Approximate Group Actions and Ulam Stability

Lectures by Oren Becker Notes by Alexis Marchand

> University of Cambridge Lent 2020 Graduate course

Contents

1	Intr	roduction to stability	1				
	1.1	Basic definitions	2				
	1.2	Connection with group theory	2				
	1.3	Property testing	3				
	1.4	Stability in terms of group actions	3				
2	Inva	ariant random subgroups and stability	4				
	2.1	Invariant random subgroups and random stabilisers	4				
	2.2	Weak-* convergence in $\operatorname{Prob}(\operatorname{Sub}(\Gamma))$	5				
	2.3	Invariant random subgroups of finite index	6				
	2.4	Stability and sequences of actions	7				
	2.5	Expander graphs	8				
	2.6	Convergence of \mathbb{F} -spaces	10				
	2.7	The Elek Transfer Theorem	11				
	2.8	The Ornstein-Weiss Theorem for amenable groups	13				
	2.9	The Newman-Sohler-Elek Theorem	14				
3	Exa	imples of stable groups	15				
	3.1	Stability of \mathbb{Z}^d	15				
	3.2	Stability of virtually polycyclic groups	16				
	3.3	Sufficient condition for instability	17				
	3.4	Instability of $BS(2,3)$	17				
	3.5	The lamplighter group	19				
4	Ope	uestions 20					
R	efere	nces	20				

1 Introduction to stability

Definition 1.1 (Hamming metric). For $n \in \mathbb{N}$, the normalised Hamming metric is the metric d_n on \mathfrak{S}_n defined by

$$d_n(\sigma, \tau) = \frac{1}{n} |\{i \in \{1, \dots, n\}, \sigma(i) \neq \tau(i)\}|.$$

Theorem 1.2 (Arzhantseva-Paunescu, 2015). Nearly commuting permutations are near commuting permutations.

Or more precisely: for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $n \in \mathbb{N}$ and for all $\sigma, \tau \in \mathfrak{S}_n$, if $d_n(\sigma\tau, \tau\sigma) < \delta$, then there exist $\sigma', \tau' \in \mathfrak{S}_n$ such that $\sigma'\tau' = \tau'\sigma'$ and $d_n(\sigma, \sigma') + d_n(\tau, \tau') < \varepsilon$.

1.1 Basic definitions

Notation 1.3. If S is a finite (or infinite) set, we shall denote by $\mathbb{F} = \mathbb{F}_S$ the free group on S.

Definition 1.4 (Local and global defect). Let $E \subseteq \mathbb{F}$ be a set of reduced words in \mathbb{F} . Let $n \in \mathbb{N}$ and $f: S \to \mathfrak{S}_n$.

- (i) We say that f is a solution for E if $\tilde{f}(\omega) = \mathrm{id}_{\mathfrak{S}_n}$ for all $\omega \in E$, where $\tilde{f} : \mathbb{F} \to \mathfrak{S}_n$ is the unique extension of f to \mathbb{F} .
- (ii) The local defect of f with respect to E is

$$L_E(f) = \sum_{\omega \in E} d_n \left(\tilde{f}(\omega), \mathrm{id}_{\mathfrak{S}_n} \right).$$

(iii) The global defect of f with respect to E is

$$G_E(f) = \inf_{\substack{h:S \to \mathfrak{S}_n \\ solution for E}} \sum_{s \in S} d_n \left(f(s), h(s) \right).$$

Definition 1.5 (Stability). Let $E \subseteq \mathbb{F}$ be a finite set. We say that the family of equations $(\omega = 1)_{\omega \in E}$ is stable (in permutations) (or that E is stable) if there exists $F : [0, \infty) \to [0, \infty)$ with $\lim_{0 \to \infty} F = 0$ such that for all $n \in \mathbb{N}$ and for all $f : S \to \mathfrak{S}_n$, we have

$$G_E(f) \leqslant F(L_E(f)).$$

In other words, if the local defect is small, then so is the global defect.

Remark 1.6. The Arzhantseva-Paunescu Theorem says that $\{s_1s_2s_1^{-1}s_2^{-1}\}$ is stable (in permutations).

1.2 Connection with group theory

Definition 1.7 (Stability of groups). Let Γ be a group.

(i) A sequence of functions $(f_n : \Gamma \to \mathfrak{S}_n)_{n \in \mathbb{N}}$ is an asymptotic homomorphism is for all $\gamma_1, \gamma_2 \in \Gamma$,

$$d_n\left(f_n\left(\gamma_1\gamma_2\right), f_n\left(\gamma_1\right)f_n\left(\gamma_2\right)\right) \xrightarrow[n \to \infty]{} 0.$$

(ii) The group Γ is stable (in permutations) if for any asymptotic homomorphism $(f_n : \Gamma \to \mathfrak{S}_n)_{n \in \mathbb{N}}$, there is a sequence of homomorphisms $(h_n : \Gamma \to \mathfrak{S}_n)_{n \in \mathbb{N}}$ such that, for all $\gamma \in \Gamma$,

$$d_n\left(f_n(\gamma), h_n(\gamma)\right) \xrightarrow[n \to \infty]{} 0.$$

Proposition 1.8. Let S be a finite set and let E be a finite subset of \mathbb{F}_S . Then the following assertions are equivalent:

- (i) The family of equations $(\omega = 1)_{\omega \in E}$ is stable.
- (ii) The group $\langle S \mid E \rangle$ is stable.

Proof. Use the fact that $d_n(cad, cbd) = d_n(a, b)$, and fix for each $\gamma \in \Gamma = \langle S \mid E \rangle$ a word over $S^{\pm 1}$ in the class of γ .

Remark 1.9. The Arzhantseva-Paunescu Theorem says that \mathbb{Z}^2 is stable.

Theorem 1.10. Let Γ be a finitely generated amenable group. Then Γ is stable if and only if $\overline{\operatorname{IRS}_{fi}(\Gamma)}^{w*} = \operatorname{IRS}(\Gamma)$.

1.3 Property testing

Remark 1.11. Suppose given two permutations $a, b \in \mathfrak{S}_n$ with n very large, such that one of the following holds:

- (i) ab = ba,
- (ii) The pair (a, b) is at a distance at least ε from the closest commuting pair $(a', b') \in \mathfrak{S}_n \times \mathfrak{S}_n$.

We wish to know whether we are in Case (i) or (ii).

We may use a "sample and substitute" algorithm: sample $x_1, \ldots, x_k \in \{1, \ldots, n\}$ uniformly and independently. Then report "Case (i)" if $ab(x_i) = ba(x_i)$ for all $1 \le i \le k$, or "Case (ii)" otherwise. Then

 $\mathbb{P}(Reporting "Case (ii)" | (i)) = 0.$

Moreover, the fact that $\{s_1s_2s_1^{-1}s_2^{-1}\}$ is stable implies that we can choose k independently of n such that

 $\mathbb{P}(Reporting "Case (i)" | (ii)) < \delta.$

1.4 Stability in terms of group actions

Remark 1.12. Functions $f: S \to \mathfrak{S}_n$ correspond bijectively to actions $\mathbb{F}_S \curvearrowright \{1, \ldots, n\}$. We would like to define the local and global defect of an action of \mathbb{F}_S on a finite set X.

Definition 1.13 (Action graph). Given an action $\mathbb{F} \curvearrowright X$, the action graph is the graph with vertex set X, and with an edge labelled by s from x to $s \cdot x$ for all $s \in S$ and $x \in X$.

Definition 1.14 (Local and global defect of an action). Let $E \subseteq \mathbb{F}$. Suppose given an action $\mathbb{F} \curvearrowright X$, where X is a finite set.

(i) The local defect of X with respect to E is

$$L_E(X) = \frac{1}{|X|} \left| \{ (\omega, x) \in E \times X, \ \omega \cdot x \neq x \} \right|.$$

This measures how many words in E differ from loops in the action graph.

(ii) Consider another action $\mathbb{F} \curvearrowright Y$ with |Y| = |X|. If $h: X \to Y$ is a bijection, we set

$$\|h\|_{S} = \frac{1}{|X|} \left| \{(s,x) \in S \times X, \ h(s \cdot x) \neq s \cdot h(x) \} \right|.$$

This measures how far h is from inducing a graph homomorphism on actions graphs. We now define

$$d_S(X,Y) = \inf_{\substack{h:X \to Y \\ bijection}} \|h\|_S \,.$$

The global defect of X with respect to E is

$$G_E(X) = \inf_{\substack{\mathbb{F} \cap Y \\ |Y| = |X| \\ L_E(Y) = 0}} d_S(X, Y).$$

Proposition 1.15. Let $f: S \to \mathfrak{S}_n$ and $X = \{1, \ldots, n\}$, equipped with the action induced by f. Then $I_n(f) = I_n(Y) = \operatorname{equipped} G_n(Y)$

$$L_E(f) = L_E(X)$$
 and $G_E(f) = G_E(X)$.

2 Invariant random subgroups and stability

2.1 Invariant random subgroups and random stabilisers

Definition 2.1 (Invariant random subgroups). Consider a discrete countable group Γ . Denote by $\operatorname{Sub}(\Gamma)$ the set of subgroups of Γ . Note that $\operatorname{Sub}(\Gamma)$ is a closed subset of the space $\{0,1\}^{\Gamma}$ of all subsets of Γ . The latter, when equipped with the product topology, is a compact metrisable space. Therefore, $\operatorname{Sub}(\Gamma)$ is also a compact metrisable space when equipped with the induced topology.

Now consider the space $\operatorname{Prob}(\operatorname{Sub}(\Gamma))$ of Borel probability measures on $\operatorname{Sub}(\Gamma)$. We define an action $\Gamma \curvearrowright \operatorname{Prob}(\operatorname{Sub}(\Gamma))$ by

$$(\gamma \cdot \mu)(H) = \mu \left(\gamma^{-1} H \gamma\right).$$

The space of invariant random subgroups of Γ is

$$\operatorname{IRS}(\Gamma) = \{ \mu \in \operatorname{Prob}\left(\operatorname{Sub}(\Gamma)\right), \, \forall \gamma \in \Gamma, \, \gamma \cdot \mu = \mu \}.$$

- **Example 2.2.** (i) If $N \leq \Gamma$ is a normal subgroup and δ_N is the Dirac measure at N, then $\delta_N \in \operatorname{IRS}(\Gamma)$.
 - (ii) If $H \leq_{fi} \Gamma$ is a subgroup of finite index, then H has finitely many conjugates; write $\mathcal{H} = \{\gamma H \gamma^{-1}, \gamma \in \Gamma\}$. Then

$$\mu = \frac{1}{k} \sum_{H' \in \mathcal{H}} \delta_{H'} \in \operatorname{IRS}(\Gamma).$$

(iii) Let (X, ν) be a Borel probability space. Consider an action $\Gamma \curvearrowright X$ that is probability measure preserving, *i.e.* such that for all Borel sets $A \subseteq X$, $\nu(\gamma A) = \nu(A)$. Define a map

st :
$$x \in X \longrightarrow \operatorname{Stab}_{\Gamma}(x) \in \operatorname{Sub}(\Gamma)$$
.

The random stabiliser is the probability measure μ on $\operatorname{Sub}(\Gamma)$ defined by $\mu = \operatorname{st}_*\nu$, i.e. $\mu(A) = \nu (\operatorname{st}^{-1}(A))$. Then $\mu \in \operatorname{IRS}(\Gamma)$.

It turns out that every invariant random subgroup arises from a probability measure preserving action in this way (c.f. Proposition 2.4).

(iv) Let $H \leq_{fi} \Gamma$. Consider the action $\Gamma \curvearrowright \Gamma/H$. If Γ/H is equipped with the uniform probability, then it is probability measure preserving. The random stabiliser is the invariant random subgroup of (ii).

Remark 2.3. The space $\operatorname{Sub}(\Gamma)$ is compact and metrisable; it follows that every Borel probability measure μ on $\operatorname{Sub}(\Gamma)$ is outer regular: for every Borel set $A \subseteq \operatorname{Sub}(\Gamma)$,

$$\mu(A) = \inf_{\substack{U \supseteq A \\ U \text{ open}}} \mu(U).$$

Proposition 2.4. Let Γ be a countable group and $\mu \in \text{IRS}(\Gamma)$. Then there is a probability space (A, ν) and an action $\Gamma \curvearrowright (A, \nu)$ that is probability measure preserving such that the random stabiliser of $\Gamma \curvearrowright (A, \nu)$ is μ .

Proof. First attempt. Let A be the space of pointed transitive Γ -spaces up to isomorphism; in other words,

 $A = \{ [(X, x)], \ \Gamma \curvearrowright X \text{ transitively}, \ x \in X \},\$

where a bijection $f: (X, x) \to (Y, y)$ is said to be an isomorphism if it is γ -invariant and satisfies f(x) = y. Define an action $\Gamma \curvearrowright A$ by $\gamma \cdot [(X, x)] = [(X, \gamma x)]$, and define a probability measure ν on

A by the following law: "choose a random subgroup $H \leq \Gamma$ according to μ and output $[(\Gamma/H, H)]$ ". Let us determine the random stabiliser of $\Gamma \curvearrowright (A, \nu)$. Given $H \subseteq \Gamma$,

$$\gamma \in \operatorname{Stab}_{\Gamma} \left(\left[(\Gamma/H, H) \right] \right) \iff \left(\Gamma/H, \gamma H \right) \cong \left(\Gamma/H, H \right)$$
$$\iff \exists f : \Gamma/H \xrightarrow{\cong} \Gamma/H, \ f(\gamma H) = H$$
$$\implies \operatorname{Stab}_{\Gamma} \left(\gamma H \right) = \operatorname{Stab}_{\Gamma}(H)$$
$$\iff \gamma H \gamma^{-1} = H \iff \gamma \in N_{\Gamma}(H),$$

where $N_{\Gamma}(H)$ is the normaliser of H in Γ . The converse implication is also true, so the random stabiliser can be described as $N_*\mu$, where $N: H \in \operatorname{Sub}(\Gamma) \mapsto N_{\Gamma}(H) \in \operatorname{Sub}(\Gamma)$. This does not work; we wanted to restore μ .

The reason why the above attemps fails is that there is too much symmetry: for instance, if $\Gamma = \mathbb{Z}$ and $\mu = \delta_{100\mathbb{Z}}$, then the measure ν on A will almost surely pick the action $\mathbb{Z} \curvearrowright (\mathbb{Z}/100\mathbb{Z}, 0)$, and the stabiliser of a point is always \mathbb{Z} because

$$x \cdot (\mathbb{Z}/100\mathbb{Z}, 0) = (\mathbb{Z}/100\mathbb{Z}, [x]) \cong (\mathbb{Z}/100\mathbb{Z}, 0)$$

In order to reduce the symmetry, we shall introduce a colouring on the Γ -spaces (X, x).

Second attempt. We define

$$A = \left\{ \left[(X, x, \sigma) \right], \ \Gamma \curvearrowright X \text{ transitively, } x \in X, \ \sigma : X \to \{0, 1\}^{\mathbb{N}} \right\},\$$

where a bijection $f: (X, x, \sigma) \to (Y, y, \tau)$ is said to be an isomorphism if it is γ -invariant, satisfies f(x) = y and $\sigma = \tau \circ f$. Define an action $\Gamma \curvearrowright A$ by $\gamma \cdot [(X, x, \sigma)] = [(X, \gamma x, \sigma)]$, and define a probability measure ν on A by the following law: "choose a random subgroup $H \leq \Gamma$ according to μ , choose a random function $\sigma : \Gamma/H \to \{0,1\}^{\mathbb{N}}$ uniformly at random and output $[(\Gamma/H, H, \sigma)]$ ". Now the random stabiliser of $\Gamma \curvearrowright A$ is indeed μ .

2.2 Weak-* convergence in $\operatorname{Prob}(\operatorname{Sub}(\Gamma))$

Definition 2.5 (Convergence in Prob (Sub (Γ))). We equip Prob (Sub(Γ)) with the weak-* topology. Explicitly, given $(\mu_n)_{n\geq 1}$ and μ in Prob (Sub(Γ)), we say that $\mu_n \xrightarrow[n\to\infty]{w*} \mu$ (we shall later omit the mention "w*" from the notation) if for every $A \subseteq B \subseteq \Gamma$ with B finite,

$$\mu_n(U_{A,B}) \xrightarrow[n \to \infty]{} \mu(U_{A,B}),$$

where

$$U_{A,B} = \{ H \leqslant \Gamma, \ H \cap B = A \} \,.$$

Note that $(U_{A,B})_{\substack{A \subseteq B \subseteq \Gamma \\ |B| < \infty}}$ is a basis of open subsets of $\operatorname{Sub}(\Gamma) \subseteq \{0,1\}^{\Gamma}$ that are also closed.

Remark 2.6. If μ is a probability measure on a set X, then for $A \subseteq B \subseteq C \subseteq X$ with C finite,

$$\mu\left(U_{B,A}\right) = \sum_{D \subseteq C \setminus B} \mu\left(U_{C,A \cup D}\right)$$

This equality is called the consistency relation for A, B, C.

Proof. Note that $U_{B,A} = \coprod_{D \subset C \setminus B} U_{C,A \cup D}$.

Lemma 2.7. Let X be a set. Suppose given, for each $A \subseteq B \subseteq X$ with B finite, a real number $\mu(U_{A,B}) \leq 1$ and assume that all the consistency relations are satisfied (c.f. Remark 2.6). Then we can extend μ to a probability measure on X.

Proof. Use the Kolmogorov Extension Theorem.

Proposition 2.8. (i) IRS(Γ) is closed in Prob (Sub(Γ)).

(ii) Both $IRS(\Gamma)$ and $Prob(Sub(\Gamma))$ are sequentially compact.

Proof. (ii) If $(\mu_n)_{n\geq 1}$ is a sequence of probability measures on $\operatorname{Sub}(\Gamma)$, then we can extract a subsequence (using a diagonal argument) such that $(\mu_n(U_{A,B}))_{n\geq 1}$ converges to some real number $\mu(U_{A,B})$ for all $A \subseteq B \subseteq \Gamma$ with B finite. It then suffices to apply Lemma 2.7.

Example 2.9. If $\Gamma = \mathbb{Z}$, then $\delta_{n\mathbb{Z}} \xrightarrow[n \to \infty]{w*} \delta_0$.

Remark 2.10. We now assume that the group Γ is finitely generated, so there exists a surjective map $\pi : \mathbb{F} \to \Gamma$, where $\mathbb{F} = \mathbb{F}_S$ for some finite set S. We define a map

 $\theta: H \in \operatorname{Sub}(\Gamma) \longmapsto \pi^{-1}(H) \in \operatorname{Sub}(\mathbb{F}).$

Note that θ is injective and that $\operatorname{Im} \theta$ is closed in $\operatorname{Sub}(\mathbb{F})$, because

$$\operatorname{Im} \theta = \{ K \leqslant \mathbb{F}, \operatorname{Ker} \pi \leqslant K \} = \bigcap_{\omega \in \operatorname{Ker} \pi} \{ K \leqslant F, \omega \in K \} = \bigcap_{\omega \in \operatorname{Ker} \pi} U_{\{\omega\},\{\omega\}}^{\mathbb{F}}$$

We will therefore consider $\operatorname{Sub}(\Gamma)$ as a closed subset of $\operatorname{Sub}(\mathbb{F})$ (identifying it with $\bigcap_{\omega \in \operatorname{Ker}\pi} U^{\mathbb{F}}_{\{\omega\},\{\omega\}}$).

2.3 Invariant random subgroups of finite index

Lemma 2.11. If Γ is a finitely generated group, then for all $n \in \mathbb{N}$, the set $\{H \leq \Gamma, [\Gamma : H] = n\}$ is finite.

Proof. Note that the set $\{H \leq \Gamma, [\Gamma : H] = n\}$ injects into the set of morphisms $\Gamma \to \mathfrak{S}_n$ (which is finite) via the action $\Gamma \curvearrowright \Gamma/H$.

Definition 2.12 (Invariant random subgroups of finite index). Let Γ be a finitely generated group. By Lemma 2.11, we may enumerate the finite index subgroups of Γ as $(K_i)_{i\geq 1}$. We then define:

$$\operatorname{IRS}_{fi}(\Gamma) = \left\{ \mu \in \operatorname{IRS}(\Gamma), \ \exists \left(\alpha_i\right)_{i \ge 1} \in \left(\mathbb{R}_+\right)^{\mathbb{N}}, \ \sum_{i=1}^{\infty} \alpha_i \delta_{K_i} = \mu_i \ \text{and} \ \sum_{i=1}^{\infty} \alpha_i = 1 \right\}.$$

Proposition 2.13. Let Γ be a finitely generated group and $\mu \in \operatorname{IRS}(\Gamma)$. Then $\mu \in \overline{\operatorname{IRS}_{fi}(\Gamma)}^{w*}$ if and only if there is a sequence $(X_n)_{n\geq 1}$ of finite sets with Γ -action such that

$$\mu_{X_n} \xrightarrow[n \to \infty]{w*} \mu,$$

where μ_{X_n} is the random stabiliser of $\Gamma \curvearrowright X_n$ (the set X_n being equipped with the uniform distribution).

Proof. (\Leftarrow) It is clear that if X_n is finite, then the random stabiliser μ_{X_n} is in $\operatorname{IRS}_{fi}(\Gamma)$.

 (\Rightarrow) If $\mu \in \overline{\mathrm{IRS}_{fi}(\Gamma)}^{w*}$, then there is a sequence $(\nu_n)_{n\in\mathbb{N}}$ in $\mathrm{IRS}_{fi}(\Gamma)$ such that $\nu_n \xrightarrow[n\to\infty]{w*} \mu$. For $n \in \mathbb{N}$, write

$$\nu_n = \sum_{i=1}^{\infty} \alpha_i \frac{1}{|C_i|} \sum_{H \in C_i} \delta_H,$$

where $(C_i)_{i\geq 1}$ is the set of conjugacy classes of finite index subgroups of Γ . Then set

$$\lambda_m = \left(\sum_{i=1}^m \alpha_i\right)^{-1} \sum_{i=1}^m \alpha_i \frac{1}{|C_i|} \sum_{H \in C_i} \delta_H.$$

Hence $\lambda_m \xrightarrow[m \to \infty]{m \to \infty} \nu_n$. Now fix m and choose integers $r_1, \ldots, r_m \ge 0$ such that $\sum_{i=1}^m r_i = k$ and minimising $\sum_{i=1}^m |\alpha_i - \frac{r_i}{k}|$; define

$$\kappa_k = \sum_{i=1}^m \frac{r_i}{k} \cdot \frac{1}{|C_i|} \sum_{H \in C_i} \delta_H.$$

Thus $\kappa_k \xrightarrow[k \to \infty]{} \lambda_m$. After having fixed a representative H_i of C_i for all i, set

$$X = \prod_{i=1}^{m} \left(\Gamma / H_i \right)^{\amalg r_i}.$$

Then X is a finite probability space (equipped with the uniform measure) and its random stabiliser is κ_k .

2.4 Stability and sequences of actions

Remark 2.14. Let $E \subseteq \mathbb{F}$ and consider an action $\mathbb{F} \curvearrowright X$. Note that the local defect of X with respect to E can be written as

$$L_E(X) = \sum_{\omega \in E} \mathbb{P}(\omega x \neq x),$$

where x follows the uniform distribution on X.

Proposition 2.15. Assume that the group Γ has a finite presentation $\langle S | E \rangle$ and let $\pi : \mathbb{F} \to \Gamma$ be the corresponding homomorphism. Let $(X_n)_{n \geq 1}$ be a sequence of finite sets equipped with an \mathbb{F} -action. Assume that the sequence $(\mu_{X_n})_{n \geq 1}$ of random stabilisers converges in the weak-* topology to $\mu \in \operatorname{IRS}(\mathbb{F})$.

Then $L_E(X_n) \xrightarrow[n \to \infty]{} 0$ if and only if $\mu \in \operatorname{IRS}(\Gamma)$.

Proof. (\Rightarrow) Let $\omega \in \text{Ker } \pi = \langle\!\langle E \rangle\!\rangle$. Write $\omega = \prod_{i=1}^r g_i \omega_i^{\varepsilon_i} g_i^{-1}$, with $g_i \in \mathbb{F}$, $\omega_i \in E$ and $\varepsilon_i \in \{\pm 1\}$. Thus

$$\mathbb{P}_{X_n} \left(\omega x \neq x \right) \leqslant \mathbb{P}_{X_n} \left(\bigcup_{i=1}^r \left(g_i \omega_i^{\varepsilon_i} g_i^{-1} \right) x \neq x \right) \leqslant \sum_{i=1}^r \mathbb{P}_{X_n} \left(\omega_i^{\varepsilon_i} \left(g_i^{-1} x \right) \neq g_i^{-1} x \right)$$
$$= \sum_{i=1}^r \mathbb{P}_{X_n} \left(\omega_i^{\varepsilon_i} x \neq x \right) = \sum_{i=1}^r \mathbb{P}_{X_n} \left(\omega_i x \neq x \right)$$
$$\leqslant r \sum_{w \in E} \mathbb{P}_{X_n} \left(w x \neq x \right) = r L_E \left(X_n \right)$$
$$\xrightarrow[n \to \infty]{} 0.$$

It follows that, for $\omega \in \operatorname{Ker} \pi$,

$$\mu_{X_n}\left(U_{\{\omega\},\{\omega\}}\right) = \mathbb{P}_{X_n}\left(\omega \in \operatorname{Stab}_{\mathbb{F}}(x)\right) \xrightarrow[n \to \infty]{} 1.$$

But this also converges to $\mu(U_{\{\omega\},\{\omega\}})$, so the latter is equal to 1. Hence,

$$\mu(\operatorname{IRS}(\Gamma)) = \mu\left(\bigcap_{\omega \in \operatorname{Ker} \pi} \mu\left(U_{\{\omega\},\{\omega\}}\right)\right) = 1,$$

or in other words $\mu \in \operatorname{IRS}(\Gamma)$.

Lemma 2.16. Let $(Z_n)_{n\geq 1}$ be a sequence of finite sets equipped with a Γ -action (where Γ is a discrete countable group) such that $\mu_{Z_n} \xrightarrow[n\to\infty]{w*} \mu \in \operatorname{IRS}(\Gamma)$. Given a sequence of integers $(m_k)_{k\geq 1}$ such that $m_k \xrightarrow[k\to\infty]{w*} \infty$, there is a sequence $(Y_k)_{k\geq 1}$ of finite sets equipped with a Γ -action such that $|Y_k| = m_k$ and $\mu_{Y_k} \xrightarrow[k\to\infty]{w*} \mu$.

Proof. We use the following two ideas:

- (i) If $\Gamma \curvearrowright Z$, with Z finite, then $\mu_{Z^{\amalg n}} = \mu_Z$.
- (ii) If $\Gamma \curvearrowright T$, with $|T| \ll |Z|$, then $\mu_{Z\Pi T} \approx \mu_Z$.

More precisely, define indices $(i_n)_{n\geq 1}$ such that

$$\forall k \in \{i_n, \dots, i_{n+1} - 1\}, \ \frac{|Z_n|}{m_k} < \frac{1}{n}.$$

For $k \ge i_1$, write the Euclidean division of m_k by $|Z_{n_k}|$: $m_k = q_k |Z_{n_k}| + r_k$, with $0 \le r_k < |Z_{n_k}|$. Now set

$$Y_k = Z_{n_k}^{\amalg q_k} \amalg T_{r_k},$$

where T_{r_k} is the trivial Γ -action on r_k points. Hence $|Y_k| = m_k$ and, for all $A \subseteq B \subseteq \Gamma$ with B finite,

$$\mu_{Y_k}\left(U_{B,A}\right) = \frac{r_k}{m_k} \mu_{T_{r_k}}\left(U_{B,A}\right) + \left(1 - \frac{r_k}{m_k}\right) \mu_{Z_{n_k}}\left(U_{B,A}\right) \xrightarrow[k \to \infty]{} \mu\left(U_{B,A}\right). \qquad \Box$$

Proposition 2.17. Assume that the group Γ has a finite presentation $\langle S \mid E \rangle$. Let $(X_n)_{n \ge 1}$ be a sequence of finite sets equipped with an \mathbb{F} -action such that the sequence $(\mu_{X_n})_{n \ge 1}$ of random stabilisers converges in the weak-* topology to $\mu \in \operatorname{IRS}(\mathbb{F})$ with $L_E(X_n) \xrightarrow[n \to \infty]{} 0$. If we assume in addition that

$$\overline{\mathrm{IRS}_{fi}(\Gamma)}^{\omega^*} = \mathrm{IRS}(\Gamma),$$

then there are finite sets $(Y_n)_{n\in\mathbb{N}}$ equipped with a Γ -action, such that $|Y_n| = |X_n|$, and

$$\mu_{Y_n} \xrightarrow[n \to \infty]{w*} \mu.$$

Proof. By Proposition 2.15, $\mu \in \operatorname{IRS}(\Gamma) = \overline{\operatorname{IRS}_{fi}(\Gamma)}^{w*}$. Therefore, by Proposition 2.13, there is a sequence $(Z_n)_{n \ge 1}$ of finite sets with a Γ -action such that $\mu_{Z_n} \xrightarrow[n \to \infty]{w*} \mu$. The result now follows from Lemma 2.16.

Notation 2.18. Given a group Γ with a (finite) generating set S, we let

$$B_{\Gamma}(r) = \left\{ s_1^{\varepsilon_1} \cdots s_k^{\varepsilon_k}, \ k \leqslant r, \ (s_1, \dots, s_k) \in S^k, \ (\varepsilon_1, \dots, \varepsilon_k) \in \{\pm 1\}^k \right\}.$$

Moreover, if $A \subseteq B_{\Gamma}(r)$, we write

$$U_{r,A} = U_{B_{\Gamma}(r),A} = \{H \leqslant \Gamma, \ H \cap B_{\Gamma}(r) = A\}.$$

Proposition 2.19. Let Γ be a group with a finite generating set S. Given $(\mu_n)_{n\geq 1}$ and μ in IRS (Γ) , we have

$$\mu_n \xrightarrow[n \to \infty]{w*} \mu \iff \forall r \ge 1, \ \forall A \subseteq B_{\Gamma}(r), \ \mu_n(U_{r,A}) \xrightarrow[n \to \infty]{w} \mu(U_{r,A}).$$

2.5 Expander graphs

Remark 2.20. We wish to show that, in the context of Proposition 2.17, we have $d_S(X_n, Y_n) \xrightarrow[n \to \infty]{n \to \infty} 0$ (c.f. Definition 1.14). This will prove the reverse implication of Theorem 1.10: if $\overline{\text{IRS}_{fi}(\Gamma)}^{w*} = \text{IRS}(\Gamma)$, then Γ is stable.

We first give an example showing that this does not hold without the assumption that Γ is amenable.

Proposition 2.21. (i) If p is a prime number, then the homomorphism $\pi_p : SL_2\mathbb{Z} \to SL_2(\mathbb{Z}/p)$ of reduction modulo p is surjective, and its kernel is

$$\Gamma(p) = \{I + pA, A \in M_2(\mathbb{Z})\} \cap SL_2\mathbb{Z}$$

- (ii) There are sequences $(\ell_n)_{n \ge 1}$ and $(q_n)_{n \ge 1}$ of prime numbers such that the sequence $\left(\frac{\ell_n}{q_n}\right)_{n \ge 1}$ is decreasing and converges to 2.
- (iii) $|SL_2(\mathbb{Z}/p)| = (p+1)p(p-1).$

Proof. (ii) Use the Prime Number Theorem: if p_n is the numbers of prime numbers at most n, then $p_n \sim \frac{n}{\log n}$.

Definition 2.22 (Expander graphs). Let X = (V, E) be a finite graph. The Cheeger constant of X is

$$h(X) = \min_{\substack{U \subseteq V\\|U| \leq \frac{1}{2}|V|}} \frac{|E(U, V \setminus U)|}{|U|}$$

where $E(U_1, U_2)$ is the set of edges with one endpoint in U_1 and the other in U_2 .

We say that X is an ε -expander if $h(X) \ge \varepsilon$.

A sequence $(X_n)_{n\geq 1}$ is said to be an expanding family (or a sequence of expander graphs) if $|X_n| \xrightarrow[n\to\infty]{} \infty$ and there exists $\varepsilon_0 > 0$ such that X_n is an ε_0 -expander for all n.

Example 2.23. Let C_n denote the cycle graph on n vertices. Then $(C_n)_{n \in \mathbb{N}}$ is not an expanding family because $h(C_n) \sim \frac{2}{n} \to 0$.

Margulis used Kazhdan's Property (T) to show that, if $(X_n)_{n\geq 1}$ is a sequence of finite sets equipped with transitive $SL_3\mathbb{Z}$ -actions, then the graphs of the actions form an expanding family (where $SL_3\mathbb{Z}$ is equipped with a finite generating set).

Proposition 2.24. Equip $SL_2(\mathbb{Z}/p)$ with the action of $SL_2\mathbb{Z}$ by left multiplication for all primes p. Then the sequence $(SL_2(\mathbb{Z}/p))_{p \text{ prime}}$ is an expanding family (where $SL_2\mathbb{Z}$ is equipped with a finite generating set).

Example 2.25. Let $(\ell_n)_{n \ge 1}$ and $(q_n)_{n \ge 1}$ be sequences of prime numbers such that the sequence $\left(\frac{\ell_n}{q_n}\right)_{n \ge 1}$ is decreasing and converges to 2. Define

$$X_n = SL_2\left(\mathbb{Z}/\ell_n\right) \qquad and \qquad Y_n = SL_2\left(\mathbb{Z}/q_n\right)^{\amalg 8}\amalg T_{r_n},$$

where T_{r_n} is the trivial action on r_n points, with r_n chosen such that $|X_n| = |Y_n|$. Make $SL_2\mathbb{Z}$ act on $(X_n)_{n\geq 1}$ and $(Y_n)_{n\geq 1}$ in the natural way. Then

$$\lim_{n \to \infty} \mu_{X_n} = \lim_{n \to \infty} \mu_{Y_n} = \delta_{\{I\}} \in \mathrm{IRS}\left(SL_2\mathbb{Z}\right)$$

However, there is a constant $\eta_0 > 0$ such that $d_S(X_n, Y_n) \ge \eta_0$ for all $n \in \mathbb{N}$.

Proof. Note that $\mu_{X_n} = \delta_{\Gamma(\ell_n)}$. Since $\ell_n \xrightarrow[n \to \infty]{} \infty$, it follows that

$$\mu_{X_n} \xrightarrow[n \to \infty]{w*} \delta_{\{I\}},$$

and similarly for μ_{Y_n} because $\frac{r_n}{|Y_n|} \xrightarrow[n \to \infty]{n \to \infty} 0$. To find a lower bound for $d_S(X_n, Y_n)$, let $f_n : Y_n \to X_n$ be a bijection. Consider a copy Z_n of $SL_2(\mathbb{Z}/q_n)$ inside Y_n . Note that, in the action graph, $E(Z_n, Y_n \setminus Z_n) = \emptyset$. However, since $(X_n)_{n \ge 1}$ is an expanding family by Proposition 2.24,

$$|E(f_n(Z_n), X_n \setminus f_n(Z_n))| \ge \varepsilon_0 |f_n(Z_n)| \ge \frac{1}{16} \varepsilon_0 |X_n|.$$

It follows that $d_S(X_n, Y_n) \ge \frac{\varepsilon_0}{16}$.

2.6 Convergence of \mathbb{F} -spaces

Definition 2.26 (Pointed S-graphs). A pointed S-graph of radius at most r is an oriented graph Y with a distinguished vertex $y \in Y$, where the edges are labelled by S, such that every vertex has at most one incoming s-edge and one outgoing s-edge for all $s \in S$, and every vertex of Y is at a distance at most r from y.

We denote by $\mathcal{X}_{\bullet,\leq r}$ the set of isomorphism classes of pointed S-graphs of radius at most r. This is a finite space.

Given a set C, we denote by $\mathcal{X}_{\bullet,\leq r}^C$ the set of isomorphism classes of pointed S-graphs of radius at most r with a colouring $\sigma: Y \to C$.

Definition 2.27 (Convergence of \mathbb{F} -spaces). Given a \mathbb{F} -space (X, ν) , there is a map $f_{(X,\nu)} : \mathcal{X}_{\bullet,\leqslant r} \to \mathbb{R}$ defined by

$$f_{(X,\nu)}\left(\left[(Y,y)\right]\right) = \mathbb{P}\left(B_X(x,r) \cong (Y,y)\right)$$

where x is chosen randomly according to ν and $B_X(x,r)$ is the ball of centre x and radius r in the action graph of $\mathbb{F} \curvearrowright X$ (c.f. Definition 1.13).

Now given \mathbb{F} -spaces $(X_n)_{n\geq 1}$ and (X,ν) , we say that $X_n \xrightarrow[n \to \infty]{} X$ if

$$\forall r \ge 1, \forall [(Y,y)] \in \mathcal{X}_{\bullet,\leqslant r}, f_{X_n}([(Y,y)]) \xrightarrow[n \to \infty]{} f_{(X,\nu)}([(Y,y)]).$$

This notion of convergence is equivalent to the convergence of random stabilisers by Proposition 2.19.

Similarly, if there are colourings $\sigma_n : X_n \to C$ and $\sigma : X \to C$, then we can define $X_n \xrightarrow[n \to \infty]{} X$ as before, by replacing $\mathcal{X}_{\bullet,\leqslant r}$ by $\mathcal{X}_{\bullet,\leqslant r}^C$.

Remark 2.28. Recall from Proposition 2.4 that, given an invariant random subgroup $\mu \in \operatorname{IRS}(\Gamma)$, there is a canonical space (A, ν) associated to μ whose random stabiliser is $\mu: A = \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is the set of isomorphism classes of spaces (Y, y, σ) , where Y is equipped with a transitive action of \mathbb{F} , $y \in Y$ is a distinguished point, and $\sigma: Y \to \{0,1\}^{\mathbb{N}}$ is a colouring. This set $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is equipped with an action of \mathbb{F} given by $\omega \cdot [(Y, y, \sigma)] = [(Y, \omega y, \sigma)]$ and the proof of Proposition 2.4 described the construction of a probability measure $\mu_{\{0,1\}^{\mathbb{N}}}$ on $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ without mentioning the σ -algebra.

To make the σ -algebra explicit, we shall equip $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ with a metric and use the Borel σ -algebra. We say that two spaces $[(Y_1, y_1, \sigma_1)], [(Y_2, y_2, \sigma_2)] \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ are r-locally isomorphic, and we write $(Y_1, y_1, \sigma_1) \simeq_r (Y_2, y_2, \sigma_2)$ (for $r \ge 0$) if

$$\left(B_1, y_1, (\pi \circ \sigma_1)_{|B_1}\right) \cong \left(B_2, y_2, (\pi \circ \sigma_2)_{|B_2}\right),$$

where B_i is the ball of centre y_i and radius r in Y_i , and $\pi : \{0,1\}^{\mathbb{N}} \to \{0,1\}^r$ is the projection map. Then we set

$$d([(Y_1, y_1, \sigma_1)], [(Y_2, y_2, \sigma_2)]) = \exp(-r_0)$$

with $r_0 = \sup \{r \ge 0, (Y_1, y_1, \sigma_1) \simeq_r (Y_2, y_2, \sigma_2) \}.$

Remark 2.29. The space $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is compact and metrisable; it follows that $\mu_{\{0,1\}^{\mathbb{N}}}$ is outer regular: for every Borel set $A \subseteq \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$,

$$\mu(A) = \inf_{\substack{U \supseteq A \\ U \text{ open}}} \mu(U).$$

Definition 2.30 (r-local map). Let $r \ge 0$. A Borel map $f : \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}} \to C$ (with C finite) is said to be r-local if

$$f\left(\left[(X, x, \sigma)\right]\right) = f\left(\left[(Y, y, \tau)\right]\right)$$

whenever $(X, x, \sigma) \simeq_r (Y, y, \tau)$.

Remark 2.31. If $U \subseteq \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is open, then we can write $U = \bigcup_{r \ge 0} U_r$, with $U_r \subseteq U_{r+1}$ open, and where $\mathbb{1}_{U_r} : \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}} \to \{0,1\}$ is r-local.

Proof. Given $[(X, x, \sigma)] \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ and $r \ge 0$, consider the ball of radius e^{-r} centred at (X, x, σ) :

 $B_{(X,x,\sigma),r} = \left\{ (Y,y,\tau) \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \ (X,x,\sigma) \text{ and } (Y,y,\tau) \text{ are } r\text{-locally isomorphic} \right\}.$

Given an open set $U \subseteq \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$, define

$$U_r = \bigcup_{B_{(X,x,\sigma),r} \subseteq U} B_{(X,x,\sigma),r}.$$

Then U_r is open, $U_r \subseteq U_{r+1}$, $U = \bigcup_{r \ge 0} U_r$ and $\mathbb{1}_{U_r}$ is r-local.

Remark 2.32. By Remarks 2.29 and 2.31, we have the following: if $B \subseteq \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is Borel and $\varepsilon > 0$, then:

- (i) There exists an open set $U \supseteq B$ such that $\mu_{\{0,1\}^{\mathbb{N}}}(U \setminus B) < \frac{\varepsilon}{2}$.
- (ii) There exists $r \ge 0$ and an open set $U_r \subseteq U$ with $\mathbb{1}_{U_r}$ r-local such that $\mu_{\{0,1\}^{\mathbb{N}}}(U \setminus U_r) < \frac{\varepsilon}{2}$.

Hence $\mu_{\{0,1\}^{\mathbb{N}}}(B \triangle U_r) < \varepsilon$.

Lemma 2.33. Let $\sigma: \mathcal{X}_{\{0,1\}^{\mathbb{N}}}^{\{0,1\}^{\mathbb{N}}} \to C$ be a Borel map with C finite. Let $\varepsilon > 0$. Then there exists $r \ge 0$ and an r-local map $\ell: \mathcal{X}_{\{0,1\}^{\mathbb{N}}}^{\{0,1\}^{\mathbb{N}}} \to C$ such that

$$\forall c \in C, \ \mu_{\{0,1\}^{\mathbb{N}}}\left(\sigma^{-1}(c) \triangle \ell^{-1}(c)\right) < \varepsilon.$$

Definition 2.34 (Typical points of $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$). The subset of typical points of $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ is defined by

$$\mathcal{T}_{\bullet}^{\{0,1\}^{\mathbb{N}}} = \left\{ [(X, x, \sigma)] \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \ \sigma \ is \ injective \right\}.$$

We have $\mu_{\{0,1\}^{\mathbb{N}}}\left(\mathcal{T}_{\bullet}^{\{0,1\}^{\mathbb{N}}}\right) = 1.$

Remark 2.35. Let $[(X, x, \sigma)] \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$. Consider the action graph of $\mathbb{F} \curvearrowright \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$, and equip it with the root-colouring: the colour of $[(Y, y, \tau)]$ is $\tau(y)$. Now take the connected component of $[(X, x, \sigma)]$. If (X, x, σ) is a typical point, then this component is a coloured pointed S-graph isomorphic to (X, x, σ) .

2.7 The Elek Transfer Theorem

Proposition 2.36. Let $(X_n)_{n \ge 1}$ be a sequence of finite \mathbb{F} -spaces. For every $n \ge 1$ and $y \in X_n$, choose an element $\alpha_n(y) \in \{0,1\}^{\mathbb{N}}$ uniformly independently at random. This yields a random sequence $(\alpha_n : X_n \to \{0,1\}^{\mathbb{N}})_{n \ge 1}$ of colourings. Assume that

$$\mu_{X_n} \xrightarrow[n \to \infty]{w*} \mu \in \operatorname{IRS}(\mathbb{F}).$$

Let $\mu_{(X_n,\alpha_n)}$ be the probability measure on $\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ defined as follows: choose $x \in X_n$ uniformly at random, and output $(\mathbb{F} \cdot x, x, \alpha_n) \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$; let $\mu_{\{0,1\}^{\mathbb{N}}}$ be the probability measure defined as follows: choose $H \sim \mu \in \operatorname{IRS}(\mathbb{F})$, choose $\alpha : \mathbb{F}/H \to \{0,1\}^{\mathbb{N}}$ uniformly at random, and output $(\mathbb{F}/H, H, \alpha)$.

Then, with probability 1,

$$\mu_{(X_n,\alpha_n)} \xrightarrow[n \to \infty]{w*} \mu_{\{0,1\}^{\mathbb{N}}}.$$

Proof. Fix $r_0 \ge 0$ and $(B, b, \beta) \in \mathcal{X}_{\bullet, \le r_0}^{\{0,1\}^{r_0}}$. Define

$$p_n = \mathbb{P}_{x \in X_n} \left((X_n, x) \simeq_r (B, b) \right)$$
 and $p = \mathbb{P}_{(Y,y) \sim \mu} \left((Y, y) \simeq_r (B, b) \right)$.

Hence, $\mu_{X_n} \xrightarrow[n \to \infty]{} \mu$ (without colourings) means that $p_n \xrightarrow[n \to \infty]{} p$. Similarly, let

$$p'_{n} = \mathbb{P}_{x \in X_{n}} \left((X_{n}, x, \alpha_{n}) \simeq_{r} (B, b, \beta) \right)$$
 and $p' = \mathbb{P}_{(Y,y) \sim \mu} \left((Y, y, \sigma) \simeq_{r} (B, b, \beta) \right) = 2^{-|B|r_{0}} p.$

_	-	-	

We want to show that $p'_n \xrightarrow[n \to \infty]{} p'$ with probability 1. Note that

$$p'_n = p_n \cdot \frac{1}{|A_n|} \sum_{a \in A_n} I_a,$$

where $A_n = \{a \in X_n, (X_n, a) \simeq_r (B, b)\}$ and, for $a \in A_n, I_a = \mathbb{1}((X_n, a, \alpha_n) \simeq_r (B, b, \beta))$. Therefore it suffices to show that

$$\frac{1}{|A_n|} \sum_{a \in A_n} I_a \xrightarrow[n \to \infty]{} 2^{-|B|r_0},$$

with probability 1 under the random choice of $(\alpha_n)_{n \ge 1}$. Note that $\mathbb{E}(I_a) = 2^{-|B|r_0}$. However, for X_n fixed, the $(I_a)_{a \in A}$ are not independent, but there are only few dependencies, allowing us to use a modified version of the Law of Large Numbers (due to Elek).

Theorem 2.37 (Elek Transfer Theorem). Let $(X_n)_{n\geq 1}$ be a sequence of finite \mathbb{F} -spaces. Assume that

$$\mu_{X_n} \xrightarrow[n \to \infty]{w*} \mu \in \mathrm{IRS}(\mathbb{F}),$$

or equivalently, $X_n \xrightarrow[n \to \infty]{} \left(\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \mu_{\{0,1\}^{\mathbb{N}}} \right)$. Let $\sigma : \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}} \to C$ be a colouring (with C finite). Then there exists a sequence $(\sigma_n : X_n \to C)_{n \ge 1}$ of colourings such that

$$(X_n, \sigma_n) \xrightarrow[n \to \infty]{} \left(\mathcal{X}^{\{0,1\}^{\mathbb{N}}}_{\bullet}, \mu_{\{0,1\}^{\mathbb{N}}}, \sigma \right)$$

Proof. By Lemma 2.33, for every $\varepsilon > 0$, there exists $r \ge 0$ and an r-local map $\ell : \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}} \to C$ such that

$$\mu_{\{0,1\}^{\mathbb{N}}}\left(\ell^{-1}(c) \bigtriangleup \sigma^{-1}(c)\right) < \varepsilon.$$

Since this is true for all $\varepsilon > 0$, it suffices to show that there is a sequence $(\tau_n : X_n \to C)_{n \ge 1}$ of colourings such that

$$(X_n, \tau_n) \xrightarrow[n \to \infty]{} \left(\mathcal{X}^{\{0,1\}^{\mathbb{N}}}_{\bullet}, \mu_{\{0,1\}^{\mathbb{N}}}, \ell \right)$$

Step 1. For $n \ge 1$, choose $\alpha_n : X_n \to \{0,1\}^{\mathbb{N}}$ uniformly and independently at random. By Proposition 2.36, $\mu_{(X_n,\alpha_n)} \xrightarrow[n\to\infty]{} \mu_{\{0,1\}^{\mathbb{N}}}$ with probability 1. In particular, there exists a sequence $(\alpha_n : X_n \to \{0,1\}^{\mathbb{N}})_{n\ge 1}$ for which the above holds.

Step 2. We have a sequence $(\alpha_n)_{n \ge 1}$ of $\{0,1\}^{\mathbb{N}}$ -colourings from which we want to deduce C-colourings. Define $\tau_n : X_n \to C$ by

$$\tau_n(x) = \ell\left(\underbrace{(X_n, x, \alpha_n)}_{\in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}}\right) \in C.$$

We want $\mu_{(X_n,\tau_n)} \xrightarrow[n \to \infty]{} \mu_{\left(\mathcal{X}^{\{0,1\}^{\mathbb{N}}}_{\bullet}, \mu_{\{0,1\}^{\mathbb{N}}}, \ell\right)}$. Define

$$L: (X, x, \alpha) \in \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}} \longmapsto (X, x, y \mapsto \ell(X, y, \alpha)) \in \mathcal{X}_{\bullet}^{C}.$$

Then $\mu_{(X_n,\tau_n)} = L_* \mu_{(X_n,\alpha_n)}$. The fact that ℓ is r-local implies the continuity of L_* , i.e.

$$\lim_{n \to \infty} \mu_{(X_n, \tau_n)} = \lim_{n \to \infty} L_* \mu_{(X_n, \alpha_n)} = L_* \mu_{\{0,1\}^{\mathbb{N}}}.$$

Now, since $\mu_{\{0,1\}^{\mathbb{N}}}\left(\mathcal{T}^{\{0,1\}^{\mathbb{N}}}\right) = 1$, we obtain $L_*\mu_{\{0,1\}^{\mathbb{N}}} = \mu_{\left(\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \mu_{\{0,1\}^{\mathbb{N}}}, \ell\right)}$.

2.8 The Ornstein-Weiss Theorem for amenable groups

Example 2.38. Consider the group \mathbb{Z}^2 with its generating set $S = \{(1,0), (0,1)\}$. If B_n is the ball centred at 0 and with radius n in \mathbb{Z}^2 , then $|B_n| = (2n+1)^2$ and $|\partial B_n| = 4(2n+1)$. Therefore

$$\frac{|\partial B_n|}{|B_n|} \sim \frac{2}{n} \xrightarrow[n \to \infty]{} 0.$$

Hence, it is "relatively cheap" to disconnect many points in $Cay(\mathbb{Z}^2, S)$.

Definition 2.39 (Amenable group). Let Γ be a group with a finite generating set S.

(i) A Følner sequence for Γ is a sequence $(F_n)_{n \ge 1}$ of finite subsets of Γ such that $\Gamma = \bigcup_{n \ge 1} F_n$ and, for all $s \in S^{\pm 1}$,

$$\frac{|F_n \triangle sF_n|}{|F_n|} \xrightarrow[n \to \infty]{} 0.$$

(ii) Γ is amenable if it has a Følner sequence.

Example 2.40. The free group \mathbb{F}_2 is not amenable.

Definition 2.41 (Borel equivalence relation). Let X be a compact metric space. A Borel equivalence relation is an equivalence relation $E \subseteq X \times X$ that is Borel as a subset of $X \times X$ (note that it does not matter whether $X \times X$ is equipped with the product σ -algebra or with the Borel σ -algebra).

Notation 2.42. Let $\Gamma \curvearrowright (X, \nu)$ be a probability measure preserving action. Denote

$$E_X = \{(x, \gamma x), x \in X, \gamma \in \Gamma\} \subseteq X \times X.$$

Then E_X is a Borel equivalence relation on X. If Γ is countable, then every equivalence class of E_X is countable.

Definition 2.43 (Hyperfinite equivalence relations). Let X be a compact metric space.

- (i) An equivalence relation $E \subseteq X \times X$ is finite if every equivalence class is finite.
- (ii) An equivalence relation $E \subseteq X \times X$ is hyperfinite if there is a sequence $(E_n)_{n \ge 1} \subseteq X \times X$ such that E_n is a finite Borel equivalence relation on X, $E_n \subseteq E_{n+1}$ for all n, and $E = \bigcup_{n \ge 1} E_n$.

Example 2.44. Let $X = \{0,1\}^{\mathbb{N}}$. Define $E_0 \subseteq X \times X$ by $(x,y) \in E_0$ if and only if there exists $n \in \mathbb{N}$ such that $x_m = y_m$ for all $m \ge n$. Then E_0 is hyperfinite, because $E_0 = \bigcup_{n\ge 1} E_n$, where $E_n = \{(x,y) \in X \times X, \forall m \ge n, x_m = y_m\}$.

Definition 2.45 (Hyperfinite action). A probability measure preserving action $\Gamma \curvearrowright (X, \nu)$ is hyperfinite if there exists $X_0 \subseteq X$ Borel such that

- (i) $\nu(X_0) = 1$,
- (ii) X_0 is a union of orbits of $\Gamma \curvearrowright (X, \nu)$,
- (iii) The equivalence relation E_{X_0} is hyperfinite.

Theorem 2.46 (Ornstein-Weiss). Let Γ be a countable amenable group. Then any probability measure preserving action $\Gamma \curvearrowright (X, \nu)$ is hyperfinite.

Remark 2.47. (i) The original motivation (due to Ornstein-Weiss and Dye) for the Ornstein-Weiss Theorem was to show that all monoatomic ergodic probability measure preserving actions of amenable groups are orbit equivalent.

 (ii) The Ornstein-Weiss Theorem is usually proved as a special case of the Connes-Feldmann-Weiss Theorem.

Proposition 2.48. Let $\mathbb{F} = \mathbb{F}_S$ be the free group on a finite set S. Let $\varepsilon > 0$. Given an action $\mathbb{F} \curvearrowright (X, \nu)$ that is probability measure preserving and hyperfinite, there is $\sigma : X \to \mathcal{P}(S)$ and an integer $k \ge 1$ such that

- (i) Every connected component has at most k vertices in the graph with vertex set X, and with edge set $\{(x, sx), x \in X, s \in \sigma(x)\}$.
- (ii) $\nu(\sigma^{-1}(\{S\})) > 1 \varepsilon$.

Proof. Let $X_0 \subseteq X$ such that $\nu(X_0) = 1$, $\Gamma \curvearrowright X_0$ (i.e. X_0 is a union of Γ -orbits) and E_{X_0} is hyperfinite. There is a sequence $(E_n)_{n \ge 1}$ of finite Borel equivalence relations on X_0 , $E_n \subseteq E_{n+1}$ for all n, and $E_{X_0} = \bigcup_{n \ge 1} E_n$. Define $\tau_n : X_0 \to \mathcal{P}(S)$ by

$$\tau_n(x) = \{ s \in S, \ (x, sx) \in E_n \}$$

Note that $X_0 = \bigcup_{n \ge 1} \tau_n^{-1}(\{S\})$, and the sequence $(\tau_n^{-1}(\{S\}))_{n \ge 1}$ is increasing; it follows that

$$\nu\left(\tau_n^{-1}\left(\{S\}\right)\right) \xrightarrow[n \to \infty]{} \nu\left(X_0\right) = 1.$$

In particular, there exists $N \ge 1$ such that $\nu\left(\tau_N^{-1}(\{S\})\right) > 1 - \frac{\varepsilon}{2}$. Consider the graph with vertex set X and with edge set $\{(x, sx), x \in X, s \in \tau_N(x)\}$. All its components are finite, but there may not be a uniform bound on the size of components. For $k \ge 1$, let

$$L_k = \{(x_1, x_2) \in E_N, [x_1]_{E_N} \leq k\}.$$

Again, $E_N = \bigcup_{k \ge 1} L_k$. Consider

$$\sigma_k(x) = \{ s \in S, \ (x, sx) \in L_k \}$$

Then $\tau_N^{-1}(\{S\}) = \bigcup_{k \ge 1} \sigma_k^{-1}(\{S\})$, so

$$\nu\left(\sigma_{k}^{-1}\left(\{S\}\right)\right) \xrightarrow[k \to \infty]{} \nu\left(\tau_{N}^{-1}\left(\{S\}\right)\right) > 1 - \frac{\varepsilon}{2}$$

so there exists $K \ge 1$ such that $\nu\left(\sigma_K^{-1}\left(\{S\}\right)\right) > 1 - \varepsilon$.

2.9 The Newman-Sohler-Elek Theorem

Theorem 2.49 (Newman-Sohler-Elek). Let $\Gamma = \langle S | E \rangle$ be a finitely generated amenable group, $(X_n)_{n \ge 1}$ and $(Y_n)_{n \ge 1}$ be sequences of finite Γ spaces with $|X_n| = |Y_n|$. Assume that

$$\lim_{n \to \infty} \mu_{X_n} = \lim_{n \to \infty} \mu_{Y_n} = \mu \in \operatorname{IRS}(\Gamma).$$

Then $d_S(X_n, Y_n) \xrightarrow[n \to \infty]{} 0$, where d_S is the distance introduced in Definition 1.14.

Proof. We have an action $\mathbb{F} \curvearrowright \left(\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \mu_{\{0,1\}^{\mathbb{N}}}\right)$, with $\mu_{\left(\mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}, \mu_{\{0,1\}^{\mathbb{N}}}\right)} = \mu$. Since $\mu \in \mathrm{IRS}(\Gamma)$, there exists $A \subseteq \mathcal{X}_{\bullet}^{\{0,1\}^{\mathbb{N}}}$ with $\mu_{\{0,1\}^{\mathbb{N}}}(A) = 1$ and $\mu_{\left(A,\mu_{\{0,1\}^{\mathbb{N}}}\right)} = \mu$, such that $\Gamma \curvearrowright \left(A, \mu_{\{0,1\}^{\mathbb{N}}}\right)$. Now,

$$\lim_{n \to \infty} X_n = \lim_{n \to \infty} Y_n = \left(A, \mu_{\{0,1\}^{\mathbb{N}}} \right).$$

By the Ornstein-Weiss Theorem (Theorem 2.46), the action $\Gamma \curvearrowright (A, \mu_{\{0,1\}^{\mathbb{N}}})$ is hyperfinite. Therefore, given $\varepsilon > 0$, there is $\sigma : A \to \mathcal{P}(S)$ and $k \ge 1$ as in Proposition 2.48. We now think of $\mathcal{P}(S)$

as a set of colours and use the Elek Transfer Theorem (Theorem 2.37) twice: we obtain sequences $(\sigma_n : X_n \to \mathcal{P}(S))_{n \ge 1}$ and $(\tau_n : Y_n \to \mathcal{P}(S))_{n \ge 1}$ such that

$$\lim_{n \to \infty} \left(X_n, \sigma_n \right) = \lim_{n \to \infty} \left(Y_n, \tau_n \right) = \left(A, \mu_{\{0,1\}^{\mathbb{N}}}, \sigma \right).$$

By (*) with radius 0, we obtain

$$\lim_{n \to \infty} \frac{|\sigma_n^{-1}(S)|}{|X_n|} = \lim_{n \to \infty} \frac{|\tau_n^{-1}(S)|}{|Y_n|} = \mu_{\{0,1\}^{\mathbb{N}}} \left(\sigma^{-1}(S) \right) \geqslant 1 - \varepsilon.$$

By (*) with radius k, almost all connected components are of size at most k in the graph with vertex set X_n and edge set $\{(x, sx), x \in X_n, s \in \sigma_n(x)\}$, and similarly for Y_n . This yields

$$d_S\left(X_n, Y_n\right) \leqslant 2 \left|S\right| \varepsilon$$

for n large enough.

Remark 2.50. Work of Elek and Szalo shows that Theorem 2.49 is actually a characterisation of amenability.

Corollary 2.51. Let $\Gamma = \langle S | E \rangle$ be a finitely generated amenable group. If $\overline{\text{IRS}_{fi}(\Gamma)}^{w^*} = \text{IRS}(\Gamma)$, then Γ is stable.

Proof. If Γ is not stable, then there exists an $\varepsilon_0 > 0$ and a sequence $(X_n)_{n \ge 1}$ of finite \mathbb{F} -spaces such that $L_E(X_n) < \frac{1}{n}$ and $G_E(X_n) \ge \varepsilon_0$. Since $\operatorname{IRS}(\mathbb{F})$ is compact (by Proposition 2.8), we can replace $(X_n)_{n\ge 1}$ by a subsequence such that $(\mu_{X_n})_{n\ge 1}$ converges to some $\mu \in \operatorname{IRS}(\mathbb{F})$. By Proposition 2.15, $\mu \in \operatorname{IRS}(\Gamma)$ because $L_E(X_n) \xrightarrow[n \to \infty]{} 0$. By Proposition 2.17, since $\operatorname{IRS}_{fi}(\Gamma)^{w*} = \operatorname{IRS}(\Gamma)$, there is a sequence $(Y_n)_{n\ge 1}$ of Γ -spaces such that $|Y_n| = |X_n|$ and $\mu_{Y_n} \xrightarrow[n \to \infty]{} \mu$. Now, by Theorem 2.49, $d_S(X_n, Y_n) \xrightarrow[n \to \infty]{} 0$, so $\varepsilon_0 \leqslant G_E(X_n) \xrightarrow[n \to \infty]{} 0$, a contradiction. \Box

3 Examples of stable groups

3.1 Stability of \mathbb{Z}^d

Definition 3.1 (Almost normal subgroup, profinitely closed subgroup). Let Γ be a group and let $H \leq \Gamma$ be a subgroup.

- (i) *H* is almost normal if $[\Gamma : N_{\Gamma}(H)] < \infty$, where $N_{\Gamma}(H) = \{\gamma \in \Gamma, \gamma H \gamma^{-1} = H\}$.
- (ii) *H* is profinitely closed if $H = \bigcap_{H \leq K \leq f_i \Gamma} K$.

Proposition 3.2. Let Γ be an amenable group. Assume that $Sub(\Gamma)$ is countable and every almost normal subgroup of Γ is profinitely closed. Then Γ is stable.

Proof. By Corollary 2.51, it suffices to show that, given $\mu \in \operatorname{IRS}(\Gamma)$, we have $\mu \in \overline{\operatorname{IRS}_{fi}(\Gamma)}^{w^*}$. Since $\operatorname{Sub}(\Gamma)$ is countable, we can write

$$\mu = \sum_{C \in \mathcal{C}} \alpha_C \frac{1}{|C|} \sum_{H \in C} \delta_H$$

for some $(\alpha_C)_{C \in \mathcal{C}}$ nonnegative such that $\sum_{C \in \mathcal{C}} \alpha_C = 1$, where \mathcal{C} is the set of all conjugacy classes of subgroups of Γ which are almost normal.

It is therefore enough to show that $\frac{1}{|C|} \sum_{H \in C} \delta_H \in \overline{\mathrm{IRS}_{fi}(\Gamma)}^{w*}$ for all $C \in \mathcal{C}$. But H is profinitely closed by assumption, so there are subgroups $K_i \leq_{fi} N_{\Gamma}(H) \leq_{fi} \Gamma$ for $i \in I$, with $H = \bigcap_{i \in I} K_i$. Hence, if

$$\nu_i = \frac{1}{[\Gamma: N_{\Gamma}(H)]} \sum_{g \in \Gamma/N_{\Gamma}(H)} \delta_{gK_i g^{-1}},$$

then $\nu_i \xrightarrow[i \to \infty]{} \frac{1}{|C|} \sum_{g \in \Gamma/N_{\Gamma}(H)} \delta_{gHg^{-1}}.$

Corollary 3.3. \mathbb{Z}^d is stable.

Proof. We know that \mathbb{Z}^d is amenable, $\operatorname{Sub}\left(\mathbb{Z}^d\right)$ is countable. Given $H \leq \mathbb{Z}^d$, we can write $H = m_1\mathbb{Z} \oplus \cdots \oplus m_\ell\mathbb{Z}$ with $\mathbb{Z}^d = H \oplus \mathbb{Z}^r$ after a change of basis in \mathbb{Z}^d . If $H_i = m_1\mathbb{Z} \oplus \cdots \oplus m_\ell\mathbb{Z} \oplus (i\mathbb{Z})^r$ for $i \geq 1$, then $H \leq H_i \leq_{fi} \mathbb{Z}^d$ and $H = \bigcap_{i \geq 1} H_i$, so we can apply Proposition 3.2.

3.2 Stability of virtually polycyclic groups

Definition 3.4 (Polycyclic group). A group Γ is polycyclic if there is a sequence

 $1 = \Gamma_0 \trianglelefteq \Gamma_1 \trianglelefteq \Gamma_2 \trianglelefteq \cdots \trianglelefteq \Gamma_n = \Gamma,$

such that Γ_{i+1}/Γ_i is cyclic for all $0 \leq i < n$.

The Hirsch length of Γ , denoted by $h(\Gamma)$, is defined to be the number of infinite cyclic factors in the above sequence.

Example 3.5. (i) Finitely generated nilpotent groups are polycyclic.

(ii) D_{∞} is polycyclic.

Proposition 3.6. Let Γ be a polycyclic group.

- (i) Every subgroup $H \leq \Gamma$ is finitely generated. In particular, $Sub(\Gamma)$ is countable.
- (ii) If Γ is infinite, then there is a subgroup $A \leq \Gamma$ such that $A \cong \mathbb{Z}^r$ for some $r \geq 1$.

Proposition 3.7. If $1 \to N \to \Gamma \to Q \to 1$ is an exact sequence of polycyclic groups, then

$$h(\Gamma) = h(N) + h(Q).$$

Definition 3.8 (LERF group). A group is said to be LERF if every finitely generated subgroup is profinitely closed.

Example 3.9. Free groups are LERF.

Theorem 3.10 (Maltsev). Polycyclic groups are LERF.

Proof. Let Γ be a polycyclic group. Note that all subgroups of Γ are finitely generated, so we want to show that, if $H \leq \Gamma$, then $H = \bigcap_{H \leq K \leq_{fi} \Gamma} K$.

Let $g \in \Gamma \setminus H$. We want to construct $H \leq K \leq_{fi} \Gamma$ such that $g \notin K$. If Γ is abelian, this is the proof of Corollary 3.3. If $h(\Gamma) = 0$, the result is clear. We proceed by induction on $h(\Gamma)$, assuming that $h(\Gamma) \ge 1$. By Proposition 3.6, there exists $A \leq \Gamma$ such that $A \cong \mathbb{Z}^r$ for some $r \ge 1$.

We claim that there exists $m \ge 1$ such that

 $g \notin HA^m$.

If this were false, then in particular $g \in HA$, so we could write g = ha with $h \in H$ and $a \in A$. Since $g \notin H$, $a \notin H \cap A$. Hence, we have

$$a \notin H \cap A \leqslant A.$$

By the abelian case, there exists $H \cap A \leq B \leq_{fi} A$ such that $a \notin B$. Since $[A:B] < \infty$, there exists $m \geq 1$ such that $A^m \leq B$. By assumption, $g \in HA^m$, so we can write $g = h_1a_1$ with $h_1 \in H$ and $a_1 \in A^m \leq B$. It follows that $ha = g = h_1a_1$, so

$$a_1 a^{-1} = h_1^{-1} h \in A \cap B \leqslant B,$$

so $a \in B$, a contradiction.

Therefore, there exists $m \ge 1$ such that $g \notin HA^m$. Now we have

$$gA^m \notin HA^m / A^m \leqslant \Gamma / A^m$$

Since $h(\Gamma/A^m) = h(\Gamma) - h(A^m) < h(\Gamma)$, the induction hypothesis implies that there is $HA^m/A^m \leq K/A^m \leq_{fi} \Gamma/A^m$ such that $gA^m \notin K/A^m$. In particular, $g \notin K$ and $H \leq K \leq_{fi} \Gamma$.

Corollary 3.11. Polycyclic groups are stable. In fact, virtually polycyclic groups are stable.

Example 3.12. For all $n \in \mathbb{Z}$, the group $BS(1, n) = \langle x, y | yxy^{-1} = x^n \rangle$ is stable.

3.3 Sufficient condition for instability

Definition 3.13 (Sofic group). Let Γ be a finitely generated group equipped with a surjective homomorphism $\pi : \mathbb{F} \to \Gamma$, where $\mathbb{F} = \mathbb{F}_S$ for some finite set S. We say that Γ is sofic if

$$\delta_{\operatorname{Ker}\pi} = \delta_{1_{\Gamma}} \in \overline{\operatorname{IRS}_{fi}(\mathbb{F})}^{w*}$$

Equivalently, Γ is sofic if there is a sequence $(X_n)_{n\geq 1}$ of finite \mathbb{F} -sets such that

$$\mu_{X_n} \xrightarrow[n \to \infty]{} \delta_{1_{\Gamma}}.$$

It is an open problem to know whether or not there exist non-sofic groups.

Definition 3.14 (Residually finite group). A group Γ is said to be residually finite if

$$\bigcap_{K \trianglelefteq_{fi} \Gamma} = 1_{\Gamma}.$$

Proposition 3.15. Residually finite groups are sofic.

Proposition 3.16. If a group Γ is sofic but not residually finite, then Γ is not stable.

Proof. Since Γ is not residually finite, there exists $\gamma_0 \in \left(\bigcap_{K \leq f_i \Gamma} K\right) \setminus \{1\}$. Pick $w_0 \in \mathbb{F}$ such that $\pi(w_0) = \gamma_0$, and denote by ℓ_0 the length (relative to S) of w_0 . Since Γ is sofic, there is a sequence $(X_n)_{n \geq 1}$ of finite \mathbb{F} -spaces such that

$$\mu_{X_n} \xrightarrow[n \to \infty]{} \delta_{\operatorname{Ker} \pi}.$$

We consider balls of radius ℓ_0 , and we define

$$A_n = \{ x \in X_n, (X_n, x) \simeq_{\ell_0} (\Gamma, 1) \}.$$

Therefore $\frac{|A_n|}{|X_n|} \xrightarrow[n \to \infty]{} 1$. Let B_n be a maximal subset of A_n such that the balls $(B(x, \ell_0))_{x \in B_n}$ are disjoint. By maximality, $|B_n| \ge (2|S|)^{-2\ell_0} |A_n|$; it follows that for n large enough,

$$|B_n| \ge \underbrace{\frac{1}{2} (2|S|)^{-2\ell_0}}_{C} |X_n|.$$

But for every $x \in B_n$, we have $w_0 x \neq x$ because $\pi(w_0) \neq 1$. Hence, if Y is a finite Γ -space with $|Y| = |X_n|$, and $y \in Y$, then $[\Gamma : \operatorname{Stab}_{\Gamma}(y)] < \infty$, so $\gamma_0 \in \operatorname{Stab}_{\Gamma}(y)$, i.e. $\gamma_0 y = y$, so $w_0 y = y$. It follows that

$$G_E(X_n) \ge d_S(X_n, Y) \ge C > 0$$

but $L_E(X_n) \xrightarrow[n \to \infty]{} 0$. Hence, Γ is not stable.

3.4 Instability of BS(2,3)

Definition 3.17 (Baumslag–Solitar groups). We define $BS(m, n) = \langle x, y | yx^my^{-1} = x^n \rangle$.

Definition 3.18 (Metabelian group). A group Γ is said to be metabelian if one of the following two equivalent assertions is satisfied:

(i) Γ is nilpotent of class at most 2.

(ii) There is an exact sequence $1 \to A_1 \to \Gamma \to A_2 \to 1$ with A_1, A_2 abelian.

Proposition 3.19. BS(2,3) is free by metabelian, i.e. there is an exact sequence

 $1 \to \mathbb{F} \to \mathrm{BS}(2,3) \to Q \to 1,$

with \mathbb{F} free and Q metabelian.

Proof. Write $\Gamma = BS(2,3) = \langle x, y | yx^2y^{-1} = x^3 \rangle$. Consider $\Gamma'' \leq \Gamma$. It is clear that $Q = \Gamma/\Gamma''$ is metabelian, so it suffices to prove that Γ'' is free. Define $\varphi : \Gamma \to GL_2\mathbb{Q}$ by

$$x \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $y \mapsto \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & 1 \end{pmatrix}$

This gives a well-defined group homomorphism because $\varphi(y)\varphi(x)^2\varphi(y)^{-1} = \varphi(x)^3$.

Moreover, Im φ is included in the subgroup $T \subseteq GL_2\mathbb{Q}$ of upper triangular matrices. But

$$T' \subseteq \left\{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}, \ c \in \mathbb{Q} \right\} \cong \mathbb{Q},$$

so T' is abelian and T is metabelian. It follows that $\operatorname{Im} \varphi = \Gamma / \operatorname{Ker} \varphi$ is metabelian, so

 $\Gamma'' \subseteq \operatorname{Ker} \varphi.$

Now consider the action $\Gamma'' \curvearrowright \Gamma/\langle x \rangle$. Note that this action is free: if $\gamma \in \Gamma''$, then

$$\gamma\gamma_0 \langle x \rangle = \gamma_0 \langle x \rangle \Longrightarrow \gamma_0^{-1} \gamma\gamma_0 \langle x \rangle = \langle x \rangle \Longrightarrow \gamma_0^{-1} \gamma\gamma_0 \in \langle x \rangle \cap \Gamma'' \subseteq \langle x \rangle \cap \operatorname{Ker} \varphi = \{1\}.$$

Note that Γ can be written as the HNN extension $\Gamma = \mathbb{Z}*_{\phi}$, where $\phi : 3\mathbb{Z} \xrightarrow{\cong} 2\mathbb{Z}$, and the action $\Gamma \curvearrowright \Gamma/\langle x \rangle$ corresponds to $\mathbb{Z}*_{\phi} \curvearrowright \mathbb{Z}*_{\phi}/\mathbb{Z}$. Bass-Serre theory tells us that $\Gamma'' \curvearrowright \Gamma/\langle x \rangle$ is a free action on a tree by graph automorphisms without edge inversions, so Γ'' is a free group; in fact, $\Gamma'' \cong \mathbb{F}_{\aleph_0}$.

Definition 3.20 (Residually amenable group). A group Γ is said to be residually amenable if there is a sequence $(H_n)_{n\geq 1}$ of normal subgroups of Γ such that $\bigcap_{n\geq 1} H_n = \{1\}$, $H_{n+1} \leq H_n$ and Γ/H_n is amenable for all $n \geq 1$.

Proposition 3.21. Free by metabelian groups are residually solvable hence residually amenable.

Sketch of proof. Consider an exact sequence $1 \to \mathbb{F} \to \Gamma \to Q \to 1$.

First note that \mathbb{F} is residually finite: take a freely generating set $S = \{s_1, s_2, \ldots\}$ for \mathbb{F} and let $w = s_{i_1}^{\varepsilon_1} \cdots s_{i_k}^{\varepsilon_k}, \varepsilon_j \in \{\pm 1\}$. Consider the line graph X with (k + 1) vertices v_0, \ldots, v_k , where the v_{j-1} and v_j are linked by an edge labelled by s_{i_j} , going towards v_j if $\varepsilon_j = 1$, or towards v_{j-1} otherwise. This graph can be completed to an action of \mathbb{F} on X. This gives a group homomorphism $\rho_w : \mathbb{F} \to \mathfrak{S}_X$ with $\rho_w(w) \neq 1$. Hence, Ker $\rho_w \leq_{f_i} \mathbb{F}$ and $w \notin \text{Ker } \rho_w$, so \mathbb{F} is residually finite.

Iwasawa used this idea to prove a stronger result: if $w \in \mathbb{F} \setminus \{1\}$, then there exists $r \ge 1$, $n \ge 1$ and

$$\rho_w: \mathbb{F} \to UT_r\left(\mathbb{Z}/p^n\right)$$

such that $\rho_w(w) \neq 1$, where $UT_r(\mathbb{Z}/p^n)$ is the subgroup of $GL_r(\mathbb{Z}/p^n)$ of upper triangular matrices with ones on the diagonal (c.f. Robinson for more details).

Now $UT_r(\mathbb{Z}/p^n)$ is a finite *p*-group, so it is nilpotent and therefore solvable. Now take $\rho_w : \mathbb{F} \to UT_r(\mathbb{Z}/p^n)$ as above. Since $UT_r(\mathbb{Z}/p^n)$ is step- ℓ solvable for some ℓ , we have $\mathbb{F}^{(\ell)} \leq \operatorname{Ker} \rho_w$. But $w \notin \operatorname{Ker} \rho_w$, so $w \notin \mathbb{F}^{(\ell)}$. Hence,

$$\bigcap_{\ell=1}^{\infty} \mathbb{F}^{(\ell)} = \{1\}$$

and $\mathbb{F}/\mathbb{F}^{(\ell)}$ is solvable.

Proposition 3.22. Residually amenable groups are sofic.

Sketch of proof. Let Γ be residually amenable. Take a radius $r \ge 1$. Then there exists $H \le \Gamma$ such that Γ/H is amenable and $\operatorname{Cay}(\Gamma) \simeq_r \operatorname{Cay}(\Gamma/H)$. Since Γ/H is amenable, it has a Følner sequence $(F_\ell)_{\ell\ge 1}$. Take ℓ very large and consider the action $\mathbb{F}_S \curvearrowright F_\ell$. Then almost all r-balls in F_ℓ look like the r-ball in Γ/H , which is the r-ball in Γ .

Corollary 3.23. BS(2,3) is sofic.

Lemma 3.24. Let Δ be a finitely generated group and let $\alpha : \Delta \to \Delta$ be a surjective homomorphism. Then for every finite set X and $\rho : \Delta \to \mathfrak{S}_X$, we have Ker $\alpha \leq \text{Ker } \rho$.

Proof. Set $\mathcal{A}_X = \text{Hom}(\Delta, \mathfrak{S}_X)$, and define $\alpha^* : \mathcal{A}_X \to \mathcal{A}_X$ by $\alpha^*(\varphi) = \varphi \circ \alpha$. Since α is surjective, α^* is injective. But $|\mathcal{A}_X| < \infty$ because Δ is finitely generated, so α^* is also surjective. Therefore, $\rho = \varphi \circ \alpha$ for some $\varphi \in \mathcal{A}_X$, so Ker $\alpha \leq \text{Ker } \rho$.

Proposition 3.25. BS(2,3) is not residually finite.

Proof. Write $\Gamma = BS(2,3) = \langle x, y | yx^2y^{-1} = x^3 \rangle$. Define $\alpha : \Gamma \to \Gamma$ by $x \mapsto x^2$ and $y \mapsto y$. This is a surjective homomorphism (because $y = \alpha(y) \in \operatorname{Im} \alpha$ and $x = \alpha(yxy^{-1}x^{-1}) \in \operatorname{Im} \alpha$). However, we have

$$\alpha\left(\left(yxy^{-1}x^{-1}\right)^2x^{-1}\right) = 1,$$

and $(yxy^{-1}x^{-1})^2 x^{-1}$ by Britton's Lemma, so α is not injective. Therefore, Γ is not Hopf, and hence not residually finite (by Lemma 3.24).

Corollary 3.26. BS(2,3) is not stable.

Proof. This follows from Proposition 3.16.

3.5 The lamplighter group

Proposition 3.27. The lamplighter group $\mathbb{Z}/2 \wr \mathbb{Z}$ is metabelian hence amenable.

Theorem 3.28 (Levit-Lubotzky). Let $\Gamma = \mathbb{Z}/2 \wr \mathbb{Z}$. Then $\overline{\text{IRS}_{fi}(\Gamma)}^{w*} = \text{IRS}(\Gamma)$.

Sketch of proof. The main ingredients of the proof are:

- (i) Weiss' Monotilability Theorem: if Γ is amenable and residually finite (or solvable), then there exists a Følner sequence $(F_n)_{n\geq 1}$ with $|F_n| < \infty$ and a sequence $(H_n)_{n\geq 1}$ of finite-index subgroups such that each F_n is a transversal for the left cosets of H_n in Γ .
- (ii) Lindenstrauss' Pointwise Ergodic Theorem.

Conjecture 3.29. If Γ is a metabelian group, then $\overline{\operatorname{IRS}_{fi}(\Gamma)}^{w*} = \operatorname{IRS}(\Gamma)$.

Remark 3.30. There are step-3 solvable groups that are not stable, for instance

$$\Gamma = \left\{ \begin{pmatrix} 1 & * & * & * \\ 0 & p^n & * & * \\ 0 & 0 & p^m & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \in GL_4\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \ m, n \in \mathbb{Z} \right\}.$$

Remark 3.31. Let $\Gamma = \mathbb{Z}/2 \wr \mathbb{Z}$. Consider the map

$$F: x \in \{0,1\}^{\mathbb{Z}} \longmapsto \bigoplus_{\substack{n \in \mathbb{Z} \\ x_n = 1}} \mathbb{Z}/2 \in \operatorname{Sub}(\Gamma).$$

Take the product measure ν on $\{0,1\}^{\mathbb{Z}}$. Then the pushforward $F_*\nu \in \text{Prob}(\text{Sub}(\Gamma))$ is an invariant random subgroup and has no atoms.

Remark 3.32. The lamplighter group $\mathbb{Z}/2 \wr \mathbb{Z}$ is not finitely presented. However, there are two (equivalent) ways in which we can give a meaning to stability:

- Definition 1.7 does not rely on finite presentability.
- We may modify Definition 1.14 and say that Γ is stable if for all $\varepsilon > 0$, there exists $\delta > 0$ and a finite subset $E_0 \subseteq E$ such that for all finite \mathbb{F} -space X with $L_{E_0}(X) < \delta$, there exists a finite Γ -space Y with |Y| = |X| and $d(X, Y) < \varepsilon$.

4 Open questions

Question 4.1. Are metabelian groups stable?

Question 4.2. Are amenable LERF groups stable?

Definition 4.3 (Flexible stability). Given $\sigma \in \mathfrak{S}_n$, $\tau \in \mathfrak{S}_N$, $n \leq N$, we define

$$d(\sigma,\tau) = \frac{1}{N} \left(|\{x \in \{1,\dots,n\}, \, \sigma(x) \neq \tau(x)\}| + (N-n) \right).$$

We say that $\Gamma = \langle S | E \rangle$ is flexibly stable if given $f : \mathbb{F} \to \mathfrak{S}_n$ with $L_E(f)$ small, there is $n \leq N \leq (1 + \varepsilon)n$ and $h : \Gamma \to \mathfrak{S}_N$ such that d(h, f) is small.

Theorem 4.4 (Becker-Lubotzky). $SL_n(\mathbb{Z})$ is not stable for $n \ge 3$.

Question 4.5. Is $SL_n(\mathbb{Z})$ flexibly stable?

Theorem 4.6 (Bowen-Burton). If $SL_5(\mathbb{Z})$ is flexibly stable, then there exists a non-sofic group.

Question 4.7. Study stability when \mathfrak{S}_n is replaced by $\left(U(n), \frac{1}{\sqrt{n}} \|\cdot\|_2\right)$.

References

- [1] O. Becker, A. Lubotzky, and A. Thom. Stability and Invariant Random Subgroups.
- [2] M. de Chiffre, L. Glebsky, A. Lubotzky, and A. Thom. *Stability, cohomology vanishing, and non-approximable groups.*
- [3] G. Elek. Finite graphs and amenability.
- [4] N. Lazarovich, A. Levit, and Y. Minsky. Surface groups are flexibly stable.
- [5] A. Thom. Finitary approximations of groups and their applications.