lceil b n^{2 / 3} \log n\right\rceil$, then

$$
n<\alpha\left(\frac{t}{\log t}\right)^{3 / 2}
$$

Now fix $n \geqslant 2$ and let $t=\left\lceil b n^{2 / 3} \log n\right\rceil$. By Lemma 2.9, $n<R\left(C_{4}, K_{t}\right)$. Therefore, there exists a red-blue colouring of K_{n} without a red C_{4} or a blue K_{t}. We let G be the blue graph and $k=m_{\infty}(n)$. Therefore, $(G, \rho) \hookrightarrow_{1} \ell_{\infty}^{k}$ by definition, so Lemma 2.8 implies that the red graph \bar{G} is covered by at most k complete bipartite subgraphs $K_{V_{1}^{1}, V_{1}^{2}}, \ldots, K_{V_{k}^{1}, V_{k}^{2}}$. Since $C_{4}=K_{2,2} \nsubseteq \bar{G}$, one vertex class in each of the complete bipartite subgraphs is of size 1 , so we may assume that $\left|V_{i}^{1}\right|=1$ for all i. If $S=\bigcup_{i=1}^{k} V_{i}^{1}$, then there is no edge in \bar{G} between vertices of $V \backslash S$, i.e. the graph induced by G on $V \backslash S$ is complete. Since $K_{t} \nsubseteq G$ and $|S| \leqslant k$, it follows that $n-k \leqslant|V|-|S|=|V \backslash S| \leqslant t-1$, so

$$
k=m_{\infty}(n) \geqslant n-t+1 \geqslant n-C n^{2 / 3} \log n
$$

for some constant C.
Remark 2.11. Since $R(t) \geqslant c^{t}$ for some $c>1$, the method used to prove Theorem 2.10 won't give a lower bound better than $n-C \log n$ on $m_{\infty}(n)$.

2.4 Nonlinear Hahn-Banach Theorem

Remark 2.12. We aim to prove that $n-m_{\infty}(n) \xrightarrow[n \rightarrow \infty]{\longrightarrow}+\infty$.
Lemma 2.13 (Nonlinear Hahn-Banach Theorem). Let M be a metric space, $A \subseteq M$, and $f: A \rightarrow \mathbb{R}$ a L-Lipschitz map. Then there is a L-Lipschitz extension $\tilde{f}: M \rightarrow \mathbb{R}$ of f.
Proof. Fix $x_{0} \in M \backslash A$ and define

$$
\tilde{f}: x \in A \cup\left\{x_{0}\right\} \longmapsto\left\{\begin{array}{ll}
f(x) & \text { if } x \in A \\
\alpha & \text { if } x=x_{0}
\end{array} .\right.
$$

We need to choose a value of $\alpha \in \mathbb{R}$ such that $|\alpha-f(x)| \leqslant L d\left(x_{0}, x\right)$ for all $x \in A$, i.e.

$$
f(y)-L d\left(y, x_{0}\right) \leqslant \alpha \leqslant f(x)+\operatorname{Ld}\left(x, x_{0}\right)
$$

for all $x, y \in A$. Such an α exists if and only if

$$
\begin{equation*}
f(y)-L d\left(y, x_{0}\right) \leqslant f(x)+L d\left(x, x_{0}\right) \tag{*}
\end{equation*}
$$

for all $x, y \in A$. To prove (*), note that

$$
f(y)-f(x) \leqslant L d(x, y) \leqslant L d\left(x, x_{0}\right)+L d\left(y, x_{0}\right)
$$

for all $x, y \in A$.
Now if $M \backslash A$ is finite or countable, apply the above argument recursively to get an extension to M. In the general case, use Zorn's Lemma to get a maximal extension $(\widetilde{M}, \widetilde{f})$; the above will imply that $\widetilde{M}=M$.

Proposition 2.14. If M is a finite metric space and $A \subseteq M$, then

$$
A \hookrightarrow_{1} \ell_{\infty}^{|A|-k} \Longrightarrow M \hookrightarrow_{1} \ell_{\infty}^{|M|-k} .
$$

Proof. Let $f=\left(f_{1}, \ldots, f_{|A|-k}\right): A \longrightarrow \ell_{\infty}^{|A|-k}$ be isometric. Then each map $f_{i}: A \rightarrow \mathbb{R}$ is 1-Lipschitz, so by Lemma 2.13, there is a 1 -Lipschitz extension $g_{i}: M \rightarrow \mathbb{R}$ for $1 \leqslant i \leqslant|A|-k$. Now enumerate $M \backslash A$ as $\left\{y_{i},|A|-k<i \leqslant|M|-k\right\}$ and define

$$
g_{i}: x \in M \longmapsto d\left(x, y_{i}\right) \in \mathbb{R}
$$

for $|A|-k<i \leqslant|M|-k$. Then $g=\left(g_{1}, \ldots, g_{|M|-k}\right): M \longrightarrow \ell_{\infty}^{|M|-k}$ is an isometric embedding.

2.5 More background on Ramsey theory and graphs

Notation 2.15. For $s \geqslant 2$ and $n \in \mathbb{N}$, let

$$
K_{n}^{(s)}=\{A \subseteq\{1, \ldots, n\},|A|=s\} .
$$

For instance, $K_{n}^{(2)}=E\left(K_{n}\right)$.
Proposition 2.16. For all $s, t, c \geqslant 1$, there exists $n \geqslant 1$ such that, if $K_{n}^{(s)}$ is c-coloured, then there is a monochromatic copy of $K_{t}^{(s)}$, i.e. $A \subseteq\{1, \ldots, n\}$ with $|A|=t$ such that $A^{(s)}=\{B \subseteq A,|B|=s\}$ is monochromatic.

Definition 2.17 (Trees). A tree T is a connected acyclic graph. Equivalently, for all $x, y \in T$, there is a unique path from x to y.

If $\operatorname{diam}(T)=\max _{x, y \in T} d(x, y) \leqslant 4$ (for the graph distance), then there is a vertex $c \in T$ such that $d(x, c) \leqslant 2$ for all x. Call this vertex c a centre of T. Vertices in $\Gamma(c)=\{a \in T, a c \in E\}$ are called main vertices. Every other vertex is connected to a unique main vertex.
Definition 2.18 (Orientation of a graph). An orientation of a graph G is an assignement of a direction $\overrightarrow{x y}$ or $\overrightarrow{y x}$ to each edge $x y \in E$.

The orientation is called alternating if for all $x \in V(G)$, either all edges incident to x are oriented out of x (i.e. in the direction $\overrightarrow{x y}$) or towards x.

A connected graph has either zero or two alternating orientations. A tree always has exactly two.

2.6 Gap between n and $m_{\infty}(n)$

Definition 2.19 (Generic metric space). A metric space $\left(\left\{x_{1}, \ldots, x_{n}\right\}, d\right)$ is generic if the $\binom{n}{2}$ distances $\left(d\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i<j \leqslant n}$ are linearly independent over \mathbb{Q}.

Given three distinct points x, y, z in a generic metric space, we have $d(x, z)<d(x, y)+d(y, z)$.
Theorem 2.20. For all integers $k \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that for all $n \geqslant N, m_{\infty}(n) \leqslant n-k$. In other words, $n-m_{\infty}(n) \xrightarrow[n \rightarrow \infty]{\longrightarrow}+\infty$.
Proof. Step 1: we can restrict to generic metric spaces. Consider an arbitrary metric space $M=$ $\left(\left\{x_{1}, \ldots, x_{n}\right\}, d\right)$. For $j \geqslant 1$ and $1 \leqslant r<s \leqslant n$, we can pick $\alpha_{r s} \in\left(\frac{1}{2 j}, \frac{1}{j}\right)$ such that $d_{j}\left(x_{r}, x_{s}\right)=$ $d\left(x_{r}, x_{s}\right)+\alpha_{r s}$ defines a generic metric. If for all j there is an isometric embedding $f_{j}:\left(M, d_{j}\right) \rightarrow \ell_{\infty}^{m}$ for some m, then we may assume without loss of generality that $\operatorname{Im} f_{j}$ is bounded independently of j. By compactness, after passing to a subsequence, we have

$$
f_{j}\left(x_{r}\right) \underset{j \rightarrow \infty}{\longrightarrow} f\left(x_{r}\right)
$$

for all r. Thus $f:(M, d) \rightarrow \ell_{\infty}^{m}$ is also an isometric embedding.
From now on, M is an n-element generic metric space, and the elements of M are real numbers (but d is not the distance induced by \mathbb{R}).

Step 2: characterisation of isometric embeddings in terms of Lipschitz graphs. Given a 1-Lipschitz map $f: M \rightarrow \mathbb{R}$, we define its Lipschitz graph $\mathcal{G}(f)$ with vertex set M and such that

$$
x y \in E \Longleftrightarrow|f(x)-f(y)|=d(x, y) .
$$

An edge $x y$ is given the orientation $\overrightarrow{x y}$ if and only if $f(x)-f(y)=d(x, y)$. (For instance, if $f=d(\cdot, a)$, then $\mathcal{G}(f)$ is a tree of diameter 2 centred at a; this is because $f(x)-f(y)<d(x, y)$ for $x \neq y$ in $M \backslash\{a\}$ since d is generic.) Now a map $f: M \rightarrow \ell_{\infty}^{m}$ is an isometric embedding if and only if its coordinates $\left(f_{i}: M \rightarrow \mathbb{R}\right)_{1 \leqslant i \leqslant m}$ are 1-Lipschitz and for all $x \neq y$, there exists $1 \leqslant i \leqslant m$ such that $x y \in E\left(\mathcal{G}\left(f_{i}\right)\right)$. It follows that $M \hookrightarrow_{1} \ell_{\infty}^{m}$ if and only if the edges of the complete graph on M can be covered by at most m such Lipschitz graphs.

Step 3: sufficient condition for a map to be 1-Lipschitz. Let T be a tree on M with $\operatorname{diam}(T) \leqslant 4$. Fix a vertex $x_{0} \in T$, a real $\alpha \in \mathbb{R}$, and an alternating orientation of T. Consider the unique $f: M \rightarrow \mathbb{R}$ satisfying $f\left(x_{0}\right)=\alpha$ and $f(x)-f(y)=d(x, y)$ for all $\overrightarrow{x y} \in E$. Then f is 1-Lipschitz if the following condition is satisfied:

$$
d(w, x)+d(y, z)<d(x, y)+d(w, z)
$$

for all paths $w x y z$ in T. Consider indeed two vertices $x, y \in T$. We need $|f(x)-f(y)| \leqslant d(x, y)$.

- If $x=y$ or $x y \in E$, this is true by construction of f.
- If there is a path $x z y$, then

$$
|f(x)-f(y)|=|f(x)-f(z)+f(z)-f(y)|=|d(x, z)-d(z, y)|<d(x, y)
$$

the last inequality being strict by genericity of the metric.

- If there is a path $x w z y$, then

$$
\begin{aligned}
|f(x)-f(y)| & =|f(x)-f(w)+f(w)-f(z)+f(z)-f(y)| \\
& =|d(x, w)-d(w, z)+d(z, y)| \\
& =\left\{\begin{array}{rl}
\quad d(x, w)-d(w, z)+d(z, y) \stackrel{(\diamond)}{<} d(x, y) \\
\text { or } & -d(x, w)+d(w, z)-d(z, y) \stackrel{(\Delta)}{<} d(x, z)-d(z, y) \stackrel{(\Delta)}{<} d(x, y)
\end{array},\right.
\end{aligned}
$$

where (\triangle) refers to the triangle inequality, which is strict in a generic metric space.

- If there is a path $x u w z y$, the reasoning is similar.

We say that a tree T on M is admissible if it has diameter at most 4 and satisfies (\diamond).
Step 4: given distinct points $c, a_{1}, \ldots, a_{\ell}$ in M, there is a unique admissible tree T on M with centre c and main vertices a_{1}, \ldots, a_{ℓ}. Indeed, such a tree T is admissible if and only if each vertex $x \in M \backslash\left\{c, a_{1}, \ldots, a_{\ell}\right\}$ is joined to a main vertex $a \in\left\{a_{1}, \ldots, a_{\ell}\right\}$ such that, for all main vertices $b \neq a$, we have $d(x, a)+d(c, b)<d(a, c)+d(x, b)$, or in other words,

$$
d(x, a)-d(a, c)<d(x, b)-d(b, c) .
$$

Hence, there is a unique possible choice of edge $x a$, where a is chosen to minimise $(d(x, a)-d(a, c))$. This tree T will be denoted by $T\left(c ; a_{1}, \ldots, a_{\ell}\right)$.

Step 5. We colour $M^{(4)}$ with colour set \mathfrak{S}_{3} as follows: given $w<x<y<z$ in M (recall that elements of M are assumed to be real numbers, so they are ordered), let

$$
\begin{aligned}
& R_{1}=d(w, x)+d(y, z), \\
& R_{2}=d(w, y)+d(x, z), \\
& R_{3}=d(w, z)+d(x, y) .
\end{aligned}
$$

We give wxyz the colour i, j, k (i.e. the element of \mathfrak{S}_{3} given by $1 \mapsto i, 2 \mapsto j$ and $3 \mapsto k$) if $R_{i}>R_{j}>R_{k}$. This defines a 6 -colouring of $M^{(4)}$.

Main claim: for all $k \in \mathbb{N}$, for all $c \in \mathfrak{S}_{3}$, there is a $t_{c} \in \mathbb{N}$ such that every monochromatic metric space of size t_{c} and colour c can be covered by at most $t_{c}-k$ admissible trees.

Proof of the claim.

- Case 1: $c=2,1,3$. In this case, we show that there is no monochromatic metric space M of colour c and size at least 5 (therefore, $t_{c}=5$ will work). Indeed, assume otherwise and pick $u<w<x<y<z$ in M. We have

$$
\begin{aligned}
& d(u, w)+d(x, y)>d(u, y)+d(w, x), \\
& d(w, x)+d(y, z)>d(w, z)+d(x, y), \\
& d(u, y)+d(w, z)>d(u, w)+d(y, z) .
\end{aligned}
$$

Summing these inequalities yields $0>0$, a contradiction.

- Case 2: $c=3,1,2$. Just replace $>$ by $<$ in the first case.
- Case 3: $c=1,3,2$. We then claim that, if for all M monochromatic of colour c and of size n, all but m edges of K_{M} can be covered by s admissible trees, then for all M^{\prime} monochromatic of colour c and of size $n+2$, all but $m-1$ edges of $K_{M^{\prime}}$ can be covered by $s+2$ admissible trees. To prove this mini-claim, we take M^{\prime} monochromatic of colour c and of size $n+2$, we write $M^{\prime}=M \cup\left\{a^{\prime}, b^{\prime}\right\}$, where $a<a^{\prime}<b^{\prime}<b$ and $M \cap\left(\left(a, a^{\prime}\right] \cup\left[b^{\prime}, b\right)\right)=\varnothing$. By assumption, M can be covered by s admissible trees; by Step 4 we may extend them to the whole of M^{\prime}. We then add the two trees $T\left(a ; a^{\prime}, b\right)$ and $T\left(b ; a^{\prime}, b^{\prime}\right)$. Hence every $x \in M^{\prime} \backslash\left\{a, a^{\prime}, b\right\}$ is joined to a^{\prime} in $T\left(a ; a^{\prime}, b\right)$ and every $x \in M^{\prime} \backslash\left\{b, a^{\prime}, b^{\prime}\right\}$ is joined to b^{\prime} in $T\left(b ; a^{\prime}, b^{\prime}\right)$. This proves the mini-claim. To apply it, we start with $|M|=k, s=0$ and $m=\binom{k}{2}$ and we apply the mini-claim n times to get M^{\prime} with $t_{c}=\left|M^{\prime}\right|=k+2\binom{k}{2}=k^{2}, s=2\binom{k}{2}=t_{c}-k$ and $m=0$.
- Case 4: $c=1,2,3$. We prove the main claim by induction on k. For $k=1, t_{c}=1$ will do. Let $k \geqslant 1$ and assume t_{c} works for k. We prove that $2 t_{c}+3$ works for $k+1$. Take

$$
M=\left\{-1,0,1,2, \ldots, t_{c}+1, t_{c}+2, \ldots, 2 t_{c}+1\right\} .
$$

Consider $T(0 ;-1,2), T(1 ; 0,2)$ and $T\left(t_{c}+1+i ; i, i+1\right)$ for $1 \leqslant i \leqslant t_{c}$. These cover all edges except perhaps edges between vertices in $\left\{t_{c}+2, \ldots, 2 t_{c}+1\right\}$. Those can be covered by $t_{c}-k$ trees by the induction hypothesis. Therefore, we need $2 t_{c}+t_{c}-k=2 t_{c}+2-k=|M|-(k+1)$.

- Case 5: $c=2,3,1$. We show that $t_{c}=2 k$ works for k by writing $M=\{-k, \ldots,-1,1, \ldots, k\}$ and considering the trees $T(-i ;-k,-k+1, \ldots,-i-1,1, \ldots, k)$ for $1 \leqslant i \leqslant k$.
- Case 6: $c=3,2,1$. We show that $t_{c}=4 k+1$ works for k by writing $M=\{0,1, \ldots, 4 k\}$ and considering the trees $T(0 ; i, 4 k+1-i)$ for $1 \leqslant i \leqslant 2 k$ and $T(i ; 2 k+i, 2 k+i+1, \ldots, 4 k+1-i)$ for $1 \leqslant i \leqslant k$.

Step 6. Let $t=\max _{c \in \mathfrak{S}_{3}} t_{c}$. By Ramsey theory (Proposition 2.16), there exists $N \in \mathbb{N}$ such that, if $K_{N}^{(4)}$ is 6-coloured, then there is a monochromatic copy of $K_{t}^{(4)}$. So given $n \geqslant N$ and an n-element generic metric space M, there is a colour $c \in \mathfrak{S}_{3}$ and a subset $A \subseteq M$ of cardinal t_{c} such that A is monochromatic. By the claim, the complete graph on A can be covered by $|A|-k$ admissible trees, so by Step $2, A \hookrightarrow_{1} \ell_{\infty}^{|A|-k}$, and by Proposition $2.14, M \hookrightarrow_{1} \ell_{\infty}^{|M|-k}$, so that $m_{\infty}(n) \leqslant n-k$.

2.7 Upper bound on $m_{p}(n)$

Definition $2.21\left(m_{p}\right)$. Note that $m_{\infty}(n)$ can be defined equivalently as the least integer m such that every n-element subset of some space $L_{\infty}(\Omega, \mu)$ embeds isometrically into ℓ_{∞}^{m} (compare with Definition 2.2).

For $1 \leqslant p \leqslant \infty$, we define similarly $m_{p}(n)$ to be the least integer m such that every n-element subset of some space $L_{p}(\Omega, \mu)$ embeds isometrically into ℓ_{p}^{m}.

Remark 2.22. Proposition 1.21 implies that

$$
m_{1}(n) \leqslant n!
$$

and Example 1.22.(ii) implies that

$$
m_{2}(n)=n-1 .
$$

Moreover, Theorems 2.1 and 2.10 imply that

$$
n-C n^{2 / 3} \log n \leqslant m_{\infty}(n) \leqslant n-1 .
$$

Lemma 2.23 (Caratheodory's Theorem). Given $L \subseteq \mathbb{R}^{N}$,

$$
\operatorname{conv} L=\left\{\sum_{i=0}^{N} t_{i} x_{i},\left(x_{0}, \ldots, x_{N}\right) \in L^{N+1},\left(t_{0}, \ldots, t_{N}\right) \in\left(\mathbb{R}_{+}\right)^{N+1}, \sum_{i=0}^{N} t_{i}=1\right\}
$$

In particular, conv L is compact if L is compact.
Proof. Given $x \in \operatorname{conv} L$, we write $x=\sum_{i=1}^{m} t_{i} x_{i}$ with $x_{i} \in L, t_{i} \geqslant 0$ and $\sum_{i=1}^{m} t_{i}=1$, and we assume that $m>N+1$ (otherwise the result is obvious). Then x_{1}, \ldots, x_{m} are affinely dependent (i.e. $x_{1}-x_{2}, \ldots, x_{1}-x_{m}$ are linearly dependent), so there exist $\lambda_{1}, \ldots, \lambda_{m}$ not all zero such that $\sum_{i=1}^{m} \lambda_{i}=0$ and $\sum_{i=1}^{m} \lambda_{i} x_{i}=0$. For any $s>0$, we have $\sum_{i=1}^{m}\left(t_{i}-s \lambda_{i}\right)=1$ and $\sum_{i=1}^{m}\left(t_{i}-s \lambda_{i}\right) x_{i}=x$. If $\lambda_{i} \leqslant 0$, then $t_{i}-s \lambda_{i} \geqslant 0$, so we take

$$
s=\min \left\{\frac{t_{i}}{\lambda_{i}}, \lambda_{i}>0\right\} .
$$

Now $t_{i}-s \lambda_{i} \geqslant 0$ for all i and there is at least one i such that $t_{i}-s \lambda_{i}=0$. Therefore, we can decrease m as long as $m>N+1$, which proves the result.

Theorem 2.24. For $1 \leqslant p<\infty$ and for $n \geqslant 2$, we have

$$
m_{p}(n) \leqslant\binom{ n}{2}
$$

Proof. Fix $n \geqslant 2$. Given an n-tuple $M=\left(x_{1}, \ldots, x_{n}\right)$ in some space $L_{p}(\Omega, \mu)$, let

$$
\theta_{M}=\left(\left\|x_{i}-x_{j}\right\|_{p}^{p}\right)_{1 \leqslant i<j \leqslant n} \in \mathbb{R}^{N},
$$

where $N=\binom{n}{2}$. Consider the set C of such θ_{M} for all n-tuples M in some $L_{p}(\Omega, \mu)$.
The set C is a cone in \mathbb{R}^{N}, i.e. $t \theta \in C$ for all $t>0$ and $\theta \in C$. Moreover, C is stable by addition: if $M=\left(x_{1}, \ldots, x_{n}\right)$ is a n-tuple in $L_{p}(\Omega, \mu)$ and $M^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is a n-tuple in $L_{p}\left(\Omega^{\prime}, \mu^{\prime}\right)$, then $\theta_{M}+\theta_{M^{\prime}}=\theta_{N}$ where $N=\left(\left(x_{1}, x_{1}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)\right)$ in $L_{p}\left(\Omega \amalg \Omega^{\prime}\right)$. Hence, C is convex.

Say that an element $\theta \in C$ is linear if there exists $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ such that $\theta_{i j}=\left|t_{i}-t_{j}\right|^{p}$ for all $1 \leqslant i<j \leqslant n$. Define

$$
\begin{aligned}
K & =C \cap\left\{\theta \in \mathbb{R}^{N}, \sum_{1 \leqslant i<j \leqslant n} \theta_{i j}=1\right\}, \\
L & =\{\theta \in K, \theta \text { is linear }\}=\left\{\left(\left|t_{i}-t_{j}\right|^{p}\right)_{1 \leqslant i<j \leqslant n},\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}, \sum_{1 \leqslant i<j \leqslant n}\left|t_{i}-t_{j}\right|^{p}=1\right\} .
\end{aligned}
$$

The set L is compact, and K is convex, so conv $L \subseteq K$.
Given $\theta=\theta_{M} \in K$, with $M=\left(x_{1}, \ldots, x_{n}\right)$ in $L_{p}(\Omega, \mu)$, we can approximate each x_{i} with simple functions y_{i} such that $\varphi=\left(\left\|y_{i}-y_{j}\right\|_{p}^{p}\right)_{1 \leqslant i<j \leqslant n} \in K$. Hence we have a measurable partition $\Omega=\bigcup_{r=1}^{R} A_{r}$ such that $y_{i \mid A_{r}}$ is constant for all i, r. We let

$$
\varphi_{r}=\left(\left\|y_{i \mid A_{r}}-y_{j \mid A_{r}}\right\|_{p}^{p}\right)_{1 \leqslant i<j \leqslant n} .
$$

Then φ_{r} is linear and $\varphi=\sum_{i=1}^{R} \varphi_{r}$. Now if $\alpha_{r}=\sum_{1 \leqslant i<j \leqslant n}\left(\varphi_{r}\right)_{i j}$, then $\sum_{r=1}^{R} \alpha_{r}=1$ and

$$
\varphi=\sum_{r=1}^{R} \alpha_{r}\left(\frac{\varphi_{r}}{\alpha_{r}}\right) \in \operatorname{conv} L .
$$

This shows that $K \subseteq \overline{\text { conv } L}$. But Caratheodory's Theorem (Lemma 2.23) implies that $\overline{\operatorname{conv} L}=$ conv L, and therefore

$$
K=\operatorname{conv} L .
$$

Now pick $\theta \in C$, write $\theta=\sum_{r=1}^{N} \theta_{r}$, where θ_{r} is linear for all r (note that $\left\{\theta, \sum_{1 \leqslant i<j \leqslant n} \theta_{i j}=1\right\}$ is ($N-1$)-dimensional). For each r, there exist $t_{r i} \in \mathbb{R}$ such that $\theta_{r}=\left(\left|t_{r i}-t_{r j}\right|^{p}\right)_{1 \leqslant i<j \leqslant n}$. If $\theta=\theta_{M}$, $M=\left(x_{1}, \ldots, x_{n}\right)$ in $L_{p}(\Omega, \mu)$, define $f: M \rightarrow \ell_{p}^{N}$ by $f\left(x_{i}\right)=\left(t_{r i}\right)_{1 \leqslant r \leqslant N}$. Thus, for $1 \leqslant i<j \leqslant n$,

$$
\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{p}^{p}=\sum_{r=1}^{N}\left|t_{r i}-t_{r j}\right|^{p}=\sum_{r=1}^{N}\left(\theta_{r}\right)_{i j}=\theta_{i j}=\left\|x_{i}-x_{j}\right\|_{p}^{p}
$$

Remark 2.25. For $1 \leqslant p<2$, Theorem 2.24 is essentially optimal: we can show that

$$
m_{p}(2 n+1) \geqslant n .
$$

2.8 Aharoni's Theorem

Remark 2.26. Given Banach spaces X and Y, if X bilipschitzly embeds into Y, must X isomorphically embed into Y ?

The answer is yes if Y is separable and isomorphic to the dual of some Banach space W. But Aharoni's Theorem will show that the answer is no in general.

Notation 2.27. (i) In a metric space M, for $x \in M$ and $\delta>0$, let

$$
B_{\delta}(x)=\{y \in M, d(y, x) \leqslant \delta\} .
$$

A subset $A \subseteq M$ is said to be δ-dense in M if for all $x \in M, d(x, A)<\delta$.
(ii) Given a set S, let

$$
c_{0}(S)=\left\{f \in \ell_{\infty}(S), \forall \varepsilon>0,|\{s \in S,|f(s)|>\varepsilon\}|<\infty\right\}
$$

Hence $c_{0}=c_{0}(\mathbb{N}) \cong c_{0}(S)$ if S is countably infinite.
Lemma 2.28. Let M be a separable metric space, $\lambda>2, a>0, N \subseteq M$. Then there is a collection $\left(M_{i}\right)_{i \in I}$ (with $I \subseteq \mathbb{N}$) of subsets of N such that
(i) $\forall x \in N, \exists i \in I, d\left(x, M_{i}\right)<a$.
(ii) $\forall x \in M,\left|\left\{i \in I, d\left(x, M_{i}\right)<(\lambda-1) a\right\}\right|<\infty$.
(iii) $\forall i \in I, \operatorname{diam}\left(M_{i}\right) \leqslant 2 \lambda a$.

Proof. By rescaling the distance in M, we may assume that $a=1$. Since M is separable, so is N, and therefore there are countable sets $Z \subseteq N$ that is 1-dense in N and $Y \subseteq M$ that is 1-dense in M. By replacing Y by $Z \cup Y$, we may assume that $Z \subseteq Y$. We enumerate Y as $\left\{y_{i}, i \in I\right\}$ (with $I \subseteq \mathbb{N}$) and we set

$$
M_{i}=\left(B_{\lambda}\left(y_{i}\right) \cap Z\right) \backslash\left(\bigcup_{j<i} M_{j}\right) .
$$

Therefore, for all $i \in I, M_{i} \subseteq Z \subseteq N$. We now check (i) - (iii).
(iii) For all $i \in I, M_{i} \subseteq B_{\lambda}\left(y_{i}\right)$, so $\operatorname{diam}\left(M_{i}\right) \leqslant 2 \lambda=2 \lambda a$.
(i) Given $x \in N$, there is $i \in I$ such that $y_{i} \in Z$ and $d\left(x, y_{i}\right)<1$. Thus $y_{i} \in B_{\lambda}\left(y_{i}\right) \cap Z \subseteq$ $\bigcup_{1 \leqslant j \leqslant i} M_{j}$, so there exists $j \leqslant i$ such that $d\left(x, M_{j}\right)<1=a$.
(ii) Given $x \in M$, there exists $i_{0} \in I$ such that $d\left(x, y_{i_{0}}\right)<1$. If $d\left(x, M_{i}\right)<\lambda-1$ for some i, then $d\left(y_{i_{0}}, M_{i}\right)<\lambda$. Now for $i>i_{0}$ and $y \in M_{i}$, the facts that $y_{i_{0}} \in \bigcup_{j \leqslant i_{0}} M_{j}$ and $M_{i} \cap$ $\left(\cup_{j \leqslant i_{0}} M_{j}\right)=\varnothing$ imply that $d\left(y_{i_{0}}, y\right) \geqslant \lambda$, so $d\left(y_{i_{0}}, M_{i}\right) \geqslant \lambda$ and $d\left(x, M_{i}\right) \geqslant \lambda-1$. Therefore, the set $\left\{i \in I, d\left(x, M_{i}\right)<\lambda-1\right\}$ has at most i_{0} elements.

Theorem 2.29 (Aharoni). For any $\varepsilon>0$, any separable metric space embeds into c_{0} with distortion at most $3+\varepsilon$.

Proof. Given a separable metric space M and $\varepsilon>0$, choose $\lambda>2$ and $\eta>0$ such that

$$
\frac{3 \lambda}{\lambda-2}(1+\eta)<3+\varepsilon
$$

For $k \in \mathbb{Z}$, let $a_{k}=(1+\eta)^{-k}$. Fix a centre $c \in M$ and let

$$
M_{k}=M \backslash B_{3 \lambda a_{k} / 2}(c) .
$$

Apply Lemma 2.28 to M and $N=M_{k}, a=a_{k}$, to get subsets $\left(M_{k i}\right)_{i \in I}$ as in the lemma. Set $S=\mathbb{Z} \times I$. For $(k, i) \in S$, define

$$
f_{k i}: x \in M \longmapsto \max \left\{0,(\lambda-1) a_{k}-d\left(x, M_{k i}\right)\right\} \in \mathbb{R}_{+},
$$

and let $f: x \in M \longmapsto\left(f_{k i}(x)\right)_{k, i \in S} \in\left(\mathbb{R}_{+}\right)^{S}$.
We first prove that $f(x) \in c_{0}(S)$ for all $x \in M$. Since $(\lambda-1) a_{k} \xrightarrow[k \rightarrow \infty]{ } 0$, it is enough to show that for any $s \in \mathbb{Z}$, the set $T_{s}=\left\{(k, i) \in S, f_{k i}(x) \geqslant(\lambda-1) a_{s}\right\}$ is finite. For $k>s$, se have

$$
f_{k i}(x) \leqslant(\lambda-1) a_{k}<(\lambda-1) a_{s},
$$

so $(k, i) \notin T_{s}$ for all $(k, i) \in S$ with $k>s$. Since $a_{k} \xrightarrow[k \rightarrow-\infty]{ }+\infty$, there is $r<s$ such that $d(x, c)<\left(\frac{\lambda}{2}+1\right) a_{r}$. Hence, for $k<r, d(x, c)<\left(\frac{\lambda}{2}+1\right) a_{k}$, so for all $i \in I$,

$$
d\left(x, M_{k i}\right) \geqslant d\left(x, M \backslash B_{3 \lambda a_{k} / 2}(c)\right) \geqslant \frac{3 \lambda a_{k}}{2}-d(x, c)>(\lambda-1) a_{k}
$$

Therefore, for all $(k, i) \in S$ with $k<r, f_{k i}(x)=0$ and $x \notin T_{s}$. Finally, by Lemma 2.28, for each $k \in \mathbb{Z}$, the set

$$
\left\{i \in I, f_{k i}(x)>0\right\}=\left\{i \in I, d\left(x, M_{k i}\right)<(\lambda-1) a_{k}\right\}
$$

is finite, so $T_{s} \subseteq \bigcup_{k=r}^{s}\left\{i \in I, f_{k i}(x)>0\right\}$ is finite.
Thus, we have a map $f: M \rightarrow c_{0}(S)$, and f is clearly 1-Lipschitz. To find a lower bound, fix $x \neq y$ in M and choose $k \in \mathbb{Z}$ such that

$$
3 \lambda a_{k}<d(x, y) \leqslant 3 \lambda a_{k}(1+\eta) .
$$

By the triangle inequality, both x and y cannot belong to $B_{3 \lambda a_{k} / 2}(c)$, so we may assume without loss of generality that $x \in M_{k}$. By Lemma 2.28 , there exists $i \in I$ such that $d\left(x, M_{k i}\right)<a_{k}$, so

$$
f_{k i}(x) \geqslant(\lambda-1) a_{k}-a_{k}=(\lambda-2) a_{k} .
$$

Pick $w \in M_{k i}$ such that $d(x, w)<a_{k}$. For any $z \in M_{k i}$, we have

$$
d(y, z) \geqslant d(y, x)-d(x, w)-d(w, z) \geqslant 3 \lambda a_{k}-a_{k}-\operatorname{diam} M_{k i} \geqslant(\lambda-1) a_{k},
$$

so $d\left(y, M_{k i}\right) \geqslant(\lambda-1) a_{k}$ and $f_{k i}(y)=0$. Therefore

$$
\|f(x)-f(y)\|_{\infty} \geqslant\left|f_{k i}(x)-f_{k i}(y)\right| \geqslant(\lambda-2) a_{k}=\frac{3 \lambda a_{k}(1+\eta)}{3 \lambda(1+\eta)}(\lambda-2)>\frac{d(x, y)}{3+\varepsilon} .
$$

Remark 2.30. The above proof of Aharoni's Theorem shows that $M \hookrightarrow_{3+\varepsilon} c_{0}^{+}$, where $c_{0}^{+}(S)=$ $\left\{f \in c_{0}(S), \forall x \in S, f(x) \in \mathbb{R}_{+}\right\}$. We can actually show that

$$
\sup _{M} \inf _{\substack{f: M \rightarrow c_{0}^{+} \\ \text {bilipschitz }}} \operatorname{dist}(f)=3 \quad \text { and } \quad \sup _{M}^{M} \inf _{\substack{f: M \rightarrow c_{0} \\ \text { bilipschitz }}} \operatorname{dist}(f)=2 \text {. }
$$

3 Bourgain's Embedding Theorem

3.1 Dvoretzky's Theorem

Definition 3.1 (Distortion of a metric space). For metric spaces X, Y, define

$$
c_{Y}(X)=\inf _{\substack{f: X \rightarrow Y \\ \text { bilipschitz }}} \operatorname{dist}(f) .
$$

The L_{p}-distortion of X is $c_{p}(X)=c_{L_{p}}(X)$, the euclidean distortion of X is $c_{2}(X)=c_{L_{2}}(X)$.
Corollary 1.19 implies that, for any finite metric space X,

$$
c_{p}(X) \leqslant c_{2}(X)
$$

Theorem 3.2 (Dvoretzky). For every $n \in \mathbb{N}$ and for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that every Banach space Y with $\operatorname{dim} Y \geqslant N$ contains a $(1+\varepsilon)$-isomorphic copy of ℓ_{2}^{n}.

Remark 3.3. (i) The integer N of Dvoretzky's Theorem can be taken at most $\exp \left(\frac{C n}{\varepsilon^{2}}\right)$ for some absolute constant C.
(ii) Dvoretzky's Theorem implies that

$$
c_{Y}(X) \leqslant c_{2}(X)
$$

for every finite metric space X and every infinite-dimensional Banach space Y.

3.2 Padded decompositions and existence of scaled embeddings

Definition 3.4 (Partitions and clusters). We fix a metric space X with $|X|=n$. We denote by \mathcal{P}_{X} the set of partitions of X. For $P \in \mathcal{P}_{X}$, the elements of P are called clusters. For $x \in X$, we let $P(x)$ be the unique cluster to which it belongs.

Definition 3.5 (Stochastic (padded) decompositions). A stochastic decomposition of a finite metric space X is a probability measure Ψ on \mathcal{P}_{X}. The support of Ψ is

$$
\operatorname{Supp} \Psi=\left\{P \in \mathcal{P}_{X}, \Psi(P)>0\right\} .
$$

Given $\Delta>0$ and $\varepsilon: X \rightarrow(0,1]$, we say that Ψ is an (ε, Δ)-padded decomposition if for all $P \in \operatorname{Supp} \Psi$,
(i) $\forall C \in P, \operatorname{diam} C<\Delta$,
(ii) $\forall x \in X, \Psi(d(x, X \backslash P(x)) \geqslant \varepsilon(x) \Delta) \geqslant \frac{1}{2}$.

Definition $3.6\left(\ell_{q}\right.$-sum). Given a collection $\left(X_{i}\right)_{i \in I}$ of Banach spaces (with $I \subseteq \mathbb{N}$), define $\left(\oplus_{i \in I} X_{i}\right)_{q}$ to be the space of sequences $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ such that $\sum_{i \in I}\left\|x_{i}\right\|^{q}<\infty$. This is a Banach space with norm $\|\cdot\|_{q}$ defined by

$$
\left\|\left(x_{i}\right)_{i \in I}\right\|_{q}=\left(\sum_{i \in I}\left\|x_{i}\right\|^{q}\right)^{1 / q} .
$$

This definition also makes sense when $q=\infty\left(\right.$ replacing $\sum_{i \in I}\left\|x_{i}\right\|^{q}$ by $\left.\sup _{i \in I}\left\|x_{i}\right\|\right)$.
Moreover, there is a subspace $\left(\oplus_{i \in I} X_{i}\right)_{c_{0}}$ of sequences $\left(x_{i}\right)_{i \in I} \in\left(\oplus_{i \in I} X_{i}\right)_{\infty}$ such that $\left\|x_{i}\right\| \xrightarrow[i \rightarrow \infty]{\longrightarrow} 0$.
Note that, if $X_{i}=\ell_{q}\left(S_{i}\right)$ for all i, then $\left(\oplus_{i \in I} \ell_{q}\left(S_{i}\right)\right)_{q} \cong \ell_{q}\left(\prod_{i \in I} S_{i}\right)$.
Lemma 3.7. Let Ψ be an (ε, Δ)-padded decomposition of a finite metric space X and let $1 \leqslant q<\infty$. Then there is a 1-Lipschitz map $f: X \rightarrow \ell_{q}$ such that
(i) $\forall x \in X,\|f(x)\|_{q} \leqslant \Delta$,
(ii) $\forall x, y \in X, d(x, y) \in[\Delta, 2 \Delta) \Longrightarrow\|f(x)-f(y)\|_{q} \geqslant \frac{1}{16} \varepsilon(x) d(x, y)$.

Proof. Fix $P \in \operatorname{Supp} \Psi$, and let $C_{1}, C_{2}, \ldots, C_{m(P)}$ be the clusters of P. Let $U_{1}, U_{2}, \ldots, U_{2^{m(P)}}$ be all possible unions of the $\left(C_{i}\right)_{1 \leqslant i \leqslant m(P)}$. For $1 \leqslant j \leqslant 2^{m(P)}$, define $f_{P, j}: X \rightarrow \mathbb{R}$ by

$$
f_{P, j}(x)=\left\{\begin{array}{ll}
\min \{\Delta, d(x, X \backslash P(x))\} & \text { if } x \in U_{j} \\
0 & \text { otherwise }
\end{array} .\right.
$$

We have $0 \leqslant f_{P, j}(x) \leqslant \Delta$ for all $x \in X$. Let $x, y \in X$.

- If $P(x) \neq P(y)$, then $0 \leqslant f_{P, j}(x) \leqslant d(x, X \backslash P(x)) \leqslant d(x, y)$ and similarly for y.
- If $P(x)=P(y), x, y \in U_{j}$, then $\left|f_{P, j}(x)-f_{P, j}(y)\right| \leqslant|d(x, X \backslash P(x))-d(y, X \backslash P(x))| \leqslant d(x, y)$.
- If $P(x)=P(y), x, y \notin U_{j}$, then $f_{P, j}(x)=f_{P, j}(y)=0$.

This shows that $f_{P, j}$ is 1-Lipschitz.
Now define $f_{P}: X \rightarrow \ell_{q}^{2^{m(P)}}$ by

$$
f_{P}(x)=\left(2^{-m(P) / q} f_{P, j}(x)\right)_{1 \leqslant j \leqslant 2^{m(P)}} .
$$

Hence, for all x,

$$
\left\|f_{P}(x)\right\|_{q}=\left(\sum_{j=1}^{2^{m(P)}} 2^{-m(P)} f_{P, j}(x)^{q}\right)^{1 / q} \leqslant \Delta
$$

and for $x, y \in X$,

$$
\left\|f_{P}(x)-f_{P}(y)\right\|_{q}=\left(\sum_{j=1}^{2^{m(P)}} 2^{-m(P)}\left|f_{P, j}(x)-f_{P, j}(y)\right|^{q}\right)^{1 / q} \leqslant d(x, y)
$$

so f_{P} is 1-Lipschitz.
Finally, define $f: X \rightarrow\left(\oplus_{P \in \operatorname{Supp} \Psi} \ell_{q}^{2^{m(P)}}\right)_{q} \hookrightarrow_{1} \ell_{q}$ by

$$
f(x)=\left(\Psi(P)^{1 / q} f_{P}(x)\right)_{P \in \operatorname{Supp} \Psi} .
$$

Hence $\|f(x)\|_{q} \leqslant \Delta$ for all x, and f is 1 -Lipschitz. Fix $x, y \in X$ such that $d(x, y) \in[\Delta, 2 \Delta)$. Let

$$
E=\{P \in \operatorname{Supp} \Psi, d(x, X \backslash P(x)) \geqslant \varepsilon(x) \Delta\} .
$$

Fix $P \in E$. If $x \in U_{j} \not \supset y$, then

$$
\left|f_{P, j}(x)-f_{P, j}(y)\right|=\min \{\Delta, d(x, X \backslash P(x))\} \geqslant \varepsilon(x) \Delta
$$

Note that $P(x) \neq P(y)$ because $\forall C \in P, \operatorname{diam}(C)<\Delta \leqslant d(x, y)$. Therefore, for one quarter of all possible values of j, we have $x \in U_{j} \not \supset y$. Hence,

$$
\left\|f_{P}(x)-f_{P}(y)\right\|_{q} \geqslant\left(\sum_{x \in U_{j} \ngtr y} 2^{-m(P)}\left|f_{P, j}(x)-f_{P, j}(y)\right|^{q}\right)^{1 / q} \geqslant \frac{\varepsilon(x) \Delta}{4^{1 / q}} .
$$

It follows finally that

$$
\begin{aligned}
\|f(x)-f(y)\|_{q} & \geqslant\left(\sum_{P \in E} \Psi(P)\left\|f_{P}(x)-f_{P}(y)\right\|_{q}^{q}\right)^{1 / q} \geqslant \frac{\varepsilon(x) \Delta}{4^{1 / q}} \Psi(E) \\
& \geqslant \frac{\varepsilon(x) \Delta}{4^{1 / q} \cdot 2} \geqslant \frac{\varepsilon(x)}{4^{1 / q} \cdot 4} d(x, y) \geqslant \frac{1}{16} \varepsilon(x) d(x, y) .
\end{aligned}
$$

Definition 3.8 (Relevant scales). Given a finite metric space X, we define

$$
S(X)=\left\{\ell \in \mathbb{Z}, \exists x, y \in X, d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)\right\}
$$

Elements of $S(X)$ are called relevant scales. We denote $R(X)=|S(X)|$.
Example 3.9. If X is a finite connected graph with the graph distance, then $R(X) \leqslant\left\lceil\log _{2}|X|\right\rceil$.
Definition 3.10 (Scale- τ embedding). Given $K, \tau>0$, a map $f: X \rightarrow Y$ is called a scale- τ embedding with deficiency K if f is 1 -Lipschitz and

$$
d(f(x), f(y)) \geqslant \frac{1}{K} d(x, y)
$$

for all $x, y \in X$ such that $d(x, y) \in[\tau, 2 \tau)$.
Proposition 3.11. Given $K>0$ and $1 \leqslant q<\infty$, assume that for all $\ell \in S(X)$, there exists $f_{\ell}: X \rightarrow \ell_{q}$ a scale- 2^{ℓ} embedding with deficiency K. Then

$$
c_{q}(X) \leqslant K \cdot R(X)^{1 / q} .
$$

Proof. Define $f: X \rightarrow\left(\oplus_{\ell \in S(X)} \ell_{q}\right)_{q} \cong \ell_{q}$ by

$$
f(x)=\left(f_{\ell}(x)\right)_{\ell \in S(X)} .
$$

Then, for all $x \neq y$ in X,

$$
\|f(x)-f(y)\|_{q}=\left(\sum_{\ell \in S(X)}\left\|f_{\ell}(x)-f_{\ell}(y)\right\|_{q}^{q}\right)^{1 / q} \leqslant R(X)^{1 / q} d(x, y)
$$

Moreover, there exists $\ell \in S(X)$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$, so

$$
\|f(x)-f(y)\|_{q} \geqslant\left\|f_{\ell}(x)-f_{\ell}(y)\right\|_{q} \geqslant \frac{1}{K} d(x, y) .
$$

Therefore $c_{q}(X) \leqslant \operatorname{dist}(f) \leqslant K \cdot R(X)^{1 / q}$.
Notation 3.12. Given functions a, b defined on a set S with values in \mathbb{R}_{+}, we write $a \lesssim b$ if

$$
\exists C \in \mathbb{R}_{+}, \forall s \in S, a(s) \leqslant C b(s)
$$

Corollary 3.13. If for all $\ell \in S(X)$ there is an $\left(\varepsilon, 2^{\ell}\right)$-padded decomposition of X with $\varepsilon(x) \geqslant \frac{1}{K}$, then, for all $1 \leqslant q<\infty$,

$$
c_{q}(X) \leqslant K \cdot R(X)^{1 / q} .
$$

Remark 3.14. Corollary 3.13 actually yields

$$
c_{q}(X) \leqslant K \cdot R(X)^{\min \left\{\frac{1}{2}, \frac{1}{q}\right\}}
$$

because $c_{q}(X) \leqslant c_{2}(X)$ by Corollary 1.19.

3.3 Existence of padded decompositions

Theorem 3.15. For all $\ell \in \mathbb{Z}$, there is an $\left(\varepsilon, 2^{\ell}\right)$-padded decomposition of X with

$$
\varepsilon(x)=\frac{1}{16}\left(1+\log \left(\frac{\left|B_{2^{\ell}}(x)\right|}{\left|B_{2^{\ell-3}}(x)\right|}\right)\right)^{-1}
$$

Proof. Fix $\ell \in \mathbb{Z}$ and set $\Delta=2^{\ell}$. Fix an ordering $<$ on X. Pick a pair $(\pi, \alpha) \in \mathfrak{S}_{X} \times\left(\frac{1}{4}, \frac{1}{2}\right)$ uniformly and independently at random. To this pair, there corresponds an element $P \in \mathcal{P}_{X}$ with clusters

$$
C_{y}=B_{\alpha \Delta}(y) \backslash \bigcup_{\pi(z)<\pi(y)} B_{\alpha \Delta}(z),
$$

for $y \in X$ (where we throw away the empty clusters). This gives a random partition, so we have a stochastic decomposition (formally, we are taking a pushforward of the product probability measure on $\mathfrak{S}_{X} \times\left(\frac{1}{4}, \frac{1}{2}\right)$). We now show that this decomposition is (ε, Δ)-padded, where ε is as in the statement of the theorem. Note that

$$
\operatorname{diam}\left(C_{y}\right) \leqslant 2 \alpha \Delta<\Delta
$$

for all $y \in X$.
Now fix $x \in X$ and let $t \leqslant \frac{\Delta}{8}$. Let B be the event that $d(x, X \backslash P(x))<t$. Our aim is to show that $\mathbb{P}(B) \leqslant \frac{1}{2}$ for $t=\varepsilon(x) \Delta$. Note that

$$
B=\left\{B_{t}(x) \nsubseteq P(x)\right\}=\bigcap_{y \in X}\left\{B_{t}(x) \nsubseteq C_{y}\right\}
$$

Let $y \in X$ such that $B_{t}(x) \cap C_{y} \neq \varnothing$; then $B_{t}(x) \cap B_{\alpha \Delta}(y) \neq \varnothing$, so $d(x, y) \leqslant \alpha \Delta+t \leqslant \frac{\Delta}{2}+\frac{\Delta}{8}<\Delta$, so $y \in B_{\Delta}(x)$. We denote by y_{1}, \ldots, y_{b} the elements of $B_{\Delta}(x)$ in order of increasing distance to x. Now let $y \in X$ such that $d(x, y) \leqslant \alpha \Delta+t$, with $\pi(y)$ minimal for $<$. Then, by minimality, $B_{t}(x)$ is disjoint from $\bigcup_{\pi(z)<\pi(y)} C_{z}=\bigcup_{\pi(z)<\pi(y)} B_{\alpha \Delta}(z)$.

This shows that, for the above choice of $y, B_{t}(x) \subseteq C_{y}$ if and only if $B_{t}(x) \subseteq B_{\alpha \Delta}(y)$. Now if B happens, then $B_{t}(x) \nsubseteq B_{\alpha \Delta}(y)$ for some y which can be taken as above, and hence

$$
d(x, y)>\alpha \Delta-t \geqslant \frac{\Delta}{4}-\frac{\Delta}{8}=\frac{\Delta}{8} .
$$

Let $a=\left|B_{\Delta / 8}(x)\right|$, then $B_{\Delta / 8}(x)=\left\{y_{1}, \ldots, y_{a}\right\}$ with the above notations. So $y=y_{k}$ for some $a<k \leqslant b$. This proves that

$$
B \subseteq \bigcup_{k=a+1}^{b} E_{k}
$$

where E_{k} is the event that $\alpha \Delta-t<d\left(x, y_{k}\right) \leqslant \alpha \Delta+t$ with $\pi\left(y_{k}\right)$ minimal for $<$. Let

$$
I_{k}=\left[d\left(x, y_{k}\right)-t, d\left(x, y_{k}\right)+t\right) .
$$

Then $E_{k} \subseteq\left\{\alpha \Delta \in I_{k}\right\}$, so

$$
\mathbb{P}(B) \leqslant \sum_{k=a+1}^{b} \mathbb{P}\left(E_{k}\right)=\sum_{k=a+1}^{b} \mathbb{P}\left(E_{k} \mid \alpha \Delta \in I_{k}\right) \mathbb{P}\left(\alpha \Delta \in I_{k}\right)
$$

If $\alpha \Delta \in I_{k}$, then $d\left(x, y_{j}\right) \leqslant d\left(x, y_{k}\right) \leqslant \alpha \Delta+t$ for all $1 \leqslant j \leqslant k$. If in addition E_{k} occurs, we must have $\pi\left(y_{k}\right)<\pi\left(y_{j}\right)$ for $j<k$, so

$$
\begin{aligned}
\mathbb{P}(B) & \leqslant \sum_{k=a+1}^{b} \mathbb{P}\left(\forall j<k, \pi\left(y_{k}\right)<\pi\left(y_{j}\right) \mid \alpha \Delta \in I_{k}\right) \mathbb{P}\left(\alpha \Delta \in I_{k}\right) \\
& =\sum_{k=a+1}^{b} \mathbb{P}\left(\forall j<k, \pi\left(y_{k}\right)<\pi\left(y_{j}\right)\right) \mathbb{P}\left(\alpha \Delta \mid I_{k}\right) \\
& \leqslant \sum_{k=a+1}^{b} \frac{1}{k} \cdot \frac{8 t}{\Delta} \leqslant \frac{8 t}{\Delta} \log \left(\frac{b}{a}\right) \leqslant \frac{1}{2},
\end{aligned}
$$

if $t=\varepsilon(x) \Delta$.
Remark 3.16. Note that, in Theorem 3.15, $\varepsilon(x) \gtrsim \frac{1}{\log |X|}$, so Corollary 3.13 yields

$$
c_{2}(X) \lesssim(\log |X|) \sqrt{R(X)}
$$

3.4 Glueing Lemma and Bourgain's Embedding Theorem

Notation 3.17. For $x, y \in X$ and $\ell \in \mathbb{Z}$, define

$$
\gamma_{\ell}(x, y)=\left\{\begin{array}{ll}
x & \text { if }\left|B_{2^{\ell}}(x)\right| \geqslant\left|B_{2^{\ell}}(y)\right| \\
y & \text { otherwise }
\end{array} .\right.
$$

Lemma 3.18. Assume that for all $\ell \in \mathbb{Z}$, there is a 1 -Lipschitz map $h_{\ell}: X \rightarrow \ell_{q}$ (with $1 \leqslant q<\infty$) such that $\left\|h_{\ell}(x)\right\|_{q} \leqslant 2^{\ell}$ for all $x \in X$. Then there exists $H: X \rightarrow \ell_{q}$ such that
(i) $\operatorname{Lip}(H) \lesssim(\log |X|)^{1 / q}$,
(ii) For all $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$, we have

$$
\|H(x)-H(y)\|_{q} \geqslant\left(\log _{2} \frac{\left|B_{2^{\ell+1}}\left(\gamma_{\ell-3}(x, y)\right)\right|}{\left|B_{2^{\ell-3}}\left(\gamma_{\ell-3}(x, y)\right)\right|}\right)^{1 / q}\left\|h_{\ell}(x)-h_{\ell}(y)\right\|_{q} .
$$

Proof. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be the piecewise affine function defined by $\rho_{\mid(-\infty, 1 / 16]}=\rho_{[[16,+\infty)}=0$ and $\rho_{[1 / 8,8]}=1$. Note that $\operatorname{Lip}(\rho) \leqslant 16$. Fix $t \in\left\{0,1, \ldots,\left\lceil\log _{2} n\right\rceil-1\right\}$ where $n=|X|$. For $x \in X$, let

$$
R(x, t)=\sup \left\{R>0,\left|B_{R}(x)\right| \leqslant 2^{t}\right\} .
$$

The map $x \mapsto R(x, t)$ is 1-Lipschitz: given $x, y \in X$, if $\left|B_{R}(x)\right| \leqslant 2^{t}$, then $\left|B_{R-d(x, y)}(y)\right| \leqslant 2^{t}$, so that $R(y, t) \geqslant R-d(x, y)$. By taking the supremum over R, we have $R(y, t) \geqslant R(x, t)-d(x, y)$, from which it follows by symmetry that

$$
|R(x, t)-R(y, t)| \leqslant d(x, y)
$$

Define

$$
H_{t}: x \in X \longmapsto\left(\rho\left(\frac{R(x, t)}{2^{\ell}}\right) h_{\ell}(x)\right)_{\ell \in \mathbb{Z}} \in\left(\bigoplus_{\ell \in \mathbb{Z}} \ell_{q}\right)_{q} \cong \ell_{q}
$$

This is well-defined: if $x \in X$, then $\rho\left(\frac{R(x, t)}{2^{\ell}}\right)=0$ if $R(x, t) \leqslant 2^{\ell-4}$ or $R(x, t) \geqslant 2^{\ell+4}$. Choose $m \in \mathbb{Z}$ such that $2^{m} \leqslant R(x, t)<2^{m+1}$. Then $\rho\left(\frac{R(x, t)}{2^{\ell}}\right)=0$ if $\ell \geqslant m+5$ or $\ell \leqslant m-4$. It follows that $H_{t}(x)$ has at most eight nonzero coordinates, so $H_{t}(x) \in\left(\oplus_{\ell \in \mathbb{Z}} \ell_{q}\right)_{q}$.

Next, we show that H_{t} is Lipschitz with $\operatorname{Lip}\left(H_{t}\right) \leqslant 16 \cdot 17$. Indeed, for $\ell \in \mathbb{Z}$,

$$
\begin{aligned}
\left\|\rho\left(\frac{R(x, t)}{2^{\ell}}\right) h_{\ell}(x)-\rho\left(\frac{R(y, t)}{2^{\ell}}\right) h_{\ell}(y)\right\|_{q} & \leqslant\left|\rho\left(\frac{R(x, t)}{2^{\ell}}\right)-\rho\left(\frac{R(y, t)}{2^{\ell}}\right)\right|\left\|h_{\ell}(x)\right\|_{q} \\
& +\rho\left(\frac{R(y, t)}{2^{\ell}}\right)\left\|h_{\ell}(y)-h_{\ell}(x)\right\|_{q} \\
\leqslant & 16\left|\frac{R(x, t)}{2^{\ell}}-\frac{R(y, t)}{2^{\ell}}\right|\left\|h_{\ell}(x)\right\|_{q}+\left\|h_{\ell}(x)-h_{\ell}(y)\right\|_{q} \\
& \leqslant \frac{16}{2^{\ell}} d(x, y) \cdot 2^{\ell}+d(x, y)=17 d(x, y) .
\end{aligned}
$$

Since both $H_{t}(x)$ and $H_{t}(y)$ have at most eight nonzero coordinates, H_{t} is (16•17)-Lipschitz. Now define

$$
H: x \in X \longmapsto\left(H_{t}(x)\right)_{0 \leqslant t<\left\lceil\log _{2} n\right\rceil} \in\left(\bigoplus_{t=0}^{\left\lceil\log _{2} n\right\rceil-1} \ell_{q}\right)_{q} \cong \ell_{q}
$$

It is clear that $\operatorname{Lip}(H) \lesssim(\log n)^{1 / q}$, proving (i).
For (ii), fix $x, y \in X$ and choose $\ell \in \mathbb{Z}$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$. Thus the inequality

$$
\begin{equation*}
\left\|H_{t}(x)-H_{t}(y)\right\|_{q} \geqslant\left\|h_{\ell}(x)-h_{\ell}(y)\right\|_{q} \tag{*}
\end{equation*}
$$

holds provided that $\rho\left(\frac{R(x, t)}{2^{\ell}}\right)=\rho\left(\frac{R(y, t)}{2^{\ell}}\right)=1$, which holds if $R(x, t), R(y, t) \in\left[2^{\ell-3}, 2^{\ell+3}\right]$. This will follow if $\left|B_{2^{\ell-3}}(x)\right| \leqslant 2^{t}$ and $\left|B_{2^{\ell+3}}(x)\right|>2^{t}$, and similarly for y. So $(*)$ holds for all t such that

$$
2^{t} \in\left[\left|B_{2^{\ell-3}}(x)\right|,\left|B_{2^{\ell+3}}(x)\right|\right) \cap\left[\left|B_{2^{\ell-3}}(y)\right|,\left|B_{2^{\ell+3}}(y)\right|\right) .
$$

Without loss of generality, we may assume that $\gamma_{\ell-3}(x, y)=x$ (i.e. $\left.\left|B_{2^{\ell-3}}(x)\right| \geqslant\left|B_{2^{\ell-3}}(y)\right|\right)$. Since $d(x, y)<2^{\ell+1}$, we have $B_{2^{\ell+1}}(x) \subseteq B_{2^{\ell+3}}(y)$, so $(*)$ holds if $2^{t} \in\left[\left|B_{2^{\ell-3}}(x)\right|,\left|B_{2^{\ell+1}}(x)\right|\right)$. Hence,

$$
\|H(x)-H(y)\|_{q}=\left(\sum_{t=0}^{\left\lceil\log _{2} n\right\rceil-1}\left\|H_{t}(x)-H_{t}(y)\right\|_{q}^{q}\right)^{1 / q} \geqslant\left(\log _{2} \frac{\left|B_{2^{\ell+1}}(x)\right|}{\left|B_{2^{\ell-3}}(x)\right|}\right)^{1 / q}\left\|h_{\ell}(x)-h_{\ell}(y)\right\|_{q}
$$

Lemma 3.19. Let $1 \leqslant q<\infty$. Then there exists $H: X \rightarrow \ell_{q}$ such that
(i) $\operatorname{Lip}(H) \lesssim(\log |X|)^{1 / q}$,
(ii) For all $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$, if $\log _{2} \frac{\left|B_{2} \ell-1(x)\right|}{\left|B_{2} \ell-2(x)\right|}<1$, then

$$
\|H(x)-H(y)\|_{q} \geqslant d(x, y) .
$$

Proof. Fix $t \in\left\{1,2, \ldots,\left\lceil\log _{2} n\right\rceil\right\}$ where $n=|X|$. Let W be a random subset of X where each $x \in X$ is placed in W independently at random with probability 2^{-t}. Let \mathbb{P}_{t} be the resulting probability measure on the power set $\mathcal{P}(X)$. Hence

$$
\mathbb{P}_{t}(W)=2^{-t|W|}\left(1-2^{-t}\right)^{n-|W|}
$$

for any $W \subseteq X$. Note that there is an isomorphism

$$
L_{q}\left(\mathcal{P}(X), \mathbb{P}_{t}\right) \cong \ell_{q}^{2^{n}}
$$

given by $g \mapsto\left(\mathbb{P}_{t}(W)^{1 / q} g(W)\right)_{W \in \mathcal{P}(X)}$. Define

$$
H_{t}: x \in X \longmapsto(d(x, W))_{W \in \mathcal{P}(X)} \in L_{q}\left(\mathcal{P}(X), \mathbb{P}_{t}\right) \cong \ell_{q}^{2^{n}}
$$

Then for all $x, y \in X$,

$$
\left\|H_{t}(x)-H_{t}(y)\right\|_{q}=\left(\int_{\mathcal{P}(X)}|d(x, W)-d(y, W)|^{q} \mathbb{d}_{t}(W)\right)^{1 / q} \leqslant d(x, y)
$$

so H_{t} is 1-Lipschitz.
Now define

$$
H: x \in X \longmapsto\left(H_{t}(x)\right)_{1 \leqslant t \leqslant\left\lceil\log _{2} n\right\rceil} \in\left(\bigoplus_{t=1}^{\left\lceil\log _{2} n\right\rceil} \ell_{q}^{2^{n}}\right)_{q} \hookrightarrow_{\cong} \ell_{q}
$$

Then $\operatorname{Lip}(H) \lesssim(\log n)^{1 / q}$, showing (i).
For (ii), fix $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right.$) and $\log _{2} \frac{\left|B_{2} \ell-1(x)\right|}{\left|B_{2} \ell-2(x)\right|}<1$. Fix $s \in\left\{1,2, \ldots,\left\lceil\log _{2} n\right\rceil\right\}$ s.t. $\left|B_{2^{\ell-1}}(x)\right| \in\left[2^{s-1}, 2^{s}\right]$. Note that $\left|B_{2^{\ell-2}}(x)\right| \in\left[2^{s-2}, 2^{s}\right]$. Consider the four events:

$$
\begin{aligned}
& E_{x}=\left\{W \in \mathcal{P}(X), d(x, W) \leqslant 2^{\ell-2}\right\}=\left\{W \in \mathcal{P}(X), W \cap B_{2^{\ell-2}}(x) \neq \varnothing\right\} \\
& F_{x}=\left\{W \in \mathcal{P}(X), d(x, W)>2^{\ell-1}\right\}=\left\{W \in \mathcal{P}(X), W \cap B_{2^{\ell-1}}(x)=\varnothing\right\} \\
& E_{y}=\left\{W \in \mathcal{P}(X), d(y, W) \leqslant \frac{3}{2} 2^{\ell-2}\right\}=\left\{W \in \mathcal{P}(X), W \cap B_{\frac{3}{2} 2^{\ell-2}}(y) \neq \varnothing\right\}, \\
& F_{y}=\mathcal{P}(X) \backslash E_{y}=\left\{W \in \mathcal{P}(X), W \cap B_{\frac{3}{2} 2^{\ell-2}}(y)=\varnothing\right\}
\end{aligned}
$$

Since $d(x, y) \geqslant 2^{\ell}, B_{2^{\ell-1}}(x) \cap B_{\frac{3}{2} 2^{\ell-2}}(y)=\varnothing$, and hence any of E_{x}, F_{x} is independent from E_{y}, F_{y}. Using the fact that $\left(\left(1-\frac{1}{k}\right)^{k}\right)_{k \geqslant 1}$ is increasing and converges to e^{-1}, we have

$$
\begin{aligned}
& \mathbb{P}_{s}\left(E_{x}\right)=1-\left(1-2^{-s}\right)^{\left|B_{2} \ell-2(x)\right|} \geqslant 1-\left(1-2^{-s}\right)^{2^{s-2}} \geqslant 1-e^{-1 / 4}>0 \\
& \mathbb{P}_{s}\left(F_{x}\right)=\left(1-2^{-s}\right)^{\left|B_{2^{\ell-1}(x)}\right|} \geqslant\left(1-2^{-s}\right)^{2^{s}} \geqslant\left(1-\frac{1}{2}\right)^{2}=\frac{1}{4}>0 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|H(x)-H(y)\|_{q} & \geqslant\left\|H_{s}(x)-H_{s}(y)\right\|_{q} \\
& =\left(\int_{\mathcal{P}(X)}|d(x, W)-d(y, W)|^{q} \mathrm{~d} \mathbb{P}_{s}(W)\right)^{1 / q} \\
& \geqslant\left(\int_{E_{x} \cap F_{y}}|d(x, W)-d(y, W)|^{q} \mathrm{~d} \mathbb{P}_{s}(W)+\int_{E_{y} \cap F_{x}}|d(x, W)-d(y, W)|^{q} \mathrm{~d} \mathbb{P}_{s}(W)\right)^{1 / q} \\
& \gtrsim\left(2^{(\ell-3) q} \mathbb{P}_{s}\left(F_{y}\right)+2^{(\ell-3) q} \mathbb{P}_{s}\left(E_{y}\right)\right)^{1 / q} \quad \text { because } \mathbb{P}_{s}\left(E_{x} \cap F_{y}\right)=\mathbb{P}_{s}\left(E_{x}\right) \mathbb{P}_{s}\left(F_{y}\right), \text { etc. } \\
& \geqslant 2^{\ell+1} \geqslant d(x, y) .
\end{aligned}
$$

Theorem 3.20 (Glueing Lemma). Let $1 \leqslant q<\infty$ and $K>0$. Assume that for all $\ell \in \mathbb{Z}$, there is a scale- 2^{ℓ} embedding $f_{\ell}: X \rightarrow \ell_{q}$ of deficiency K and such that $\left\|f_{\ell}(x)\right\| \leqslant 2^{\ell}$ for all $x \in X$. Then

$$
c_{q}(X) \lesssim K^{1-1 / q}(\log |X|)^{1 / q} .
$$

Proof. Apply Lemma 3.18 with $h_{\ell}=f_{\ell}$ to get H which we will call $F: X \rightarrow \ell_{q}$ such that $\operatorname{Lip}(F) \lesssim$ $(\log n)^{1 / q}($ where $n=|X|)$ and, for all $x, y \in X$ and $\ell \in \mathbb{Z}$, if $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$, then

$$
\|F(x)-F(y)\|_{q} \geqslant\left(\log _{2} \frac{\left|B_{2^{\ell+1}}\left(\gamma_{\ell-3}(x, y)\right)\right|}{\left|B_{2^{\ell-3}}\left(\gamma_{\ell-3}(x, y)\right)\right|}\right)^{1 / q} \underbrace{\left\|f_{\ell}(x)-f_{\ell}(y)\right\|_{q}}_{\geqslant \frac{1}{K} d(x, y)} .
$$

From Theorem 3.15 and Lemma 3.7, we get for all $\ell \in \mathbb{Z}$ a 1-Lipschitz map $g_{\ell}: X \rightarrow \ell_{q}$ such that $\left\|g_{\ell}(x)\right\|_{q} \leqslant 2^{\ell}$ and for all $x, y \in X$, if $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$, then

$$
\left\|g_{\ell}(x)-g_{\ell}(y)\right\| \gtrsim\left(1+\log \left(\frac{\left|B_{2^{\ell}}(x)\right|}{\left|B_{2^{\ell-3}}(x)\right|}\right)\right)^{-1} d(x, y)
$$

Apply Lemma 3.18 with $h_{\ell}=g_{\ell}$ to get H which we call G satisfying (i) and (ii) of Lemma 3.18. Let H be the function from Lemma 3.19. Define

$$
\Phi: x \in X \longmapsto(F(x), G(x), H(x)) \in\left(\ell_{q} \oplus \ell_{q} \oplus \ell_{q}\right)_{q} \cong \ell_{q} .
$$

Clearly, $\operatorname{Lip}(\Phi) \lesssim(\log n)^{1 / q}$.
Fix $x, y \in X$ and $\ell \in \mathbb{Z}$ such that $d(x, y) \in\left[2^{\ell}, 2^{\ell+1}\right)$. Let $A=\frac{\left|B_{2} \ell+1(x)\right|}{\left|B_{2} \ell-3(x)\right|}$ and assume for example that $\gamma_{\ell-3}(x, y)=x$. If $A<1$, then by Lemma 3.19, $\|H(x)-H(y)\|_{q} \gtrsim d(x, y)$. If $A \geqslant 1$, then

$$
\begin{aligned}
& \|F(x)-F(y)\|_{q} \geqslant A^{1 / q} \frac{1}{K} d(x, y) \\
& \|G(x)-G(y)\|_{q} \geqslant \frac{A^{1 / q}}{1+A} d(x, y)
\end{aligned}
$$

Considering the cases $A \geqslant K$ and $A \leqslant K$, we get a lower bound $\left(K^{1-1 / q}\right)^{-1} d(x, y)$, so $\operatorname{dist}(\Phi) \lesssim$ $K^{1-1 / q}(\log n)^{1 / q}$.

Corollary 3.21 (Bourgain's Embedding Theorem). For any finite metric space X,

$$
c_{2}(X) \lesssim \log |X|
$$

Proof. By Theorem 3.15, there exists an $\left(\varepsilon, 2^{\ell}\right)$-padded decomposition of X for all $\ell \in \mathbb{Z}$, with $\varepsilon(x) \gtrsim \frac{1}{\log \mid X X}$. By Lemma 3.7, for all $\ell \in \mathbb{Z}$, there exists a scale- 2^{ℓ} embedding $f_{\ell}: X \rightarrow \ell_{2}$ with deficiency $K \lesssim \log |X|$ and $\left\|f_{\ell}(x)\right\| \leqslant 2^{\ell}$ for all $x \in X$. It follows by Theorem 3.20 that

$$
c_{2}(X) \lesssim(\log |X|)^{1-1 / 2}(\log |X|)^{1 / 2}=\log |X|
$$

4 Lower bounds on distortion and Poincaré inequalities

4.1 John's Lemma

Remark 4.1. Bourgain's Embedding Theorem (Corollary 3.21) shows that $c_{2}(X) \lesssim \log |X|$ for any finite metric space X. One might wonder if this is the best possible.

Definition 4.2 (Banach-Mazur distance). Given two normed spaces X, Y, we define the BanachMazur distance between them by

$$
d(X, Y)=\underset{\substack{\text { inf } \\ \text { linear isomorphism }}}{\inf ^{\prime}}\|T\| \cdot\left\|T^{-1}\right\| \in[1, \infty] .
$$

Proposition 4.3. Let X, Y, Z be normed spaces.
(i) $d(X, Z) \leqslant d(X, Y) d(Y, Z)$.
(ii) If $X \cong Y$ (isometric isomorphism), then $d(X, Y)=1$, but the converse is false in general.

Definition 4.4 (Banach-Mazur compactum). Let \mathcal{M}_{n} be the class of isometric isomorphism types of n-dimensional normed spaces. On $\mathcal{M}_{n}, \log d$ is a metric such that \mathcal{M}_{n} is compact. It is called the Banach-Mazur compactum.

Theorem 4.5 (John's Lemma). If X is an n-dimensional normed space, then

$$
d\left(X, \ell_{2}^{n}\right) \leqslant \sqrt{n} .
$$

Proof. We may assume that X is \mathbb{R}^{n} with some norm $\|\cdot\|$. Let

$$
K=B_{X}=\{x \in X,\|x\| \leqslant 1\} .
$$

Note that K is a convex and symmetric (i.e. $-K=K$) body (i.e. it is compact with nonempty interior). Conversely, if K is a symmetric convex body, then K is the unit ball of a norm $\|\cdot\|$ on \mathbb{R}^{n} defined by

$$
\|x\|=\inf \{t>0, x \in t K\}
$$

An ellipsoid is a subset $E \subseteq \mathbb{R}^{n}$ such that $E=T\left(B_{\ell_{2}^{n}}\right)$, where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear isomorphism. Now note that

$$
d\left(X, \ell_{2}^{n}\right) \leqslant \sqrt{n} \Longleftrightarrow \exists E \text { ellipsoid, } n^{-1 / 2} E \subseteq K \subseteq E .
$$

Therefore, the theorem we want to prove is equivalent to: for every symmetric convex body $K \subseteq \mathbb{R}^{n}$, there is an ellipsoid $E \subseteq \mathbb{R}^{n}$ such that $n^{-1 / 2} E \subseteq K \subseteq E$.

Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body. By compactness, there exists an ellipsoid E of minimal volume such that $K \subseteq E$. By applying a linear isomorphism, we may assume without loss of generality that $E=B_{\ell 2}$. Now assume for contradiction that $n^{-1 / 2} E \nsubseteq K$. Then there exists $z \in \partial K=S_{X}$ such that $\|z\|_{2}<\frac{1}{\sqrt{n}}$. By Hahn-Banach, there is a linear functional $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f(z)=1$ and $\|f(x)\| \leqslant 1$ for all $x \in K$. Consider

$$
H=\left\{x \in \mathbb{R}^{n}, f(x)=1\right\} \ni z
$$

K lies between H and $-H$. After applying a rotation, we may assume without loss of generality that

$$
H=\left\{x \in \mathbb{R}^{n}, x_{1}=\frac{1}{c}\right\}
$$

for some $c>\sqrt{n}$ (because H contains a point z with $\|z\|_{2}<\frac{1}{\sqrt{n}}$). Given $a>b>0$, consider the ellipsoid

$$
E_{a, b}=\left\{x \in \mathbb{R}^{n}, a^{2} x_{1}^{2}+\sum_{i=2}^{n} b^{2} x_{i}^{2} \leqslant 1\right\},
$$

i.e. the image of $E=B_{\ell_{2}^{n}}$ under the linear map with matrix $\operatorname{diag}\left(a^{-1}, b^{-1}, \ldots, b^{-1}\right)$. It follows that

$$
\operatorname{vol}\left(E_{a, b}\right)=\frac{1}{a b^{n-1}} \operatorname{vol}(E)
$$

For $x \in K \subseteq E$, we have

$$
a^{2} x_{1}^{2}+\sum_{i=2}^{n} b^{2} x_{i}^{2} \leqslant\left(a^{2}-b^{2}\right) x_{1}^{2}+b^{2}\|x\|_{2}^{2} \leqslant \frac{a^{2}-b^{2}}{c^{2}}+b^{2} .
$$

We claim that there exist $a>b>0$ such that $\frac{a^{2}-b^{2}}{c^{2}}+b^{2} \leqslant 1$ and $a b^{n-1}>1$. If the claim is true, then $\operatorname{vol}\left(E_{a, b}\right)<\operatorname{vol}(E)$ and $K \subseteq E_{a, b}$, contradicting the minimality of $\operatorname{vol}(E)$.

To prove the claim, fix $a \in(0, c)$ and set $b=\sqrt{\frac{c^{2}-a^{2}}{c^{2}-1}}$. Then $\frac{a^{2}-b^{2}}{c^{2}}+b^{2}=1$; let $f(a)=a b^{n-1}=$ $a\left(\frac{c^{2}-a^{2}}{c^{2}-1}\right)^{\frac{n-1}{2}}$. We have $f(1)=1$ and

$$
\begin{aligned}
f^{\prime}(a) & =\left(\frac{c^{2}-a^{2}}{c^{2}-1}\right)^{\frac{n-1}{2}}+a \frac{n-1}{2} \cdot \frac{-2 a}{c^{2}-1}\left(\frac{c^{2}-a^{2}}{c^{2}-1}\right)^{\frac{n-3}{2}} \\
& =\left(\frac{c^{2}-a^{2}}{c^{2}-1}\right)^{\frac{n-3}{2}}\left(\frac{c^{2}-a^{2}}{c^{2}-1}-\frac{(n-1) a^{2}}{c^{2}-1}\right) \\
& =\left(\frac{c^{2}-a^{2}}{c^{2}-1}\right)^{\frac{n-3}{2}} \frac{c^{2}-n a^{2}}{c^{2}-1} .
\end{aligned}
$$

Since $c^{2}>n, f^{\prime}(1)>0$, so there exists $a>1$ such that $f(a)>f(1)=1$. This concludes the proof.

Remark 4.6. (i) If X, Y are n-dimensional normed spaces, then $d(X, Y) \leqslant n$. In fact, Gluskin proved that $\operatorname{diam} \mathcal{M}_{n} \gtrsim n$. Therefore, according to John's Lemma, ℓ_{2}^{n} can be thought of as the centre of \mathcal{M}_{n}.
(ii) For a finite metric space X, the analogue of dimension is $\log |X|$. By analogy with John's Lemma, one might hope that $c_{2}(X) \lesssim \sqrt{\log |X|}$.

4.2 Poincaré inequalities

Definition 4.7 (Poincaré inequality). Let X, Y be metric spaces. A Poincaré inequality for functions $f: X \rightarrow Y$ is an inequality of the form

$$
\begin{equation*}
\sum_{u, v \in X} a_{u v} \Psi(d(f(u), f(v))) \geqslant \sum_{u, v \in X} b_{u v} \Psi(d(f(u), f(v))), \tag{*}
\end{equation*}
$$

where a, b are finitely-supported functions $X \times X \rightarrow \mathbb{R}_{+}$and Ψ is an increasing function $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
The Poincaré ratio is defined by

$$
P_{a, b, \Psi}(X)=\frac{\sum_{u, v \in X} b_{u v} \Psi(d(u, v))}{\sum_{u, v \in X} a_{u v} \Psi(d(u, v))},
$$

whenever this makes sense.
Proposition 4.8. Let $\Psi(t)=t^{p}$, with $1 \leqslant p<\infty$. Assume that X, Y are metric spaces satisfying the Poincaré inequality (*) for some a, b, for all maps $f: X \rightarrow Y$. Then

$$
c_{Y}(X) \geqslant\left(P_{a, b, t^{p}}(X)\right)^{1 / p} .
$$

Proof. Let $f: X \rightarrow Y$ be a bilipschitz embedding. Then

$$
1 \geqslant \frac{\sum_{u, v \in X} b_{u v}(d(f(u), f(v)))^{p}}{\sum_{u, v \in X} a_{u v}\left(d(f(u), f(v))^{p}\right)} \geqslant \frac{1}{\operatorname{dist}(f)^{p}} \frac{\sum_{u, v \in X} b_{u v}(d(u, v))^{p}}{\sum_{u, v \in X} a_{u v}(d(u, v))^{p}}=\frac{P_{a, b, t p}(X)}{(\operatorname{dist}(f))^{p}} .
$$

Hence $\operatorname{dist}(f) \geqslant\left(P_{a, b, t^{p}}(X)\right)^{1 / p}$. Taking the infimum over all f gives the result.
Example 4.9 (Short Diagonal Lemma). In ℓ_{2},

$$
\left\|x_{1}-x_{3}\right\|_{2}^{2}+\left\|x_{2}-x_{4}\right\|_{2}^{2} \leqslant\left\|x_{1}-x_{2}\right\|_{2}^{2}+\left\|x_{2}-x_{3}\right\|_{2}^{2}+\left\|x_{3}-x_{4}\right\|_{2}^{2}+\left\|x_{4}-x_{1}\right\|_{2}^{2},
$$

for all $x_{1}, \ldots, x_{4} \in \ell_{2}$. This is a Poincaré inequality for functions $C_{4} \rightarrow \ell_{2}$. By Proposition 4.8,

$$
c_{2}\left(C_{4}\right) \geqslant \sqrt{2} .
$$

In fact, $c_{2}\left(C_{4}\right)=\sqrt{2}$.

4.3 Hahn-Banach Theorem

Definition 4.10 (Positive homogeneous and subadditive functionals). Let X be a real vector space. A functional $p: X \rightarrow \mathbb{R}$ is said to be
(i) Positive homogeneous if $p(t x)=t p(x)$ for all $t \geqslant 0$ and $x \in X$,
(ii) Subadditive if $p(x+y) \leqslant p(x)+p(y)$ for all $x, y \in X$.

For instance, a seminorm on X is both positive homogeneous and subadditive.
Theorem 4.11 (Hahn-Banach). Let X be a real vector space and $p: X \rightarrow \mathbb{R}$ be a positive homogeneous subadditive functional. If Y is a subspace of X and $g: Y \rightarrow \mathbb{R}$ is a linear map such that $g \leqslant p_{\mid Y}$, then there exists a linear map $f: X \rightarrow \mathbb{R}$ such that $f_{\mid Y}=g$ and $f \leqslant p$.

Proof. The proof is similar to that of Lemma 2.13.
Consider the set \mathcal{P} of pairs (Z, h), where Z is a subspace of X containing $Y, h: Z \rightarrow \mathbb{R}$ is linear, $h_{\mid Y}=g$ and $h \leqslant p_{\mid Z}$. This is a poset with $\left(Z_{1}, h_{1}\right) \leqslant\left(Z_{2}, h_{2}\right)$ if and only if $Z_{1} \subseteq Z_{2}$ and $h_{2 \mid Z_{1}}=h_{1}$. Note that $(Y, g) \in \mathcal{P}$, so $\mathcal{P} \neq \varnothing$. Moreover, given a nonempty chain $\mathcal{C}=\left\{\left(Z_{i}, h_{i}\right), i \in I\right\} \subseteq \mathcal{P}$, set $Z=\bigcup_{i \in I} Z_{i}$ and define $h: Z \rightarrow \mathbb{R}$ by $h_{\mid Z_{i}}=h_{i}$ for all $i \in I$. Hence (Z, h) is an upper bound for \mathcal{C}.

By Zorn's Lemma, \mathcal{P} has a maximal element (W, k). It suffices to show that $W=X$. Assume not and take $x_{0} \in X \backslash W$; let $W_{1}=W \oplus \mathbb{R} x_{0}$. Given $\alpha \in \mathbb{R}$ (to be chosen later), define $k_{1}: W_{1} \rightarrow \mathbb{R}$ by

$$
k_{1}\left(w+\lambda x_{0}\right)=k(w)+\lambda \alpha
$$

for $w \in W$ and $\lambda \in \mathbb{R}$. If we can choose α in such a way that $k_{1} \leqslant p_{\mid W_{1}}$, then we will have $(W, k)<\left(W_{1}, k_{1}\right)$, which will contradict the maximality of (W, k). Note that k is linear and p is positive homogeneous, so it suffices to find $\alpha \in \mathbb{R}$ such that, for all $w \in W$,

$$
k_{1}\left(w+x_{0}\right) \leqslant p\left(w+x_{0}\right) \quad \text { and } \quad k_{1}\left(w-x_{0}\right) \leqslant p\left(w-x_{0}\right) .
$$

In other words, we need $k(w)+\alpha \leqslant p\left(w+x_{0}\right)$ and $k(w)-\alpha \leqslant p\left(w-x_{0}\right)$ for all $w \in W$, or equivalently,

$$
k(z)-p\left(z-x_{0}\right) \leqslant \alpha \leqslant-k(w)+p\left(w+x_{0}\right),
$$

for all $w, z \in W$. Therefore, it suffices to show that

$$
\sup _{z \in W}\left(k(z)-p\left(z-x_{0}\right)\right) \leqslant \inf _{w \in W}\left(-k(w)+p\left(w+x_{0}\right)\right) .
$$

But this is true because, for $w, z \in W$,

$$
k(z)+k(w)=k(z+w) \leqslant p(z+w)=p\left(z-x_{0}+w+x_{0}\right) \leqslant p\left(z-x_{0}\right)+p\left(w+x_{0}\right) .
$$

Corollary 4.12 (Hahn-Banach Extension Theorem). Let X be a real normed space.
(i) If Y is a subspace of X and $g \in Y^{*}$, then there exists $f \in X^{*}$ such that $f_{\mid Y}=g$ and $\|f\|=\|g\|$.
(ii) Given $x_{0} \in X \backslash\{0\}$, there exists $f \in S_{X^{*}}$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$.

Proof. (i) Define $p(x)=\|g\| \cdot\|x\|$. Then p is a seminorm (hence it is positive homogeneous and subadditive), and we have $g(y) \leqslant p(y)$ for all $y \in Y$. By Theorem 4.11, there exists $f: X \rightarrow \mathbb{R}$ linear such that $f_{\mid Y}=g$ and $f(x) \leqslant\|g\| \cdot\|x\|$. Applying the last inequality to $-x$ yields $-f(x) \leqslant\|g\| \cdot\|x\|$, from which it follows that $|f(x)| \leqslant\|g\| \cdot\|x\|$, i.e. $f \in X^{*}$ and $\|f\| \leqslant\|g\|$. But $f_{\mid Y}=g$, so $\|f\|=\|g\|$.
(ii) Let $Y=\mathbb{R} x_{0}$ and define $g: Y \rightarrow \mathbb{R}$ by $g\left(\lambda x_{0}\right)=\lambda\left\|x_{0}\right\|$ for $\lambda \in \mathbb{R}$. Then $g \in Y^{*}$ and $\|g\|=1$, so by (i), there exists $f \in S_{X^{*}}$ such that $f_{\mid Y}=g$; in particular $f\left(x_{0}\right)=\left\|x_{0}\right\|$.

Remark 4.13. If Z is a complex vector space, let $Z_{\mathbb{R}}$ be Z viewed as a real vector space. Then for a complex normed space, the map $\left(X^{*}\right)_{\mathbb{R}} \rightarrow\left(X_{\mathbb{R}}\right)^{*}$ given by $f \mapsto \Re(f)$ is an isometric embedding.

This allows one to extend the Hahn-Banach Theorem to the complex case.

4.4 Hahn-Banach Separation Theorem

Definition 4.14 (Minkowski functional). Given a normed space X and a convex subset $C \subseteq X$ with $0 \in \dot{C}$, the Minkowski functional of C is

$$
\mu_{C}: x \in X \longmapsto \inf \{t>0, x \in t C\} \in \mathbb{R}
$$

This is well-defined due to the fact that $0 \in \dot{C}$.
Example 4.15. If $C=B_{X}$, then $\mu_{C}=\|\cdot\|$.
Lemma 4.16. Let X be a normed space and $C \subseteq X$ be a convex subset with $0 \in \dot{C}$. Then the Minkowski functional μ_{C} is positive homogeneous and subadditive. Moreover,

$$
\left\{x \in X, \mu_{C}(x)<1\right\} \subseteq C \subseteq\left\{x \in X, \mu_{C}(x) \leqslant 1\right\}
$$

where the first inclusion is an equality if C is open, and the second one is an equality if C is closed.
Proof. Positive homogeneity. Let $t \geqslant 0$ and $x \in X$. If $t=0$, then $0 \in s C$ for all $s>0$, so $\mu_{C}(0)=0$. If $t>0$, then for any $s>0$, we have $t x \in s C$ if and only if $x \in \frac{s}{t} C$, so $\mu_{C}(t x)=t \mu_{C}(x)$.

Subadditivity. Fix $x, y \in X$ and let $s>\mu_{C}(x)$ and $t>\mu_{C}(y)$. By definition, there exists $\mu_{C}(x) \leqslant s^{\prime} \leqslant s$ such that $x \in s^{\prime} C$. Thus

$$
\frac{x}{s}=\frac{s^{\prime}}{s} \cdot \frac{x}{s^{\prime}}+\left(1-\frac{s^{\prime}}{s}\right) \cdot 0 \in C
$$

since C is convex, so $x \in s C$. Similarly, $y \in t C$. Therefore,

$$
\frac{x+y}{s+t}=\frac{s}{s+t} \cdot \frac{x}{s}+\frac{t}{s+t} \cdot \frac{y}{t} \in C .
$$

This shows that $\mu_{C}(x+y) \leqslant s+t$. By taking the infimum over s and t, we obtain $\mu_{C}(x+y) \leqslant$ $\mu_{C}(x)+\mu_{C}(y)$.

Inclusions. If $\mu_{C}(x)<1$, then by the above, $x \in C$, so $\left\{x, \mu_{C}(x)<1\right\} \subseteq C$. If $x \in C$, then $\mu_{C}(x) \leqslant 1$ by definition, so $C \subseteq\left\{x, \mu_{C}(x) \leqslant 1\right\}$.

Equality case when C is open. If $x \in C$, then since $\left(1+\frac{1}{n}\right) x \xrightarrow[n \rightarrow \infty]{\longrightarrow} x$ and C is open, there exists $n \geqslant 1$ such that $\left(1+\frac{1}{n}\right) x \in C$, so $x \in \frac{n}{n+1} C$ and $\mu_{C}(x) \leqslant \frac{n}{n+1}<1$.

Equality case when C is closed. If $\mu_{C}(x) \leqslant 1$, then $\mu_{C}\left(\frac{n}{n+1} x\right) \leqslant \frac{n}{n+1}<1$ for all $n \geqslant 1$, so $\frac{n}{n+1} x \in C$ for all $n \geqslant 1$. Since $\frac{n}{n+1} x \xrightarrow[n \rightarrow \infty]{\longrightarrow} x$ and C is closed, $x \in C$.

Remark 4.17. In Lemma 4.16, if C is symmetric, then μ_{C} is in fact a seminorm. If in addition C is bounded, then μ_{C} is a norm. We used this in the proof of John's Lemma (Theorem 4.5).

Theorem 4.18. Let X be a real normed space. Let C be an open convex subset of X containing 0 and let $x_{0} \in X \backslash C$. Then there exists $f \in X^{*}$ such that $f(x)<f\left(x_{0}\right)$ for all $x \in C$ (note in particular that $f \neq 0$).

Proof. Let $Y=\mathbb{R} x_{0}$ and define $g: Y \rightarrow \mathbb{R}$ by $g\left(\lambda x_{0}\right)=\lambda \mu_{C}\left(x_{0}\right)$. Then g is linear, and we have

$$
\begin{aligned}
& \forall \lambda \geqslant 0, g\left(\lambda x_{0}\right)=\lambda \mu_{C}\left(x_{0}\right)=\mu_{C}\left(\lambda x_{0}\right), \\
& \forall \lambda \leqslant 0, g\left(\lambda x_{0}\right)=\lambda \mu_{C}\left(x_{0}\right) \leqslant 0 \leqslant \mu_{C}\left(\lambda x_{0}\right),
\end{aligned}
$$

so $g \leqslant \mu_{C \mid Y}$. But μ_{C} is positive homogeneous and subadditive by Lemma 4.16, so Theorem 4.11 implies that there exists $f: X \rightarrow \mathbb{R}$ linear such that $f_{\mid Y}=g$ and $f \leqslant \mu_{C}$.

Since $x_{0} \notin C, \mu_{C}\left(x_{0}\right) \geqslant 1$. Therefore, as C is open, we have

$$
\forall x \in C, f(x) \leqslant \mu_{C}(x)<1 \leqslant \mu_{C}\left(x_{0}\right)=f\left(x_{0}\right) .
$$

Furthermore, $0 \in C=\stackrel{\circ}{C}$, so there exists $\delta>0$ such that $\delta B_{X} \subseteq C$, hence $|f(x)| \leqslant 1$ on δB_{X}, so $f \in X^{*}$.
Corollary 4.19 (Hahn-Banach Separation Theorem). Let A, B be nonempty disjoint convex sets in a normed space X.
(i) If A is open, then there exist $f \in X^{*}$ and $\alpha \in \mathbb{R}$ such that, for all $a \in A$ and $b \in B$,

$$
f(a)<\alpha \leqslant f(b) .
$$

(ii) If A is compact and B is closed, then there exists $f \in X^{*}$ and $\alpha \in \mathbb{R}$ such that

$$
\sup _{A} f<\alpha<\inf _{B} f .
$$

In both cases, the hyperplane $\{x \in X, f(x)=\alpha\}$ separates A and B.
Proof. (i) Fix $a_{0} \in A$ and $b_{0} \in B$, set $x_{0}=-a_{0}+b_{0}$. Let

$$
C=A-B+x_{0}=\left\{(a-b)+x_{0}, a \in A, b \in B\right\} .
$$

Then C is convex and open (because A is open), $0 \in C$ and $x_{0} \notin C$ (since $A \cap B=\varnothing$). By Theorem 4.18, there exists $f \in X^{*}$ such that, for all $x \in C, f(x)<f\left(x_{0}\right)$. Hence, for all $a \in A$ and for all $b \in B$,

$$
f\left(a-b+x_{0}\right)<f\left(x_{0}\right),
$$

or in other words $f(a)<f(b)$. Set $\alpha=\inf _{B} f$. Certainly $f(b) \geqslant \alpha$ for all $b \in B$. Also, $f(a) \leqslant \alpha$ for all $a \in A$. Since $f \neq 0$, we can fix $u \in X$ such that $f(u)>0$. Now for $a \in A$, since A is open, there exists $n \geqslant 1$ such that $a+\frac{1}{n} u \in A$; it follows that

$$
f(a)<f(a)+\frac{1}{n} f(u)=f\left(a+\frac{1}{n} u\right) \leqslant \alpha .
$$

(ii) For $a \in A, d(a, B)>0$ since B is closed and $a \notin B$. Since A is compact, we set

$$
\delta=\inf _{a \in A} d(a, B)>0 .
$$

Then $A^{\prime}=\{x \in X, d(x, A)<\delta\}$ is an open convex set with $A^{\prime} \cap B=\varnothing$. By (i), there exists $f \in X^{*}$ and $\beta \in \mathbb{R}$ such that

$$
f\left(a^{\prime}\right)<\beta \leqslant f(b)
$$

for all $a^{\prime} \in A^{\prime}$ and $b \in B$. As A is compact, $\sup _{A} f<\beta \leqslant \inf _{B} f$, so it suffices to choose $\sup _{A} f<$ $\alpha<\beta$.

4.5 Optimality of Poincaré inequalities

Theorem 4.20. Let $1 \leqslant p<\infty$ and let X be a finite metric space. Then

$$
c_{p}(X)=\sup \left(P_{a, b, t^{p}}(X)\right)^{1 / p},
$$

where the supremum is taken over all nonnegative nontrivial $X \times X$ matrices a, b for which the Poincaré inequality

$$
\begin{equation*}
\sum_{u, v \in X} a_{u v}\|f(u)-f(v)\|_{p}^{p} \geqslant \sum_{u, v \in X} b_{u v}\|f(u)-f(v)\|_{p}^{p}, \tag{*}
\end{equation*}
$$

holds for all functions $f: X \rightarrow L_{p}$.
Proof. The inequality (\geqslant) follows from Proposition 4.8. It remains to prove (\leqslant).
Note that, taking $a_{u v}=b_{u v}=1$ for all $u, v \in X$, the inequality $(*)$ holds trivially, and $P_{a, b, t p}(X)=$ 1 , so if $c_{p}(X)=1$, then we are done.

Now assume that $1<c<c_{p}(X)$. Write $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Consider the set

$$
B=\left\{\left(\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{p}^{p}\right)_{1 \leqslant i<j \leqslant n}, f: X \rightarrow L_{p}\right\} \subseteq \mathbb{R}^{N}
$$

with $N=\binom{n}{2}$. From the proof of Theorem 2.24, we know that B is a cone (and hence B is convex), and $B \neq \varnothing$ (for instance, $0 \in B$). Let

$$
A=\left\{\left(\theta_{i j}\right)_{1 \leqslant i<j \leqslant n} \in \mathbb{R}^{N}, \exists r>0, \forall i, j, r \cdot d\left(x_{i}, x_{j}\right)^{p}<\theta_{i j}<r c^{p} \cdot d\left(x_{i}, x_{j}\right)\right\} .
$$

Then A is open, convex, and nonempty since $c>1$. Moreover, $A \cap B=\varnothing$ since $c<c_{p}(X)$. By the Hahn-Banach Separation Theorem (Corollary 4.19), there exists a linear map $\lambda: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and an $\alpha \in \mathbb{R}$ such that

$$
\lambda(\theta)<\alpha \leqslant \lambda(\varphi)
$$

for all $\theta \in A$ and $\varphi \in B$. Note that $0 \in B$, so $\alpha \leqslant 0$. Moreover, by continuity of $\lambda, \lambda(\theta) \leqslant \alpha$ for all $\theta \in \bar{A}$. But $0 \in \bar{A}$, so $0 \leqslant \alpha$; hence $\alpha=0$. Now we can write $\lambda=\left(\lambda_{i j}\right)_{1 \leqslant i<j \leqslant n}$, where

$$
\lambda(\theta)=\sum_{1 \leqslant i<j \leqslant n} \lambda_{i j} \theta_{i j} .
$$

Set $a_{i j}=\max \left\{\lambda_{i j}, 0\right\}$ and $b_{i j}=\max \left\{-\lambda_{i j}, 0\right\}$, so that $\lambda_{i j}=a_{i j}-b_{i j}$. For $f: X \rightarrow L_{p}$, we have

$$
\sum_{1 \leqslant i<j \leqslant n} \lambda_{i j}\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{p}^{p} \geqslant 0,
$$

or in other words,

$$
\sum_{1 \leqslant i<j \leqslant n} a_{i j}\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{p}^{p} \geqslant \sum_{1 \leqslant i<j \leqslant n} b_{i j}\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{p}^{p} .
$$

This is a Poincaré inequality. Define

$$
\theta_{i j}=\left\{\begin{array}{ll}
c^{p} \cdot d\left(x_{i}, x_{j}\right)^{p} & \text { if } \lambda_{i j} \geqslant 0 \\
d\left(x_{i}, x_{j}\right)^{p} & \text { if } \lambda_{i j}<0
\end{array} .\right.
$$

Then $\theta=\left(\theta_{i j}\right)_{1 \leqslant i<j \leqslant n} \in \bar{A}$, so

$$
0 \geqslant \lambda(\theta)=\sum_{1 \leqslant i<j \leqslant n} a_{i j} c^{p} \cdot d\left(x_{i}, x_{j}\right)^{p}-\sum_{1 \leqslant i<j \leqslant n} b_{i j} \cdot d\left(x_{i}, x_{j}\right)^{p},
$$

which proves that $P_{a, b, t p}(X) \geqslant c^{p}$.

4.6 Discrete Fourier analysis on the Hamming cube

Notation 4.21. Recall that the Hamming cube is the graph $H_{n}=\{0,1\}^{n}$, where $x=\left(x_{i}\right)_{1 \leqslant i \leqslant n}$ and $y=\left(y_{i}\right)_{1 \leqslant i \leqslant n}$ are joined by an edge if and only if $\left|\left\{i \in\{1, \ldots, n\}, x_{i} \neq y_{i}\right\}\right|=1$. This makes $H_{n} a$ metric space with the graph distance d :

$$
d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

Hence, H_{n} is isometrically a subset of ℓ_{1}^{n}.
H_{n} is also a probability space with the uniform distribution μ :

$$
\mu(\{x\})=2^{-n} .
$$

Thinking of $\{0,1\}$ as the field \mathbb{F}_{2}, H_{n} is the n-dimensional vector space \mathbb{F}_{2}^{n} over \mathbb{F}_{2}; in particular, H_{n} is an abelian group. Let $\left(e_{i}\right)_{1 \leqslant i \leqslant n}$ be the standard basis of $H_{n}=\mathbb{F}_{2}^{n}$.

Definition 4.22 (Rademacher functions and Walsh functions). For $1 \leqslant j \leqslant n$, define

$$
r_{j}: x \in H_{n} \longmapsto(-1)^{x_{j}} \in \mathbb{R} .
$$

r_{j} is the j-th Rademacher function. Note that r_{1}, \ldots, r_{n} are independent and identically distributed random variables on $\left(H_{n}, \mu\right)$ with $\{ \pm 1\}$-valued Bernoulli distributions with parameter $\frac{1}{2}$.

For $A \subseteq\{1, \ldots, n\}$, we define $w_{A}: H_{n} \rightarrow \mathbb{R}$ by

$$
w_{A}=\prod_{j \in A} r_{j} .
$$

The functions $\left(w_{A}\right)_{A \subseteq\{1, \ldots, n\}}$ are called the Walsh functions. These are in fact the characters of H_{n}, i.e. the homomorphisms $H_{n} \rightarrow \mathbb{S}^{1}$.

Lemma 4.23. The Walsh functions form an orthonormal basis of $L_{2}\left(H_{n}, \mu\right)$
Proof. Since $r_{j}^{2}=1$ for all j, we have, for $A, B \subseteq\{1, \ldots, n\}$,

$$
w_{A} w_{B}=\prod_{j \in A} r_{j} \cdot \prod_{j \in B} r_{j}=\prod_{j \in A \triangle B} r_{j}=w_{A \triangle B} .
$$

Hence,

$$
\left\langle w_{A}, w_{A}\right\rangle=\int_{H_{n}} w_{A} w_{A} \mathrm{~d} \mu=\int_{H_{n}} w_{\varnothing} \mathrm{d} \mu=1 .
$$

Likewise, if $A \neq B$, using the independence of the $\left(r_{j}\right)_{1 \leqslant j \leqslant n}$,

$$
\left\langle w_{A}, w_{B}\right\rangle=\int_{H_{n}} w_{A \triangle B} \mathrm{~d} \mu=\prod_{j \in A \triangle B} \underbrace{\int_{H_{n}} r_{j} \mathrm{~d} \mu}_{=0}=0 .
$$

This proves the result since $\operatorname{dim} L_{2}\left(H_{n}, \mu\right)=2^{n}$.
Definition 4.24 (Fourier coefficients). Given a function $f: H_{n} \rightarrow \mathbb{R}$, define

$$
\hat{f}_{A}=\left\langle f, w_{A}\right\rangle=\int_{H_{n}} f w_{A} \mathrm{~d} \mu \in \mathbb{R}
$$

The real numbers $\left(\hat{f}_{A}\right)_{A \subseteq\{1, \ldots, n\}}$ are called the Fourier coefficients of f.
More generally, given a Banach space X and a function $f: H_{n} \rightarrow X$, we can define $\hat{f}_{A}=$ $\int_{H_{n}} f w_{A} \mathrm{~d} \mu$.

Lemma 4.25. (i) Let $f \in L_{2}\left(H_{n}, \mu\right)$. Then for all $x \in H_{n}$,

$$
f(x)=\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x) .
$$

Moreover, we have Parseval's identity:

$$
\int_{H_{n}}|f(x)|^{2} \mathrm{~d} \mu(x)=\sum_{A \subseteq\{1, \ldots, n\}}\left|\hat{f}_{A}\right|^{2} .
$$

(ii) Let $f: H_{n} \rightarrow X$, where X is a Banach space. Then for all $x \in H_{n}$,

$$
f(x)=\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x)
$$

If in addition X is a Hilbert space, then we have Parseval's identity:

$$
\int_{H_{n}}\|f(x)\|^{2} \mathrm{~d} \mu(x)=\sum_{A \subseteq\{1, \ldots, n\}}\left\|\hat{f}_{A}\right\|^{2}
$$

Proof. (i) Follows from Lemma 4.23.
(ii) Let $x \in H_{n}$ be fixed. Given $\varphi \in X^{*}$, we have

$$
\varphi\left(\hat{f}_{A}\right)=\int_{H_{n}} \varphi(f(x)) w_{A}(x) \mathrm{d} \mu(x)=\widehat{(\varphi \circ f)_{A}}
$$

for all $A \subseteq\{1, \ldots, n\}$. It follows by (i) that

$$
\varphi(f(x))=\sum_{A \subseteq\{1, \ldots, n\}}(\widehat{(\varphi \circ f})_{A} w_{A}(x)=\varphi\left(\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x)\right) .
$$

Since this is true for all $\varphi \in X^{*}$, the Hahn-Banach Theorem implies that $f(x)=\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x)$.
If X is a Hilbert space, then we may assume without loss of generality that $\operatorname{dim} X$ is finite (because H_{n} is finite). Fix an orthonormal basis v_{1}, \ldots, v_{k} of X. Then, for $1 \leqslant j \leqslant k$, let $f_{j}(x)=\left\langle f(x), v_{j}\right\rangle$. The above implies that

$$
\widehat{\left(f_{j}\right)}{ }_{A}=\left\langle\hat{f}_{A}, v_{j}\right\rangle .
$$

Using Parseval's identity in the Hilbert space X and in $L_{2}\left(H_{n}, \mu\right)$ (by (i)), we have

$$
\begin{aligned}
\int_{H_{n}}\|f(x)\|^{2} \mathrm{~d} \mu(x) & =\int_{H_{n}} \sum_{j=1}^{k}\left|f_{j}(x)\right|^{2} \mathrm{~d} \mu(x)=\sum_{j=1}^{k} \sum_{A \subseteq\{1, \ldots, n\}}\left|\widehat{\left.f_{j}\right)_{A}}\right|^{2} \\
& =\sum_{A \subseteq\{1, \ldots, n\}} \sum_{j=1}^{k}\left|\left\langle\hat{f}_{A}, v_{j}\right\rangle\right|^{2}=\sum_{A \subseteq\{1, \ldots, n\}}\left\|\hat{f}_{A}\right\|^{2} .
\end{aligned}
$$

Definition 4.26 (Difference operators). Let X be a Banach space. For each $1 \leqslant j \leqslant n$, we define a difference operator ∂_{j} as follows: for all $f: H_{n} \rightarrow X$, we set

$$
\partial_{j} f: x \in H_{n} \longmapsto \frac{1}{2}\left(f\left(x+e_{j}\right)-f(x)\right) \in X .
$$

Lemma 4.27. (i) For $1 \leqslant j \leqslant n$ and $A \subseteq\{1, \ldots, n\}$,

$$
\partial_{j} w_{A}(x)=-\mathbb{1}_{A}(j) w_{A}(x) .
$$

(ii) Given a Banach space X and $f: H_{n} \rightarrow X$,

$$
\widehat{\left(\partial_{j} f\right)_{A}}=-\mathbb{1}_{A}(j) \hat{f}_{A}
$$

(iii) Given a Hilbert space X and $f: H_{n} \rightarrow X$,

$$
\sum_{j=1}^{n} \int_{H_{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x)=\sum_{A \subseteq\{1, \ldots, n\}}|A| \cdot\left\|\hat{f}_{A}\right\|^{2}
$$

Proof. (i) Note that the Rademacher functions satisfy

$$
r_{i}\left(x+e_{j}\right)=\left\{\begin{array}{ll}
-r_{i}(x) & \text { if } j=i \\
+r_{i}(x) & \text { if } j \neq i
\end{array} .\right.
$$

Hence,

$$
w_{A}\left(x+e_{j}\right)=\prod_{i \in A} r_{i}\left(x+e_{j}\right)=\left\{\begin{array}{ll}
-w_{A}(x) & \text { if } j \in A \\
+w_{A}(x) & \text { if } j \notin A
\end{array} .\right.
$$

Hence $\partial_{j} w_{A}(x)=-\mathbb{1}_{A}(j) w_{A}(x)$.
(ii) We have

$$
\begin{aligned}
\widehat{\left(\partial_{j} f\right)_{A}} & =\int_{H_{n}}\left(\partial_{j} f\right)(x) w_{A}(x) \mathrm{d} \mu(x) \\
& =\frac{1}{2} \int_{H_{n}} f\left(x+e_{j}\right) w_{A}(x) \mathrm{d} \mu(x)-\frac{1}{2} \int_{H_{n}} f(x) w_{A}(x) \mathrm{d} \mu(x) \\
& =\frac{1}{2} \int_{H_{n}} f(x) w_{A}\left(x+e_{j}\right) \mathrm{d} \mu(x)-\frac{1}{2} \int_{H_{n}} f(x) w_{A}(x) \mathrm{d} \mu(x) \\
& =\int_{H_{n}} f(x)\left(\partial_{j} w_{A}\right)(x) \mathrm{d} \mu(x) \\
& =-\mathbb{1}_{A}(j) \hat{f}_{A} .
\end{aligned}
$$

(iii) Using (ii) and Lemma 4.25, we have

$$
\sum_{j=1}^{n} \int_{H_{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x)=\sum_{j=1}^{n} \sum_{A \subseteq\{1, \ldots, n\}}\left\|\widehat{\left.\partial_{j} f\right)_{A}}\right\|^{2}=\sum_{A \subseteq\{1, \ldots, n\}} \sum_{j=1}^{n}\left\|\widehat{\left.\partial_{j} f\right)_{A}}\right\|^{2}=\sum_{A \subseteq\{1, \ldots, n\}}|A| \cdot\left\|\hat{f}_{A}\right\|^{2}
$$

4.7 Poincaré inequality for L_{2}-valued functions on H_{n}

Theorem 4.28. Let $e=e_{1}+\cdots+e_{n} \in H_{n}$. Then, for all $f: H_{n} \rightarrow L_{2}$, we have

$$
\int_{H_{n}}\|f(x+e)-f(x)\|^{2} \mathrm{~d} \mu(x) \leqslant 4 \sum_{j=1}^{n} \int_{H_{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x)
$$

Proof. For $A \subseteq\{1, \ldots, n\}$, note that $w_{A}(x+e)=(-1)^{|A|} w_{A}(x)$. Hence, using Lemmas 4.25 and 4.27,

$$
\begin{aligned}
\int_{H_{n}}\|f(x+e)-f(x)\|^{2} \mathrm{~d} \mu(x) & =\int_{H_{n}}\left\|\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x+e)-\sum_{A \subseteq\{1, \ldots, n\}} \hat{f}_{A} w_{A}(x)\right\|^{2} \mathrm{~d} \mu(x) \\
& =4 \int_{H_{n}}\left\|\sum_{|A| \text { odd }} \hat{f}_{A} w_{A}(x)\right\|^{2} \mathrm{~d} \mu(x)=4 \sum_{|A| \text { odd }}\left\|\hat{f}_{A}\right\|^{2} \\
& \leqslant 4 \sum_{A \subseteq\{1, \ldots, n\}}|A| \cdot\left\|\hat{f}_{A}\right\|^{2}=4 \sum_{j=1}^{n} \int_{H_{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x) .
\end{aligned}
$$

Corollary 4.29. $c_{2}\left(H_{n}\right)=\sqrt{n}$.
Proof. The obvious embedding $H_{n} \subseteq \ell_{2}^{n}$ yields $c_{2}\left(H_{n}\right) \leqslant \sqrt{n}$. Now Theorem 4.28 gives a Poincaré inequality for functions $H_{n} \rightarrow L_{2}$, so Proposition 4.8 yields a lower bound on $C_{2}\left(H_{n}\right)$ obtained from the Poincaré ratio:

$$
c_{2}\left(H_{n}\right)^{2} \geqslant \frac{\int_{H_{n}} d(x+e, x)^{2} \mathrm{~d} \mu(x)}{4 \sum_{j=1}^{n} \int_{H_{n}} \frac{1}{4} d\left(x+e_{j}, x\right)^{2} \mathrm{~d} \mu(x)}=\frac{n^{2}}{n}=n .
$$

Remark 4.30. Since $\left|H_{n}\right|=2^{n}$, we have $c_{2}\left(H_{n}\right)=\sqrt{\log \left|H_{n}\right|}$. Compare with the upper bound $c_{2}(X) \lesssim \log |X|$ in Bourgain's Embedding Theorem (Theorem 3.21).

Remark 4.31. From now on, we think of H_{n} as the n-dimensional vector space \mathbb{F}_{2}^{n} over \mathbb{F}_{2}.
Theorem 4.32. For every $f: \mathbb{F}_{2}^{n} \rightarrow L_{2}$, we have

$$
\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\|f(x)-f(y)\|^{2} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) \leqslant 2\left(\min _{\substack{A \neq \varnothing \\ \hat{f}_{A} \neq 0}}|A|\right)^{-1} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x) .
$$

Proof. Without loss of generality, after replacing f with $f-\hat{f}_{\varnothing} w_{\varnothing}$, we may assume that $\hat{f}_{\varnothing}=0$ (recall that $w_{\varnothing}(x)=1$ for all x). Then, using Parseval's identity,

$$
\begin{aligned}
\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\|f(x)-f(y)\|^{2} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) & =\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\left(\|f(x)\|^{2}+\|f(y)\|^{2}-2\langle f(x), f(y)\rangle\right) \mathrm{d} \mu(x) \mathrm{d} \mu(y) \\
& =2 \sum_{A \subseteq\{1, \ldots, n\}}\left\|\hat{f}_{A}\right\|^{2}-2 \int_{\mathbb{F}_{2}^{n}}\langle f(y), \underbrace{\int_{\mathbb{F}_{2}^{n}} f(x) \mathrm{d} \mu(x)}_{f_{\varnothing}}\rangle \mathrm{d} \mu(y) \\
& =2 \sum_{A \subseteq\{1, \ldots, n\}}\left\|\hat{f}_{A}\right\|^{2} .
\end{aligned}
$$

Now by Lemma 4.27,

$$
\sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} f(x)\right\|^{2} \mathrm{~d} \mu(x)=\sum_{A \subseteq\{1, \ldots, n\}}|A| \cdot\left\|\hat{f}_{A}\right\|^{2} \geqslant\left(\min _{\substack{A \neq \varnothing \\ \hat{f}_{A} \neq 0}}|A|\right) \sum_{A \subseteq\{1, \ldots, n\}}\left\|\hat{f}_{A}\right\|^{2}
$$

4.8 Linear codes

Definition 4.33 (Linear codes). A linear code of \mathbb{F}_{2}^{n} is a subspace C of \mathbb{F}_{2}^{n}. We let

$$
d(C)=\min _{x \in C \backslash\{0\}} d(x, 0)=d(0, C \backslash\{0\}) .
$$

For $x, y \in \mathbb{F}_{2}^{n}$, let

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} .
$$

This defines a symmetric bilinear form on \mathbb{F}_{2}^{n}; however, $\langle x, x\rangle=0$ does not imply $x=0$. For a subset $S \subseteq \mathbb{F}_{2}^{n}$, let

$$
S^{\perp}=\left\{x \in \mathbb{F}_{2}^{n}, \forall s \in S,\langle x, s\rangle=0\right\}
$$

Lemma 4.34. If $C \subseteq \mathbb{F}_{2}^{n}$ is a linear code, then

$$
\operatorname{dim} C+\operatorname{dim} C^{\perp}=n
$$

Moreover, $C^{\perp \perp}=C$.

Proof. Let $m=\operatorname{dim} C$ and let v_{1}, \ldots, v_{m} be a basis of C. Define $\theta: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ by

$$
\theta(x)=\left(\left\langle x, v_{i}\right\rangle\right)_{1 \leqslant i \leqslant m} .
$$

Hence, $\operatorname{Ker} \theta=C^{\perp}$, so $n=\operatorname{dim} C^{\perp}+\operatorname{rk} \theta$. Therefore, it suffices to prove that θ is onto.
For $1 \leqslant j \leqslant m$, let $f_{j}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be a linear map such that $f_{j}\left(v_{i}\right)=\delta_{i j}$. Set $y_{i}=f_{j}\left(e_{i}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$. Then $f_{j}(x)=\sum_{i=1}^{n} x_{i} f_{j}\left(e_{i}\right)=\langle x, y\rangle$, so $\theta(y)=\left(f_{j}\left(v_{i}\right)\right)_{1 \leqslant i \leqslant n}$. This is the j-th standard basis vector of \mathbb{F}_{2}^{m}, so θ is onto, proving that $\operatorname{rk} \theta=\operatorname{dim} C$ and therefore $n=\operatorname{dim} C+\operatorname{dim} C^{\perp}$.

By definition, $C \subseteq C^{\perp \perp}$, and

$$
\operatorname{dim} C^{\perp \perp}=n-\operatorname{dim} C^{\perp}=\operatorname{dim} C
$$

so $C=C^{\perp \perp}$.
Lemma 4.35. There exists $\delta \in\left(0, \frac{1}{2}\right)$ and $N \in \mathbb{N}$ such that, for all $n \geqslant N$,

$$
(\lfloor\delta n\rfloor+1)\binom{n}{\lfloor\delta n\rfloor} \leqslant 2^{n / 8}
$$

Proof. First choose $\delta \in\left(0, \frac{1}{2}\right)$ such that $\delta\left(2+\log \frac{2}{\delta}\right)<\frac{\log 2}{8}$. Then choose $N \in \mathbb{N}$ such that $\lfloor\delta n\rfloor \geqslant \frac{1}{2} \delta n$ for all $n \geqslant N$.

Now let $n \geqslant N$ and set $m=\lfloor\delta n\rfloor$. If $m=0$, it is clear that $(m+1)\binom{n}{m}=1 \leqslant 2^{n / 8}$. Assume that $m \geqslant 1$. Then

$$
\binom{n}{m}=\frac{n(n-1) \cdots(n-m+1)}{m!} \leqslant \frac{n^{m}}{m!},
$$

and

$$
\log (m!)=\sum_{j=1}^{m} \log j \geqslant \int_{1}^{m} \log t \mathrm{~d} t=[t \log t-t]_{1}^{m}=m \log m-m+1 \geqslant m \log m-m
$$

so $m!\geqslant\left(\frac{m}{e}\right)^{m}$ and $\binom{n}{m} \leqslant\left(\frac{e n}{m}\right)^{m}$. It follows that

$$
\begin{aligned}
\log \left((m+1)\binom{n}{m}\right) & \leqslant \underbrace{\log (m+1)}_{\leqslant m}+\log \left(\left(\frac{e n}{m}\right)^{m}\right) \leqslant \underbrace{m}_{\leqslant \delta n}(2+\log \underbrace{\frac{n}{m}}_{\leqslant \frac{2}{\delta}}) \\
& \leqslant \delta n\left(2+\log \frac{2}{\delta}\right) \leqslant \frac{n}{8} \log 2 .
\end{aligned}
$$

Lemma 4.36. There exists $\alpha>0$ such that for all $n \geqslant 1$, there is a linear code $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C \geqslant \frac{n}{4}$ and $d(C) \geqslant \alpha n$.

Proof. Choose $\delta \in\left(0, \frac{1}{2}\right)$ and $N \in \mathbb{N}$ as in Lemma 4.35. If $1 \leqslant n \leqslant N$, choose any linear code C with $\operatorname{dim} C \geqslant \frac{n}{4}$; then

$$
d(C) \geqslant 1 \geqslant \frac{n}{N} .
$$

Now assume that $n>N$. We claim that there is a linear code C in \mathbb{F}_{2}^{n} with $\operatorname{dim} C \geqslant \frac{n}{4}$ and $d(C) \geqslant \delta n$; hence, setting $\alpha=\min \left\{\frac{1}{N}, \delta\right\}$ will do.

To prove the claim, we show by induction on $k \leqslant\left\lceil\frac{n}{4}\right\rceil$ that there is a linear code $C_{k} \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C_{k}=k$ and $d\left(C_{k}\right) \geqslant \delta n$; taking $C=C_{\left\lceil\frac{n}{4}\right\rceil}$ will complete the proof. This is true for $k=1$ (because \mathbb{F}_{2}^{n} has a point at a distance at least δn from 0). Assume that C_{1}, \ldots, C_{k} have
been constructed, with $k<\frac{n}{4}$. We seek a suitable $x \in \mathbb{F}_{2}^{n} \backslash C_{k}$ such that $d\left(C_{k+1}\right) \geqslant \delta n$, where $C_{k+1}=C_{k}+\mathbb{F}_{2} x=C_{k} \cup\left(C_{k}+x\right)$. We estimate the number of unsuitable vectors x : for $v \in C_{k}$, then

$$
\left|\left\{x \in \mathbb{F}_{2}^{n}, d(x+v, 0)<\delta n\right\}\right|=\left|\left\{x \in \mathbb{F}_{2}^{n}, d(x, 0)<\delta n\right\}\right|=\sum_{\ell=0}^{\lceil\delta n\rceil-1}\binom{n}{\ell} \leqslant(m+1)\binom{n}{m}
$$

where $m=\lfloor\delta n\rfloor \leqslant \frac{n}{2}$. It follows that

$$
\left|\left\{x \in \mathbb{F}_{2}^{n}, \exists v \in C_{k}, d(x+v, 0)<\delta n\right\}\right|=\left|\bigcup_{v \in C_{k}}\left\{x \in \mathbb{F}_{2}^{n}, d(x+v, 0)<\delta n\right\}\right| \leqslant 2^{k}(m+1)\binom{n}{m}
$$

If $2^{k}(m+1)\binom{n}{m}<2^{n}-2^{k}$, then $\left|\left\{x \in \mathbb{F}_{2}^{n}, \forall v \in C_{k}, d(x+v, 0) \geqslant \delta n\right\}\right|>2^{k}=\left|C_{k}\right|$ and therefore there is a suitable x. In other words, we need

$$
(m+1)\binom{n}{m}<2^{n-k}-1
$$

But since $k<\frac{n}{4}$, we have $2^{n-k}-1>2^{3 n / 4}-1 \geqslant 2^{n / 8}$, so we are done by choice of δ and N.

4.9 Poincaré inequality for L_{1}-valued functions on $\mathbb{F}_{2}^{n} / C^{\perp}$

Notation 4.37. In this section, $C \subseteq \mathbb{F}_{2}^{n}$ is an arbitrary linear code. We denote by $q: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} / C^{\perp}$ the quotient map, and we let $\widetilde{\mu}$ be the image measure induced by μ and q :

$$
\widetilde{\mu}(E)=\mu\left(q^{-1}(E)\right) .
$$

Moreover, we denote by ρ the quotient metric on $\mathbb{F}_{2}^{n} / C^{\perp}$:

$$
\rho(q x, q y)=d\left(x+C^{\perp}, y+C^{\perp}\right)=d\left(x-y, C^{\perp}\right)=\min _{v \in C^{\perp}} d(x-y, v) .
$$

Lemma 4.38. For every $h: \mathbb{F}_{2}^{n} / C^{\perp} \rightarrow L_{2}$ and for every $\varnothing \subsetneq A \subseteq\{1, \ldots, n\}$ with $|A|<d(C)$, we have $\widehat{(h \circ q)}_{A}=0$.

Proof. Let $f=h \circ q$. Set $v=\sum_{i \in A} e_{i} \neq 0$. We have $d(v, 0)=|A|<d(C)$, so $v \notin C=C^{\perp \perp}$, i.e. there exists $w \in C^{\perp}$ such that $\langle v, w\rangle=1$. Now

$$
\begin{aligned}
\hat{f}_{A} & =\int_{\mathbb{F}_{2}^{n}} f(x) w_{A}(x) \mathrm{d} \mu(x)=\int_{\mathbb{F}_{2}^{n}} f(x+w) w_{A}(x+w) \mathrm{d} \mu(x) \\
& =\int_{\mathbb{F}_{2}^{n}} f(x) \prod_{j \in A} r_{j}(x+w) \mathrm{d} \mu(x)=\int_{\mathbb{F}_{2}^{n}} f(x) \prod_{j \in A}(-1)^{w_{j}} r_{j}(x) \mathrm{d} \mu(x) \\
& =\int_{\mathbb{F}_{2}^{n}} f(x)(-1)^{\langle v, w\rangle} w_{A}(x) \mathrm{d} \mu(x)=-\hat{f}_{A},
\end{aligned}
$$

so $\hat{f}_{A}=0$.
Theorem 4.39. For every $h: \mathbb{F}_{2}^{n} / C^{\perp} \rightarrow L_{1}$, we have

$$
\begin{equation*}
\int_{\mathbb{F}_{2}^{n} / C^{\perp} \times \mathbb{F}_{2}^{n} / C^{\perp}}\|h(u)-h(v)\|_{1} \mathrm{~d} \widetilde{\mu}(u) \mathrm{d} \widetilde{\mu}(v) \leqslant \frac{1}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n} / C^{\perp}}\left\|\partial_{j} h(u)\right\|_{1} \mathrm{~d} \widetilde{\mu}(u), \tag{*}
\end{equation*}
$$

where $\partial_{j} h(u)=\frac{1}{2}\left(h\left(u+q e_{j}\right)-h(u)\right)$ for $u \in \mathbb{F}_{2}^{n} / C^{\perp}$.

Proof. Let $f=h \circ q$. Then ($*$) is equivalent to

$$
\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\|f(x)-f(y)\|_{1} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) \leqslant \frac{1}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} f(x)\right\|_{1} \mathrm{~d} \mu(x) .
$$

The proof of Proposition 1.31 implies the existence of a map $T: L_{1} \rightarrow L_{2}$ such that

$$
\|a-b\|_{1}=\|T a-T b\|_{2}^{2} .
$$

Therefore, by Theorem 4.32 and Lemma 4.38

$$
\begin{aligned}
\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\|f(x)-f(y)\|_{1} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) & =\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}}\|T \circ f(x)-T \circ f(y)\|_{2}^{2} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) \\
& \leqslant 2\left(\min _{\frac{A \neq \varnothing}{(T f)_{A}} \neq 0}|A|\right)^{-1} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} T f(x)\right\|_{2}^{2} \mathrm{~d} \mu(x) \\
& \leqslant \frac{2}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} T f(x)\right\|_{2}^{2} \mathrm{~d} \mu(x) \\
& =\frac{1}{d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}}\left\|\partial_{j} f(x)\right\|_{1} \mathrm{~d} \mu(x)
\end{aligned}
$$

because $\left\|\partial_{j} T f(x)\right\|_{2}^{2}=\frac{1}{4}\left\|T f\left(x+e_{j}\right)-T f(x)\right\|_{2}^{2}=\frac{1}{4}\left\|f\left(x+e_{j}\right)-f(x)\right\|=\frac{1}{2}\left\|\partial_{j} f(x)\right\|_{1}$.

4.10 Optimality of Bourgain's Embedding Theorem

Lemma 4.40. There exists $\beta>0$ such that for all $n \geqslant 1$, if $\operatorname{dim} C \geqslant \frac{n}{4}$, then

$$
\mu\left(\left\{y \in \mathbb{F}_{2}^{n}, \rho(q x, q y) \geqslant \beta n\right\}\right) \geqslant \frac{1}{2}
$$

for all $x \in \mathbb{F}_{2}^{n}$, where ρ is the induced metric on $\mathbb{F}_{2}^{n} / C^{\perp}$.
Proof. Let $\delta \in\left(0, \frac{1}{2}\right)$ and $N \in \mathbb{N}$ be as in Lemma 4.35. Without loss of generality, we may assume that $N \geqslant 8$ and $x=0$. Then for $1 \leqslant n \leqslant N$, we have

$$
\mu\left(\left\{y \in \mathbb{F}_{2}^{n}, \rho(q y, 0) \geqslant \frac{n}{N}\right\}\right)=\mu\left(\mathbb{F}_{2}^{n} \backslash C^{\perp}\right)=\frac{2^{n}-\left|C^{\perp}\right|}{2^{n}}=\frac{2^{n}-2^{n-\operatorname{dim} C}}{2^{n}} \geqslant \frac{2^{n}-2^{n-1}}{2^{n}}=\frac{1}{2}
$$

Now assume that $n>N$. For $v \in C^{\perp}$, note that

$$
\left|\left\{y \in \mathbb{F}_{2}^{n}, d(y, v)<\delta n\right\}\right| \leqslant \sum_{\ell=0}^{\lceil\delta n\rceil-1}\binom{n}{\ell} \leqslant(m+1)\binom{n}{m}
$$

where $m=\lfloor\delta n\rfloor$. It follows that

$$
\begin{aligned}
\left|\left\{y \in \mathbb{F}_{2}^{n}, \rho(q y, 0)<\delta n\right\}\right| & =\left|\left\{y \in \mathbb{F}_{2}^{n}, \exists v \in C^{\perp}, d(y, v)<\delta n\right\}\right| \\
& \leqslant\left|C^{\perp}\right|(m+1)\binom{n}{m} \\
& \leqslant 2^{3 n / 4} 2^{n / 8}=2^{7 n / 8} \leqslant \frac{2^{n}}{2},
\end{aligned}
$$

because $n>N \geqslant 8$. Hence, $\beta=\min \left\{\delta, \frac{1}{N}\right\}$ works.

Theorem 4.41. There exists $\eta>0$ and a sequence $\left(X_{n}\right)_{n \geqslant 1}$ of finite metric spaces such that $\left|X_{n}\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ and, for all $n \geqslant 1$,

$$
c_{1}\left(X_{n}\right) \geqslant \eta \log \left|X_{n}\right| .
$$

Proof. By Lemma 4.36, for every $n \geqslant 1$, there is a linear code C in \mathbb{F}_{2}^{n} with $\operatorname{dim} C \geqslant \frac{n}{4}$ and $d(C) \geqslant \alpha n$. Let $X_{n}=\mathbb{F}_{2}^{n} / C^{\perp}$, with the quotient metric ρ. We have

$$
\left|X_{n}\right|=2^{n-\operatorname{dim} C^{\perp}}=2^{\operatorname{dim} C} \geqslant 2^{n / 4} \xrightarrow[n \rightarrow \infty]{ } \infty .
$$

By Proposition 4.8, a lower bound on $C_{1}\left(X_{n}\right)$ is given by the Poincaré ratio corresponding to the inequality in Theorem 4.39. Hence,

$$
\begin{aligned}
c_{1}\left(X_{n}\right) & \geqslant\left(\int_{X_{n} \times X_{n}} \rho(u, v) \mathrm{d} \widetilde{\mu}(u) \mathrm{d} \widetilde{\mu}(v)\right) /\left(\frac{1}{d(C)} \sum_{j=1}^{n} \int_{X_{n}} \frac{\rho\left(u+q e_{j}, u\right)}{2} \mathrm{~d} \widetilde{\mu}(u)\right) \\
& =\left(\int_{\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}} \rho(q x, q y) \mathrm{d} \mu(x) \mathrm{d} \mu(y)\right) /\left(\frac{1}{2 d(C)} \sum_{j=1}^{n} \int_{\mathbb{F}_{2}^{n}} \rho\left(q\left(x+e_{j}\right), x\right) \mathrm{d} \mu(x)\right) .
\end{aligned}
$$

It is clear that the denominator is at most $\frac{n}{2 d(C)} \leqslant \frac{n}{2 \alpha n}=\frac{1}{2 \alpha}$. Moreover, Lemma 4.40 implies that, for each $x \in \mathbb{F}_{2}^{n}$,

$$
\int_{\mathbb{F}_{2}^{n}} \rho(q x, q y) \mathrm{d} \mu(y) \geqslant \frac{\beta n}{2},
$$

so the numerator is at least $\frac{\beta n}{2}$, from which it follows that

$$
c_{1}\left(X_{n}\right) \geqslant \frac{\beta n}{2} \cdot \frac{2 \alpha}{1}=\alpha \beta n \geqslant \alpha \beta \log _{2}\left|X_{n}\right| .
$$

Remark 4.42. Recall that $c_{2}(X) \geqslant c_{1}(X)$ for any finite metric space (c.f. Definition 3.1). Therefore, Theorem 4.41 implies that the upper bound in Bourgain's Embedding Theorem (Theorem 3.21) is the best possible up to a constant.

5 Dimension reduction

5.1 Preliminary results on Gaussian random variables

Proposition 5.1. (i) If $Z \sim \mathcal{N}(0,1)$, then Z has probability density function $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
(ii) If Z_{1}, \ldots, Z_{n} are independent and identically distributed random variables with law $\mathcal{N}(0,1)$, and $x \in \ell_{2}^{n}$ with $\|x\|_{2}=1$, then $\sum_{i=1}^{n} x_{i} Z_{i} \sim \mathcal{N}(0,1)$.

Lemma 5.2. Let X be a random variable with $\mathbb{E}(X)=0$. Assume that for some $C>0$ and $u_{0}>0$, we have $\mathbb{E}\left(e^{u X}\right) \leqslant e^{C u^{2}}$ for all $0 \leqslant u \leqslant u_{0}$. Then

$$
\mathbb{P}(X>t) \leqslant e^{-\frac{t^{2}}{4 C}}
$$

for $0 \leqslant t \leqslant 2 C u_{0}$.
Proof. Note that, if $0<u \leqslant u_{0}$,

$$
\mathbb{P}(X>t)=\mathbb{P}\left(e^{u X}>e^{u t}\right) \leqslant e^{-u t} \mathbb{E}\left(e^{u X}\right) \leqslant e^{-u t+C u^{2}}
$$

Now if $0 \leqslant t \leqslant 2 C u_{0}$, apply the above inequality with $u=\frac{t}{2 C}$ to obtain

$$
\mathbb{P}(X>t) \leqslant e^{-\frac{t^{2}}{2 C}+\frac{t^{2}}{4 C}}=e^{-\frac{t^{2}}{4 C}}
$$

Lemma 5.3. Assume that $Z \sim \mathcal{N}(0,1)$. Then there are absolute constants $C>0$ and $u_{0}>0$ such that

$$
\mathbb{E}\left(e^{u\left(Z^{2}-1\right)}\right) \leqslant e^{C u^{2}} \quad \text { and } \quad \mathbb{E}\left(e^{u\left(1-Z^{2}\right)}\right) \leqslant e^{C u^{2}}
$$

for $0 \leqslant u \leqslant u_{0}$.
Proof. We have

$$
\begin{aligned}
\mathbb{E}\left(e^{u\left(1-Z^{2}\right)}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{u\left(1-x^{2}\right)} e^{-x^{2} / 2} \mathrm{~d} x=e^{u} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{1}{2}(2 u+1) x^{2}} \mathrm{~d} x \\
& =\frac{e^{u}}{\sqrt{2 u+1}} \cdot \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{y^{2}}{2}} \mathrm{~d} y=\frac{e^{u}}{\sqrt{2 u+1}} \\
& =\exp \left(u-\frac{1}{2} \log (2 u+1)\right)=\exp \left(u^{2}+\mathcal{O}\left(u^{3}\right)\right),
\end{aligned}
$$

and a similar computation shows that $\mathbb{E}\left(e^{u\left(Z^{2}-1\right)}\right) \leqslant \exp \left(u^{2}+\mathcal{O}\left(u^{3}\right)\right)$.

5.2 Johnson-Lindenstrauss Lemma

Remark 5.4. We want to embed n-elements subsets of ℓ_{2} into ℓ_{2}^{k} with low distortion. To do this, we will take a random linear map $T: \ell_{2}^{n} \rightarrow \ell_{2}^{k}$ and show that, for each $x \in \ell_{2}^{n}$, we have

$$
(1-\varepsilon)\|x\|_{2} \leqslant\|T x\|_{2} \leqslant(1+\varepsilon)\|x\|_{2}
$$

with high probability. It will follow that, given $x_{1}, \ldots, x_{n} \in \ell_{2}^{n}$, we have

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leqslant\left\|T x_{i}-T x_{j}\right\|_{2} \leqslant(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

for all i, j with positive probability. In particular, there will be a suitable map $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \ell_{2}^{k}$.
Lemma 5.5 (Random Projection). Let $k, n \in \mathbb{N}$ and $\varepsilon \in(0,1)$. Define a linear map $T: \ell_{2}^{n} \rightarrow \ell_{2}^{k}$ by the $k \times n$ matrix $\left(\frac{1}{\sqrt{k}} Z_{i j}\right)_{\substack{1 \leqslant j \leqslant k \\ 1 \leqslant j \leqslant n}}$, where the $\left(Z_{i j}\right)_{\substack{1 \leqslant j \leqslant k \\ 1 \leqslant j \leqslant n}}$ are independent and identically distributed random variables with $Z_{i j} \sim \mathcal{N}(0,1)$ for all i, j. Then there exists a constant $c>0$ (independent of $k, n, \varepsilon)$ such that, for all $x \in \ell_{2}^{n}$,

$$
\mathbb{P}\left((1-\varepsilon)\|x\|_{2} \leqslant\|T x\|_{2} \leqslant(1+\varepsilon)\|x\|_{2}\right) \geqslant 1-2 e^{-c k \varepsilon^{2}}
$$

Proof. Fix $x \in \ell_{2}^{n}$. We may assume without loss of generality that $\|x\|_{2}=1$. Then

$$
(T x)_{i}=\frac{1}{\sqrt{k}} \sum_{j=1}^{n} x_{j} Z_{i j}
$$

for $1 \leqslant i \leqslant k$. Let $Z_{i}=\sum_{j=1}^{n} x_{j} Z_{i j}$; then Z_{1}, \ldots, Z_{n} are independent and identically distributed random variables with law $\mathcal{N}(0,1)$. Therefore,

$$
\mathbb{E}\left(\|T x\|_{2}^{2}\right)=\sum_{i=1}^{k} \mathbb{E}\left(\left|(T x)_{i}\right|^{2}\right)=\frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left(Z_{i}^{2}\right)=1
$$

Let $W=\frac{1}{\sqrt{k}} \sum_{i=1}^{k}\left(Z_{i}^{2}-1\right)$. Then $\mathbb{E}(W)=0$ (and in fact $\operatorname{Var}(W)=1$). Fix C, u_{0} as given by Lemma 5.3. Without loss of generality, we may assume that $2 C u_{0} \geqslant 1$. Hence, if $0 \leqslant u \leqslant \sqrt{k} u_{0}$,

$$
\mathbb{E}\left(e^{u W}\right)=\prod_{i=1}^{k} e^{\frac{u}{\sqrt{k}}\left(Z_{i}^{2}-1\right)} \leqslant \prod_{i=1}^{k} e^{\frac{C u^{2}}{k}}=e^{C u^{2}}
$$

and similarly $\mathbb{E}\left(e^{-u W}\right) \leqslant e^{C u^{2}}$ if $0 \leqslant u \leqslant \sqrt{k} u_{0}$. Therefore, by Lemma 5.2,

$$
\mathbb{P}(W>t) \leqslant e^{-\frac{t^{2}}{4 C}} \quad \text { and } \quad \mathbb{P}(W<-t) \leqslant e^{-\frac{t^{2}}{4 C}}
$$

for $0 \leqslant t \leqslant \underbrace{2 C u_{0}}_{\geqslant 1} \sqrt{k}$. Hence,

$$
\begin{aligned}
\mathbb{P}\left(1-\varepsilon \leqslant\|T x\|_{2} \leqslant 1+\varepsilon\right) & =\mathbb{P}\left((1-\varepsilon)^{2} \leqslant\|T x\|_{2}^{2} \leqslant(1+\varepsilon)^{2}\right) \\
& \geqslant \mathbb{P}\left(1-\varepsilon \leqslant \frac{1}{k} \sum_{i=1}^{k} Z_{i}^{2} \leqslant 1+\varepsilon\right) \\
& =\mathbb{P}\left(1-\varepsilon \leqslant \frac{1}{\sqrt{k}} W+1 \leqslant 1+\varepsilon\right) \\
& =\mathbb{P}(-\varepsilon \sqrt{k} \leqslant W \leqslant \varepsilon \sqrt{k}) \\
& \geqslant 1-2 e^{-\frac{\varepsilon^{2} k}{4 C}} .
\end{aligned}
$$

Theorem 5.6 (Johnson-Lindenstrauss). There exists a constant $C>0$ such that, for all $k, n \in \mathbb{N}$ and $\varepsilon \in(0,1)$, if $k \geqslant C \varepsilon^{-2} \log n$, then any n-element subset of ℓ_{2} embeds into ℓ_{2}^{k} with distortion at most $\frac{1+\varepsilon}{1-\varepsilon}$.

Proof. Choose $C>0$ sufficiently large so that, if $k, n \in \mathbb{N}$ and $\varepsilon \in(0,1)$ satisfy $k \geqslant C \varepsilon^{-2} \log n$, then

$$
1-2 e^{-c k^{2}} \geqslant 1-\frac{1}{n^{2}}
$$

where c is the constant of Lemma 5.5. Clearly, C depends only on c. Now let $T: \ell_{2}^{n} \rightarrow \ell_{2}^{k}$ be as in Lemma 5.5. Then, for each $x \in \ell_{2}^{n}$,

$$
\mathbb{P}\left((1-\varepsilon)\|x\|_{2} \leqslant\|T x\|_{2} \leqslant(1+\varepsilon)\|x\|_{2}\right) \geqslant 1-\frac{1}{n^{2}} .
$$

Hence, given $x_{1}, \ldots, x_{n} \in \ell_{2}$, we may assume without loss of generality that $x_{1}, \ldots, x_{n} \in \ell_{2}^{n}$, so that

$$
\mathbb{P}\left(\bigcap_{1 \leqslant i, j \leqslant n}(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leqslant\left\|T x_{i}-T x_{j}\right\|_{2} \leqslant(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}\right) \geqslant 1-\binom{n}{2} \frac{1}{n^{2}}>0,
$$

so there is a linear map T that has $\frac{1+\varepsilon}{1-\varepsilon}$-distortion on $\left\{x_{1}, \ldots, x_{n}\right\}$.

5.3 Diamond graphs

Remark 5.7. We aim to prove that dimension reduction as in the Johnson-Lindenstrauss Lemma does not work in ℓ_{1}.

Definition 5.8 (Diamond graphs). The diamond graphs $\left(D_{n}\right)_{n \geqslant 0}$ are defined as follows:

- D_{0} consists of two vertices joined by an edge.
- D_{n+1} is obtained from D_{n} by replacing every edge xy in D_{n} with a diamond xvyu, where u, v are new vertices.

We write $E_{n}=E\left(D_{n}\right)$ and $V_{n}=V\left(D_{n}\right)$. Hence, for every $n \geqslant 0$,

$$
\begin{aligned}
\left|E_{n}\right| & =4^{n} \\
\left|V_{n}\right| & =2+2\left|E_{0}\right|+2\left|E_{1}\right|+\cdots+2\left|E_{n-1}\right| \\
& =\frac{2}{3}\left(4^{n}+2\right) .
\end{aligned}
$$

Observe that $\left|V_{n}\right| \leqslant 4^{n}$ for all $n \geqslant 1$.
We write $d_{n}=d_{D_{n}}$. For every $n \geqslant m \geqslant 0$ and for every $x, y \in D_{m}$, we have

$$
d_{n}(x, y)=2^{n-m} d_{m}(x, y) .
$$

We also define sets $\left(A_{n}\right)_{n \geqslant 1}$ of non-edges: for $n \geqslant 1, D_{n}$ consists of copies of D_{1} of the form xuyv, where $x y \in E_{n-1}, u, v \in V_{n} \backslash V_{n-1}$. Let A_{n} consists of all such pairs uv.

We label the vertices as follows:

We shall also write $D_{n}(\ell r)$ for D_{n}. Hence, $D_{n+1}(\ell r)$ consists of four copies of $D_{n}: D_{n}(t \ell), D_{n}(t r)$, $D_{n}(b \ell)$ and $D_{n}(b r)$. If e, f are two of the edges $t \ell, t r, b \ell, b r$, then

$$
V\left(D_{n}(e)\right) \cap V\left(D_{n}(f)\right)=e \cap f
$$

Note that $d_{n}(\ell, r)=2^{n}$ for $n \geqslant 0$ and $d_{n}(t, b)=2^{n}$ for $n \geqslant 1$. Moreover, for $x \in D_{n}$,

$$
d_{n}(\ell, x)+d_{n}(x, r)=2^{n} .
$$

Lemma 5.9. Let G be a connected graph and let $f: G \rightarrow X$ be a map to a metric space satisfying $d_{X}(f(u), f(v)) \leqslant C$ for all uv $\in E(G)$. Then f is C-Lipschitz.

Proof. Let $a, b \in V(G)$. Then there exists a path $a=u_{0}, \ldots, u_{m}=b$ in G with $m=d_{G}(a, b)$. Therefore,

$$
d_{X}(f(a), f(b)) \leqslant \sum_{i=0}^{m-1} \underbrace{d_{X}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)}_{\leqslant C} \leqslant m C=C \cdot d_{G}(a, b) .
$$

Lemma 5.10. For all $n \geqslant 0, D_{n}$ embeds into $\ell_{1}^{2^{n}}$ with distortion at most 2.
Proof. Recall that the Hamming cubes embed isometrically into ℓ_{1}. Therefore, it suffices to construct embeddings $f_{n}: D_{n} \rightarrow H_{k 2^{n}}$ (with $k \geqslant 1$), which we do by induction on $n \geqslant 0$. Let $f_{0}: D_{0} \rightarrow H_{k} \subseteq \ell_{1}^{k}$ be such that $f_{0}(\ell), f_{0}(r)$ are neighbours in H_{k}. So f_{0} is isometric (and we may choose $k=1, f_{0}(\ell)=0$ and $f_{0}(r)=1$).

Assume $f_{n}: D_{n} \rightarrow H_{k 2^{n}} \subseteq \ell_{1}^{k 2^{n}}$ has been defined. We define $f_{n+1}: D_{n+1} \rightarrow H_{k 2^{n+1}} \subseteq \ell_{1}^{k 2^{n+1}}$ as follows:

- For $x \in D_{n}$, we let $f_{n+1}(x)=\left(f_{n}(x), f_{n}(x)\right)$,
- If $x y \in E_{n}$ and u, v are the corresponding new vertices in D_{n+1}, we let

$$
f_{n+1}(u)=\left(f_{n}(x), f_{n}(y)\right) \quad \text { and } \quad f_{n+1}(v)=\left(f_{n}(y), f_{n}(x)\right)
$$

Observe that, for $x, y \in D_{n},\left\|f_{n+1}(x)-f_{n+1}(y)\right\|_{1}=2\left\|f_{n}(x)-f_{n}(y)\right\|_{1}$. Hence, for $n \geqslant m \geqslant 0$ and $x, y \in D_{m}$,

$$
\left\|f_{n}(x)-f_{n}(y)\right\|_{1}=2^{n-m}\left\|f_{m}(x)-f_{m}(y)\right\|_{1} .
$$

We first show that for all $n \geqslant 0$ and for all $x y \in E_{n}$,

$$
\left\|f_{n}(x)-f_{n}(y)\right\|_{1}=1=d_{n}(x, y) .
$$

We prove this equality by induction on n : the result is clear if $n=0$. Assume $n \geqslant 1$. An edge in D_{n} is of the form $x u$, where there exists $x y \in E_{n-1}$, and u, v are the corresponding new vertices in D_{n}. Therefore,

$$
\left\|f_{n}(x)-f_{n}(u)\right\|_{1}=\left\|\left(f_{n-1}(x), f_{n-1}(x)\right)-\left(f_{n-1}(x), f_{n-1}(y)\right)\right\|_{1}=\left\|f_{n-1}(x)-f_{n-1}(y)\right\|_{1}=1
$$

It follows by Lemma 5.9 that f_{n} is 1-Lipschitz for all $n \geqslant 0$.
We next show that for all $n \geqslant 0$ and for all $x, y \in D_{n}$,

$$
\begin{equation*}
\left\|f_{n}(x)-f_{n}(y)\right\|_{1} \geqslant \frac{1}{2} d_{n}(x, y) . \tag{*}
\end{equation*}
$$

Note that, by the above, for all $n \geqslant m \geqslant 0$, if $x y \in E_{m}$, then

$$
\left\|f_{n}(x)-f_{n}(y)\right\|_{1}=2^{n-m}\left\|f_{m}(x)-f_{m}(y)\right\|_{1}=2^{n-m} d_{m}(x, y)=d_{n}(x, y)
$$

We proceed to prove $(*)$ by induction on n. Note that f_{0}, f_{1} are isometric, so ($*$) holds for $n=0,1$. Now let $n \geqslant 2$ and assume that $(*)$ holds for $n-1$. Fix $x, y \in D_{n}$ and recall that D_{n} consists of four copies of D_{n-1}. Hence, we have three cases:

- Case 1: x, y are in the same copy, say $x, y \in D_{n-1}(t \ell)$. Define $g_{0}: D_{0}(t \ell) \rightarrow H_{2 k}$ by $g_{0}(u)=$ $f_{1}(u)$, then define $g_{m}: D_{m} \rightarrow H_{k 2^{m}}$ inductively, starting with g_{0} and proceeding in the same way as f_{m} was defined from f_{0}. An easy induction shows that $g_{n-1}=f_{n \mid D_{n-1}(t)}$. By the induction hypothesis,

$$
\left\|f_{n}(x)-f_{n}(y)\right\|_{1}=\left\|g_{n-1}(x)-g_{n-1}(y)\right\|_{1} \geqslant \frac{1}{2} d_{D_{n-1}(t)}(x, y) \geqslant \frac{1}{2} d_{n}(x, y) .
$$

- Case 2: x, y are in neighbouring copies, say $x \in D_{n-1}(t \ell)$ and $y \in D_{n-1}(\operatorname{tr})$. We then have

$$
\begin{aligned}
\left\|f_{n}(x)-f_{n}(y)\right\|_{1} & \geqslant\left\|f_{n}(\ell)-f_{n}(r)\right\|_{1}-\left\|f_{n}(\ell)-f_{n}(x)\right\|_{1}-\left\|f_{n}(y)-f_{n}(r)\right\|_{1} \\
& \geqslant 2^{n-1}\left\|f_{1}(\ell)-f_{1}(r)\right\|_{1}-d_{n}(x, \ell)-d_{n}(y, r) \\
& =2^{n}-d_{n}(x, \ell)-d_{n}(y, r) \\
& =\left(2^{n-1}-d_{D_{n-1}(t \ell)}(x, \ell)\right)+\left(2^{n-1}-d_{D_{n-1}(t r)}(y, r)\right) \\
& =d_{n}(x, t)+d_{n}(t, y)=d_{n}(x, y) .
\end{aligned}
$$

- Case 3: x, y are in opposite copies, say $x \in D_{n-1}(t \ell)$ and $y \in D_{n-1}(b r)$. We then have

$$
d_{n}(x, y)=\min \left\{d_{n}(x, \ell)+2^{n-1}+d_{n}(b, y), d_{n}(x, t)+2^{n-1}+d_{n}(r, y)\right\} \leqslant 2^{n}
$$

since $d_{n}(x, \ell)+d_{n}(b, y)+d_{n}(x, t)+d_{n}(r, y)=2^{n}$. Assume without loss of generality that $d_{n}(x, t)+d_{n}(y, b) \leqslant d_{n}(x, \ell)+d_{n}(y, r)$, from which it follows that $d_{n}(x, t)+d_{n}(y, b) \leqslant 2^{n-1}$. Then

$$
\begin{aligned}
\left\|f_{n}(x)-f_{n}(y)\right\|_{1} & \geqslant\left\|f_{n}(t)-f_{n}(b)\right\|_{1}-\left\|f_{n}(t)-f_{n}(x)\right\|_{1}-\left\|f_{n}(y)-f_{n}(b)\right\|_{1} \\
& \geqslant 2^{n}-d_{n}(x, t)-d_{n}(y, b) \geqslant 2^{n-1} \geqslant \frac{1}{2} d_{n}(x, y) .
\end{aligned}
$$

5.4 No dimension reduction in ℓ_{1}

Lemma 5.11 (Reverse Hölder inequality). Let $0<r<1$ and $s<0$ such that $1=\frac{1}{s}+\frac{1}{r}$. Given real numbers $\left(a_{i}\right)_{i \in I}$ and $\left(b_{i}\right)_{i \in I}$ with $b_{i} \neq 0$, we have

$$
\left(\sum_{i \in I}\left|a_{i}\right|^{r}\right)^{1 / r}\left(\sum_{i \in I}\left|b_{i}\right|^{s}\right)^{1 / s} \leqslant \sum_{i \in I}\left|a_{i} b_{i}\right| .
$$

Proof. Apply Hölder's inequality with $p=\frac{1}{r}$ and $q=\frac{1}{1-r}=-\frac{s}{r}$:

$$
\left(\sum_{i \in I}\left|a_{i}\right|^{r}\right)^{1 / r}=\left(\sum_{i \in I}\left|a_{i} b_{i}\right|^{r}\left|b_{i}\right|^{-r}\right)^{1 / r} \leqslant\left(\sum_{i \in I}\left|a_{i} b_{i}\right|\right)\left(\sum_{i \in I}\left|b_{i}\right|^{s}\right)^{-1 / s} .
$$

Lemma 5.12 (Short Diagonal Lemma in L_{p}). Let $1<p<2$. For all $x_{1}, \ldots, x_{4} \in L_{p}$, we have

$$
\left\|x_{1}-x_{3}\right\|_{p}^{2}+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} \leqslant\left\|x_{1}-x_{2}\right\|_{p}^{2}+\left\|x_{2}-x_{3}\right\|_{p}^{2}+\left\|x_{3}-x_{4}\right\|_{p}^{2}+\left\|x_{4}-x_{1}\right\|_{p}^{2}
$$

Proof. We may assume without loss of generality that $x_{1}, \ldots, x_{4} \in \ell_{p}^{k}$ for some k (for example, $k=6$ will do by Theorem 2.24). We now claim that the following inequality holds for all $x, y \in \ell_{p}^{k}$:

$$
\begin{equation*}
\|x\|_{p}^{2}+(p-1)\|y\|_{p}^{2} \leqslant \frac{1}{2}\left(\|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}\right) . \tag{*}
\end{equation*}
$$

If this is true, then we apply the inequality $(*)$ to the pairs $(x, y)=\left(x_{2}+x_{4}-2 x_{1}, x_{4}-x_{2}\right)$ and $(x, y)=\left(x_{2}+x_{4}-2 x_{3}, x_{4}-x_{2}\right)$ to get

$$
\begin{aligned}
& \left\|x_{2}+x_{4}-2 x_{1}\right\|_{p}^{2}+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} \leqslant 2\left\|x_{4}-x_{1}\right\|_{p}^{2}+2\left\|x_{2}-x_{1}\right\|_{p}^{2} \\
& \left\|x_{2}+x_{4}-2 x_{3}\right\|_{p}^{2}+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} \leqslant 2\left\|x_{4}-x_{3}\right\|_{p}^{2}+2\left\|x_{2}-x_{3}\right\|_{p}^{2}
\end{aligned}
$$

Taking the average of the two above inequalities and using the convexity of $z \mapsto\|z\|_{p}^{2}$ yields

$$
\begin{aligned}
\left\|x_{1}-x_{3}\right\|_{p}^{2}+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} & =\left\|\frac{x_{2}+x_{4}-2 x_{3}}{2}+\frac{2 x_{1}-x_{2}-x_{4}}{2}\right\|_{p}^{2}+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} \\
& \leqslant \frac{1}{2}\left(\left\|x_{2}+x_{4}-2 x_{3}\right\|_{p}^{2}+\left\|2 x_{1}-x_{2}-x_{4}\right\|_{p}^{2}\right)+(p-1)\left\|x_{2}-x_{4}\right\|_{p}^{2} \\
& \leqslant\left\|x_{1}-x_{2}\right\|_{p}^{2}+\left\|x_{2}-x_{3}\right\|_{p}^{2}+\left\|x_{3}-x_{4}\right\|_{p}^{2}+\left\|x_{4}-x_{1}\right\|_{p}^{2}
\end{aligned}
$$

Therefore, it suffices to prove ($*$).
Note that, for $a, b \geqslant 0$, the function $q \in[1, \infty) \mapsto\left(\frac{a^{q}+b^{q}}{2}\right)^{1 / q}$ is increasing, so $(*)$ will follow from

$$
\|x\|_{p}^{2}+(p-1)\|y\|_{p}^{2} \leqslant\left(\frac{\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p}}{2}\right)^{2 / p}
$$

To prove this, define

$$
\begin{aligned}
L(t) & =\|x\|_{p}+(p-1)\|y\|_{p}^{2} t^{2} \\
R(t) & =H(t)^{2 / p} \\
H(t) & =\frac{1}{2}\left(\|x+t y\|_{p}^{p}+\|x-t y\|_{p}^{p}\right)=\frac{1}{2} \sum_{i=1}^{k}\left(\left|x_{i}+t y_{i}\right|^{p}+\left|x_{i}-t y_{i}\right|^{p}\right) .
\end{aligned}
$$

From now on, we assume that $x \neq 0$ and $y \neq 0$. We want $L(1) \leqslant R(1)$. Note that $L(0)=R(0)=$ $\|x\|_{p}^{2}$. We differentiate:

$$
\begin{aligned}
L^{\prime}(t) & =2(p-1)\|y\|_{p}^{2} t \\
R^{\prime}(t) & =\frac{2}{p} H(t)^{\frac{2}{p}-1} H^{\prime}(t) \\
& =\frac{2}{p} H(t)^{\frac{2}{p}-1} \frac{p}{2} \sum_{i=1}^{k}\left(\left|x_{i}+t y_{i}\right|^{p-1} \operatorname{sgn}\left(x_{i}+t y_{i}\right) y_{i}-\left|x_{i}-t y_{i}\right|^{p-1} \operatorname{sgn}\left(x_{i}-t y_{i}\right) y_{i}\right) .
\end{aligned}
$$

Note that $L^{\prime}(0)=R^{\prime}(0)=0$. We differentiate again:

$$
L^{\prime \prime}(t)=2(p-1)\|y\|_{p}^{2}
$$

for $R^{\prime \prime}$, we let $I=\left\{i \in\{1, \ldots, k\}, x_{i} \neq 0\right.$ or $\left.y_{i} \neq 0\right\} \neq \varnothing$ because $x \neq 0$ and $y \neq 0$. For $i \in I$, there is at most one value of t such that $x_{i}+t y_{i}=0$. Therefore, there is some subdivision $0=t_{0}<t_{1}<$ $\cdots<t_{m}=1$ of $[0,1]$ such that $x_{i}+t y_{i} \neq 0$ for all $i \in I$ and for all $t \in \bigcup_{j=1}^{m}\left(t_{j-1}, t_{j}\right)$. For such t, we have

$$
\begin{aligned}
R^{\prime \prime}(t) & =\frac{2}{p}\left(\frac{2}{p}-1\right) H(t)^{\frac{2}{p}-2}\left(H^{\prime}(t)\right)^{2}+\frac{2}{p} H(t)^{\frac{2}{p}-1} H^{\prime \prime}(t) \\
& \geqslant \frac{2}{p} H(t)^{\frac{2}{p}-1} H^{\prime \prime}(t) \\
& =\frac{2}{p} H(t)^{\frac{2}{p}-1} \frac{p}{2}(p-1) \sum_{i \in I}\left(\left|x_{i}+t y_{i}\right|^{p-2} y_{i}^{2}+\left|x_{i}-t y_{i}\right|^{p-2} y_{i}^{2}\right) .
\end{aligned}
$$

We now apply reverse Hölder (Lemma 5.11) with $a_{i}=y_{i}^{2}, b_{i}=\left|x_{i} \pm t y_{i}\right|^{p-2}, r=\frac{p}{2}$ and $s=\frac{1}{1-2 / p}=$ $\frac{p}{p-2}$ to get

$$
\begin{aligned}
R^{\prime \prime}(t) & \geqslant H(t)^{\frac{2}{p}-1}(p-1)\left(\sum_{i \in I}\left|y_{i}\right|^{p}\right)^{2 / p}\left(\left(\sum_{i \in I}\left|x_{i}+t y_{i}\right|^{p}\right)^{\frac{p-2}{p}}+\left(\sum_{i \in I}\left|x_{i}-t y_{i}\right|^{p}\right)^{\frac{p-2}{p}}\right) \\
& \geqslant H(t)^{\frac{2}{p}-1}(p-1)\|y\|_{p}^{2} 2\left(\frac{\|x+t y\|_{p}^{p-2}+\|x-t y\|_{p}^{p-2}}{2}\right) \\
& \geqslant H(t)^{\frac{2}{p}-1} 2(p-1)\|y\|_{p}^{2}\left(\frac{\|x+t y\|_{p}^{p}+\|x-t y\|_{p}^{p}}{2}\right)^{\frac{p-2}{2}} \\
& =2(p-1)\|y\|_{p}^{2} \\
& =L^{\prime \prime}(t) .
\end{aligned}
$$

Hence, for each $1 \leqslant j \leqslant m,(R-L)^{\prime \prime} \geqslant 0$ on $\left(t_{j-1}, t_{j}\right)$, so $(R-L)^{\prime}$ is increasing on $[0,1]$. But $(R-L)^{\prime}(0)=0$, so $(R-L)^{\prime} \geqslant 0$ on $[0,1]$ and $(R-L)$ is increasing on $[0,1]$. It follows that

$$
R(1)-L(1) \geqslant R(0)-L(0)=0
$$

Corollary 5.13. For $1<p<2$ and $n \in \mathbb{N}$,

$$
c_{p}\left(D_{n}\right) \geqslant \sqrt{1+(p-1) n}
$$

Proof. Note that D_{n} consists of copies xuyv of D_{1}, where $x y \in E_{n-1}$ and $u, v \in V_{n} \backslash V_{n-1}$. Now apply Lemma 5.12 for a function $f: D_{n} \rightarrow L_{p}$:

$$
\begin{aligned}
\|f(x)-f(u)\|_{p}^{2}+\|f(u)-f(y)\|_{p}^{2}+\|f(y)-f(v)\|_{p}^{2} & +\|f(v)-f(x)\|_{p}^{2} \\
& \geqslant\|f(x)-f(y)\|_{p}^{2}+(p-1)\|f(u)-f(v)\|_{p}^{2}
\end{aligned}
$$

Summing over all copies of D_{1} in D_{n}, we get

$$
\begin{aligned}
\sum_{x y \in E_{n}}\|f(x)-f(y)\|_{p}^{2} & \geqslant \sum_{x y \in E_{n-1}}\|f(x)-f(y)\|_{p}^{2}+(p-1) \sum_{x y \in A_{n}}\|f(x)-f(y)\|_{p}^{2} \\
& \geqslant \cdots \geqslant\|f(\ell)-f(r)\|_{p}^{2}+(p-1) \sum_{x y \in A_{1} \cup \cdots \cup A_{n}}\|f(x)-f(y)\|_{p}^{2}
\end{aligned}
$$

This is a Poincaré inequality, so it gives a lower bound on the distortion by Proposition 4.8:

$$
c_{p}\left(D_{n}\right)^{2} \geqslant \frac{d_{n}(\ell, r)^{2}+(p-1) \sum_{k=1}^{n} 4^{k-1} 4^{n-k+1}}{\left|E_{n}\right|}=1+(p-1) n
$$

Lemma 5.14. Given $k \geqslant 2$, the identity $r_{p}: \ell_{1}^{k} \rightarrow \ell_{p}^{k}$ (with $p=1+\frac{1}{\log _{2} k}$) has distortion at most 2 .

Proof. For $x \in \mathbb{R}^{k}$, we have $\|x\|_{p} \leqslant\|x\|_{1}=\sum_{i=1}^{k}\left(1 \cdot\left|x_{i}\right|\right) \leqslant k^{1-\frac{1}{p}}\|x\|_{p}$, so the distortion is at most

$$
k^{1-\frac{1}{p}}=k^{\frac{1 / \log _{2} k}{1+1 / \log _{2} k}}=k^{\frac{1}{\log _{2} k+1}}=2^{\frac{\log _{2} k}{\log _{2} k+1}} \leqslant 2 .
$$

Theorem 5.15. For all $n \in \mathbb{N}$, there is a subset X of ℓ_{1} of size $|X|=N \geqslant n$ such that, if $X \hookrightarrow_{D} \ell_{1}^{k}$, then $k \geqslant n \frac{1}{32 D^{2}}$.

Proof. Let $n \in \mathbb{N}$. By Lemma 5.10, there is an embedding $f: D_{n} \rightarrow \ell_{1}$ with distortion at most 2 . Set $X=f\left(D_{n}\right)$, so $|X|=\left|D_{n}\right| \leqslant 4^{n}$. Assume that $g: X \rightarrow \ell_{1}^{k}$ has distortion at most D. Then the composite $D_{n} \xrightarrow{f} X \xrightarrow{g} \ell_{1}^{k} \xrightarrow{i_{p}} \ell_{p}^{k}$ (with $p=1+\frac{1}{\log _{2} k}$) has distortion at most $4 D$ by Lemma 5.14. By Corollary 5.13, $4 D \geqslant \sqrt{1+(p-1) n}$, or in other words,

$$
16 D^{2} \geqslant \frac{n}{\log _{2} k} \geqslant \frac{\frac{1}{2} \log _{2}|X|}{\log _{2} k}
$$

so $\log _{2} k \geqslant \frac{\log _{2}|X|}{32 D^{2}}$ and hence $k \geqslant|X|^{\frac{1}{32 D^{2}}}$.

6 Ribe programme

6.1 Local properties of Banach spaces

Definition 6.1 (Banach-Mazur distance). Given two normed spaces X, Y, we define the BanachMazur distance between them by

$$
d(X, Y)=\inf _{\substack{T: X \rightarrow Y \\ \text { linear isomorphism }}}\|T\| \cdot\left\|T^{-1}\right\| \in[1, \infty] .
$$

Definition 6.2 (Finite representability). Let X and Y be Banach spaces.
(i) We say that X is finitely representable in Y if for all $\lambda>1$ and for all finite-dimensional subspaces $E \subseteq X$, there exists a subspace $F \subseteq Y$ such that $d(E, F)<\lambda$.
(ii) We say that X is crudely finitely representable in Y if there exists $\lambda>1$ s.t. for all finitedimensional subspaces $E \subseteq X$, there exists a subspace $F \subseteq Y$ such that $d(E, F)<\lambda$.

Example 6.3. (i) Every X is finitely representable in c_{0}.
(ii) ℓ_{2} is finitely representable in every infinite-dimensional X by Dvoretzky's Theorem (Theorem 3.2).

Definition 6.4 (Local property). A local property of a Banach space is one that depends only on its finite-dimensional subspaces.

Example 6.5. Let X be a Banach space.
(i) For $1 \leqslant p \leqslant 2$, we say that X has type p if there exists $C>0$ s.t. for all $n \in \mathbb{N}$, for all $x_{1}, \ldots, x_{n} \in X$,

$$
\mathbb{E}\left(\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|\right) \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are $\{ \pm 1\}$-valued independent uniform random variables.
(ii) For $2 \leqslant q \leqslant \infty$, we say that X has cotype q if there exists $C>0$ s.t. for all $n \in \mathbb{N}$, for all $x_{1}, \ldots, x_{n} \in X$,

$$
\mathbb{E}\left(\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|\right) \geqslant \frac{1}{C}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q}
$$

Having type p or cotype q are local properties of Banach spaces.
For instance, every X has type 1 and cotype ∞; ℓ_{2} has type 2 and cotype 2 with $C=1$.
Remark 6.6. If X is crudely finitely representable in Y and Y has some local property, then so does X.

Theorem 6.7 (Ribe). If Banach spaces X, Y are uniformly homeomorphic, then X is crudely finitely representable in Y and Y is crudely finitely representable in X.

Remark 6.8. Theorem 6.7 implies that local properties of Banach spaces depend only on the metric structure.

This idea leads to the Ribe programme:
(i) Find metric characterisations of local properties of Banach spaces.
(ii) Find metric analogues of local properties of Banach spaces.

We aim here to find a metric characterisation of super-reflexivity.

6.2 Weak-* topology for Banach spaces

Definition 6.9 (Reflexivity and super-reflexivity). Given a Banach space X, there is a (not necessarily surjective) isometric isomorphism $X \rightarrow X^{* *}$ given by $x \mapsto \hat{x}$, where $\hat{x}(f)=f(x)$. The image of X in $X^{* *}$ is a closed subspace, which we identify with X. We say that X is reflexive if $X=X^{* *}$.

We say that X is super-reflexive if every Y finitely representable in X is reflexive.
A super-reflexive Banach space is reflexive.
Remark 6.10. There exists a Banach space J such that $J \cong J^{* *}$ but $J^{* *} / J$ has dimension 1 .
Example 6.11. Let $X=\left(\oplus_{n \in \mathbb{N}} \ell_{1}^{n}\right)_{\ell_{2}}$. Then X is reflexive; however, ℓ_{1} is finitely representable in X, and not reflexive, so X is not super-reflexive.

Definition 6.12 (Weak topology). The weak topology on a Banach space X is defined as follows: $\mathcal{U} \subseteq X$ is w-open if for all $x \in \mathcal{U}$, there exist $n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}$ and $\varepsilon>0$ such that

$$
\left\{y \in X, \forall i \in\{1, \ldots, n\},\left|f_{i}(y-x)\right|<\varepsilon\right\} \subseteq \mathcal{U}
$$

This is the weakest topology on X for which every $f \in X^{*}$ is continuous. In particular, it is contained in the normed topology on X.

Proposition 6.13. Let C be a convex subset of a Banach space X. Then C is $\|\cdot\|$-closed iff C is w-closed.

Proof. (\Leftarrow) The weak topology is contained in the normed topology.
(\Rightarrow) Assume that C is $\|\cdot\|$-closed. If $x \notin C$, then by the Hahn-Banach Theorem (Corollary 4.19), there exists $f \in X^{*}$ such that $\sup _{C} f<f(x)$. Hence, $\left\{y \in X, f(y)>\sup _{C} f\right\}$ is a w-neighbourhood of x disjoint from C.

Definition 6.14 (Weak-* topology). The weak-* topology on X^{*} is defined as follows: $\mathcal{U} \subseteq X^{*}$ is $w *$-open if for all $f \in \mathcal{U}$, there exist $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X$ and $\varepsilon>0$ such that

$$
\left\{g \in X^{*}, \forall i \in\{1, \ldots, n\}\left|(g-f)\left(x_{i}\right)\right|<\varepsilon\right\} \subseteq \mathcal{U} .
$$

This is the weakest topology on X^{*} for which every $x \in X \subseteq X^{* *}$ is continuous. In particular, it is contained in the weak topology on X^{*}.

Theorem 6.15 (Banach-Alaoglu). Let X be a Banach space. Then $B_{X^{*}}=\left\{f \in X^{*},\|f\| \leqslant 1\right\}$ is $w *$-compact.

Proof. Let $K=\prod_{x \in X}[-\|x\|,+\|x\|]$ with the product topology. Note that K is compact by Tychonoff's Theorem. Now consider

$$
\varphi: f \in B_{X^{*}} \longmapsto(f(x))_{x \in X} \in K .
$$

If $B_{X^{*}}$ is equipped with the weak-* topology, then φ is a homeomorphism onto its image. Moreover,

$$
\varphi\left(B_{X^{*}}\right)=\bigcap_{\substack{x, y \in X \\ a, b \in \mathbb{R}}}\left\{\left(\lambda_{x}\right)_{x \in X}, \lambda_{a x+b y}-a \lambda_{x}-b \lambda_{y}=0\right\}
$$

so $\varphi\left(B_{X^{*}}\right)$ is closed, hence compact.
Lemma 6.16 (Local reflexivity). Let X be a Banach space. Let $E \subseteq X^{*}$ be finite-dimensional, let $\varphi \in X^{* *}$ and $M>\|\varphi\|$. Then there exists $x \in X$ such that $\|x\|<M$ and $\hat{x}_{\mid E}=\varphi_{\mid E}$.
Proof. Fix a basis f_{1}, \ldots, f_{n} of E, and define $T: X \rightarrow \mathbb{R}^{n}$ by

$$
T x=\left(f_{i}(x)\right)_{1 \leqslant i \leqslant n} .
$$

Let $C=\{T x,\|x\|<M\}$; we need $\left(\varphi\left(f_{i}\right)\right)_{1 \leqslant i \leqslant n} \in C$.
Note that T is a bounded linear map and C is convex. We show that T is onto: if not, then there exists $a \in(\operatorname{Im} T)^{\perp} \backslash\{0\}$, i.e. such that $\sum_{i=1}^{n} a_{i} f_{i}(x)=0$ for all $x \in X$; hence $\sum_{i=1}^{n} a_{i} f_{i}=0$, a contradiction. Therefore, T is onto. By the Open Mapping Theorem, C is open. Assume for contradiction that $\left(\varphi\left(f_{i}\right)\right)_{1 \leqslant i \leqslant n} \notin C$. Then by Hahn-Banach, there exists $a \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\sum_{i=1}^{n} a_{i} f_{i}(x)<\sum_{i=1}^{n} a_{i} \varphi\left(f_{i}\right)
$$

for all $x \in X$ with $\|x\|<M$. It follows that

$$
\left\|\sum_{i=1}^{n} a_{i} f_{i}\right\| \cdot M \leqslant \varphi\left(\sum_{i=1}^{n} a_{i} f_{i}\right) \leqslant\|\varphi\| \cdot\left\|\sum_{i=1}^{n} a_{i} f_{i}\right\| .
$$

Since $\sum_{i=1}^{n} a_{i} f_{i} \neq 0$, we get $M \leqslant\|\varphi\|$, a contradiction.
Theorem 6.17 (Goldstine). Let X be a Banach space. Then, in $X^{* *}$,

$$
\bar{B}_{X}^{w *}=B_{X^{* *}} .
$$

Proof. (\subseteq) Since $B_{X} \subseteq B_{X^{* *}}$ and $B_{X^{* *}}$ is $w *$-closed by Banach-Alaoglu (Theorem 6.15), it follows that $\bar{B}_{X}^{w *} \subseteq B_{X^{* *}}$.
(\supseteq) Fix $\psi \in B_{X^{* *}}$ and let \mathcal{U} be a $w *$-neighbourhood of ψ. Then there are $n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}$ and $\varepsilon>0$ such that

$$
\left\{\chi \in X^{* *}, \forall i \in\{1, \ldots, n\},\left|(\chi-\psi)\left(f_{i}\right)\right|<\varepsilon\right\} \subseteq \mathcal{U}
$$

Fix $\delta>0$ to be chosen later. By Lemma 6.16, there exists $x \in X$ such that $\|x\|<1+\delta$ and $f_{i}(x)=\psi\left(f_{i}\right)$ for all i. If $\|x\| \leqslant 1$, then $x \in B_{X} \cap \mathcal{U}$, so we are done. Otherwise, $\|x\|>1$ and

$$
\left|\frac{\hat{x}}{\|x\|}\left(f_{i}\right)-\psi\left(f_{i}\right)\right|=\left|\frac{f_{i}(x)}{\|x\|}-f_{i}(x)\right|=\frac{\left|f_{i}(x)\right|}{\|x\|}|1-\|x\|| \leqslant \delta\left\|f_{i}\right\|
$$

for all i. We can choose δ such that $\delta\left\|f_{i}\right\|<\varepsilon$ for all i; hence $\frac{x}{\|x\|} \in B_{X} \cap \mathcal{U}$.
Corollary 6.18. A Banach space X is reflexive if and only if B_{X} is w-compact.
Proof. (\Rightarrow) If X is reflexive, then $X=X^{* *}$, so $(X, w)=\left(X^{* *}, w *\right)$, so $\left(B_{X}, w\right)=\left(B_{X^{* *}}, w *\right)$, which is compact by Banach-Alaoglu (Theorem 6.15).
(\Leftarrow) The restriction to X of the weak-* topology on $X^{* *}$ is the weak topology. So B_{X} is weak-* compact in $X^{* *}$ by assumption, and in particular B_{X} is weak-* closed. Hence (by Theorem 6.17) $B_{X^{* *}}=\bar{B}_{X}^{w *}=B_{X}$ and hence $X^{* *}=X$.

6.3 Characterisation of reflexivity in terms of convex hulls

Theorem 6.19. Given a Banach space X, the following assertions are equivalent:
(i) X is non-reflexive.
(ii) $\forall \theta \in(0,1), \exists\left(x_{i}\right)_{i \geqslant 1} \in B_{X}, \exists\left(f_{i}\right)_{i \geqslant 1} \in B_{X^{*}}, \forall i, j \geqslant 1, f_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}\theta & \text { if } i \leqslant j \\ 0 & \text { if } i>j\end{array}\right.$.
(iii) $\exists \theta \in(0,1), \exists\left(x_{i}\right)_{i \geqslant 1} \in B_{X}, \exists\left(f_{i}\right)_{i \geqslant 1} \in B_{X^{*}}, \forall i, j \geqslant 1, f_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}\theta & \text { if } i \leqslant j \\ 0 & \text { if } i>j\end{array}\right.$.
(iv) $\forall \theta \in(0,1), \exists\left(x_{i}\right)_{i \geqslant 1} \in B_{X}, \forall n \in \mathbb{N}, d\left(\operatorname{Conv}\left\{x_{1}, \ldots, x_{n}\right\}, \operatorname{Conv}\left\{x_{n+1}, x_{n+2}, \ldots\right\}\right) \geqslant \theta$.
(v) $\exists \theta \in(0,1), \exists\left(x_{i}\right)_{i \geqslant 1} \in B_{X}, \forall n \in \mathbb{N}$, $d\left(\operatorname{Conv}\left\{x_{1}, \ldots, x_{n}\right\}, \operatorname{Conv}\left\{x_{n+1}, x_{n+2}, \ldots\right\}\right) \geqslant \theta$.

Proof. (i) \Rightarrow (ii) Since X is non-reflexive, it is a proper closed subspace of $X^{* *}$, so by Hahn-Banach there exists $T \in X^{* * *}$ such that $\|T\|=1$ and $T_{X X}=0$. Fix $\theta \in(0,1)$ and choose $\varphi \in X^{* *}$ such that $\|\varphi\|<1$ and $\lambda=T \varphi>\theta$. Then

$$
\theta<\lambda=T \varphi \leqslant\|T\| \cdot\|\varphi\|=\|\varphi\|<1
$$

i.e. $\theta<\lambda<1$. Moreover, since $\|\varphi\|>\theta$, there exists $f_{1} \in B_{X^{*}}$ s.t. $\varphi\left(f_{1}\right)=\theta$. Then

$$
\theta=\varphi\left(f_{1}\right) \leqslant\|\varphi\| \cdot\left\|f_{1}\right\|<\left\|f_{1}\right\|
$$

and hence there is $x_{1} \in B_{X}$ such that $f_{1}\left(x_{1}\right)=\theta$.
Assume now that for some $n \geqslant 1$, we have found $\left(x_{i}\right)_{1 \leqslant i \leqslant n} \in B_{X}$ and $\left(f_{i}\right)_{1 \leqslant i \leqslant n} \in B_{X^{*}}$ such that

$$
f_{i}\left(x_{j}\right)= \begin{cases}\theta & \text { if } 1 \leqslant i \leqslant j \leqslant n \\ 0 & \text { if } 1 \leqslant j<i \leqslant n\end{cases}
$$

and $\varphi\left(f_{i}\right)=\theta$ for $1 \leqslant i \leqslant n$. Since $T x_{i}=0$ for $1 \leqslant i \leqslant n$ and $T \varphi=\lambda$ and $\|T\|=1<\frac{\lambda}{\theta}$, Lemma 6.16 implies the existence of $g \in X^{*}$ s.t $\|g\|<\frac{\lambda}{\theta}$ and $g\left(x_{i}\right)=0$ for $1 \leqslant i \leqslant n$ and $\varphi(g)=\lambda$. Set $f_{n+1}=\frac{\theta}{\lambda} g \in B_{X^{*}}$, so that $f_{n+1}\left(x_{i}\right)=0$ for $1 \leqslant i \leqslant n$ and $\varphi\left(f_{n+1}\right)=\theta$. Since $\varphi\left(f_{i}\right)=\theta$ for $1 \leqslant i \leqslant n+1$ and $\|\varphi\|<1$, Lemma 6.16 implies the existence of $x_{n+1} \in B_{X}$ such that $f_{i}\left(x_{n+1}\right)=\theta$ for $1 \leqslant i \leqslant n+1$. Now the construction continues inductively.
(ii) \Rightarrow (iii) and (iv) \Rightarrow (v) Obvious.
(ii) \Rightarrow (iv) and (iii) \Rightarrow (v) Fix $\theta \in(0,1)$. Assume that there are $\left(x_{i}\right)_{1 \leqslant i \leqslant n} \in B_{X}$ and $\left(f_{i}\right)_{1 \leqslant i \leqslant n} \in$ $B_{X^{*}}$ such that (ii) (or (iii)) holds. Given $n \in \mathbb{N}$ and finite convex combinations $\sum_{i=1}^{n} t_{i} x_{i}$ and $\sum_{i=n+1}^{\infty} t_{i} x_{i}$, we have

$$
\left\|\sum_{i=n+1}^{\infty} t_{i} x_{i}-\sum_{i=1}^{n} t_{i} x_{i}\right\| \geqslant\left|f_{n+1}\left(\sum_{i=n+1}^{\infty} t_{i} x_{i}-\sum_{i=1}^{n} t_{i} x_{i}\right)\right|=\sum_{i=n+1}^{\infty} \theta t_{i}=\theta,
$$

which proves that $d\left(\operatorname{Conv}\left\{x_{1}, \ldots, x_{n}\right\}, \operatorname{Conv}\left\{x_{n+1}, x_{n+2}, \ldots\right\}\right) \geqslant \theta$.
(v) \Rightarrow (i) Assume that there is $\theta \in(0,1)$ and $\left(x_{i}\right)_{i \geqslant 1} \in B_{X}$ such that (v) holds. Assume for contradiction that X is reflexive. For $n \in \mathbb{N}$, let

$$
C_{n}=\operatorname{Conv}\left\{x_{n+1}, x_{n+2}, \ldots\right\}
$$

Then the $\|\cdot\|$-closure \bar{C}_{n} is a $\|\cdot\|$-closed, hence w-closed subset of B_{X}. Moreover, $\bar{C}_{1} \supseteq \bar{C}_{2} \supseteq \cdots$, and $\bar{C}_{n} \neq \varnothing$ for all n. Since B_{X} is w-compact by Corollary 6.18 , we have

$$
\bigcap_{n \geqslant 0} \bar{C}_{n} \neq \varnothing \text {. }
$$

Pick $x \in \bigcap_{n \geqslant 0} \bar{C}_{n}$. Since $x \in \bar{C}_{1}$, there is $y \in C_{1}$ such that $\|x-y\|<\frac{\theta}{3}$. Choose $n \geqslant 1$ such that $y \in \operatorname{Conv}\left\{x_{1}, \ldots, x_{n}\right\}$. Since $x \in \bar{C}_{n}$, there is $z \in C_{n}$ such that $\|x-z\|<\frac{\theta}{3}$. Then

$$
d\left(\operatorname{Conv}\left\{x_{1}, \ldots, x_{n}\right\}, \operatorname{Conv}\left\{x_{n+1}, x_{n+2}, \ldots\right\}\right) \leqslant\|y-z\|<\frac{2}{3} \theta
$$

a contradiction.

6.4 Ultrafilters

Definition 6.20 (Filter). Fix a set $I \neq \varnothing$. A filter on I is a family $\mathcal{F} \subseteq \mathcal{P}(I)$ such that
(i) $I \in \mathcal{F}$ and $\varnothing \notin \mathcal{F}$.
(ii) If $A \subseteq B \subseteq I$ with $A \in \mathcal{F}$, then $B \in \mathcal{F}$.
(iii) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

Example 6.21. Let $I \neq \varnothing$.
(i) For $i \in I, \mathcal{U}_{i}=\{A \subseteq I, i \in A\}$ is a filter - the principal filter at i.
(ii) If I is infinite, then $\{A \subseteq I, I \backslash A$ is finite $\}$ is a filter - the cofinite filter.

Definition 6.22 (Convergence along a filter). Let X be a topological space, $f: I \rightarrow X$ be a function and \mathcal{F} be a filter on I. For $x \in X$, we write $x=\lim _{\mathcal{F}} f$ if for all neighbourhoods U of x in X, the set $\{i \in I, f(i) \in U\}$ is in \mathcal{F}.

Note that if X is Hausdorff, $x=\lim _{\mathcal{F}} f$ and $y=\lim _{\mathcal{F}} f$, then $x=y$.
Example 6.23. (i) If $I=\mathbb{N}$ and \mathcal{F} is the cofinite filter on \mathbb{N}, then convergence along \mathcal{F} is the usual notion of convergence of sequences.
(ii) If $\mathcal{F}=\mathcal{U}_{i}$ for some $i \in I$, then $f(i)=\lim _{\mathcal{F}} f$ holds for all $f: I \rightarrow X$.

Definition 6.24 (Ultrafilter). Let I be a nonempty set. An ultrafilter on I is a maximal filter on I : it is a filter \mathcal{U} such that, if \mathcal{F} is a filter and $\mathcal{U} \subseteq \mathcal{F}$, then $\mathcal{U}=\mathcal{F}$.

Example 6.25. Any principal filter $\mathcal{U}_{i}=\{A \subseteq I, i \in A\}$ is an ultrafilter. If I is finite, these are the only ultrafilters. Otherwise, a free ultrafilter is an ultrafilter that is not principal. For instance, any ultrafilter containing the cofinite filter is free.

Proposition 6.26. Any filter is contained in an ultrafilter.
Proof. Use Zorn's Lemma.
Lemma 6.27. Let \mathcal{U} be an ultrafilter. If $A \cup B \in \mathcal{U}$, then $A \in \mathcal{U}$ or $B \in \mathcal{U}$.
Proof. Assume that there exist $C, D \in \mathcal{U}$ such that $A \cap C=B \cap D=\varnothing$. Then $(A \cup B) \cap(C \cap D)=\varnothing$, which is impossible because $A \cup B, C \cap D \in \mathcal{U}$. We may therefore assume without loss of generality that $A \cap C \neq \varnothing$ for all $C \in \mathcal{U}$. Therefore $\mathcal{F}=\{D \subseteq I, \exists C \in \mathcal{U}, D \supseteq A \cap C\}$ is a filter on I, and $\mathcal{F} \supseteq \mathcal{U}$ so $\mathcal{F}=\mathcal{U}$. In particular, $A \in \mathcal{F}=\mathcal{U}$.

Remark 6.28. (i) Every free ultrafilter contains the cofinite filter.
(ii) For an ultrafilter \mathcal{U}, define

$$
\mu: A \in \mathcal{P}(I) \longmapsto \begin{cases}0 & \text { if } A \notin \mathcal{U} \\ 1 & \text { if } A \in \mathcal{U}\end{cases}
$$

Then μ is a finitely-additive measure.

Lemma 6.29. Let \mathcal{U} be an ultrafilter on a set I and let K be a compact topological space. Then for every $f: I \rightarrow K$, there exists $x \in K$ such that

$$
x=\lim _{\mathcal{U}} f
$$

In particular, for every bounded function $f: I \rightarrow \mathbb{R}$, there is a unique $x \in \mathbb{R}$ such that $x=\lim _{\mathcal{U}} f$.
Proof. If this were not the case, then for every $x \in K$, there would be an open neighbourhood V_{x} of x s.t. $A_{x}=\left\{i \in I, f(i) \in V_{x}\right\} \notin \mathcal{U}$. Since K is compact, there is a finite $F \subseteq X$ such that $\bigcup_{x \in F} V_{x}=K$. Then $\bigcup_{x \in F} A_{x}=I \in \mathcal{U}$, and by Lemma 6.27, there exists $x \in F$ such that $A_{x} \in \mathcal{U}$. This is a contradiction.

Remark 6.30. Given bounded functions $f, g: I \rightarrow \mathbb{R}$ and an ultrafilter \mathcal{U} on I, we have

$$
\lim _{\mathcal{U}}(f+g)=\lim _{\mathcal{U}} f+\lim _{\mathcal{U}} g \quad \text { and } \quad \lim _{\mathcal{U}}(f g)=\left(\lim _{\mathcal{U}} f\right)\left(\lim _{\mathcal{U}} g\right) .
$$

Moreover, if $f(i) \leqslant g(i)$ for all $i \in I$, then $\lim _{\mathcal{U}} f \leqslant \lim _{\mathcal{U}} g$.

6.5 Ultraproducts and ultrapowers

Definition 6.31 (Ultraproducts). Fix a set $I \neq \varnothing$ and an ultrafilter \mathcal{U} on I. Given Banach spaces $\left(X_{i}\right)_{i \in I}$, we set

$$
\left(\bigoplus_{i \in I} X_{i}\right)_{\infty}=\left\{x \in \prod_{i \in I} X_{i}, \sup _{i \in I}\left\|x_{i}\right\|<\infty\right\}
$$

This is a Banach space with norm $\|x\|=\sup _{i \in I}\left\|x_{i}\right\|$. We define

$$
\|x\|_{\mathcal{U}}=\lim _{\mathcal{U}}\left\|x_{i}\right\|
$$

This defines a seminorm on $\left(\oplus_{i \in I} X_{i}\right)_{\infty}$. It follows that

$$
\mathcal{N}_{\mathcal{U}}=\left\{x \in\left(\bigoplus_{i \in I} X_{i}\right)_{\infty},\|x\|_{\mathcal{U}}=0\right\}
$$

is a closed subspace of $\left(\oplus_{i \in I} X_{i}\right)_{\infty}$. The quotient is denoted by

$$
\left(\prod_{i \in I} X_{i}\right)_{\mathcal{U}}=\left(\bigoplus_{i \in I} X_{i}\right)_{\infty} / \mathcal{N}_{\mathcal{U}}
$$

It is a normed space with $\left\|x_{\mathcal{U}}\right\|_{\mathcal{U}}=\|x\|_{\mathcal{U}}$, where for $x \in\left(\oplus_{i \in I} X_{i}\right)_{\infty}, x_{\mathcal{U}}=x+\mathcal{N}_{\mathcal{U}} \in\left(\prod_{i \in I} X_{i}\right)_{\mathcal{U}}$. Moreover, this norm is complete, so $\left(\prod_{i \in I} X_{i}\right)_{\mathcal{U}}$ is a Banach space - called the ultraproduct of the $\left(X_{i}\right)_{i \in I}$.

If $X_{i}=X$ for all $i \in I$, where X is some Banach space, then $\left(\prod_{i \in I} X_{i}\right)_{\mathcal{U}}$ is denoted by $X^{\mathcal{U}}-$ called an ultrapower of X.

Proposition 6.32. Any ultrapower $X^{\mathcal{u}}$ of a Banach space X is finitely representable in X.
Proof. Let E be a finite-dimensional subspace of $X^{\mathcal{U}}$. Choose a basis e_{1}, \ldots, e_{n} of E. For each $1 \leqslant k \leqslant n$, fix $\left(x_{k, i}\right)_{i \in I}$ a bounded sequence in X such that $e_{k}=\left(\left(x_{k, i}\right)_{i \in I}\right)_{\mathcal{U}}$. Hence, for all $\left(\lambda_{k}\right)_{1 \leqslant k \leqslant n} \in \mathbb{R}^{n}$,

$$
\sum_{k=1}^{n} \lambda_{k} e_{k}=\left(\left(\sum_{k=1}^{n} \lambda_{k} x_{k, i}\right)_{i \in I}\right)_{\mathcal{U}}
$$

Fix $\varepsilon>0$. We seek an injective linear map $T: E \rightarrow X$ such that $\|T\|\left\|T^{-1}\right\|<1+\varepsilon$. Choose $\delta \in\left(0, \frac{1}{3}\right)$ such that $\frac{1+\delta}{1-3 \delta}<1+\varepsilon$. Let $S \subseteq \mathbb{R}^{n}$ be a finite set such that

$$
\widetilde{S}=\left\{\sum_{k=1}^{n} \lambda_{k} e_{k},\left(\lambda_{k}\right)_{1 \leqslant k \leqslant n} \in S\right\}
$$

is a δ-net for $S_{E}=\{x \in E,\|x\|=1\}$. For all $\left(\lambda_{k}\right)_{1 \leqslant k \leqslant n}$ in S, we have

$$
\lim _{\mathcal{U}}\left\|\sum_{k=1}^{n} \lambda_{k} x_{k, i}\right\|=\left\|\sum_{k=1}^{n} \lambda_{k} e_{k}\right\|_{\mathcal{U}}=1
$$

it follows that

$$
\left\{i \in I, 1-\delta<\left\|\sum_{k=1}^{n} \lambda_{k} x_{k, i}\right\|<1+\delta\right\} \in \mathcal{U}
$$

Since S is finite, the intersection of these sets (for $\left(\lambda_{k}\right)_{1 \leqslant k \leqslant n} \in S$) is in \mathcal{U}; in particular, their intersection is nonempty, so there exists $i_{0} \in I$ such that, for all $\left(\lambda_{k}\right)_{1 \leqslant k \leqslant n} \in S$,

$$
1-\delta<\left\|\sum_{k=1}^{n} \lambda_{k} x_{k, i_{0}}\right\|<1+\delta .
$$

Now define

$$
T:\left(\sum_{k=1}^{n} \mu_{k} e_{k}\right) \in E \longmapsto\left(\sum_{k=1}^{n} \mu_{k} x_{k, i_{0}}\right) \in X .
$$

Given $x \in S_{E}$, there exists $z \in \widetilde{S}$ such that $\|x-z\| \leqslant \delta$. Hence

$$
\|T x\| \leqslant\|T z\|+\|T(x-z)\| \leqslant 1+\delta+\|T\| \cdot \delta .
$$

Taking the supremum over $x \in S_{E}$ yields $\|T\| \leqslant 1+\delta+\delta\|T\|$, i.e. $\|T\| \leqslant \frac{1+\delta}{1-\delta}$. It follows that

$$
\|T x\| \geqslant\|T z\|-\|T(x-z)\| \geqslant 1-\delta-\frac{1+\delta}{1-\delta} \delta=\frac{1-3 \delta}{1-\delta}
$$

Therefore $\left\|T^{-1}\right\| \leqslant \frac{1-\delta}{1-3 \delta}$, and $\|T\|\left\|T^{-1}\right\| \leqslant \frac{1+\delta}{1-3 \delta}<1+\varepsilon$.

6.6 Isomorphic characterisation of super-reflexivity

Theorem 6.33. Let X be a Banach space. Then the following assertions are equivalent:
(i) X is super-reflexive.
(ii) Every Y crudely finitely representable in X is reflexive.

Proof. (ii) \Rightarrow (i) OK because every Y finitely representable in X is crudely finitely representable and hence reflexive.
(i) \Rightarrow (ii) Assume Y is non-reflexive and crudely finitely representable in X. Fix $\theta \in(0,1)$. By Theorem 6.19, there is a sequence $\left(y_{i}\right)_{i \geqslant 1}$ in B_{Y} such that for all n,

$$
d\left(\operatorname{Conv}\left\{y_{1}, \ldots, y_{n}\right\},\left\{y_{n+1}, y_{n+2}, \ldots\right\}\right) \geqslant \theta
$$

There exists $\lambda>1$ such that for any finite-dimensional subspace $E \subseteq Y$, there is a linear map $T: E \rightarrow X$ such that

$$
\frac{1}{\lambda}\|y\| \leqslant\|T y\| \leqslant\|y\|
$$

for all $y \in E$. In particular, for $N \in \mathbb{N}$, there is a linear map $T_{N}: \operatorname{Span}\left(y_{1}, \ldots, y_{N}\right) \rightarrow X$ such that $\frac{1}{\lambda}\|y\| \leqslant\left\|T_{N} y\right\| \leqslant\|y\|$ for all $y \in \operatorname{Span}\left(y_{1}, \ldots, y_{N}\right)$. Set

$$
x_{N, i}=T_{N}\left(y_{i}\right) \in B_{X}
$$

for $1 \leqslant i \leqslant N$. Note that for $1 \leqslant m<n \leqslant N$ and for convex combinations $\sum_{i=1}^{m} t_{i} x_{N, i}$ and $\sum_{i=m+1}^{n} t_{i} x_{N, i}$, we have

$$
\left\|\sum_{i=1}^{m} t_{i} x_{N, i}-\sum_{i=m+1}^{n} t_{i} x_{N, i}\right\| \geqslant \frac{1}{\lambda}\left\|\sum_{i=1}^{m} t_{i} y_{i}-\sum_{i=m+1}^{n} t_{i} y_{i}\right\| \geqslant \frac{\theta}{\lambda} .
$$

Now fix a free ultrafilter \mathcal{U} on \mathbb{N} and define

$$
\widetilde{x}_{N, i}= \begin{cases}x_{N, i} & \text { if } i \leqslant N \\ 0 & \text { otherwise }\end{cases}
$$

and set $\widetilde{x}_{i}=\left(\left(\widetilde{x}_{N, i}\right)_{N \geqslant 1}\right)_{\mathcal{U}}$. Given $1 \leqslant m<n$ and convex combinations $z=\sum_{i=1}^{m} t_{i} \widetilde{x}_{i}$ and $w=$ $\sum_{i=m+1}^{n} t_{i} \widetilde{x}_{i}$ in $X^{\mathcal{U}}$, we have

$$
\left\|\sum_{i=1}^{m} t_{i} \widetilde{x}_{N, i}-\sum_{i=m+1}^{n} t_{i} \tilde{x}_{N, i}\right\| \geqslant \frac{\theta}{\lambda}
$$

for all $N \geqslant n$; it follows that $\|z-w\| \geqslant \frac{\theta}{\lambda}$. Thus,

$$
d\left(\operatorname{Conv}\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{m}\right\}, \operatorname{Conv}\left\{\widetilde{x}_{m+1}, \widetilde{x}_{m+2}, \ldots\right\}\right) \geqslant \frac{\theta}{\lambda}
$$

By Theorem 6.19, $X^{\boldsymbol{u}}$ is non-reflexive. But it is finitely representable in X by Proposition 6.32; hence X is not super-reflexive.

6.7 Uniform convexity

Definition 6.34 (Strict convexity and uniform convexity). Let X be a Banach space.
(i) X is strictly convex if for all $x, y \in S_{X}$ with $x \neq y,\left\|\frac{x+y}{2}\right\|<1$.
(ii) X is uniformly convex if for all $\varepsilon \in(0,2]$, there exists $\delta>0$ such that for all $x, y \in S_{X}$ with $\|x-y\| \geqslant \varepsilon$, we have

$$
\left\|\frac{x+y}{2}\right\| \leqslant 1-\delta .
$$

The module of uniform convexity of X is the function $\delta_{X}:[0,2] \rightarrow \mathbb{R}_{+}$defined by

$$
\delta_{X}(\varepsilon)=\inf _{\substack{x, y \in S X \\\|x-y\| \geqslant \varepsilon}}\left(1-\left\|\frac{x+y}{2}\right\|\right) .
$$

Example 6.35. (i) ℓ_{2} is uniformly convex.
(ii) $c_{0}, \ell_{1}, \ell_{\infty}$ are not strictly convex.
(iii) Let $1<p_{n}<2$ such that $p_{n} \xrightarrow[n \rightarrow \infty]{ } 1$ and set $X=\left(\oplus_{n \geqslant 1} \ell_{p_{n}}^{2}\right)_{\ell_{2}}$. Then X is strictly convex but not uniformly convex. However, X is isomorphic to $\left(\oplus_{n \geqslant 1} \ell_{2}^{2}\right)_{\ell_{2}} \cong \ell_{2}$, so uniform convexity is not an isomorphic property.
Proof. (i) Given $x, y \in S_{\ell_{2}}$ with $\|x-y\| \geqslant \varepsilon$, we have $4=2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2} \geqslant$ $\|x+y\|^{2}+\varepsilon^{2}$, so

$$
\left\|\frac{x+y}{2}\right\| \leqslant \sqrt{1-\frac{\varepsilon^{2}}{4}} \sim 1-\frac{\varepsilon^{2}}{8} .
$$

Remark 6.36. Let X be a Banach space. Recall from Theorem 6.17 that $\bar{B}_{X}^{w *}=B_{X^{* *}}$. In fact, if $\operatorname{dim} X=\infty$, then $\bar{S}_{X}^{w *}=B_{X^{* *}}$.

Proof. Let $\varphi \in B_{X^{* *}}$ and let \mathcal{U} be a $w *$-neighbourhood of φ. Without loss of generality, there exist $f_{1}, \ldots, f_{n} \in X^{*}$ and $\varepsilon>0$ such that

$$
\mathcal{U}=\left\{\psi \in X^{* *}, \forall i \in\{1, \ldots, n\},\left|(\psi-\varphi)\left(f_{i}\right)\right|<\varepsilon_{i}\right\} .
$$

Choose $x \in B_{X} \cap \mathcal{U}$. Since $\operatorname{dim} X=\infty$, take $z \in \bigcap_{i=1}^{n} \operatorname{Ker} f_{i} \backslash\{0\}$. Then $x+\lambda z \in \mathcal{U}$ for all $\lambda \in \mathbb{R}$, and there exists $\lambda \in \mathbb{R}$ such that $\|x+\lambda z\|=1$.

Theorem 6.37 (Milman-Pettis). If a Banach space X is uniformly convex, then X is reflexive.
Proof. We assume without loss of generality that $\operatorname{dim} X=\infty$. It suffices to show that $S_{X^{* *}} \subseteq X$. Let $\varphi \in S_{X^{* *}}, \varepsilon \in(0,2)$ and $\delta=\delta_{X}(\varepsilon)>0$. Hence, for all $x, y \in S_{X}$ with $\|x+y\| \geqslant 2-\delta$,

$$
1-\left\|\frac{x+y}{2}\right\| \leqslant \frac{\delta}{2}<\delta,
$$

and hence $\|x-y\|<\varepsilon$. Choose $f_{\varepsilon} \in B_{X^{*}}$ such that $\varphi\left(f_{\varepsilon}\right)>1-\frac{\delta}{2}$ and let

$$
V_{\varepsilon}=\left\{\psi \in X^{* *}, \psi\left(f_{\varepsilon}\right) \geqslant 1-\frac{\delta}{2}\right\}
$$

this is a $w *$-closed neighbourhood of φ. Hence, $W_{\varepsilon}=V_{\varepsilon} \cap S_{X}$ is a nonempty (by Remark 6.36) and $\|\cdot\|$-closed neighbourhood of φ. Also, given $x, y \in W_{\varepsilon}$, we have

$$
\|x+y\| \geqslant f_{\varepsilon}(x+y) \geqslant 2-\delta,
$$

and hence $\|x-y\|<\varepsilon$. Thus diam $W_{\varepsilon} \leqslant \varepsilon$.
Now, for $n \geqslant 1$, let

$$
A_{n}=\bigcap_{k=1}^{n} W_{1 / k}=\left\{x \in S_{X}, \forall k \in\{1, \ldots, n\}, f_{1 / k}(x) \geqslant 1-\frac{1}{2} \delta_{X}\left(\frac{1}{k}\right)\right\} .
$$

Hence, A_{n} is a nonempty and $\|\cdot\|$-closed subset of X with diam $A_{n} \leqslant \frac{1}{n}$. Moreover, $A_{n} \supseteq A_{n+1}$ for all n. By completeness of X, there exists $x \in S_{X}$ such that $\bigcap_{n \geqslant 1} A_{n}=\{x\}$.

We now show that $\varphi=\hat{x}$. If not, then there exists $g \in X^{*}$ such that $\eta=\varphi(g)-g(x)>0$. Consider

$$
B_{n}=A_{n} \cap\left\{\psi \in X^{* *},|\varphi(g)-\psi(g)| \leqslant \frac{\eta}{2}\right\} .
$$

The set B_{n} is nonempty, $\|\cdot\|$-closed, and $\operatorname{diam} B_{n} \leqslant \operatorname{diam} A_{n} \xrightarrow[n \rightarrow \infty]{ } 0$. Hence, $\cap_{n \geqslant 1} B_{n}=\{x\}$ and $|\varphi(g)-g(x)| \leqslant \frac{\eta}{2}$, a contradiction.

Theorem 6.38 (Enflo). If $(X,\|\cdot\|)$ is a super-reflexive Banach space, then there is an equivalent norm $\|\|\cdot\| \mid$ on X such that $(X,\|\cdot\| \|)$ is uniformly convex.

Recall that the norms $\|\cdot\|$ and $\left\|\|\cdot\|\right.$ are equivalent if $\operatorname{id}_{X}:(X,\|\cdot\|) \rightarrow(X,\|\cdot\| \|)$ is an isomorphism.
Example 6.39. The space $\ell_{2} \oplus_{2} \ell_{1}^{2}$ is not strictly convex, but it is isomorphic to $\ell_{2} \oplus_{2} \ell_{2}^{2} \cong \ell_{2}$, so it is super-reflexive.

6.8 Finite tree property

Definition 6.40 (Binary tree). The binary tree B_{n} of depth n is the graph with vertex set $\bigcup_{k=0}^{n}\{0,1\}^{k}$ and where $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in\{0,1\}^{k}$ is joined to $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}, i\right)$ for $i \in\{0,1\}$.

Given $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \in\{0,1\}^{k}$ and $\delta=\left(\delta_{1}, \ldots, \delta_{\ell}\right) \in\{0,1\}^{\ell}$, we write $\varepsilon \preccurlyeq \delta$ if $k \leqslant \ell$ and $\varepsilon_{i}=\delta_{i}$ for $1 \leqslant i \leqslant k$. We also let $|\varepsilon|=k$ denote the length of ε.

Definition 6.41 (Finite tree property). A Banach space X has the finite tree property if there exists $\theta>0$ such that for all $n \geqslant 1$, there exist $\left(x_{\varepsilon}\right)_{\varepsilon \in B_{n}}$ in B_{X} such that

$$
x_{\varepsilon}=\frac{1}{2}\left(x_{\varepsilon 0}+x_{\varepsilon_{1}}\right) \quad \text { and } \quad\left\|x_{\varepsilon}-x_{\varepsilon, i}\right\| \geqslant \theta
$$

for all $\varepsilon \in B_{n}$ and $i \in\{0,1\}$.
Definition 6.42 (Strongly exposed point). Given a convex set C in a Banach space Z, a point $w \in C$ is strongly exposed if there exists $f \in Z^{*}$ such that
(i) For all $u \in C \backslash\{w\}, f(u)<f(w)$.
(ii) $\operatorname{diam}\{u \in C, f(w)-\varepsilon<f(u)\} \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0$.

Theorem 6.43. Every nonempty w-compact convex subset of a separable Banach space has a strongly exposed point.

Theorem 6.44. For a Banach space X, the following assertions are equivalent:
(i) X is not super-reflexive.
(ii) X has the finite tree property.
(iii) There exists $\theta>0$ such that for all $n \in \mathbb{N}$, there exist $\left(x_{i}\right)_{1 \leqslant i \leqslant n}$ in B_{X} such that

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \geqslant \theta\left|\sum_{i=\ell}^{m} a_{i}\right|
$$

for all $\left(a_{i}\right)_{1 \leqslant i \leqslant n}$ in \mathbb{R} and $1 \leqslant \ell \leqslant m \leqslant n$.
Proof. (i) \Rightarrow (ii) Assume that there is a non-reflexive space Z which is finitely representable in X. Fix $\theta \in(0,1)$. By Theorem 6.19, there is a sequence $\left(z_{n}\right)_{n \geqslant 1}$ in B_{Z} such that, for all n,

$$
d\left(\operatorname{Conv}\left\{z_{1}, \ldots, z_{n}\right\}, \operatorname{Conv}\left\{z_{n+1}, z_{n+2}, \ldots\right\}\right) \geqslant \theta
$$

For $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in B_{n}$, let $k(\varepsilon)=1+\sum_{i=1}^{n} 2^{n-i} \varepsilon_{i}$; for $\delta \in B_{n}$, let

$$
I_{\delta}=\{k(\varepsilon), \varepsilon \succcurlyeq \delta,|\varepsilon|=n\} .
$$

Set $z_{\delta}=2^{|\delta|-n} \sum_{k \in I_{\delta}} z_{k}$. Since $\left|I_{\delta}\right|=2^{n-|\delta|}$, we have $z_{k} \in \operatorname{Conv}\left\{z_{k}, k \in I_{\delta}\right\} \subseteq B_{Z}$. Moreover, for $\delta \in B_{n-1}$, we have $I_{\delta}=I_{\delta, 0} \amalg I_{\delta, 1}$ and moreover $k<\ell$ for all $k \in I_{\delta, 0}$ and $\ell \in I_{\delta, 1}$. It follows that

$$
z_{\delta}=\frac{1}{2}\left(z_{\delta, 0}+z_{\delta, 1}\right),
$$

and for $i \in\{0,1\}$,

$$
\left\|z_{\delta}-z_{\delta, i}\right\|=\frac{1}{2}\left\|z_{\delta, 0}-z_{\delta, 1}\right\| \geqslant \frac{1}{2} d\left(\operatorname{Conv}\left\{z_{k}, k \in I_{\delta, 0}\right\}, \operatorname{Conv}\left\{z_{k}, k \in I_{\delta, 1}\right\}\right) \geqslant \frac{\theta}{2}
$$

Hence Z has the finite tree property, and so does X since Z is finitely representable in X.
(ii) \Rightarrow (i) Assume that there exists $\theta>0$ such that for all $n \geqslant 1$, there exists $\left\{x_{\varepsilon}^{(n)}, \varepsilon \in B_{n}\right\} \subseteq B_{X}$ with $x_{\varepsilon}^{(n)}=\frac{1}{2}\left(x_{\varepsilon, 0}^{(n)}+x_{\varepsilon, 1}^{(n)}\right)$ for all $\varepsilon \in B_{n-1}$, and $\left\|x_{\varepsilon}^{(n)}-x_{\varepsilon, i}^{(n)}\right\| \geqslant \theta$ for $i \in\{0,1\}$. Let \mathcal{U} be a free ultrafilter on \mathbb{N}, and let $B_{\infty}=\bigcup_{k \geqslant 0} B_{k}$ be the infinite binary tree. Set

$$
\widetilde{x}_{\varepsilon}^{(n)}=\left\{\begin{array}{ll}
x_{\varepsilon}^{(n)} & \text { if }|\varepsilon| \leqslant n \\
0 & \text { otherwise }
\end{array},\right.
$$

and $\widetilde{x}_{\varepsilon}=\left(\left(\widetilde{x}_{\varepsilon}^{(n)}\right)_{n \geqslant 1}\right)_{\mathcal{U}} \in X^{\mathcal{U}}$. It is easy to see that $\widetilde{x}_{\varepsilon}=\frac{1}{2}\left(\widetilde{x}_{\varepsilon, 0}+\widetilde{x}_{\varepsilon, 1}\right)$ and $\left\|\widetilde{x}_{\varepsilon}-\widetilde{x}_{\varepsilon, i}\right\| \geqslant \theta$ for all $\varepsilon \in B_{\infty}$ and $i \in\{0,1\}$. Let

$$
Z=\overline{\operatorname{Span}}\left\{\tilde{x}_{\varepsilon}, \varepsilon \in B_{\infty}\right\} \subseteq X^{\mathcal{U}}
$$

This is a separable subspace of $X^{\mathcal{U}}$. Assume for contradiction that X is super-reflexive. Then Z is reflexive by Proposition 6.32. It follows by Corollary 6.18 that B_{Z} is w-compact. Let

$$
C=\overline{\operatorname{Conv}}\left\{x_{\varepsilon}, \varepsilon \in B_{\infty}\right\} \subseteq B_{Z}
$$

Then C is a $\|\cdot\|$-closed convex subset of B_{Z}, and hence C is w-compact. By Theorem 6.43, C has a strongly exposed point w, so there exists $f \in Z^{*}$ such that $f(u)<f(w)$ for all $u \in C \backslash\{w\}$, and there exists $\eta>0$ such that

$$
\operatorname{diam}\{u \in C, f(w)-\eta<f(u)\}<\frac{\theta}{2}
$$

Since $\{u \in C, f(u) \leqslant f(w)-\eta\} \subsetneq C$ is $\|\cdot\|$-closed and convex, it cannot contain $\left\{\widetilde{x}_{\varepsilon}, \varepsilon \in B_{\infty}\right\}$, so there exists $\varepsilon \in B_{\infty}$ such that $f\left(\widetilde{x}_{\infty}\right)>f(w)-\eta$. Therefore $\frac{1}{2}\left(f\left(\widetilde{x}_{\varepsilon, 0}\right)+f\left(\widetilde{x}_{\varepsilon, 1}\right)\right)=f\left(\widetilde{x}_{\varepsilon}\right)$, so there exists $i \in\{0,1\}$ such that $f\left(\widetilde{x}_{\varepsilon, i}\right)>f(w)-\eta$. Thus $\left\|\widetilde{x}_{\varepsilon}-\widetilde{x}_{\varepsilon, i}\right\|<\frac{\theta}{2}$, a contradiction.
(i) \Rightarrow (iii) Assume that there exists Z non-reflexive, finitely representable in X. By Theorem 6.19, there exist $\theta \in(0,1),\left(z_{i}\right)_{i \geqslant 1} \in B_{Z}$ and $\left(h_{i}\right)_{i \geqslant 1} \in B_{Z^{*}}$ such that

$$
h_{i}\left(z_{j}\right)=\left\{\begin{array}{ll}
\theta & \text { if } i \leqslant j \\
0 & \text { if } i>j
\end{array} .\right.
$$

Given scalars $\left(a_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{R}$,

$$
\left|\sum_{i=\ell}^{n} a_{i}\right|=\frac{1}{\theta}\left|h_{\ell}\left(\sum_{i=1}^{n} a_{i} z_{i}\right)\right| \leqslant \frac{1}{\theta}\left\|\sum_{i=1}^{n} a_{i} z_{i}\right\| .
$$

If $1 \leqslant \ell \leqslant m \leqslant n$, then

$$
\left|\sum_{i=\ell}^{m} a_{i}\right| \leqslant\left|\sum_{i=\ell}^{n} a_{i}\right|+\left|\sum_{i=m+1}^{n} a_{i}\right| \leqslant \frac{2}{\theta}\left\|\sum_{i=1}^{n} a_{i} z_{i}\right\| .
$$

Since Z is finitely representable in X, for all $\lambda>\frac{2}{\theta}$ and for all $n \geqslant 1$, there exist $x_{1}, \ldots, x_{n} \in B_{X}$ such that

$$
\left|\sum_{i=\ell}^{m} a_{i}\right| \leqslant \lambda\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|
$$

for all $\left(a_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{R}$ and $1 \leqslant \ell \leqslant m \leqslant n$.
(iii) \Rightarrow (i) Assume that there exists $\theta>0$ such that for all $n \geqslant 1$, there exist $x_{1}^{(n)}, \ldots, x_{n}^{(n)} \in B_{X}$ such that

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}^{(n)}\right\| \geqslant \theta\left|\sum_{i=\ell}^{m} a_{i}\right|
$$

for all $\left(a_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{R}$ and $1 \leqslant \ell \leqslant m \leqslant n$. Given a free ultrafilter \mathcal{U} on \mathbb{N}, the usual process yields an infinite sequence $\left(\widetilde{x}_{i}\right)_{i \geqslant 1} \in B_{X^{u}}$ such that for all $n \in \mathbb{N},\left(a_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{R}$ and $1 \leqslant \ell \leqslant m \leqslant n$,

$$
\left\|\sum_{i=1}^{n} a_{i} \tilde{x}_{i}\right\| \geqslant \theta\left|\sum_{i=\ell}^{m} a_{i}\right| .
$$

It follows that for every $i \in \mathbb{N}$, we can extend

$$
h_{i}\left(\widetilde{x}_{j}\right)= \begin{cases}\theta & \text { if } i \leqslant j \\ 0 & \text { if } i>j\end{cases}
$$

to a well-defined linear functional on $X^{\mathcal{U}}$ with $\left\|h_{i}\right\| \leqslant 1$ (by Hahn-Banach). Now by Theorem $6.19, X^{\mathcal{U}}$ is not reflexive. But by Proposition $6.32, X^{\mathcal{U}}$ is finitely representable in X, so X is not super-reflexive.

Remark 6.45. Let S be the set of sequence $\left(a_{i}\right)_{i \geqslant 1}$ in \mathbb{R} such that $\sum_{i=1}^{\infty} a_{i}$ is convergent. This becomes a normed space with

$$
\|a\|=\sup _{1 \leqslant \ell \leqslant m}\left|\sum_{i=\ell}^{m} a_{i}\right| .
$$

This is called the summing norm. Note that S is isomorphic to c_{0} via the map $a \mapsto\left(\sum_{i=n}^{\infty} a_{i}\right)_{n \geqslant 1}$.

6.9 Metric characterisation of super-reflexivity

Theorem 6.46. Let X be a Banach space. Then the following assertions are equivalent:
(i) X is not super-reflexive.
(ii) The sequence $\left(D_{n}\right)_{n \geqslant 1}$ of diamond graphs embeds uniformly bilipschitzly into X.

Sketch of proof. (ii) \Rightarrow (i) Assume that there are $f_{n}: D_{n} \rightarrow X$ with $\sup _{n \geqslant 1} \operatorname{dist}\left(f_{n}\right)<\infty$. Without loss of generality, there exists $\delta>0$ such that, for all n and for all $x, y \in D_{n}$,

$$
\delta 2^{-n} d_{n}(x, y) \leqslant\left\|f_{n}(x)-f_{n}(y)\right\| \leqslant 2^{-n} d_{n}(x, y)
$$

Fix n and write $f=f_{n}$. Let $x_{\varnothing}=f(t)-f(b) \in B_{X}$. Note that

$$
\begin{aligned}
& \|[(f(t)-f(\ell))-(f(\ell)-f(b))]-[(f(t)-f(r))-(f(r)-f(b))]\| \\
& \quad=\|2(f(r)-f(\ell))\| \geqslant 2 \delta 2^{-n} d_{n}(\ell, r)=2 \delta .
\end{aligned}
$$

Without loss of generality, $\|(f(t)-f(\ell))-(f(\ell)-f(b))\| \geqslant \delta$. Let $x_{0}=2(f(\ell)-f(b))$ and $x_{1}=$ $2(f(t)-f(\ell))$. Then $x_{\varnothing}=\frac{1}{2}\left(x_{0}+x_{1}\right)$, and $\left\|x_{\varnothing}-x_{0}\right\|=\frac{1}{2}\left\|x_{1}-x_{0}\right\| \geqslant \delta$. Then continue inductively.
(i) \Rightarrow (ii) Assume that there exist $\theta>0$ satisfying Theorem 6.44.(iii). Then define $f_{n}: D_{n} \rightarrow$ $\{0,1\}^{2^{n}} \subseteq \ell_{1}^{2^{n}}$ as follows: $f_{0}(t)=1, f_{0}(b)=0$, then if $x y \in E_{n-1}$, we assume that $f_{n-1}(x), f_{n-1}(y) \in$ $\{0,1\}^{2^{n-1}}$ differ in one component, say the j-th one. Consider $D_{1}(x y)=\{x, y, u, v\}$, and set $\left(f_{n}(u)\right)_{2 i-1}=\left(f_{n}(v)\right)_{2 i}=\left(f_{n-1}(x)\right)_{i}$, etc.

References

[1] J. Matoušek. Lecture notes on metric embeddings.
[2] M.I. Ostrovskii. Metric Embeddings.

