ALGEBRAIC TOPOLOGY

Lectures by Jacob Rasmussen
Notes by Alexis Marchand

University of Cambridge
Michaelmas 2019
Part III course

Contents

1 Homotopy
1.1 Homotopy of maps and homotopy equivalence . . . . . . ... ... ... ... . ...
1.2 Homotopy groups . . . . . . . . . . o o

2 Homology
2.1 Chain complexes . . . . . . ...
2.2 The singular chain complex . . . . . . . . ... L
2.3 Homotopy invariance . . . . . . . . ..o
2.4 Exact sequences and the Snake Lemma . . . . . . . . ...
2.5 Homology of a pair . . . . . . . . . .
2.6 Collapsing a pair . . . . . . . . ..
2.7 Subdivide, excise and collapse! . . . . . . ...
2.8 Deformation retracts and collapsing a pair . . . . . . . ... ... ... L.
2.9 Maps of the sphere . . . . . . . . .
2.10 The Hurewicz homomorphism . . . . . . . . . ... ... ... ... ...
2.11 Local degree of a map of the sphere . . . . . . . . . . ... ... L.
2.12 Finite cell complexes . . . . . . . . .
2.13 Cellular homology . . . . . . . . . . .

3 Cohomology and products
3.1 Homology with coefficients . . . . . . . . . ... . oo
3.2 Cohomology . . . . . . . .
3.3 Free chain complexes over a PID . . . . . . . . . . ... ...
3.4 The Universal Coefficient Theorems . . . . . . . . . . . . ... ... .. ... .....
3.5 Products . . . . .
3.6 The cup product . . . . . . ..
3.7 The exterior product . . . . . . . .
3.8 Computations of cohomology rings . . . . . .. ... ... ...

4

Vector bundles and manifolds

4.1 Vector bundles . . . . . . .
4.2 Examples of vector bundles . . . . . . ...
4.3 Partitions of unity . . . . . ..o
4.4 The Thom isomorphism . . . . . . . .. . ... ... ...
4.5 Sphere bundles . . . . ...
4.6 Gysin SEqUENCE . . . . . . . ..

23
23
25
26
27
28
30
33
35



4.7 Orientations and orientability . . . . . . . . .. .. o oo 44

4.8 Manifolds . . . . . . 45
4.9 Fundamental class . . . . . . .. 46
4.10 Submanifolds . . . . . ... 46
4.11 Poincaré duality . . . . . . . . . . A7
4.12 Intermission — Nonsingular bilinear pairings . . . . . . . . . . ... .. ... .. ... 49
4.13 Poincaré duality (continued) . . . . . . . ... 49
4.14 Three more facts . . . . . . . . . e 51
References 52

Notation 0.1. Unless otherwise specified, all spaces are topological and all maps are continuous.

1 Homotopy

1.1 Homotopy of maps and homotopy equivalence

Definition 1.1 (Homotopy). Let fy, fi : X — Y be two continuous maps between topological spaces.
We say that fo is homotopic to fi, and we write fo ~ f1, if there exists a continuous map F :
X x I =Y (where I =[0,1]) such that F(-,0) = fo and F(-,1) = fi. In other words, (F (-, t)),c; is
a path from fy to fi in the space Map(X,Y).

Notation 1.2. If X is a topological space and c is an element of another topological space Y, we
shall denote by cx the constant map X — Y given by x +— c.

Example 1.3. (i) The maps idgn, Ogn : R" — R™ are homotopic via (x,t) — tx.

(i) The maps idsi,a : S' — S, where a : 2z — —z is the antipodal map, are homotopic via
(2,t) —~ €™z,

(iii) However, the maps idsz,a : S* — S? are not homotopic (we shall prove this fact later).

(iv) The maps cs1,j : S' — S?, where ¢ = (0,0,1) € S? and j : (x,y) — (x,y,0), are homotopic via

(x,y,t) — (tx,ty, Vv1-— t2).

(v) Let D" = {v € R", ||v|| < 1} and consider S"~' C D". Then a map f: S*™' — Y extends to
D™ if and only if f is homotopic to a constant map.

Lemma 1.4. Homotopy is an equivalence relation on Map(X,Y'). Hence, we can define [X,Y] =
Map(X,Y)/ ~. The image of an element f € Map(X,Y) in [X,Y] will be denoted by [f].

Lemma 1.5. If fo, f1: X =Y and g9, 91 : Y — Z with fo ~ f1 and gy ~ g1, then ggo fo ~ g1 0 fi.
Corollary 1.6. Any map f : X — R" is homotopic to Ox : X — R"™.
Proof. We know by Example 1.3 that idgn ~ Ogn, therefore f = idgn of ~ Ogn o f = 0x. [

Definition 1.7 (Contractible space). Let X be a topological space. The following two assertions are
equivalent:

(i) There exists c € X such that idx ~ cx.
(i) [Z, X] has only one element for all spaces Z.
If these conditions are satisfied, X is said to be contractible.

Proof. (i) = (ii) If g € Map(Z, X), then g = idyx og ~ ¢x 0 g = ¢z. (ii) = (i) The set [X, X] has
only one element. O]



Definition 1.8 (Homotopy equivalence). Two spaces X and Y are said to be homotopy equivalent
(which we denote by X ~Y ) if there exist maps f: X — Y and g:Y — X such that fog ~ idy
and go f ~idx.

Example 1.9. A space is contractible iff it is homotopy equivalent to a point.

Proof. The map f : {*} — X being a homotopy equivalence with ¢ = f(x) means that cx ~ idx,
i.e. X is contractible. [

Lemma 1.10. If X; ~ Xy and Yy ~ Ys, then there is a bijection between [X1,Y1] and [Xs, Ys).

1.2 Homotopy groups

Definition 1.11 (Map of pairs). We shall write f : (X, A) — (Y, B) to mean that f is a map
X Y, ACX,BCY and f(A) C B.

If fo,f1 : (X, A) = (Y,B), we say that fo ~ fi1 if there exists a continuous map F : (X X
ILAx 1) — (Y,B) with F(-,0) = fo and F(-,1) = f1. This defines the set [(X,A),(Y,B)] =
Map ((X7 A)’ (K B))/N

Definition 1.12 (Homotopy groups). Let X be a space, p € X. We write x = (—1,0,...,0) € S",
and we define:

(X, p) = [(S",%), (X, p)] = [(D",§"7"), (X,p)] = [(I",0I"), (X, p)].

(X, p) is called the n-th homotopy group of X at p.

Proposition 1.13. (i) If n > 1, then m,(X,p) is a group, where composition is defined by the
following diagram (viewing m,(X,p) as [(I",0I"),(X,p)]):

Moreover, if n > 2, m,(X,p) is abelian, as shown by the following diagram, where black filling
represents the constant map x — p:

BN O O Rd O O N

(i) If we have a map f: (X,p) — (Y, q), then it induces maps f. : (X, p) — 7, (Y, q) defined by
fe(0]) = [f el

(iii) The homotopy groups define functors Top, — Gp from the category of pointed topological
spaces to the category of groups.

(iv) The homotopy groups are homotopy invariant: if f ~ g, then f. = g..

Example 1.14. Here are the first homotopy groups of St and S?:

T | T | T3 T4 5
St1Z |00 0 0
SPlo|z|z|zZ/2]7Z)2

We see that the homotopy groups have an undesirable behaviour for large values of n.
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2 Homology

Remark 2.1. Our goal is to define functors H, : Top — AbGp from the category of topological
spaces to the category of abelian groups satisfying the following two conditions:

(i) Homotopy invariance: if f ~ g, then f, = g..
(ii) Dimension axiom: H,(X) =0 if n > dim X.

2.1 Chain complexes

Definition 2.2 (Chain complex). Let R be a commutative ring. A chain complex (C,d) over R
consists of:

(i) R-modules C; fori € Z,
(ii) Homomorphisms d; : C; — C;_1,
satisfying d; o d;y1 = 0 for all i. We write:
"'—>C,L'+1 d2—+1>01 %Cifl — e

We shall denote C, = @,y Ci.
Definition 2.3 (Simplex). The n-dimensional simplex is defined by:

A":{v:(vo,...,vn)eR"H,Zvizl and ViE{O,...,n},vi>O}.

i=0
Note that A~ = &.

o If I = {ig<iy<---<ix} C€{0,...,n}, the k-dimensional I-face of A" is defined by f; =
{ve A", Vig I, v; =0}.

« Associated to the face fr, there is a face map Fy: A¥ — f; given by

0 ifigl
(Ff(w))i:{ e

w; ifi =1
Definition 2.4 (Reduced chain complex of the simplex). The reduced chain complex S (A™) over Z
of the simplex A" is defined as follows: Sy (A™) is the free abelian group with basis (f—’)\1|=k+1 and

dy, : Sy, (A™) — Si 4 (A™) is given by

k
di, (f1) = Y _(=1) fngisys
j=0
where I = {ig < iy < -+ <ig}.
This is indeed a chain complex, i.e. dy o dyy1 = 0.
Note that Sy (A™) =Z if k < 0.

Proof. Tt suffices to prove that dyodyyq (fr) = 0 for |[I| = k+2. But dodgy1 (fr) is a sum of terms of
the form f]\{ij,i Be with j < 5/, and the coefficient of f[\{ij,i )i (=1)7(=1)7" ' (=1) (=1 =0. O

Definition 2.5 (Homology groups of a chain complex). If (C, d) is a chain complez, its i-th homology
group s the R-module

Ker d:
H; (C) = erd;

~ Im dit1 .

If x € Kerd;, we denote by [z] the image of x in H;(C). We write H, (C) = @,z H; (C).
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Example 2.6. H, (5 (A2)> =0.

Definition 2.7 (Unreduced chain complex of the simplex). The unreduced chain complex S (A™) of
the simplex A™ is defined by
S (A™) ifk>0

S’“(An):{o ifk<0

Z ifx=0

Example 2.8. H, (S (A?)) = {0 IR

Definition 2.9 (Chain map). If (C,d) and (C',d') are chain complezes over R, a chain map f :
(C,d) — (C',d) is a sequence of homomorphisms f; : C; — C! such that the following diagram
commutes:

o U2 di+2 OH-I di+1 Cz dl Ci—l

foo - ge| g R

4 d
/ i+2 / 1+1 ! 3 !
[ Ci+2 Oi+1 Ci Ci—l

In other words, d'f = fd.
In that case, we have f (Kerd) C Kerd' and f(Imd) C Imd', so there is a well-defined map
fe: Ho(C) — H, (C").

Example 2.10. If f; is a face of A™ with I = {ig < iy <--- <y}, then there is a chain map
or: S (Ak) — S (A™) given by o1 (fr) = for), where p(j) =1; for all j € {0,... k}.

Proposition 2.11. Homology groups define functors ChCmplx, — Mody from the category of
chain complexes over R to the category of R-modules.

2.2 The singular chain complex

Definition 2.12 (Singular chain complex). Let X be a topological space. A singular k-simplex in X
is a map o : A¥ — X.

The singular chain complex C'(X) is defined as follows: Cy(X) is the free abelian group generated
by the set of singular k-simplices in X, for all k > 0. In other words, its elements are finite sums
S, a;04, where a; € Z and o; : A¥ — X. For k <0, Cr(X) = 0. The boundary map is defined by:

k
J=0

where Fyo kg5 @5 the face map defined in Definition 2.3.
This is indeed a chain complez, i.e. d*> = 0.

Proof. To show that d> = 0, consider for each o : A¥ — X the homomorphism ¢, : S, (Ak’) — C, (X)
defined by ¢, (f;) = 0 o F;. By definition of d, we have d o ¢, = ¢, o d. Therefore

dz(a) = > ((7 o Fy,.., k}) =d’ (Sﬁa (f{o ..... k})) = Yo (d2 (f{o ----- k)’)) =0,
since > =01in S (Ak> -

Definition 2.13 (Reduced singular chain complex). Let X be a topological space. We define the
reduced singular chain complex C'(X) as follows: for k >0, Co(X) = Ch(X), C_1(X) = (05) ~ Z
and Cy(X) =0 for k < —1. The boundary operator d is the same as in C(X) for k # 0, and we set
do =0y € C_(X) forallo: A — X,



Definition 2.14 (Singular homology groups). If X is a topological space, we define:
(i) The n-th singular homology group H,(X) = H, (C(X)),
(ii) The n-th reduced singular homology group H,(X) = H, (6’(X))

Proposition 2.15. If f : X — Y is a map of topological spaces, then it induces a chain map
fi: C(X) = C(Y) given by fy(c) = foo foro: AF — X.
This defines a functor Top — ChCmplx,.

Corollary 2.16. Singular homology groups define functors Top — AbGp.
If f: X =Y is a map of topological spaces, we shall denote by f, : H,(X) — H.(Y') the induced
map.

Proposition 2.17. (i) If X is path-connected, then Ho(X) ~ Z.

if*=20

otherwise

@ommmzﬁ

(iii) H. ({p}) =0.

(iv) Let mo(X) be the set of path-components of X. Then

H.(X)= @ H.(P).

Pemp(X)

Proof. (i) We have Kerdy = Cy(X) = @pcx Zo,, where 0, : A® — X is the constant map equal to
p. Now Imd; = (0, — 04, p,q € X), so Hy = Kerdy/Imd; ~ Z.
(ii) For every n > 0, there is a unique map o, : A" — {p}, and it satisfies:

do, = —1) n—1 =
7 Z( Y om-1 0 ifnisoddorn=20

n On—1 ifnisevenandn >0
Jj=0

Thus, Kerd = (0g,01,03,05,...) and Imd = (01, 03,03, ...), and Kerd/Imd = ([oo)).

(iii) The argument for (ii) remains valid, with the difference that doy = o4 and doy = 0, so
Kerd = (04,01,03,...) = Imd.

(iv) For P € my(X), denote by ¢p : P — X the inclusion map. We have an injective map:

i= Y )y @ O(P) — CuX).

PEﬂ'o(X) PGT(U(X)

Since A* is path connected, we know that any o : A¥ — X must be in Im j, so j is an isomorphism.
This proves that C,(X) ~ @ pex,(x) C«(P), and we now conclude using the following remark. O

Remark 2.18. If (C*,d*) . 4 are chain complezes, then we have a new complex (Boea C% Y aea d¥),
and it satisfies:

, <@ ca> _ @ ().

acA aEA



2.3 Homotopy invariance

Remark 2.19. Our goal in this section is to show that, given two maps go,g91 : X — Y, go ~ g1
implies go. = g1+ : Ho(X) — H,(Y).

Definition 2.20 (Chain homotopy). We say that two chain maps go,q1 : (C,d) — (C',d’) are
chain homotopic, and we write go ~ g1, if there exists a homomorphism h : C, — C',, (i.e. with
h(C;) CClq) s.t. dh+ hd = g1 — go. The map h is called a chain homotopy.

Lemma 2.21. Chain homotopy is an equivalence relation.

Proposition 2.22. If gy, g1 : (C,d) — (C',d') are chain homotopic, then go. = g1 : H.(C) —
H, (C").

Proof. Let h : C. — C!,; be a chain homotopy between gy and g¢;. Let [z] € H,(C), i.e. x € Kerd.
We have

(91« = 9o) [2] = [91(2) = go(2)] = [d'h(x) + hd(x)] = [d'h(x)] = 0. —~

Definition 2.23 (Chain homotopy equivalence). Chain complexes (C,d) and (C',d") are said to be
chain homotopy equivalent (which we write C ~ C") if there exist chain maps f : C — C' and
g : C"— C such that fg ~ide and gf ~ idc.

Proposition 2.24. If C' ~ (', then H,(C) ~ H, (C").

Notation 2.25.  « Define singular n-simplices i,,t, : A" — A" x [0,1] by v,(v) = (v,0) and
(V) = (v,1).

» Consider the chain maps @,,, ¢, = S, (A") = C, (A" x [0,1]) given by ¢,, (f1) = tn o F; and
i, (f1) = v 0 Fr.

o Given points po,...,pr € A" x [0,1], we define a singular k-simplez [po, ..., pp] : AF — A" x
[0,1] given by v+ SF  vip;. We thus have
k .
d[p07 s 7pn] = Z(_1>j [p0> R 7]5]'7 s 7pk] .
=0
. Writei=f;x0€A"x [0,1], i = fi x 1 € A" x [0, 1].

Proposition 2.26 (Universal Chain Homotopy). The maps ¢, , ¢, : Si (A™) = C, (A" x [0,1]) are
chain homotopic.

o’ @L/l (f(]l) 1

Al x [0,1]
0,1, 1]

0 @, (for) 1

Figure 1: The Universal Chain Homotopy



Proof. Define U, : S, (A™) — Ciyq (A™ x [0,1]) by

k
Un (f1) = S (1) [io, i), 3]

Jj=0

fOTI:{i0<i1<"'<ik}. Then

A

Und (fr) = 3(=1)"" Jio ooy D (= 1) i,y iy 4]

a<b a>b

and likewise

A A

AU (f1) = 3 (=1)"" [i0, - yhar ooyt it + SO(=D) " fig, i, iy ily i)

a<b a>b
k k+1
e Gt O KAR (U AT /AU A B N S ) Lk (O T (AU 1
b=0 b=1
Therefore
(Und + dU,) (fr) = lig, - - i) = [io, - - ik] = 0, (f1) — 0, (f1) - O

Lemma 2.27. Write F; = Fy x idpy) : A¥ x [0,1] — A" x [0,1]. Then the following diagram
commutes:

F]ﬁ

S. (AF) S, (A™)
Conr (8% x [0,1]) — L2 ¢ (Am x [0,1]

Theorem 2.28. Let go, g1 : X —= Y. If go ~ g1, then gog ~ gus.

Proof. Let G : X x[0,1] — Y be a homotopy from gy to g;. Given a singular n-simplex o : A" — X
define
Gy (v,t) € A" x [0,1] — G (o(v),t) € Y.

Note that B
GG’OF[ = Ga oFy.

Now define h : C.(X) — Ciy1(Y) by

Thus

.....

(dh + hd) (0) = Gy (AU, + Upnd) (fo..n) = Goy (% — goLn) (fo,.n) = 913(0) — gos(0). O
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Corollary 2.29. Let go,91: X = Y. If go ~ g1, then go. = g1 : Ho(X) — H(Y).
Corollary 2.30. If X ~ Y, then H.(X) ~ H.(Y).

Proof. If X ~ Y then there exist maps f: X — Y and g : Y — X with fg ~ idy and ¢gf ~ idy.
Therefore:

and likewise g, f. = idg, (x). n

7 ifx=0

Corollary 2.31. If a space X is contractible, then H.(X) = o
0 otherwise

2.4 Exact sequences and the Snake Lemma

Definition 2.32 (Exact sequence of modules). Consider a sequence of R-modules and homomor-

phisms:

o We say that the sequence (x) is exact at A; if Ker f; = Im fi14.
o We say that the sequence (x) is exact if it is exact at A; for alli.
Note that the sequence (x) is exact if and only if the sequence

0 — Coker fi+2 ﬁ) Al i) Ker fz'—l — 0

is exact for all 1.

Definition 2.33 (Exact sequence of chain complexes). Saying that a short sequence of chain com-

plexes
0+ A, 5B, 5C, —0

s exact means that:
(i) A, B,C are chain complexes and v, m are chain maps.
(ii) For all i, the sequence 0 — A; = B; = C; — 0 is ezact.

Lemma 2.34 (Snake Lemma). Let 0 — A, = B, = C, — 0 be a short exact sequence of chain
complexes. Then there is a map 0 : H,(C) — H, 1(A) s.t. we have a long exact sequence of
homology:

—— H,.(A) * — H.(B) *— H,(C) T 5

L H. 1(A) —*— H. {(B) —— H..4(C) —

Proof. The map 0 is defined as follows: if [¢] € H,(C), then there exists b € B, s.t. 7b = ¢, and we
have wdb = drb = dc = 0, so there exists a € A,_; s.t. ta = db, and we have vda = dia = d*b = 0, so
da = 0 and we set 0[] = [a].

This is well-defined because [c] = 0 means that ¢ = d¢’ for some ¢ € Cyyq, so ¢ = wb for
some b’ € B, _1 by surjectivity of 7. Continuing the construction as above yields the existence of an
a € A, st. wd =db, and therefore a = da’ so [a] = 0.

The sequence is exact at H,_1(A) because

la] € Kert, <= 3b € B, ta = db <= 3b € B, [a] = J[rb] <= [a] € Im 0.
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The sequence is exact at H,(C') because

[c] € Kerd <= 3d’ € A,,1, b € B, tda’ = db and ¢ = 7b
< dd' € A,y1, FbE B, [ =7 [b—1d] <= [c] € Im ..

The exactness at H,(B) is clear from the exactness of 0 - A, — B, — C, — 0. O

Corollary 2.35. Let X # @& be a topological space. Then

H(X)SZ ifx=0

m(x) = -
H.(X) otherwise

Proof. Define a chain complex K by

K. — (0g) if*:—l.
0 otherwise

o if x=—1
Thus H,.(K) = (02) . Moreover, we have a short exact sequence of chain complexes
0 otherwise

0— K, = Cy(X) = C,(X) = 0.
Applying the Snake Lemma yields, for * # 0:
0=H,(K)— H,(X) = H,(X) = H,_(K) =0,
which implies that H,(X) ~ H.(X) for * # 0. Now, for % = 0:
0= Ho(K) = Ho(X) = Ho(X) S H_{(K) = (05) — H_(X) = H_{(X) =0,

Let us compute 9: for p € X, denote by o, : A° — X the O-simplex given by fo — p. In HO(X), we
have do, = 04, so 0[o,] = [0z]. Therefore, 0 is surjective and we have a short exact sequence

0 — Ho(X) = Hy(X) = Z — 0.

This implies that Hy(X) ~ Hy(X) & Z. O

2.5 Homology of a pair

Definition 2.36 (Subcomplexes and quotient complexes). Let (C,d) be a chain complex. We say
that A is a subcomplezx of C' if

(i) Av = Bz Ai with A; a submodule of C; for all i,
(i) d(A4;) C A4,

If so, (A,d) is a chain complex.

We set Q; = C;/A;. Since d(A;) C A;—y1, the map d : C; — Ci_y induces dg : Q; — Q;—1 with
dpy = 0. We call (Q,dg) the quotient complex.

We have a short exact sequence

0 A, 50, 5Q.—0.

Example 2.37. Let A C X be an inclusion of spaces. If o : A¥* — X has o (Ak) C A, then
do € C.(A). In other words, C(A) is a subcomplezx of C'(X).
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Definition 2.38 (Homology of a pair). If A C X, we define
Ci(X, A) = Cu(X)/C.(A),

and H (X, A) = H, (C(X,A)). The group H.(X,A) is called the homology of the pair (X, A). By
the Snake Lemma, the short exact sequence 0 — C(A) — Cu(X) — C.(X, A) — 0 induces the long
exact sequence of the pair (X, A):

co o Ho(A) 2 Ho(X) I Ho(X, A) S Ho 1 (A) — -
Example 2.39. Consider the pair (D',S%). We have

7287 if *=0 7Z ifx=0
H, (s°) = BL ifx=0 and  H, (D') = =0
0 otherwise 0 otherwise

Z ifx=1

Writing the long ezact homology sequence of the pair (D, S°) yields H, (D!, S°) = .
0 otherwise

Proposition 2.40. Consider a map of pairs f : (X, A) — (Y,B), i.e. amap f : X — Y s.t.
f(A) € B. Ifo: A¥ — A is a k-simplex, then fy(0) = foo : A¥ — B, which shows that
fi (C(A)) C C.(B). Hence f; descends to a map fﬁ(q) : Cu(X, A) — C.(Y, B), which induces a map
fo: Ho(X,A) = H.(Y,B).

Lemma 2.41. Suppose

sl ]
0 At .p T ¢ 0

is a commutative diagram of chain complexes with exact rows. Then we have a commutative diagram
of long exact sequences:

— H.(A) H.(B) H.(C) H, 1(A) —
S S .|
— H, (A/) Uy H, (B/) Ty H, (Cl) 48/) o (A') S

In other words, there is a functor from the category of short exact sequences of chain complexes over
R to the category of long exact sequences of R-modules.

Proof. We only check that the rightmost square commutes. If [c] € H,(C), pick b € B, and a € A, 4
s.t. mb = ¢ and ta = db. Then J[c] = a. Set a’ = fa, V/ = fb, ¢ = fe. We now have 7t/ = ¢ and
va' = db', therefore &' [¢] = [d'], i.e. O fi[c] = f.O[c]. O

Corollary 2.42. If (X, A) — (Y, B) is a map of pairs, then there is a commutative diagram of long
exact sequences:

—— H.(A) H(X) —— H(X,A) —— H.1(A) —
£ | £ | /.| . |
-~ H.B)— " H. ()" H.(,B) -2 H (B —

11



Proposition 2.43. Let go, g1 : (X, A) — (Y, B). If go and g1 are homotopic as maps of pairs, then
Gor = gus : Ho(X, A) — H,(Y, B).

Proof. The maps gos, g1y : C(X) — C.(Y) are chain homotopic via h(c) = GU, (fo,..n), where
G is a homotopy of maps of pairs from gy to g;. We have G (A x [0,1]) € B, which implies that
h(C,(A)) C Cyi1(B), so h descends to a map h'? : C,(X,A) — C,1(Y, B) with dh(@ + hl@d =

g7 — oy - Hence g1 ~ g5 and g1, = go.. -

Remark 2.44. We could define the reduced homology of a pair (X, A) by C,(X, A) = C.(X)/C,(A)
and H*(X, A)=H, (C’(X, A)) Again, we will have the long exact sequence of a pair.

Proposition 2.45. (i) For any pair (X, A) with A # @, we have H (X, A) ~ H,(X, A).
(ii) Ifp € X, then H,(X) ~ H.(X,p).
(iii) H, (D", S" ') ~ H,_; (S"1).

Proof. (i) We have C,(X) = C,(X) @ (05) and C,(A) = C.(A) @ (05). Therefore C,(X,A) ~
C.(X, A).
(ii) The long exact (reduced) homology sequence of (X, p) is written as

RN ﬁ* ({p}) — ﬁ*(X) — H*(X,p) — ﬁ*fl ({p}> -

Since H, ({p}) = 0, it follows that H,(X) ~ H,(X,p). N
(iii) Same proof as (ii), using the fact that D" is contractible and so H, (D") = 0. O

2.6 Collapsing a pair

Definition 2.46 (Deformation retract). We say that a subset A of a space U is a deformation retract
of U if there exists w: (U, A) — (A, A) withiom ~ id(y .4y as maps of pairs (where i : (A, A) — (U, A)
is the inclusion).

Example 2.47. S"7! is a deformation retract of D"\{0}.
Definition 2.48 (Good pair). The pair (X, A) is said to be good if

(i) A is closed in X,

(ii) There exists an open subset U of X s.t. A C U and A is a deformation retract of U.
Example 2.49. (i) (D", S"!) is good with U = D"\{0}.

(ii) (D", D™\{0}) is not good because D™\{0} is not closed in D™.

)
(iii) If A= {%, N E Z\{O}} U {0} C R, then A is closed in R but (R, A) is not good.
(iv) If K is a compact submanifold of a smooth manifold M, then (M, K) is good.

)

(v

Theorem 2.50 (Collapsing a pair). Let (X, A) be a good pair. Then the quotient map m: (X, A) —
(X/A, {x.}) induces an isomorphism 7, : H.(X, A) = H, (X/A,{*4}). In particular

If L is a subcomplex of a simplicial complex A, then (A, L) is good.

H.(X,A) ~ H,(X/A).
Proof. See Theorem 2.69. O

7 ifx=n

Example 2.51. H, (S") = {O otherwise’
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Proof. By induction on n. For n = 0, note that S° = {—1}U{+1}. Using the fact that H, ({pt}) = 0,
the result follows. For the induction step, note that (D", S"~ 1) is a good pair, and D"/S""! ~ §", so
by Theorem 2.50, H, (D", S"") ~ H, (S"). Moreover, Proposition 2.45 shows that H, (D",S""!) ~
H, 1 (S™71), from which we deduce that

H.(S") ~ H. 1 (S").
The result follows. O
Corollary 2.52. (i) S" is not contractible.
(ii) S™ ~S" = m =n.
(iii) The map id : S* — S" does not extend to a map D" — S".
(iv) The group , (S", %) is nontrivial.

Z ifx=0,2
Example 2.53. H, (T?) =7? ifx=1

0 otherwise

Proof. First step: we compute H, (S?,SY). Writing the long exact sequence of (S?,S°) yields:

H, (SO) — H, (82) — H, (82, SO) — H (SO) — H, (82) — H, (SQ, SO) — H, (SO) — H, (82) .
T2 T % . T %
7 ifx=1,2
0 otherwise

Second step: Let B =S'x1 C S'xS! = T% Note that T?/B ~ S?/S°, so H, (T?, B) ~ H, (S*S°)
by Theorem 2.50. The long exact sequence of (T?, B) is

It follows that H, (S* S°) =

Hy(B) — Hy (T?) — H, (T?, B) — H, (B) * H, (T*) — H, (T%,B) — Ho (B).
0 Z 0
- - 7 = -, =
We claim that ¢, is injective: to prove it, consider 7 : (z,y) € S' x S' — x € S!, then 7o ¢ = idg1,
SO Ty O Ly = id . (1) and ¢, is injective. We now split the above long exact sequence into short exact
sequences: B
0 — H, (TQ) — H, ("JI‘Q,B) — Keru, — 0,
which gives Hy (T?) = Z. Likewise, we have
0 — Hy(B) — H, (T?) — H, (T* B) -0,
——

—_——
=7 7

and therefore H, (T?) = Z2. O

2.7 Subdivide, excise and collapse!

Notation 2.54. Let U = {U,, a € A} be an open cover of X. If a singular k-simplex o : A¥ — X
is s.t. there exists U € U with o (Ak) C U, then we write o << U. We define C¥(X) to be the

submodule of Cy(X) generated by the singular k-simplices o with o QU
If o < U, note that (0o Fr) < U for all I, and therefore do € C¥ (X). Hence, CY(X) is a
subcomplex of C(X).
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Theorem 2.55 (Subdivision Theorem). If i : CY%(X) — C,(X) is the inclusion, then the induced
map i, : H4(X) — H.(X) is an isomorphism.

Proposition 2.56 (Mayer-Vietoris Sequence). Suppose Uy, Uy C X are two open subsets s.t. Uy U
Uy = X. We have the following diagram of inclusion maps:

/\

Ui NU,

There is a long exact sequence:
= H, (U N Uy) 22225 g (Uy) & Hy (Us) 22725 H (X)) S He (U N D) —

Proof. There is a short exact sequence of chain complexes:

0= C. (U, N Uy) 222 0 (1) @ O, (Us) 227725 cU(X) — 0.

Taking the long exact homology sequence given by the Snake Lemma (Lemma 2.34) and using the
fact that HY(X) ~ H.(X) by the Subdivision Theorem (Theorem 2.55) yields the result. O

Remark 2.57. The Mayer-Vietoris Sequence can also be written with reduced homology groups.
Example 2.58. H, (S") ~ H,_; (S"!).

Proof. Take Uy = S"\{p} = R" ~ {p}, Uy = S"\{q} ~ R" ~ {q}, note that U;NU; ~ R™\{0} ~ S"~!
and write the Mayer-Vietoris sequence of (X, Uy, Us). O

Lemma 2.59 (Five Lemma). Consider a commutative diagram with exact rows as below:

Ay Ay As Ay As
% S IS 7S Y
By By Bs B, B

If f1, f2, fa, f5 are isomorphisms, then so is fs3.

Corollary 2.60. Suppose A C X and U is an open cover of X. Define an open cover Uy =
{UNA, UelU} of A. Then CY2(A) is a subcomplex of C¥(X), so we can define CY(X,A) =
CYU(X)/CY4(A), and we have

HY(X,A) ~ H,(X, A).

Proof. We have a map of short exact sequences:

0 —— O (A) — CY(X) » CU(X, A) — 0

O T

0—— Cu(A) — Cu(X) = Cu(X,A) — 0
By the Snake Lemma (Lemma 2.34), it induces a map of long exact sequences:

)
H4(A) — HY(X) — H/(X, A) — H(A) — HLL(X)

| | l | |
(

H.(A) —— H,(X) — H.(X, A) — H,_4(A) — H._;(X)
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The black vertical arrows are isomorphisms by the Subdivision Theorem (Theorem 2.55); it follows
that the red arrow is also an isomorphism by the Five Lemma (Lemma 2.59). O

Theorem 2.61 (Excision Theorem). Let B C A C X st. B C A. Then the inclusion map
Jj: (X\B,A\B) — (X, A) induces an isomorphism

H,(X\B,A\B) ~ H.(X,A).
Proof. The set U = {X \B, A} is an open cover of X by assumption. Note that
CU(X) = XV (X\B) & {0,Imo C A),

and similarly
CUa(A) = G (A\B) @ (0,Imo C A).

Therefore, CY(X, A) ~ C**\?(X\B, A\ B). Now, we have the following commutative diagram:

U
s (x\ B, A\ B) —— CH(X, A)

| o

C.(X\B, A\B) — 7 C.(X, A)

We have just seen that jﬁu is an isomorphism (and therefore, so is j¥), and we know that i, and 7',
are isomorphisms by Corollary 2.60. Therefore, j, is an isomorphism. [

Example 2.62. If U is an open subset of R™ and p € U, then

7 ifx=n

0 otherwise

H. (U,U\{p}) = {

Proof. First step: compute H, (R",R™"\{p}) by noting that R"\{p} ~ S"! and by writing the
long exact sequence of (R™, R™"\{p}). Second step: set C' = R™\U; as C' is closed in R", we have
C C R™"\{p} and therefore, by the Excision Theorem (Theorem 2.61), we obtain H, (U,U\{p}) ~
H, (R", R"\{p}). O

Corollary 2.63. Let U C R™ and V C R™ be two nonempty open subsets. If U and V' are homeo-
morphic, then m = n.

Proof. A homeomorphism f : U — V induces an isomorphism H, (U, U\{p}) — H. (V,V\{f(p)})-
[

2.8 Deformation retracts and collapsing a pair

Definition 2.64 (Deformation retract). Suppose A C U and let i : A — U be the inclusion. If
m: U — A, we have maps of pairs (U, A) T (A, A) 5 (U, A).

We say that m: U — A is a deformation retract if i o ™ ~ id(y 4y as maps of pairs. This implies
that A ~ U (because iom ~ idy and moi ~ idy).

Lemma 2.65. If 7 : U — A is a deformation retract, so is ' : U/A — AJA.

Lemma 2.66. Suppose B C A C X. Then there is a long exact sequence

o= HJ(A,B) 25 H.(X,B) % H. (X, A) S H,_4(A,B) = -
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Proof. Apply the Snake Lemma (Lemma 2.34) to the following short exact sequence:

Ci(A) i Cu(X) 5 Cu(X)
C.(B) | C.(B) ' C.(A)

Lemma 2.67. Suppose A C U C X and A is a deformation retract of U. Then the map i, :
H.(X,A) = H.(X,U) induced by inclusion is an isomorphism.

0— — 0. O

Proof. Note that i : A — U is a homotopy equivalence, so i, : H.(A) — H.(U) is an isomorphism.
Splitting the long exact sequence of (U, A) gives

0 — Cokeri, — H.(U, A) — Keri, — 0,
N—— ——

=0 =0

which implies that H,(U, A) = 0. Writing the long exact sequence of the triple (X, U, A) as in Lemma
2.66 shows that i, : H.(X, A) — H.(X,U) is an isomorphism. O

Definition 2.68 (Good pair). The pair (X, A) is said to be good if
(i) A is closed in X,
(ii) There exists an open subset U of X s.t. A C U and A is a deformation retract of U.

Theorem 2.69 (Collapsing a pair). Let (X, A) be a good pair. Then the quotient map w: (X, A) —
(X/A, {*.}) induces an isomorphism 7, : H.(X, A) = H, (X/A,{*4}). In particular

H,(X,A) ~ H,(X/A).
Proof. Consider the following commutative diagram:

by

H.(X, A) HL(X,U) —2 H. (X\A, U\ A)

Tl l T2 l T35 J
-/ -/

]

H, (X/A, {*a}) “—— H. (X/A,UJA) & H. (X/A)\ {*a}, (U/A) \ {*4})

Note that 73 is a homeomorphism, so s, is an isomorphism. Moreover, A is closed, U is open, A C U ,
so J, and j. are isomorphisms by the Excision Theorem (Theorem 2.61). Since the right-hand square
commutes, 7, is an isomorphism. Now i, and ¢/, are isomorphisms by Lemmas 2.65 and 2.67. Since
the left-hand square also commutes, 7, is an isomorphism as wanted. O

2.9 Maps of the sphere

Notation 2.70. We want to make a consistent choice of generators for H, (S") ~ Z. We start by
defining [S°] = 041 — 0_1, a generator of Hy (S°) with S° = {1}, and then we define a generator
[S™] of H,, (S™) by induction in such a way that the following diagram of isomorphisms carries [S™!]

to [S™]:

i, (s 2 H, (s L5 w1, (1,00

9|

ﬁn,1 (Sn—l)

We shall also write [D™, S"'] and [I",0I"] for the corresponding generators of H, (D", S"!) and of
H, (I",01").

Definition 2.71 (Degree). Let f : S™ — S". Then there exists k € Z s.t. f.[S"] = k[S"]. The
integer deg f = K s called the degree of f.
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Proposition 2.72. (i) deg(f og) = (deg f) (degg).
(ii) deg (idgn) = 1.
(iii) f~g=—degf =degg.

)
) f
(iv) If f : S™ — S™ is constant, then deg f = 0.

)

(v) If f:S™ — S" is a homeomorphism, then deg f € {£1}.
Proposition 2.73. If p: S — S" is a reflection in a hyperplane, then degp = —1.

Proof. See Proposition 2.81. O

Corollary 2.74. If a : S™ — S" is the antipodal map, then dega = (—1)"!,
In particular, if n is even, then a 7 idgn.

Proof. Note that a = pjo---0p,41, where p;(v) = (vy,..., =, ..., v,), and use Proposition 2.73. [

2.10 The Hurewicz homomorphism

Definition 2.75 (Hurewicz homomorphism). The Hurewicz homomorphism i is the map ¢ :
(X, p) — H,(X), defined by [a] € m,(X,p) C [S", X] — . [S"] € H, (X). Note that ) is
well-defined because o ~ = a,, = Ss.

We are now going to prove that 1 is a group homomorphism.

Definition 2.76 (Wedge product). Let (X, Pa),ca be a family of pointed spaces. Their wedge
product is defined by

V () = (T /(11 0)).

acA a€A acA

Given maps fo 1 (Xa,Pa) = (Y, q), we define Voea fo : Vaca (XayPa) =Y by (Vaea fa) (2) = falz)
if v € Xo. This makes sense because f, (po) = q for all a € A.

If the spaces X, are homogeneous (i.e. s.t. the group of homeomorphisms acts transitively), then
Vaea Xo does not depend on the choice of points p,, and we shall drop them from the notation.

Lemma 2.77. Let (Xa,Pa),ea be a family of pointed spaces s.t. (Xa,Pa)yea S @ good pair for all
a € A. Denote by 1o © Xo = Vaeca (Xa,Pa) the inclusion and by mo : Vaea (Xa,Pa) — Xo the
projection (with my : x & Xo — po). Then there are isomorphisms

P H. (X.) ~ H. ( \V (Xa,po») :
acA acA
given by > nca tax and @oea Tax-
Proof. By collapsing pairs, we obtain isomorphisms
© 7. (%) = @ . (X = . (T X0 T ) = 7 (V (Koor)). 0
a€cA a€cA acA acA acA

Corollary 2.78. Let (Xo,pa),ca be a family of pointed spaces s.t. (Xa,Pa)yeq 95 @ good pair for all
a €A, and let fo 1 (Xa,pa) — (Y, q) be maps. Then we have the following commutative diagram:

A, (Vo (Xapa)) Nedode, 37 )

%%

Do H. (Xa)
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Proposition 2.79. The Hurewicz homomorphism 1 is indeed a group homomorphism.

Proof. Let o, B : (S, %) — (X, p). The group law in m, (S", *) can be understood via the composite
S* 5 S"/C ~ SV Sy, where C' is the equator of S*. We have

bla+ Bl = (a+ ), [5"] = (aV ), m [Sn] = @upass [S"] + Buppers [S”]
= . [S"] + . [S"] = ¢ la] + ¢ 7],

because p,m ~ idg» and similarly for b. O

Corollary 2.80. The Hurewicz homomorphism of the sphere ¢ : m, (S™, %) — H, (S™) is surjective
because 1 (idgn) = [S™].

Proposition 2.81. If p: S™ — S" is a reflection in a hyperplane, then degp = —1.

Proof. Consider R : (I",0I") — (I",01") given by © — (1 — x1,29,...,2,). Then a +ao R =0 for
all @ € 7, (S, *). Applying the Hurewicz homomorphism, we obtain a. [S"| = —a. R, [S"] for all «,
and in particular R, [S"] = —[S"] so deg R = —1. Now there exists f : (I",0I") — (D", S"!) with
foR = pyof, where py(z) = (—x1,7,...,,); therefore p, [D", S"7!] = —[D", S""!]. Finally,
p1x [S™] = p1.0 D", S" 1] = Op1. [D", S"71] = — [S"], so deg p; = —1. Since any two reflections are
homotopic, it follows that deg p = —1 for all reflections p. O

Example 2.82. In general, the Hurewicz homomorphism is neither injective nor surjective.

o T (S2,%) is non trivial for many n > 2 but H, (S%) = 0 for n > 2, so 1 : m, (S, %) — H, (S?)
cannot be injective.

e Ifa:S? = T2 then a lifts to & : S — R?, s0 a, [S?] = p.a. [S?] = 0 since H, (R?) = 0.
Therefore, 1 : m, (T2, %) — Hy (T?) is not surjective.

Theorem 2.83 (Hurewicz). Let X be a path-connected space.
(i) The group Hy(X) is isomorphic to the abelianisation of m (X, *).

(i) If m (X,%) =0 for all 1 < k < n, then ¥ : w1 (X, %) = Hp1(X) is an isomorphism and
Hy(X) =0 foralll1 <k <n.

Corollary 2.84. Let X be a path-connected space. If m (X, *) =0 and Hp(X) =0 forall1 < k < n,
then m, (X, %) =0 for all 1 <k <n and w41 (X, %) >~ H,11(X).

Example 2.85. 7, (S") ~Z and 7, (S") =0 for 1 < k <n.

2.11 Local degree of a map of the sphere

Notation 2.86. If p € S", the space S"\{p} ~ R" is contractible and we have an isomorphism
.t H, (S") — H, (S",S"\{p}). We define [S™, S"\{p}] = m. [S™].

Likewise, if U C S™ is open and p € U, we have an isomorphism v, : H, (U, U\{p}) —
H, (S™,S™\{p}) by excision. We therefore define [U,U\{p}] = ;' [S™, S"\{p}].

Definition 2.87 (Local degree). Let f:S™ — S"™ and q € S™ be such that f=* (f(q)) = {q1,---,qn}
is finite. For each 1 <1 < N, pick an open subset U; C S™ containing ¢; s.t. UyNU; = & fori # j.
Then f can be seen as a map f: (U,U\{q}) = (S",S"\{f(q)}), so the induced map satisfies

F U, UN{g}] = w [S™, S"\{f(@)}],

for some k € Z.
The local degree of f at q is defined by deg, f = &, assuming that f~' (f(q)) is finite.
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Theorem 2.88. Let f:S" — S™ and let p € S™ s.t. f~1(p) is finite. Then

deg f = Z degq
qef~t(p)

Proof. Consider the following diagram:

H, (S")

H, (S",8"\{p})

@ H, (8", 5"\ {a:}) —L— @; H, (U, U\ {¢:})
Let 8 =04 and a = 7, f,. We have

a[S"] = (deg f) [S™, S"\{p}] = B[S"].
Note that

p1S" = 5" = 1@ 157, 5"\ {a:}] = D (Ui, U\ {a:}]

This implies that
B[S"] = 68'[S"] =3 (deg,, f) [S™, S"\{p}],

i

which proves the result. O

2.12 Finite cell complexes

Definition 2.89 (Glueing along a map). Let A C X and B CY and consider a map f : B — A.
We define

XUpY=(X1TY)/ ~,
where ~ 1is the equivalence relation given by b ~ f(b) for all b € B.
If (Y,B) = (ID)k, S’“_l), we say that X Uy D* is obtained by attaching a k-cell to X .

Definition 2.90 (Finite cell complex). An n-dimensional finite cell complex consists of
(i) A space X,

(ii) Closed subspaces @ = X 1 C Xog C X; C--- C X,, = X, with each X}, called the k-skeleton of
X

)

(iii) Such that Xy, is obtained by attaching finitely many k-cells to Xy_1.

In other words, there is a finite set A, and maps (La :DF — Xk) 4 S.t. Ly (Sk_l) C X1
€Ay
and we have an isomorphism

a€Ay a€A

(H La> . H ]ﬁ)k i)Xk\Xk_l

Example 2.91. (i) S* is a cell complex formed of one 0-cell and one k-cell.

(ii) V"S* is a cell complex formed of one 0-cell and n k-cells.
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(iii) S' is a cell complex formed of two 0-cells and two 1-cells.
(iv) T2 is a cell complex formed of one 0-cell, two 1-cells and one 2-cell.

Definition 2.92 (Complex projective space). The n-dimensional complex projective space is defined
by

CP" = (C™™\{0}) /C*
= {z cC"™ |z| = 1} /St

S2n+l

The projection map S*™** 5 CP" is called the Hopf map. Given (zo,...,2,) € C"™\{0}, we write
[20 2+ 1 2] for its image in CP".

Proposition 2.93. CP" is obtained by attaching a 2n-cell to CP" !,

By induction, it follows that CP" is a finite cell complexr with one 0-cell, one 2-cell, ..., one
2n-cell.
Proof. Consider the embedding CP"~! < CP" given by [20: - : 2z,_1] = [20: -+ : Zu_1 : 0]. Con-

sider also the map
L (20505 20o1) ED* CC" — {zo DeeeiZpog i l— ||z|]2} e CP".
We see that ¢ (S?"~!) = CP"', and we have an isomorphism
tpan + D 5 CPM\CP" . O
Corollary 2.94. CP' ~ S

7 ifx=0,2,....2n

Proposition 2.95. H, (CP") = ,
0 otherwise

Proof. We proceed by induction on n. Since CP° is a point, the result is clear. For n > 0,
(C]P’”, CIP’"_l) is a good pair, so

7 if x =2n

H, (Cﬂm’ Cpn_l) = ﬁ* ((C[pm/ CPH_I) = ﬁ* (Szn) - {O otherwise

Writing the long exact sequence of (C]P’”,(CIP’”_1> and using the fact that Hs, (CP”,CP”_I) 2,

Hy, (C]P”_1> is zero by induction, we obtain:
H.(CP") ~ H. (CP"") & H, (™). O
Definition 2.96 (Real projective space). The n-dimensional real projective space is defined by
RP" = (R™\{0}) /R* = §"/ ~,

where ~ s the antipodal equivalence relation.
RIP" is a finite cell complex with one 0-cell, one 1-cell, ..., one n-cell.

Remark 2.97. The argument we used to compute the homology of CP" in Proposition 2.95 won't
work for RP" as is. To make it work, we introduce the notion of cellular chain complexes.
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2.13 Cellular homology

Definition 2.98 (Cellular chain complex). Let X be an n-dimensional finite cell complex with k-
skeleton Xj,. Define the cellular chain complex C*(X) by

CfMN(X) = Hy (Xp, Xp1)

and di" o O (X)) — C(X) ds the boundary map in the long exact sequence of the triple
(lekalanfQ)'

Lemma 2.99. Let X be a finite cell complex. Then
di = 7,10y,

where Oy : Hy (Xy, Xp—1) — Hy_1 (Xi_1) is the boundary map of the pair (Xy, Xp_1) and mp_q :
Hy 1 (Xp_1) = Hp_1 (Xp_1, Xg_2) is the map induced by the projection.

Proof. Let [C] € H, (Xk,Xk_l), c e Cy (Xk), dec € Ch_y (Xk—l)' Then 8k[c] = [dc] € H,_4 (Xk—l);
and d{[c] = [de] € Hy_1 (Xg_1, Xg_2), which shows that m,_10[c] = d§*(c). O

2
Corollary 2.100. The cellular chain complex is a chain complez, i.e. (dcen) =0.

Proof. By Lemma 2.99, we have dzendi‘fl = M_10kTkO0k 1. Now, writing the long exact sequence of
(Xk, Xk—1), we have

T O
- — Hy, (Xk) % Hjy, (Xk;kal) = Hy 4 (qu) —

SO akﬂk = 0. ]

Remark 2.101. Suppose given maps (La :DF — Xk) cq 08 in Definition 2.90. Since the pair
€Ay
(Xk, Xx_1) is good, it follows that

Ogell(X) — Hk (Xk,Xk—l) ~ f‘fk (Xk/Xk—1> ~ Ek) ( \/ Si) >~ @ Zefw

aeAk CYEAk

where ek = 14, {Dk,Sk_l} € Hy (Xg, Xp_1). To determine the boundary map, note that d"'er =

T 10k€" 0 = Th_10as [Sk_l}, and therefore

k k—
de, = Z Napeps 1,

BEAL_1

where nyp is the degree of the composite

S X = X /X SE o SEL
BEAR—1

Example 2.102. Since RP" is a cell complex with one 0-cell, one 1-cell, ..., one n-cell, we have
Ce(RP™) = Ze* if 0 < k < n, 0 otherwise. To compute de¥, we consider the composite f of
Sk=1 5 RPF — RP* ! /RPF2 ~ Sk~ We note that the preimage of p € S¥=1 will consist of a pair
{q,aq} € SF!, where a : S¥71 — S¥1 s the antipodal map. It follows that deg f = deg, f+deg,, f =
deg, f (14 dega). But f is a homeomorphism near q, so deg, f = 1, which implies that

de* = (1 + (—1)k> et

This determines entirely the chain complex C°° (RP™). Our aim is now to show that the homology
of C(X) is isomorphic to the singular homology of X .
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Lemma 2.103. If X is a finite cell complex with one 0-cell and all other cells of dimension at least
m, then H, (Xg) =0 unless m < x < k.

Proof. We use induction on k. If k& < m, then X} = X, = {p}, so H, (X}) = 0. If k = m, then
X = X, ~ V'S™ so H, (X;) = 0 unless * = m. Now suppose the statement holds for Xj_1,

ie. H,(Xp_ 1) = 0 unless m < x < k — 1. Moreover, we have H, (X, Xj_1) =~ H, (Xk/Xk—1) ~
H, (\/SS’“) = 0 unless * = k. The long exact sequence of (X, Xj_1) is

o= H, (Xp1) = H, (X3) = Hy (Xp, Xpg) = - -

Since H, (X)_1) and H, (Xz, Xz_1) are both zero unless m < % < k, it follows that H, (X;) = 0
unless m < * < k. ]

Corollary 2.104. If X is a finite cell complex, then Hy(X) ~ Hy (Xgi1).

Proof. Write the long exact sequence of (X, Xj11):
o= Hippr (X, Xigy1) — Hy (Xiy1) Z, Hy(X) = Hp (X, Xgy1) = -+

But H, (X, Xj41) ~ H, (X/Xp41) and X/X;,; has all cells of dimension at least k + 2 (except for
one O-cell), so Hyyq1 (X, Xpy1) = Hg (X, Xpy1) = 0 by Lemma 2.103. This implies that j, is an
isomorphism. O

Theorem 2.105. Let X be a finite cell complex. Then
H*<X) = H:ell(X)a
where HE(X) = H, (CCQH(X))

Proof. Consider the following commutative diagram:

Hy1 (Xk-2)

The diagonal lines are exact and the horizontal line is the chain complex C*!(X). Note that the
blue groups are zero by Lemma 2.103. This implies that m;_; and 7, are injective, and i is surjective.
Therefore

Kerd;, = Ker (my_1 0 0;) = 0; ' (Kerm,_1) = Ker 0y = Imm, ~ Hy, (X)),

and this isomorphism Hj, (X}) Tk Ker dj, maps Im 0j1 to Im dj41 because m,00)41 = diy1. Therefore
HM(X) = Kerdy/ Im dpyy ~ Hy (X3,) /Im 01 = Coker Opyy ~ Imi = Hy (Xpy1) .

But Corollary 2.104 implies that Hy, (Xjy1) ~ Hy(X); the result follows. O
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Corollary 2.106 (Dimension Axiom). If X is a finite cell complex of dimension n, then H,(X) =0
for x > n.

Corollary 2.107. If X is a finite cell complezx, then H.(X) is a finitely generated abelian group:
H(X)=7Z"oT,

where T' is a torsion group.

7 ifx=0
Corollary 2.108. (i) H. (RP*™") ={7Z/2 ifx=1,3,....2n— 1.
0 otherwise

Z ifx=0,2n+1
(i) Ho (RP") =$7/2 ifx=1,3,....2n 1.

0 otherwise

Theorem 2.109 (Whitehead). If X and Y are connected finite cell complezes and f : X — 'Y is
a map such that the induced maps f, : m(X) = m;(Y) are isomorphisms for all i > 1, then f is a
homotopy equivalence.

Corollary 2.110. If X and Y are simply connected finite cell complexes and f : X — Y is a
map such that the induced map f, : H.(X) = H,(Y) is an isomorphism, then f is a homotopy
equivalence.

Corollary 2.111. Suppose X is a simply connected finite cell complex with trivial homology. Then
X is contractible.

3 Cohomology and products

3.1 Homology with coefficients

Remark 3.1. If (C,d) is a chain complex over R and M is an R-module, then (C' ® M,d ®idy) is
a chain complex over R.

Example 3.2. C! (RP?) = (Z 2 Z 2% Z) and C (RP?) @ Z/2 = (Z/2 =% Z/2 %% 7,/2).
Note that H, (C! (RP*) ® 2/2) # H, (C*! (RP*)) ® Z/2.

Definition 3.3 (Singular homology with coefficients). Let G be an abelian group (i.e. a Z-module)
and let X be a topological space. We define:

o The singular chain complex of X with coefficients in G by C,(X; G) = C.(X) ®7 G.
» The singular homology of X with coefficients in G by H, (X;G) = H. (C (X;G)).

We define similarly C*(X;G) and HEYX;G) if X is a finite cell compler, C. (X, A;G) and
H, (X, A;G) if (X, A) is a pair (in that case, Ci(X, A; G) = Ciu(X;G)/CL(A; G) ).

Remark 3.4. If R is a ring, then C (X; R) is a chain complex over R.

Proposition 3.5. A map f : X — Y induces a chain map f; ® idg : C(X;G) = C.(Y;G) and
therefore a map f.: HJ(X;G) = H.(Y; Q).
This defines a (covariant) functor Top — AbGp.

Proposition 3.6. Given an element g € G, there is a chain map Cy(X) — C.(X;G) given by
T +— x® g, and which induces a map H,(X) — H.(X;G). For any map f : X — Y, we have a
commutative square:
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H.(X) H.(Y)
X g - ® l
H.(X;G) ——— H.(Y;G)

Definition 3.7 (Reduced singular homology with coefficients). If X s a space and G is an abelian
group, we define

. (X; @) = Ker <H*(X; Q) &5 1, ({p): G)> ,
with f: X — {p}.
Theorem 3.8. If X is a finite cell complez, then H.(X;G) ~ H(X;G).

Proof. The proof is done in several steps:

(i) Show that H, (—;G) defines a functor Pair — AbGp from the category of pairs of spaces to
the category of abelian groups.

(ii) If f ~ g, show that f. = g..

(iii) If f: (X, A) — (Y, B) is a map of pairs, show that there is a commutative diagram with exact
rows:

H(A:G) —2 H(X:G) -2 H(X, A G) - H(A:G) — -

7. | . | /. | . |

H,(B:G) - H.(V:G) = H.(Y,B;:G) L H._, (B;G) — -

(iv) If B C A, show that we have the Excision Property: j, : H, (X\B, A\B; G) = H, (X, A;G) is
an isomorphism.

Properties (i) — (iv) mean that H, (—; G) is a generalised homology theory. Then:

G if*x=0

0 otherwise

(v) Show that H, ({p};G) = {

G ifx=n

0 otherwise

(vi) Show that H, (S*;G) ~ H, (D",S" 1, G) = {
(vii) If f:S™ — S", we have a commutative square:

A, (") —L— H, &)

- ® gl - ® gl
H, (S™;G) W H, (S";G)
It follows that f. : H, (S™;G) — H, (S™; G) is given by multiplication by deg f.
Then complete the proof as in Theorem 2.105. OJ

Z/2 ifx=0,1,...,n
0 otherwise

Example 3.9. H, (RP";Z/2) = {
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3.2 Cohomology

Definition 3.10 (Cochain complex). Let R be a commutative ring. A cochain complex (C,d) over
R consists of R-modules C* for i € Z, and homomorphisms d* : C* — C™L, satisfying d*' o d’ = 0
for alli. We write:
e O E o & i
We shall denote C* = @,;c5 C".
The cohomology of (C,d) is defined by H*(C) = Iie;kdfl.

Remark 3.11. If (C,d) is a chain complex over R and M is an R-module, then (Hom (C, M) ,d) is
a cochain complex.

Definition 3.12 (Singular cohomology). Let G be an abelian group (i.e. a Z-module) and let X be
a topological space. We define:

o The singular cochain complex of X with coefficients in G by C*(X;G) = Hom (C*(X), G).
» The singular cohomology of X with coefficients in G by H* (X;G) = H* (C (X; G)).
1(X;G) and H:

cell

We define similarly C

€

(X;G) if X is a finite cell complex.

Proposition 3.13. A map f : X — Y induces a cochain map f* : C*(Y;G) — C*(X;G) and
therefore a map f*: H*(Y;G) — H*(X;G).
This defines a contravariant functor Top — AbGp.

Theorem 3.14. If X is a finite cell complex, then H*(X;G) ~ HX,(X; G).
Example 3.15. C¢l (RP?) = (Z 2% 7. % Z) and Cyy, (RP* Z) = (2 42 2. &2 7).
Note that H* (RP* Z) # Hom (H, (RP*) ,Z).

Example 3.16. If M is a smooth manifold, then any differential form w € QF(M) defines a R-
cochain on smooth simplices o : A¥ — M by

w(o) = /Ak ox(w).

Ifd : QM) — QMY(M) is the exterior derivative, then dw(o) = w(do) by Stokes’ Formula. In
other words, the above defines a cochain map.

Theorem 3.17 (De Rham). If M is a smooth manifold, then H* (2(M),d) ~ H* (M;R).
Definition 3.18 (Cohomology of pairs). If (X, A) is a pair, we define
C* (X, A;G) ={a € C*(X;G) = Hom (C,(X),G), Kera D C,(A)}.

We have a short exact sequence 0 — C*(X, A;G) — C*(X;G) — C*(A;G) — 0, which gives the

long exact sequence of a pair:

o= HY (X, A;G) — HY(X;G) — HY(A4;,G) — HH (X, A;G) — -+
Lemma 3.19. There is a bilinear pairing (-,-) : C* (X;G) x Cx(X) — G defined by {a,x) = a(z).
It descends to a pairing

() H (X;G) x H(X) — G.

Proof. First note that (da,z) = (a,dx) and if f : X — Y, then <fﬁa, x> = (a, fyr). We must now
check that (a + db, z + dy) = (a,z) when da = 0 and dz = 0. Indeed

(a+db,x + dy) = (a,x) + (b,dzx) + (da,y) + <b, d2y> = (a,x) . O

25



3.3 Free chain complexes over a PID

Definition 3.20 (Short injective chain complex). A chain complex (C,d) over a ring R is said to
be short injective if

(i) C. =0 forx #k,k+1,

(ii) Ck,Cry1 are free over R,

(iii) dgy1 : Cre1 — Ck is injective.
In other words, (C,d) has the form

O—>Ck+1<—>Ck—>0.

Cif/Crir if %=k

In particular, H,(C) = {0 horirise.
otherwise

Lemma 3.21. If (C,d) is short injective and diyq : Cry1 — Cy is invertible, then (C,d) is con-
tractible.

Proof. Set h = di}, : Cx — Ciy1 and check that dh + hd = idc-, which proves that (C,d) is
contractible. O

Proposition 3.22. A few facts from commutative algebra:
(i) Z, k[t] and k[t,t™1] are all principal ideal domains (PIDs), where k is a field.
(ii) If R is a PID, M s free over R and N C M, then N is free over R.

(iii) If0 - A— B — C — 0 is exact and C is free, then the sequence splits, i.e. B~ A& C.
Theorem 3.23. If (C,d) is a free chain complex over a PID R, then it is isomorphic to a direct
sum of short injective complezes.

Proof. Let Z = Ker <Ck i, Ck_l) C Cy and By = Im (C’k i, ck_l) C Cy_y. Then Zy, By, C C,
and C}, is free, so Zj and By are free by Proposition 3.22. Moreover, we have a short exact sequence
0— 2, - Cr — Bir_1 — 0.

Since By_; is free, Proposition 3.22 implies that Cy ~ Z, @ By_;. Moreover, di (Z;) = 0 and
dy (Br_1) C Zp_ since d*> = 0 (note that this is a different object from dj, (By) = 0). In other words,

C.=@D <Bk1 & Zk1> . O
keZ

Theorem 3.24 (Smith Normal Form). If R is a PID and f : R" — R™ is injective, then there are
bases (€i);<, of R" and (e;-) of R™ such that f (e;) = a;e; for 1 < i < n, with a; € R\{0}.

1<jsm

Corollary 3.25. If (C,d) is a free, finitely generated complex over a PID R, then it is isomorphic
to a direct sum of complexes of the following forms:

(i) 0> R —0,

(i) 0 = R X% R — 0.

Proof. Apply Theorem 3.24 to each short injective summand of C, in the decomposition given by
Theorem 3.23. [

Corollary 3.26. If (C,d) is a finitely generated complex over a field k, then it is homotopic to the
complez (H(C),0).

Proof. Since k is a field, note that (C,d) is free. Now apply Corollary 3.25 and note that complexes
of type (ii) are contractible by Lemma 3.21 since any a € k\{0} is invertible. O
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3.4 The Universal Coeflicient Theorems

Notation 3.27. Suppose R is a PID and (C,d) is a free finitely generated chain complex over R.
By the Structure Theorem for finitely generated modules over PIDs, we can write

H(C)=F,&T,

where F, is free and T, is torsion. In the decomposition given by Corollary 3.25, summands of type
(i) account for F, and summands of type (ii) account for T.

Proposition 3.28. Let (C,d) be a free, finitely generated chain complex over a PID R. Then
(i) H, (C® R/b) ~ (F, ® R/b) & (1), @ R/b) & (Tk—1 ® R/b).
(i) H* (Hom(C,R)) ~ F}, ® T_;.
(iii) H* (Hom(C, R/a)) ~ Hom (Fy, R/a) ® Hom (T, R/a) ® Hom (T},_1, R/a).

The general ‘metatheorem’ underlying this proposition is the fact that the groups H.(X;G) and
H*(X;G) are determined by H,.(X).

Proof. Check this for each summand in the decomposition given by Corollary 3.25. n

Remark 3.29. We have only proved Proposition 3.28 for free, finitely generated chain complezes.
Hence, this will only apply to the computation of cellular homology of finite cell complexes. But the
result actually remains true for all free chain complexes, so it can be applied to the computation of
singular homology in general.

Example 3.30. Suppose X is a topological space s.t.

Z/4 ifx=3
—~ 7 ifx =2
7.(X) = if *
Z]2 ifx=1
0 otherwise
Then
7/4 f x = 3,4
7/4 i e =4 2;4@Z/2 Z,j:* )
— — Xk =
H'(X)=_Z®7L/2 ifx=2 and  H,(X;Z/4) = !
, Z]2 if x =1
0 otherwise )
0 otherwise

Definition 3.31 (Free resolution). If M is an R-module, a free resolution of M is a free chain
complex (C,d) with Cy =0 for k <0 and

M ifx=0

0 otherwise

H.(C) :{

Example 3.32. (i) If M is free, then 0 — M — 0 is a free resolution of M.

(ii) If R is a PID and a # 0, then 0 — R =% R — 0 is a free resolution of R/a.

(iii) If 0 — Cy — Cy — 0 is short injective, then it is a free resolution of H.(C) = Hy(C).

)
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(iv) If R =Clz,y] and M = R/(x,y), then R > R — 0 is a free resolution of M.



Definition 3.33 (Tor and Ext). Let M, N be R-modules. We define

Tor®(M,N) = H, (C ® N) and  Exth,(M,N)= H* (Hom(C, N)),
where C' is a free resolution of M. This definition does not depend on the choice of C.
Example 3.34. (i) If M is free, then

M&N ifx=0

‘ and Ext*(M,N) =
0 otherwise

Tor*(M,N):{ {Hom(M,N) if+=0

otherwise
(ii) If R is a PID, a,b # 0, then

Tor, (R/a, R/b) = {?/ ged(a,b) if x=0,1

otherwise
(iii) If R = Clz,y] and M = R/(x,y), then
M ifx=0,2
Tor, (M, M) = H. (M % M*> % M —0) = M* ifx =1
0 otherwise

Proposition 3.35. If C is a free chain complex over a PID R, then
H,(C ® N) = Torg (Hy(C), N) @ Tory (Hy_1(C), N) =~ (Hy(C) ® N) @ Tor, (Hy_1(C),N),
and
H* (Hom(C, N)) = Ext" (Hy(C), N) @ Ext' (H,_1(C), N) ~ Hom (H,(C), N) @ Ext' (H,_,(C), N).

Proof. Since C' is free, Theorem 3.23 implies that it suffices to check the result for a short injective
complex. O

Corollary 3.36. If X is a space such that H.(X) is free abelian, then
H.(X;G)=H.(X)®G and  H*(X;G) =Hom (H.(X),G).

Corollary 3.37. If X is a space such that H,(X) is free abelian, then H*(X) is the dual of H.(X),
and for any map f : X — 'Y, the induced map f*: H*(Y) — H*(X) is dual to f. : H(X) — H,(Y).

Proof. This follows from the pairing formula (f*a, z) = (a, f.z). O

3.5 Products
Notation 3.38. If C is a chain complex and x € C;, we write |x| = i.

Definition 3.39 (Tensor product of chain complexes). If C and C' are chain complexes over R,
then C ® C' is the chain complex defined by

(Cel) =@ (¢ecy),

i+j=k
and d(y @y) =dy @y + (—1)Vy o dy.

Proposition 3.40. If Y and Y’ are finite cell complezes and A; (resp. A}) is the set of i-cells of Y
(resp. Y'), then Z =Y x Y’ is a finite cell complex and the set of k-cells of Z is in bijection with

{(a,o/),ozEAi, a’GA;,i—i—j:k}.
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Proof. Let Zy, = U;4j—, Yi X Y]. If @ € A; and o’ € A}, we have ¢, : D! - Y; and ¢ : DY — Y/, from
which we obtain ' ‘
Lo X lor D' x D — Y; x Y] C Z. O
——

~Di+J
Theorem 3.41. IfY and Y’ are finite cell complexes, then
C:ell (Y % Y/) — C:ell(y) ® C:ell (Y/) )

Proof. We have an obvious correspondence at the level of chain groups given by Proposition 3.40;
we need to check that it preserves the boundary map. O]

Example 3.42. We wish to compute H, (RIP’2 X RIP’Q) ~ H, (C’“’H (RIF’Q) ® Ccel (]RIP’Q)). We repre-

sent the tensor product in a grid, as below:

Z Z‘TO Z N Z
><2J ><2J ><(—2)J ><2J
Z Z<7><O Z N Z
xOJ XOJ ><0J XOJ
Z Z<—XO Z N Z

L~y Lz

Fach diagonal line corresponds to one value of k in the complex (Cceu (R]P’Z) ® Ccel (RIEDQ))k. We
obtain

Z if =0
7/2)% ifx=1
H, (RP? x RP?) = (Z/2)" if » .
7)2  ifx=23
0 otherwise

Theorem 3.43 (Kinneth Formula). If C,C" are free finitely generated complexes over a PID R,
then
H,(C® ")~ (H(C)® H, (C")) ® Tory (H.(C), H, (C")) .

More precisely,

i+j=k itj=k—1
In particular H, (X xY) is determined by H.(X) and H.(Y) for finite cell complexes X and Y .

Proof. By distributivity of the tensor product and Theorem 3.25, it suffices to check the result for
chain complexes of types (i) and (ii). O

Remark 3.44. The Kinneth Formula (Theorem 3.43) remains valid even if C and C' are not finitely
generated.

Corollary 3.45. Suppose X and Y are finite cell complezxes. If H,(X) is free over Z, then
H, (X xY)~H,(X)® H.(Y).

This actually remains true for all topological spaces.
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Proof. 1If M is free then Tory (M, N) = 0. O
Corollary 3.46. Suppose X and Y are finite cell complexes. If k is a field, then
H, (X xY;k)~ H.(X;k)® H.(Y; k).
This actually remains true for all topological spaces.
Proof. Note that
CeM (X x Vik) = (CN(X) @z CN(Y)) @2 k
_ (C’feu(X) Ry k:) . (Cv:ell(y) Qz k:)
= e (X k) @ CF (Yik),
and use Corollary 3.45 together with the fact that any module over £ is free. O]

Z)2  ifx=0,4
(Z)2)* if*=1,3
(Z)2)° ifx=2

0 otherwise

Example 3.47. H, (]RIED2 x ]R{IPQ;Z/2> -

Definition 3.48 (Poincaré polynomial). If X is a space, we define the Poincaré polynomial of X
over a field k by ‘
Pe(X) =D (dimy, H, (X; k) t* € Z[t].

20
Thus
Pk(X X Y) = Pk<X) X Pk(Y)

Remark 3.49. If H.(X) is free, then we have isomorphisms
H.(X;:G)~H,(X)® G and H*(X;G) ~Hom (H.(X);G),

which are realised by natural maps. We would like to also have a natural map H,(X) ® H.(Y) =
H, (X xY). Such a map exists, but it is painful to construct. This is why we introduce the cup
product.

3.6 The cup product

Definition 3.50 (Cup product). If « € C*(X;R) and 8 € C*X;R), we define the cup product
aUpB e C*YX;R) of a and B by

for all o : AF* — X

Lemma 3.51. d(aUB) = daU B+ (—1)llaudp.
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Proof. For every o : A1 — X we have

k041 ‘
d(aUp) (o) =(aUp)(do)= > (1) (aUp) (UO o, k+£+1>
=0
k
= Z(—l)ﬂa (aoFO ......... k+1)B(UOFk+1 ..... kret1)
7=0
k041
+ Y (~Va(ooFo k) B(c0Fy ;. xren)
j=k+1
k1
=) (1Y« (a oFy 5 k+1) B(0 0 Frir,.. ktrer1)
=0
k-+0+1 '
+-§:(—D%M00Fb ..... 05<UOE;§ ,,,,, ..... kM+J
=k
= (daUpB) (o) + (=1)" (U dp) (o). =

Corollary 3.52. The map U : C*(X; R)xC*(X; R) — C**(X; R) descends to a map U : H*(X; R) x
HY(X;R) — H*(X: R) given by
[ U] = [aUp].

Proof. Note that, if da = d = 0, then, by Lemma 3.51,
(a+da"Y)U(B+df") = aUB+dd'UB+aUdp +da’'Udp = aUf+d (' UB+aUp +d'udp’). O

Proposition 3.53. H*(X; R) equipped with the cup product U is a ring. Moreover, if f: X — Y is
a map, then f*: H*(Y; R) — H*(X; R) is a ring homomorphism.

Proof. Define 1 € C%(X;R) by 1(c) =1 € Rfor all 0 : A° - R. Then (dl)(7) = 1(dr) =
1(toF, —7okFy) =0forall 7: Al = R, so dl = 0 and we can define 1 = [1] € H*(X; R). We
must check the ring axioms for H*(X; R). All of them are actually true at the level of cochains, for
instance associativity:

(2UB)UY) (0) = (oo Fo..k) B (00 Fy ko) V(00 Fryest. herem) = (€U (BUY)) (o).
Now given f: X — Y, we have
FauB) (o) =(aUp) (fio) = (aUB) (foo) = (ffau fi8) (o),
and therefore f* ([a] U [8]) = f*[a] U f*[3]. O
Remark 3.54. Let M be a smooth manifold. Then Theorem 3.17 provides a (group) isomorphism
H* (Q(M),d) ~ H* (M;R).

This is actually a ring isomorphism when H* (Q(M),d) is equipped with A and H* (M;R) is equipped
with U.

Proposition 3.55. If a,b € H*(X), then
aUb=(=1)lllpyaqa.

We say that U is graded-commutative.
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Proof. Consider the map

p:(vg,...,0) € AR — (v, vp_1, ..., 100) € A
It induces a map 7 : Co(X) — C,(X) defined by ry(c) =€ (|o|) 0 0 p where e(k) = (—1)z*¢+D)  Thig
is a chain map because

k k
dry(o Z UOpOF—5 Z ]UOF/\Op—e(k—1)d00p:7‘ﬁd(0).

Moreover, we show that ry is chain homotopic to ide, (x). Dualizing, we obtain rf o C*(X) — C*(X)
with 7# ~ idc«(x), therefore {rﬁa} = [a] for all . Now we have

e (laf + 18])
e ()= (13D

=(1)lell8l

raUB) = r(B) Ur(a),

from which it follows that

U B = [ (aUp)| = (=D)L r4(8) Uri(a)] = (—=1)*I*! [B] U [a]. O

Remark 3.56. For the rest of the section, we shall work over R = 7, but the results will remain
valid over any ring.

Lemma 3.57. Let (X, A) be a pair. Then the cup product defines a map U : C*(X, A) x CY¢X) —
C*(X, A), and this descends to a map

U: H¥X,A) x HY(X) — H*"*(X, A).
Moreover, for any 8 € H*(X), the following square commutes:
H*(X,A) —— H*(X)

U q U Bl
H*(X, A) — H*(X)

Example 3.58. (i) If X is path-connected, then H°(X) = (1) ~ Z, where 1 is the neutral element
for U.

(ii) H*(XIIY) ~ H*(X) x H*(Y) as rings.
(iii) H* (S") ~ Z[a]/ (a?) if n > 0.

Proof. (i) Note that Hy(X) ~ Z so H°(X) ~ Z by the Universal Coefficient Theorem (Corollary
3.37). Moreover, if p € X, then (1,[0,]) = 1, which implies that 1 generates H°(X) (otherwise it
would be a multiple of something, and so would (1, [0,])).

(ii) There is an isomorphism (Lg( X Ly) C*(XIOY) - C*(X)xC*(Y) = C*(X)aC*(Y), where
x : X — XIIY, and this isomorphism induces the claimed (group) isomorphism, which is also a
ring homomorphism because % and ¢y are.

(iii) As a group,

B (s") {Z it =0,
0 otherwise

Let a be a generator of H" (S"). Then H*(S") = (1,a), and we have the relations 1 U1 = 1
lUa=aUl=aand aUa =0 since H*" (S") = 0. O
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3.7 The exterior product

Definition 3.59 (Exterior product). Let X and Y be two spaces, let a € H*(X) and b € H(Y).
The exterior product of a and b is defined by

axb=mi(a)Ums(b) € H"(X xY),
where T : X XY = X and mo : X XY — Y are the projections.

Definition 3.60 (Generalised cohomology theory). A generalised cohomology theory is a contravari-
ant functor h* : Pair — GrdMody from the category of pairs of spaces to the category of graded
Z-modules, satisfying the following three axioms:

(i) Homotopy invariance: if f ~ g, then f* = g*.

(ii) Functorial long exact sequence of a pair: pairs have long exact cohomology sequences and this
is functorial, i.e. the following diagram commutes for every f : (X, A) — (Y, B):

- — h*(X, A) h*(X) h*(A) X, A) — -

] 7] ] ]

- — h* (Y, B) h* (Y) h* (B) —— h*(Y,B) — - --

(iii) Excision: if B C A, then the map
h*(X,A) = h* (X\B, A\B)
induced by the inclusion (X\B, A\B) — (X, A) is an isomorphism.
If h* is a generalised cohomology theory, then it will also satisfy the following condition:
(iv) Collapsing a pair: if (X, A) is a good pair, then we have an isomorphism
7 (XJA, (5a]) 5 B(X, A),
induced by the projection m: (X, A) — (X/A, {*4}).

Proposition 3.61. Let f : (X, A) — (Y, B) be a map of pairs. If f.: H,(X,A) = H, (Y, B) is an
isomorphism, then f*: H* (Y, B) = H* (X, A) is also an isomorphism.

Remark 3.62. There are contravariant functors H* I, h* : Pair — GrdMody, defined by

(indy)*

B ((Xl,Al) ER (XQ,AQ)) = H" (Xy x Y, Ay x Y) H (X, xY, A, xY),

and

[ @id g+

h* ((Xl,Al) - (X27A2)> = H" (X5, A2) @ H*(Y) ———= H" (X1, A\) @ H*(Y).

All three of these functors satisfy the axioms for a generalised cohomology theory.

Proof. The homotopy invariance is clear in each case. For the functorial long exact sequence of a
pair, we already know the result for H*. For &', use the long exact sequence of (X XY, AxY).
For h*, use the fact that H*(Y') is free, so we can tensor long exact sequences. For excision, apply
Proposition 3.61 to obtain the result for H*, then use excision for (X x Y, A x Y') to obtain it for
1", and tensor by idg-(yy for A" O
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Lemma 3.63. Using the notations of Remark 3.62, we have a natural transformation ® : h* — I~
defined by B
Dixa):a®@be R (X, A) — axb=mi(a) Urs(b) € K (X, A).

In other words, the following diagrams commute:

() RPN ) A TSR
Y R A R
(X/’A/) h* (X/,A/) M')ﬁ* (X/,A/) ﬁ*+1 (A) &) E*—i—l (A)

Proof. We prove that the first square commute (we write F'= f x idy : X x Y — X’ x Y and note
that 7j o F' = fom and 7ho F = my):

Foaa@b) =7 (7" (a) Uny(b)) = F* (7)"(a)) UF" (3" (b))
= (m 0 F)" (a) U(my0 F)" (b) = 71 f"(a) Um (D)
:f*(a) ><b:<I>(X7A)f(a®b). ]
Theorem 3.64. If X is homotopic to a finite cell complex and Y is such that H*(Y') is free over

R =17, then the map
O H* (X)) H(Y) = H* (X xY)
induced by the bilinear map x : H*(X) x H*(Y) — H*(X xY) is an isomorphism.
This actually remains true for any topological spaces X and Y such that H*(Y') is free.

Proof. Given a pair (X, A), we denote by P(X, A) the statement that
D(x,a) s h(X,A) — I (X, A)

is an isomorphism.

(a) P (D) and P (S°) hold. We use the facts that
h* (D) ~ Z & H*(Y) ~ H*(Y) ~ " (D)

and
b (S%) =22 @ H'(Y) ~ H* (Y IIY) ~ 1" (S°)
and we check that these isomorphisms are induced by ®.
(b) If X ~ X', then P(X) < P (X’). To prove this, write the naturality square of ® associated
to the homotopy equivalence f : X — X', and use the fact that both f* and 7" are isomorphisms.
(c) If two of P(A),P(X),P(X,A) hold, then so does the third. To prove it, note that we have a
commutative map of long exact sequences:

¢(X7A)J O J Dy l (I)(X,A)J

The result now follows from the Five Lemma (Lemma 2.59).

(d) If (X, A) is a good pair, then P(X, A) < P(X/A). Indeed, by collapsing a pair, we see that
P(X,A) < P (X/A {xa}), but P ({x4}) holds by (a), so P (X/A,{xa}) & P(X/A) by (c).

(e) P (D", S" ') and P (S") hold for all n. We prove this by induction on n. For n = 0, this is
(a). Assuming the result is true for n, we have P (D", S"!) & P (D"/S"') = P(S") by (d), and
P (D™) holds by (a) and (b) because D" ~ D so P (D", S") holds by (c).
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) PX)="P (X Uy ]Dk>, where f : S*=! — X. Prove this by considering the pair (X Uy DF, X)
and by noting that (X Us ]D)k) /X =~ SF. Thus, if P(X) holds, we know that P (Sk) holds by (e), so
P (X Uy D) holds by (c) and (d).

(g) P(X) holds if X is a finite cell complex.

(h) P(X) holds if X is homotopic to a finite cell complex. O

3.8 Computations of cohomology rings
Example 3.65. (i) (a1 x by) U (ag x by) = (=1)1P1lle2l (q; U ay) x (by U by).

(ii) H* (T?) ~ (a,b, ab= —ba and a* = b* =0) as a ring (in other words, H* (T?) is the exterior
algebra A*(a,b) on two generators).

(i) H*(T") =~ (a1,...,an, a;a; = —aja; and a; = 0).
(iv) H*(S* x S?) ~ Z]a,b] / (a®,b?).
(v

(vi) H*(S2vS?VS*) ~ H* (S* x S?) as groups, but not as rings. It follows that S* vV S* v S*
S? x §2.

)
)
) If X and Y are path-connected, then H* (X VY') is a subring of H* (X 11 Y) = H*(X)x H*(Y).
)

(vii) If Xy is the genus 2 surface, then H* (33) = (a1, b1, ag,ba, ), with |a;| = |b;| =1, |¢| = 2 and
CliUbj :(ch, aanj :blUbJ =0.

More generally, H* (39) = <c, (@i)1<icg » (bi)1<i<g> with |a;| = |b;| =1, |c| =2 and a; Ub; = d;;c,
aanj :blUb] =0.
Proof. (i) Note that

(a1 X bl) U (ag X bg) 7'('; (al) U 7T; (bl) U 71'>1k (ag) U 7'('; (62)
= (=1)"lelzy (ay) U n} (ag) U (br) U T (be)
= (].)‘blH(nlﬂ';< (CLl U CLQ) U 7'(';< (bl U bg)

= (= 1)lPllezl (a4 U ay) x (by Uby).

(ii) and (iii) We know that H* (S') ~ Z[c]/ (¢?) as a ring, with |¢| = 1 (c.f. Example 3.58.(iii)).

By Theorem 3.64,
H* <T2) =H" (Sl XSI) o~ <1 x1,ex1,1 ><c,c><c>,
—— ——
a b

as a group. Moreover, aUb = (¢x 1)U (1x¢) = (cU1l)x (1Uc) = cxcand bUa = —aUb. Likewise,
aUa=>bUb=0, from which the result follows.

(iv) Use the fact that H* (S*) ~ Z|[c] / (¢*) with |c| = 2 and proceed as for (ii).

(v) We have H¥(X VY) ~ HH(XTTY) ~ {(a, b), a € H*(X), b e H’“(Y)} as groups for k > 0.
Since X, Y are path-connected, H°(X VY') ~ (1), and the result follows from the fact that

(al, bl) U (ag,bg) = ((11 U ag,bl U bg) .

(vi) We have H* (S? vV S* V §*) ~ H* (S?) x H* (S?) x H* (S*). This is isomorphic to H* (S* x S?)
as groups, but we have for example H?(S? vV §? V§*) = (a, 8), with a = (¢,0,0) and 3 = (0,c,0).
Therefore a? = 32 = 0, and a3 = (¢,0,0) U (0,¢,0) = 0.

(vii) Let A be a circle separating the two holes of ¥5. We have a projection map 7 : ¥y — ¥y /A ~
T2 v TZ. We first compute homology, obtaining that m, : Hy (33) — H, (T2)? is an isomorphism, and
1 . Since H, (%3) is free over Z, Corollary 3.37
implies that 7* is dual to m,. The result follows. O

T+ Hy (23) — Hs (T2)? is given by the matrix
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4 Vector bundles and manifolds

4.1 Vector bundles

Definition 4.1 (Vector bundle). An n-dimensional real vector bundle over a space B is a map
m: E — B such that

(i) 71(b) is an n-dimensional real vector space for all b € B,

ii) There is an open cover (U, of B and homeomorphisms f, : 7= (Uy) — U, x R™ such that
acA
the square

1 (U) —Lo g, Re

| WIJ

U, idy, U,

commutes for all o € A, and the maps T3 0 fojr-10) 7 1) — R" are linear isomorphisms.

The space B is the base of the vector bundle, E is the total space, the sets 7= 1(b) are the fibres and
the maps f. are local trivialisations.

Remark 4.2. There is an analogous definition of complex vector bundles (replace R by C).

Definition 4.3 (Morphisms of vector bundles). A morphism of vector bundles between E * B and

i . .
E" — B’ is a commuting square

E—{ . p
gy

This implies that we have linear maps
_ -1
fopp1py 17 (b)) — ()7 (f(D))
There is a category of vector bundles and morphisms of vector bundles.

Definition 4.4 (Subbundle). We say that a bundle E = B is a subbundle of E’ B if there is an
injective morphism [ : E — E' making the following square commute:

E / E'
|
B _idp | B

Remark 4.5. Let E = B be a vector bundle. Consider the maps f, o fﬁ_l; there are functions
fap 1 (Ua NUg) x R* — R™ that are linear in the second coordinate, such that

fao f5':(b,0) € (UaNUsg) X R" — (b, fas (b,7)) € (UsNUs) x R™
In other words, we can write fuz (b, U) = gap(b)V, with g.5(b) € GL,, (R). This defines maps
Jap - Ua N Ug — GLn(R),

called transition functions.
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Lemma 4.6. Let E 5 B be a vector bundle. Then the transition functions (gaﬁ)aﬂeA satisfy
() gaa(b) = In,
(1) goa(b) = (gas(b) ",

(ii) gas(0)gs (D) = gar (b)-

Proposition 4.7. Suppose (Uy),c4 i an open cover of a space B and there are maps gop : UsNUg —

GL, (R) satisfying conditions (i)—(iii) of Lemma 4.6. Then there is a vector bundle E = B with
transition functions go,s. Moreover, any two such bundles are isomorphic.

Proof. Construct E by
E= H (Upy xR") [ ~,

acA

where ~ is defined by (b,7) ~ (b, gos(b)¥) for all b € U, N Uz. Conditions (i)—(iii) imply that ~ is
indeed an equivalence relation. O

Example 4.8. B x R* I B is the n-dimensional trivial bundle over B.

Definition 4.9 (Section). A section of E = B is a map B > E such that wo s = idp.
For instance, we have a section b € B —— 0,-1 € 771 (b) C E called the zero section.
A section s : B — E is called nonvanishing if s(b) # Or-1() for allb € B.

Proposition 4.10. A vector bundle E = B is isomorphic to the trivial bundle iff there are sections
S1,--.,5n 0 B = E such that (s;(b)),,, s a basis of m='(b) for allb € B.

Proof. 1f sq,...,s, are such sections, define

f : (b, ?7) € BxR"+— zn:”l)lsl(b) S W_l(b>.

=1

This defines an isomorphism, and the converse is easy. O

4.2 Examples of vector bundles
Example 4.11. (i) The Mébius bundle s
M=1[0,1] xR/ ~,
where ~ is defined by (0,z) ~ (1, —z), with projection M = ([0,1]/ ~) ~ S!.

This is a line bundle over S'.

Note that, if s : S' — M is a section, then s(t) = (t, f(t)) € [0,1] x R, where f(t) satisfies
f(0) = —f(1). It follows that f (to) = 0 for some ty € [0,1], and therefore (s (ty)) cannot be a
basis of T (tg), so M — S' is not trivial.

(ii) The tautological bundle s
Teen = {([2],7) € RP" x ™!, 7 € Ra},

with natural projection Tgprn — RP™.

We have local trivialisations given by U; = {[z] € RP", z; # 0} and f; ([x],0) = ([z],v;). The
associated transition functions are

g5 ([2]) = €R".

Note that Tgp1 is the Mdbius bundle.
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(iii) The complex tautological bundle is
Teen = {([2],7) € CP" x C"*!, 7 € Cz},

with natural projection Tepn — CP™.
The map T : Tepn — C*L given by ([2], ¥) = ¥ is called the blowup map in algebraic geometry.
If G # 0 then w3t (0) = {([0],¥)}; if ¥ = 0 then w5 *(0) = CP" x {0}.
(iv) The tangent bundle of the sphere is
Ts" = {(#,5) € " x R**, #- i = 0},

with natural projection T'S™ — S™.

We have local trivialisations given by U; = {Z € S" x; # 0} and f; (Z,7) = (¥, m; (V)), where
m : R"™ — R™ is the map omitting the i-th coordinate.

Since TS*™ has no nonvanishing section (for such a section could be used to construct a homo-
topy between idsen and the antipodal map, contradicting Corollary 2.74), it follows that TS*"
is not trivial. However, TS is trivial. In general, it can be proved that TS"™ is trivial iff
ne{1,3,7}.

Definition 4.12 (Product of vector bundles). Let E = B and E’ ™y B’ be vector bundles. Their
product is the vector bundle

ExE ™ BxB.
At the level of fibres, (m x ')~ (b,¥) = 77 1(b) x (x/) " (V).

Definition 4.13 (Pullback of a vector bundle). Let E = B be a vector bundle and X 5 Bbea
map. The pullback of m along f is defined by

[1(E) ={(z,v) € X x E, f(z)=m(7)),
with natural projection ' : f*(E) — X.
At the level of fibres, (7') " (z) ~ n* (f(x)).

If E is trivial on U, with transition functions gas : Uy N Us — GL,(R), then f*(E) is trivial on
f7Y(U,) with transition functions gago f: 71 (Uy) N f71 (Us) = GL,(R).

Lemma 4.14. Let E 5 B be a vector bundle and let X %Y L5 B be maps. Then
(i) (idp)" B~ E,
(if) (fog) E=~g"(f(£)).

Definition 4.15 (Whitney sum of vector bundles). Let E = B and E' ™ B be two vector bundles
over B. Then their Whitney sum is defined by

E®E =A(ExE',

where A : B — B x B is the diagonal map. There is a natural projection mq : E ® E' — B.
At the level of fibres, (1)~ (b) ~ 7 1(b) & (x') " (b).
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4.3 Partitions of unity
Notation 4.16. If p: B — R, we write
Suppyp = {b € B, ¢(b) # 0} C B.

Definition 4.17 (Partition of unity). IfU = {U,, a € A} is an open cover of a space B, a partition
of unity subordinate to U is a collection of functions (@; : B — [0,1]),. such that

(i) For alli € N, Suppy; C U for some U € U,
(ii)) For any b € B, p;(b) = 0 for all but finitely many 1,
(iii) For any b € B, Y ;enwi(b) = 1.

We say that B admits partitions of unity if whenever U is an open cover of B, there is a partition of
unity subordinate to U.

Example 4.18. Compact Hausdorff spaces, metrisable spaces, manifolds, all admit partitions of
unity.
In general, a space B admits partitions of unity iff B is paracompact Hausdorff.

Notation 4.19. Let E = B be a vector bundle and let B C B. We define the restriction of E to
B’ by
E\B' = L*(E)v

where 1 : B' — B is the inclusion map.

Lemma 4.20. Let E = B x [0,1] be a vector bundle. If E|Bx[0 1] and E|BX[
’2

then so is E.

1| are both trivial,

Lemma 4.21. Let E 5 B x [0,1] be a vector bundle. Then any b € B has an open neighbourhood
Uy C B such that Ejy,«,1) s trivial.

Proof. Since E is locally trivial, given b € B and s € [0, 1], there exists an open neighbourhood
Ups € B of b and an open neighbourhood I; C [0, 1] of s such that E]Ubsxls is trivial. Since [0, 1] is

compact, we can find 0 =ty < s1 < t; < 89 < --- < t,, = 1 such that E|Ubs,><[t,-_1 . is trivial. Now
let U, = N;_; Ups, and apply Lemma 4.20. O

Proposition 4.22. Let E = B x [0,1] be a vector bundle. If B admits partitions of unity, then
E|B><0 = E|B><1-

Proof. Pick an open cover U = {Uy, b € B} of B as in Lemma 4.21. Let (¢;),.y be a partition of
unity subordinate to U, with Supp ¢; C U,, for some b; € B. Let ¢, = >I' ; ¢; and p, : b € B —
(b, 9, (b)) € B x [0,1]. Define

Ep = pp(E) = {(b,V) € Bx E, 7 (v) = (b,¢n (b))} -

Let f; : (7') " (U, x [0,1]) — Uy, x [0, 1] x R” be a local trivialisation of E,,. There is an isomorphism
B, : E,_1 = E, given by

(b, V) it b & Up,

ﬂn (b, 17) = {fll (b, wn(b),ﬁ') fbe Ubn )
where f; (b, V) = (b, ¢,_1(b),?"). Now if

5:ngr+noo(5no‘“052oﬁ1)a

then 6 . E|B><O i) E\Bxl‘ ]
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Theorem 4.23. Let E 5 B be a vector bundle, fy, fi : X — B be two homotopic maps. If X admits
partitions of unity, then

fo(E) ~ f{(E).
Proof. Let fo : X x [0,1] — B be a homotopy from fy to f;. Then
fo(E) = fS(E)pxo = fi(E)px1 = f1(E). 0

Corollary 4.24. If E = B is a vector bundle where B is contractible and admits partitions of unity,
then E is trivial.

Proof. Let ¢, : b € B+ by € B, so that idp ~ ¢, because B is contractible. It follows that

E ~id}(E) ~c (E)~ B x 7" (b). O

4.4 The Thom isomorphism

Notation 4.25. Let E = B be an n-dimensional (real) vector bundle. For b € B, we denote by
Ey = 771(b) the fibre at b, and 1, : Ey — E the inclusion map. We also write sq : B — E for the zero

section, (i.e. so(b) =0 € B, for allb), and we write E* = E\Im so and E} = E}\ {6} ~ R™\{0}.
Remark 4.26. For all b € B, we have

7 ifx=n

H, (E,, E?) = H, (R*,R"\{0}) = ,
<b b) ( \OH {0 otherwise

so by Corollary 3.36, for any ring R,

H* (Eb,Eﬁ;R) _ {R ifx=mn

0  otherwise

Definition 4.27 (Thom class). An element u € H" (E,Eu; R) is said to be an R-Thom class (or
an R-orientation) for E if ij(u) generates H™ (Eb, Eg; R) ~ R for allb € B.

Notation 4.28. From now on, we shall always work with R-coefficients and omit them from the
notations.

Example 4.29. Assume that E = B x R" is the trivial bundle over B. By Theorem 3.64, since
H* (R",R"\{0}) is free over R, we have

H* (E,E*) ~ H* (B x R", B x (R"\{0})) ~ H*(B) @ H" (R",R"\{0}) .
Therefore, if ¢ is a generator of H™ (R",R™\{0}), then we have an isomorphism
H*(B) = H"** (B, E¥)
given by a — (a X ¢). Hence

[I R~ II H°(B)~H'B)~H"(E,E)~ [[ H"(Es, El),

B;,emyB B;emoB B;emoB

and the map Tlg,crop B = IlB,enys H" (E\BMEFBi) is given by 7 — (ri¢)g cqp- 1t follows that
rxXce H" (E, Eﬁ> is a Thom class iff r; generates R ~ H° (B;) for all i. Therefore:

o If R=17/2, there is a unique Thom class.
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o If R =17, there are 2/™Bl Thom classes.

Lemma 4.30. If f : B — B, then there is a morphism

f1(BE) “E—E
e

given by fg: (b,V) € f*(E)— v € E.

Ifue H" ,Eﬁ) is a Thom class for E, then fj(u) € H" (f*(E),f*(E)ﬁ) is a Thom class for
f*(E).
Proof. The diagram
By L i
Lb/T [,f(b/J

commutes, so the fact that 3 (u) generates H" (Ef(b/),Efc(b,)) implies that ¢ (f;(u)) generates
H™ (f(E)y, f(E))). O

Lemma 4.31. Suppose that B = By U By and u € H" (E, Eﬁ). If wp, = tp (u) is a Thom class for
E\p, fori=1,2, then u is a Thom class for E.

Proof. If b € B, there exists i € {1,2} such that b € B;, and if we write up = ¢;(u), then uj =
(u‘ Bi)“) generates H" (Eb, Eﬁ) since u|p, is a Thom class. ]

Theorem 4.32 (Thom isomorphism). If E = B is an n-dimensional vector bundle, then:
(i) E has a unique Z/2-Thom class.

(ii) If E has an R-Thom class u (i.e. E is R-oriented), then the map
Y:a € H (B;R) — n*(a) Uu € ™" (E, E% R)
is an isomorphism.

Proof. We prove the result when B is compact.

Step 1: The theorem holds if F is trivial. This is Example 4.29.

Step 2: Suppose By, B, C B and let B, = By N By and By, = By U By. If the theorem holds for
E, = FE,, Iy = Ejp, and E~ = Ep,, then it holds for Ey, = Eip,.

(i) Consider the Mayer-Vietoris Sequence over R = Z/2:

s B (Bn, BE) — B (B, B3) % B (B, BY) @ H (Bo, BS) & H" (B BR) — -

Note that A" (Em, Eg) = 0 since (ii) holds for En, so « is injective. Since (i) holds for E; and

Es, they have Thom classes u; € H" (Ei, Ef) By Lemma 4.30, (u,;)|Em is a Thom class for E~. By

(i), (wi)p, = un is the unique Thom class for En, so §(u1 ® u2) = un — un = 0. By exactness,

U1 Dus € Im ey, i.e. there exists uy, € H" (EU, E&) with (UU)|Ei = u;. By Lemma 4.31, uy, is a Thom

class for E;, which proves the existence. For uniqueness, note that if /, is a Thom class for E, then

(ul,), 18 a Thom class for Ej, so (u,)p, = wi, i.e. a(u)) = a(uy), so u, = uy since «a is injective.
(ii) Use the Mayer-Vietoris Sequence:
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- — H*(By) H* (By) @ H* (Bs) H*(Bn) — -+~

vl 1 @ | ¥n |
s B (By, BE) — B (B, BY) @ H (By, BS) — H (B, Bf) - -

This diagram commutes, and ¥ & 15 and 14 are isomorphisms, so 1, is an isomorphism by the Five
Lemma (Lemma 2.59).

Step 3: The theorem holds for all compact spaces B. Consider an open cover {V1,...,Vi} of B
such that E)y, is trivial for all 2. Let W; = {:1 V;. We prove by induction on j that the theorem
holds for Eyy,: for j =1, Wi =V} so the theorem holds by Step 1. If the theorem holds for Eyy,_, ,
then it also holds for Ejy,, and Ejy,nw, , since Ejy, is trivial, so it holds for Eyw, = Ew, oy, by
Step 2. n

4.5 Sphere bundles

Definition 4.33 (Riemannian metric). A Riemannian metric g on a vector bundle E = B is a map
g: E® E — R such that the map 9|(pem), * Ey, x Ey, — R is an inner product on Ey for all b € B.

Lemma 4.34. If B admits partitions of unity, then B also admits (lots of) Riemannian metrics.

Definition 4.35 (Sphere and disc bundles). If g is a Riemannian metric on the vector bundle
E % B, we define

o The unit sphere bundle of E by S(E,g) ={v € E, g (v,7) =1},
o The unit disc bundle of E by D(E,g9) ={v € E, g(v,0) < 1}.
Hence S(E,g) N Ey ~S"! and D(E, g) N Ej, ~ D".

Remark 4.36. If g, ¢ are two Riemannian metrics on E, then S(E,g) ~ S(FE,¢') and D (E, g) ~
D(E,q"). We may therefore write S(E) and D(E) instead of S(E, g) and D(E,g).

Remark 4.37. There is a homotopy equivalence

S(E) ~ E*,

given by the inclusion i : S(E) — E* and by the map E* — S(E) defined by ¥+ ———

g(v,0

3

Likewise, there is a homotopy equivalence
D(E) ~ B,
given by the projection m: D(E) — B and by the zero section sy : B — D(F).
Example 4.38. (i) If E = BxR" is the trivial bundle, then S(F) = BxS"! and D(E) = BxD".

(i) If M 5 S' is the Mébius bundle, then D(M) is the Mdbius band and S(M) = OD(M) ~ S,
Note that S(M) # B x S°, which gives another proof of the fact that M is a nontrivial vector
bundle.

Moreover, use the homotopy equivalences St ~ S(M) ~ M¥ and S* ~ B ~ M to define a map
M* — M induced by z + 2% on S* — S'. Since this map has degree 2, the long exact sequence
of (M, Mﬁ> gives

Z)2 ifx =2

i <M’ M, Z) - {0 otherwise

Since this is not isomorphic to H*~1(B), it follows by Theorem 4.32 that M is not Z-orientable.
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4.6 Gysin sequence

Remark 4.39. Assume E = B is an R-oriented vector bundle with Thom class u. By Theorem
4.832, the long exact sequence of (E, Eﬁ) with coefficients in R can be written as:

S H (E Eﬁ) L, H*(E) ) — s q (E Eﬁ) =

(e
S SO R

. — B (B) H* (B) —— H* (S(E)) — H**1="(B) — -+

where j : (B, D) — (E,Eﬁ) is the inclusion. Given a € H*(B), we have

afa) = spj"P(a) = spi” (77 (a) Uw)
= s (7" (a) UJ*(U)) = som"(a) U spj™(u) = aUsp5(u).

Definition 4.40 (Euler class). If E = B is an R-oriented n-dimensional vector bundle with Thom
class uw € H" (E, E*: R), its Euler class is

e(E) = 555" (u) € H"(B).

Theorem 4.41 (Gysin sequence). If E 5 B is an R-oriented n-dimensional vector bundle, then
there is a long exact sequence with coefficients in R:

— H*"(B) & H*(B) = H*(S(E)) = H'™"(B) = - --
where 5 :a— aUe(E).
Proposition 4.42. Assume E = B is R-oriented.
(i) If f: B' — B, then f*(E) is R-oriented and

(ii) If E is trivial and n > 0, then e(E) = 0.
(iii) If E; ™ B are R-oriented fori= 1,2, so is By ® E,, and

G(El @EQ) = B(El) U@(EQ) .

(iv) If B> E is a nonvanishing section and n > 0, then

e(F)=0.

Proof. (i) There is a commuting diagram

S0

(B, 2) (E,2) (B, E¥)
7| o sl
(B',2) —2— (f*E,@) —L (f'E, f*E¥)
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By Lemma 4.30, f(u) is a Thom class for f*E, so f*E is oriented and
e(f'E) = 0" fi(u) = [*s55"(u) = [~ (e(E)) .

(ii) Let Ey = R™ and consider the trivial bundle Ey = {p}. We have e (Ey) € H" ({p}) = 0. Now
if £ 5 B is trivial, then we can write £ = f*Ey where f : B — {p}, so that e(E) = f*(e(Fp)) =0

by (i).
(iv) If s is a nonvanishing section, then (s) = {t' € E, ¥ € (s (7 (¥)))} is a 1-dimensional subbundle
of E,s0 E ~ (s) @ (s)". By (iii), we have e(E) = e ((s)) Ue (<S>L> = 0 since (s) is trivial. O

Example 4.43. H* (RP";Z/2) ~ (Z/2) [a]/ (a™*1) as a ring, with |a| = 1.
Proof. Using Example 3.9 and Proposition 3.35, we have, as groups,

Z/2 if0<*x<n

H* (RP";Z/2) =
( /2) {0 otherwise

We equip the tautological bundle Tgpr = {([z],7) € RP" x R"" ¢ € Rz} with a Riemannian metric
g defined by:
g (([z], 1) , ([2], 02)) = (1, v2) € R.

Hence
S (Teen) = {([z], V), ¥ € Re, ||9]| = 1} = S",

and the map S (Tgpr) = RP" corresponds under this isomorphism to the projection S — RP". We
write the Gysin sequence for Tgp» with Z/2-coefficients:

oo N RPY) S B (RPY) - H (S") — H* (RP™) = - --

We claim that £ is an isomorphism for 1 < * < n. We may assume that n > 2. For * = 1, we have
0 — H°(RP") = H°(S") % HO (RP") 5 H' (RP") — H' (S") = 0;
for 1 < *x <n,
0= H(S") = H' (RP") 3 H* (RP") — H"* (S") = 0:
for * = n,
0= H" L (S") — H* 1 (RP") 5 H" (RP") % H™ (S") 5 H" (RP") — H™! (RP") = 0.

That proves the claim.

Now let a = e (Tgpr) € H' (RP™;Z/2). We prove by induction on k that <ak> = H* (RP™;Z/2).
For k = 0, this is obvious; if it holds for k¥ — 1, then the isomorphism 3 : H*! (RP") = H* (RP")
sends <ak_1> to <ak>, hence the result. Since H"*! (RP") = 0, it follows that a"™! = 0 and therefore
H* (RP",Z/2) ~ (Z/2) [a]/ (a™ ) as claimed. O

4.7 Orientations and orientability

Definition 4.44 (Orientability). A vector bundle E = B is said to be orientable if it is Z-orientable
(i.e. it admits a Z-Thom class).

Remark 4.45. Every vector bundle over S' is isomorphic to [0,1] x R"/ ~, where ~ is given by
(0,7) ~ (1, A¥) for some A € GL,R. This gives two isomorphism classes:

(i) Either det A > 0 and the vector bundle is trivial,

(ii) Or det A <0 and the vector bundle is not trivial and not orientable.
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Now given any vector bundle E = B, define for v :S' — B,

0 ifv*E is trivial €72

ep(7) = {1 otherwise
If v9 ~ 71, then G E ~ v E by Theorem 4.23, so i descends to a map
v :mB—7Z/2,

which is a homomorphism. Since 7/2 is abelian, pg induces a map Py on the abelianisation of
m1 B, which is isomorphic to H(B) by the Hurewicz Theorem (Theorem 2.83). Therefore, we have a
homomorphism

Py € Hom (H\(B),Z/2) ~ H' (B;Z/2).

It turns out that E is orientable iff §, = 0.
Corollary 4.46. If E = B is a vector bundle such that H' (B;Z/2) = 0, then E is orientable.
Example 4.47. Tcpr is orientable, and the same argument as for RP" (c.f. Example 4.43) yields

H* (CP™;Z) ~ Z[a]/ (a"*") |
with a = e (Tepr) and |a| = 2.

4.8 Manifolds

Definition 4.48 (Topological manifold). An n-dimensional topological manifold M is a second-
countable Hausdorff space which admits an open cover {U,, a € A} and homeomorphisms o, : Uy —
R™, called charts. The maps o3 = @q © 4,0/;1 s (Uy NUp) = 0o (Ug N Us) are called transition
functions. They satisfy

(1) z/}oa:u = 1d7
(iil) Yapthsy = Yay-
Definition 4.49 (Smooth manifold). A smooth manifold is a topological manifold M together with
an open cover {U,, a € A} and charts g : U, = R™ such that all the transition functions Yap
are smooth maps. Note that the open cover and the charts are part of the data, as opposed to the
definition of topological manifolds.
If M, M" are smooth manifolds, a map f: M — M' is said to be smooth if pjzo fo o1 is smooth

where defined for all charts oo of M and ¢} of M'. We say that f is a diffeomorphism if it is a
homeomorphism and f, f~1 are smooth.

Example 4.50. S",RP", CP", T", %, are all smooth manifolds.

Remark 4.51. If M is an n-manifold, the set of smooth manifolds homeomorphic to M quotiented
by the relation of diffeomorphism has only 1 element for n < 3, but may have many for n > 3.

Definition 4.52 (Tangent bundle). If M is a smooth manifold with charts ¢, : Uy — R", define
Gop : Us NUz = GL,(R),
by gap(x) = (dl/}"‘ﬂ)Wﬂ(ﬂf)' The chain rule implies that
() gaa(r) = In,
(i1) gop(x) = ggalzx)™",
(i) gas(2)981(%) = gar (7).

The tangent bundle TM of M is the n-dimensional vector bundle over M with transition functions
Jap-
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4.9 Fundamental class
Notation 4.53. Suppose M is an n-manifold and A C M is compact. We write
(M| A) = (M, M\A).
If B C A, we have an inclusion map ¢ : (M | A) = (M | B); if w € H, (M | A), we write wp =
Le(w).
Remark 4.54. If M is an n-manifold and x € M, choose a chart U, > x. Then, by excision,

R ifx=n

H.,(M|z;R)~ H,(Uy | z; R) ~ H. (R" | po(z); R) = o
0 otherwise

Definition 4.55 (Fundamental class). An R-fundamental class (or R-orientation) for an n-manifold
M is a class [M] € H,(M; R) = H, (M | M; R) such that [M],, generates H, (M | z; R) ~ R for all
x e M.

Definition 4.56 (Closed manifold). A manifold is said to be closed if it is compact.
Theorem 4.57. Any closed manifold M has a unique Z/2-fundamental class.
Theorem 4.58. If M is a closed and connected n-dimensional manifold, then
() Hn(M;Z/2) ~7/2 = ([M]).
(i) Hy, (M;Z) ~Z or 0. If M is Z-oriented, then H, (M;Z) ~Z = ([M]).
(i) H;(M) =0 for alli > n.

Notation 4.59. If M is closed, connected and R-oriented, then H™ (M;R) ~ R by the Universal
Coefficient Theorem. We define [M]" to be the generator of H" (M; R) such that

([M]", [M]) = 1.

4.10 Submanifolds

Definition 4.60 (Submanifold). Suppose M is a smooth n-manifold. A subset N C M is a k-
dimensional submanifold of M if for every x € N, there is a chart ¢, : U, — R"™ such that x € U,
and ¢, (U, N N) =RF x 0 CR". If so, N is a smooth k-manifold.

If N € M is a submanifold, then TN C TMy is a subbundle.

Example 4.61. S*! C S", RP" ' C RP" and S" x {p} C S™ x S™ are all submanifolds.

Definition 4.62 (Normal bundle). Let M be a smooth n-manifold and N C M be a submanifold.
The normal bundle is defined by
vy = TN C TMy.

Hence TMy = vyn ©@TN.
Note that, to define TN+, we need to choose a Riemannian metric g on TM ; the isomorphism
type of vagn does not depend on the choice of g since vy ~ T My J/TN.

Example 4.63. (i) Let M = R"*!, N = S". Then vgn+1sn is trivial since it has a nonvanishing
section S™ 2 Vpntijgn given by T — .

Note that TR%# ~ vgntgn @ TS", and TRTLSJ{LI and vgnt1jgn are both trivial, but T'S™ need not
be trivial.

(ii) Let M be the Mébius band, N =S'. Then vys: is the Mébius bundle.
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(iii) Let M = RP"™, N = RP". Then vgpniijgpn = Trpn-
(iv) Let M = CP™*!, N = CP". Then vepnircpr = Tepn.

Theorem 4.64 (Tubular neighbourhood). If N C M is a submanifold of a smooth manifold, then
there is an open set N CV C M such that (V,N) ~ (VM‘N, SO(N)>.
Sketch of proof. Use the exponential map vy n — M. O

Proposition 4.65. A smooth manifold M is Z-orientable (in the sense of manifolds) ift TM is
Z-orientable (in the sense of vector bundles).

Sketch of proof. If St ~ v C M is a submanifold, we have a tubular neighbourhood V' (v) C M. Now
M is orientable iff V() is orientable for all v, iff T"M)y () is orientable for all v, iff T'M,, is orientable
for all ~, iff T"M is orientable. O]

4.11 Poincaré duality

Notation 4.66. From now on, R is either Z or a field (mainly Q or Z/p). We shall work with
R-coefficients throughout.

We shall consider a closed, connected smooth manifold M, with an R-fundamental class [M] €
H, (M;R).

Proposition 4.67. The facts that M is connected and R-oriented imply that H,(M) ~ R.
Corollary 4.68. H"(M) ~ R.

Proof. 1f R is a field, then H"(M) ~ Hom (H, (M), R) by the Universal Coefficient Theorem. If R =
Z, then M is Z/p-oriented for every prime p since the image of [M| under H,(M;Z) — H, (M;Z/p)
is a Z/p-fundamental class, so H,, (M;Z/p) ~ Z/p. This implies by the Universal Coefficient The-
orem (Proposition 3.28) that H,,_y (M;Z) has no p-torsion. It follows that H,,_y (M;Z) is free, so
H™(M:;Z) ~ Z by the Universal Coefficient Theorem. O

Notation 4.69. From now on, we consider N C M a k-dimensional closed submanifold, we write
v = vmn for its normal bundle, and we choose a tubular neighbourhood V- for N. Hence (V | N) ~

(v,14).

Lemma 4.70. The submanifold N s orientable iff its normal bundle v is orientable.

Sketch of proof. Since M is orientable, T'M is orientable and so is T'M)y . Therefore, Py = 0 (c.f.
Remark 4.45). But TM|y = TN @ v, so

0=Pruy =Pry TP,
which implies that @,y = 0 iff §, = 0. O]
Remark 4.71. We have the following commutative diagram:

~

(M, 2) —L— (M| N) (V| N)

NO‘J \/

(M | ) '

(1)

We know that the maps i, and i* are isomorphisms by excision.

Notation 4.72. We now assume that N is oriented and we define [N]* € H"(N) by

((N]*,[N]) =1€R.
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Lemma 4.73. j. [M] generates H,, (M | N) ~ R.
Proof. By excision and the Thom isomorphism (Theorem 4.32),

R ifx=mn

H*(M |N)~H*(V|N)~H* (y,uﬁ) ~ [I*"F(N) = {0 .

It follows by the Universal Coefficient Theorem (Proposition 3.28) that H, (M | N) ~ R. But
[M] is a fundamental class, so 5,[M]| = a.j.[M] generates H, (M | ) ~ R, hence j.[M] generates
H,(M | N). O

Corollary 4.74. There is a unique R-orientation uyy € H"* (y, uﬁ) on v s.t.
(7 [N]* Uuag, i 5. [M]) = 1 € R,

Proof. We know that i;'j.[M] generates H, (V, Vﬂ) ~ R by Lemma 4.73. Let v € H"* (1/7 Vﬁ) be
some Thom class for v (which is orientable by Lemma 4.70 because N is). Then [N]* generates
H*(N), so 7*[N]* U u generates H" (1/, I/’j) (by the Thom isomorphism, Theorem 4.32), so r =
(T*[NT* U, iyt j.[M]) generates R. It suffices to take upny = r~u. O

Definition 4.75 (Poincaré dual). If [M] and [N] are R-orientations on M and N, the Poincaré
dual of [N] is
PDpy [N] = 5 () (UM|N> e H"*(M).

Proposition 4.76. If a € H*(M), then
where 19 : N — M.

Proof. [N]* generates H*(N) ~ R, so if ¢ = {(a, io,[N]) = (ija, [N]), then ija = c[N]*. Moreover, we
have maps

v Ve M
7TJ /
o
N
with i ~ i o, so i*a = 7*ija = er*[N]*. Finally,
(aUPDy [N, [M]) = (aU 5" (i) s, [M])

<a U (’L.*)il UM|N7J*[M]>
= <Z*&UUM‘N,Z;1j*[M]>
<

using Corollary 4.74. O
Definition 4.77 (Cup product pairing). The cup product pairing on H*(M) is the bilinear map
(+,-) : H(M) x H*(M) — R,

given by (a,b) = (a Ub, [M]).
Hence (a,ig,[N]) = (a, PDpy [N])
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4.12 Intermission — Nonsingular bilinear pairings

Definition 4.78 (Nonsingular bilinear pairing). Let V, W be vector spaces over a field F. A bilinear
pairing (+,+) : V. x W — F is nonsingular if

(i) (VoeV, (¥,0) =0) = o = 0.
(i) (Ve W, (0,4) =0) = v =0.

Lemma 4.79. Assume that V and W are finite-dimensional. If the bilinear pairing (-,-) : VW — F
is nonsingular, then the induced linear maps ¢ : V. — W* and b : W — V* are isomorphisms.

Proof. Note that ¢, 1) are both injective, so dim V' < dim W* = dim W, and likewise dim W < dim V.
It follows that ¢, are isomorphisms by injectivity. O]

4.13 Poincaré duality (continued)

Remark 4.80. The cup product pairing splits as a sum of pairings
(-,-): H*(M) x H" *(M) — R.

Example 4.81. If N = {p} C M, Proposition 4.76 implies that <1 U PDpy [{p}], [M]> = (1,[p]) =
1, from which it follows that
PDpy [{p}] = [M]".

Definition 4.82 (Transverse submanifolds). Submanifolds Ny, Ny C M are said to be transverse
(and we write Ny M Ny) if for every x € Ny N Ny, there is a chart ¢, : U, — R™ with ¢, (z) = 0 such
that

0z (N1 NU,) =RF x RM™F x 0 CR"™ "2 x R™ x R™,
0z (NaNU,) =RF x 0 x R"27F C R"™™ 72 » R™ x R™2,

If so N' = Ny N Ny is a k-dimensional submanifold of Ny, Ny and M.
In f(lCt, N1 m N2 ZfTN”x +TN2|x = TM|I fO?" all v € N'.

Proposition 4.83. If Ny h Ny and iy : Ny < M s the inclusion, then
i3 (PDpagy [V1]) = PDpagy [Ny N N

Proof. Let V be a tubular neighbourhood of N;. If V' is small enough, then V' = NyNV is a tubular
neighbourhood of N' = Ny N Ny in N,. Now consider the diagram:

(R™™ | 0)
|
(M, 2) —L— (M | M) —— (V| M) —— (v.0F)

S R

(N2, &) —L— (Ny | N L (v | V) = (0,04

T |

®= | 0)

We have iy0(!, ~ 1,. If u is a Thom class for (V' | Ny), then ¢/ "i5(u) = % (u) generates H* (R"™™ | 0),
so 13(u) is a Thom class for (V' | N'). Therefore

-x O T ok f 1% -1 o
iy (PD[M] [Nﬂ) =i @) tu= (z' ) isu = PDyy, [N']. O
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Notation 4.84. We now assume that R =T is a field.

If M is orientable with dual fundamental class [M]*, then M x M is orientable with dual funda-
mental class [M]" x [M]".

We shall write A = {(x,z), v € M} € M x M and D = PDpyuan [A].

Lemma 4.85. If a € H*(M), then
(I1xa)UD=(ax1)UD.
Proof. Consider

VL MxM

o A&

M

where V' is a tubular neighbourhood of A and A(z) = (z,z). Then so : M — V is a homotopy
equivalence, so s; is an isomorphism; therefore

spi(ax1)=A"(ax1l)=aUl=1Ua=A"(1xa)=s5"(1xa),
hence i* (a x 1) = * (1 x a). Therefore i* (ax 1) Uu = i*(1xa)Uu, so (ax1)U (*) 'u =
(1xa)U(i*) " u, so j* ((a x 1)U (i)~ u) =7 ((1 x a)U ()" u), or in other words,
(ax1)UD=(ax1)Uj* (@) 'u=1xa)Uj (*) " u=(1xa)UD,
where j : (M x M, ) — (M x M| A). O
Remark 4.86. Since R =T is a field, we have
H*(M x M) ~ H*(M) ® H*(M).

Choose a basis (a;);c; of H*(M); thus (a; X a;), ;c; is a basis of H*(M x M), so we can write

iel i,
D =PDpsa[A] = > cijai x aj =Y a; X by,
ijel iel
where b; = Y ;1 cija; € H 1l (M).
Lemma 4.87. We have the identity

D:[M]*X1+ Z aixbi.

\ai|<n

Proof. Consider i, : x € M — (z,y) € M x M. We have M x y h A, so Proposition 4.83 implies
that
i5(D) = iy (PDparscan [A]) = PDpary [A N M x y] = PDpyy [{y}] = [M]",

y
using Example 4.81. Now

iy (a; X b;) = iy (7] (a;) Uy (b)) = (m 0 y)" (@) U (2 04y)" (bs) = {0 otherwise

Write D = [M]* X bo + Z|ai‘<n a; X bl Then

so bg = 1. O
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Lemma 4.88. Ifa € H*(M), then
a = (_1)n\a| Z (CL, ai) bl

i€l
Proof. By Lemma 4.85, we have (1 x a) UD = (a x 1) U D for all a. Therefore
Z(l XCL)U(G@ xbi):Z(ax 1)U((Zl Xb,L'),

il i€l
or in other words
Z(—l)‘aina‘ai X (CL U bz) = Z (Cl U Cli> X bz
i€l el

Looking at terms of the form [M]* X ¢ for ¢ € H(M) = F and using Lemma 4.87, we have

(D)™ (M) x a =Y (a Uay, [M]) [M]" x b;.

il
The result follows from the definition of the cup pairing.
Theorem 4.89 (Poincaré duality). Suppose F is a field and M is F-oriented. Then:
(i) The cup product pairing (-,-) : H* (M;F) x H" ¥ (M;F) — F is nonsingular.

(ii) There is an isomorphism
PD: Hy, (M;F) = H" % (M;F),

satisfying (a, x) = (a, PD(z)).
Proof. (i) If (a,b) = 0 for all b, then a = 0 by Lemma 4.88. Moreover,
(a,b) = (=1)1"" (b,a),

so (+,-) is nonsingular.
(ii) We have isomorphisms

o : H"F(M) — Homg (H(M),F)  and 3 Hy(M) — Homs (H*(M),F)

defined by a(b)(a) = (a,b) and B(z)(a) = {a,z). It suffices to take PD = a~! o 3.

4.14 Three more facts

Proposition 4.90. We have the identity (a;,b;) = (—1)1%15;;.

Proof. Apply Lemma 4.88 with a = b;.

Proposition 4.91. If E = M is a vector bundle and s,sq: M — E are sections, then
e(E) = s; (PD[E} [s]) = PDpy [571(0)}

if s M sg.

Proof. Use Proposition 4.83.

Proposition 4.92. We have
e(TM) = x(M) [M]".

Proof. Note that

(e(TM),[M]) = (D,D) = <Z a; x by, > (=)l % al) =Y (-1l = x(M).

iel el el
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