RIEMANN SURFACES

Lectures by François Brunault Notes by Alexis Marchand

ENS de Lyon S2 2018-2019 M1 course

Contents

1	Elli	ptic functions and complex tori	2
	1.1	Lattices and complex tori	2
	1.2	Elliptic functions	2
	1.3	The Weierstraß \wp -function \ldots	3
	1.4	Principal divisors	3
	1.5	Abel-Jacobi Theorem	4
	1.6	Structure of Riemann surface on the complex torus	5
2	Rie	mann surfaces and holomorphic maps	5
	2.1	Motivation	5
	2.2	Definition of Riemann surfaces	5
	2.3	Holomorphic maps between Riemann surfaces	7
	2.4	Generalisation to Riemann surfaces of standard results of complex analysis $\ . \ . \ .$	7
3	Me	romorphic functions	8
	3.1	Meromorphic functions	8
	3.2	Ramification theory	9
	3.3	Degree of a holomorphic map	11
	3.4	Divisors	11
	3.5	Riemann-Roch spaces	12
4	Diff	ferential forms	13
	4.1	Complex and holomorphic differential forms	13
	4.2	Integration of differential forms	14
	4.3	Forms of type $(1,0)$ or $(0,1)$	15
	4.4	Meromorphic differential forms	16
	4.5	Residues of differential forms	17
	4.6	Riemann-Roch Theorem	18
	4.7	Hodge decomposition	19
5	Que	otients of Riemann surfaces	20
	5.1	Groups acting on topological spaces	20
	5.2	Examples of quotients of Riemann surfaces	21
	5.3	Structure of Riemann surface on a quotient	21
	5.4	Riemann-Hurwitz Formula	24
	5.5	Uniformisation Theorem	25
	5.6	Modular curves	25

6	Monodromy representations				
	6.1	Monodromy representation associated to a holomorphic map	27		
	6.2	Correspondence between holomorphic maps and representations of the fundamental			
		group	28		
	6.3	Applications	28		
Re	efere	nces	29		

1 Elliptic functions and complex tori

1.1 Lattices and complex tori

Definition 1.1.1 (Lattice). A lattice in \mathbb{C} is an additive subgroup of \mathbb{C} of the form:

 $\Lambda = \left\{ n_1 \omega_1 + n_2 \omega_2, \ n_1, n_2 \in \mathbb{Z} \right\},\$

where (ω_1, ω_2) is a \mathbb{R} -basis of \mathbb{C} . We then say that (ω_1, ω_2) is a basis of Λ . We also say that $D = \{t_1\omega_1 + t_2\omega_2, t_1, t_2 \in [0, 1]\}$ is a fundamental domain for the action of Λ on \mathbb{C} by translation.

Remark 1.1.2. A lattice can have several different bases. If (ω_1, ω_2) is a basis of Λ , then the bases of Λ are the couples $(a\omega_1 + b\omega_2, c\omega_1 + d\omega_2)$, with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$.

Proposition 1.1.3. An additive subgroup Λ of \mathbb{C} is a lattice iff Λ is discrete and the quotient \mathbb{C}/Λ is compact.

Corollary 1.1.4. If Λ is a lattice in \mathbb{C} and K is a compact subset of \mathbb{C} , then $\Lambda \cap K$ is finite.

Definition 1.1.5 (Complex torus). A complex torus is a space of the form \mathbb{C}/Λ , where Λ is a lattice in \mathbb{C} . Topologically, a complex torus is homeomorphic to $(\mathbb{R}/\mathbb{Z})^2$.

1.2 Elliptic functions

Notation 1.2.1. In this section, Λ is a lattice in \mathbb{C} .

Definition 1.2.2 (Elliptic function). An elliptic function for Λ is a meromorphic function $f \in \mathcal{M}(\mathbb{C})$ which is Λ -periodic, i.e. for every $z \in \mathbb{C}$ and $\lambda \in \Lambda$, if z and $z + \lambda$ are not poles of f, then $f(z) = f(z + \lambda)$. We write $\mathbb{C}(\Lambda)$ for the set of elliptic functions for Λ .

Remark 1.2.3. Let $f \in \mathbb{C}(\Lambda)$. Then the set S of poles of f is stable by translation by Λ , so it defines a subset $\overline{S} \subseteq \mathbb{C}/\Lambda$. Moreover, \overline{S} is discrete and closed in \mathbb{C}/Λ , which is compact, so \overline{S} is finite.

Lemma 1.2.4. $\mathbb{C}(\Lambda)$ is a field.

Proof. We know that $\mathcal{M}(\mathbb{C})$ is a field, and it is clear that if $f \in \mathbb{C}(\Lambda)$, then $\frac{1}{f}$ is Λ -periodic. \Box

Definition 1.2.5 (Order of vanishing and residue of an elliptic function at a point). Let $f \in \mathbb{C}(\Lambda)^{\times}$ and $p \in \mathbb{C}/\Lambda$. The order of vanishing of f at p and the residue of f at p are well-defined; we denote them by $\operatorname{ord}_p(f)$ and $\operatorname{Res}_p(f)$ respectively.

Proposition 1.2.6. Let $f \in \mathbb{C}(\Lambda)^{\times}$. We have the following equalities:

(i)
$$\sum_{p \in \mathbb{C}/\Lambda} \operatorname{Res}_p(f) = 0$$
,

- (ii) $\sum_{p \in \mathbb{C}/\Lambda} \operatorname{ord}_p(f) = 0$,
- (iii) $\sum_{p \in \mathbb{C}/\Lambda} \operatorname{ord}_p(f) \cdot p = 0.$

Proof. (i) Let (ω_1, ω_2) be a basis of Λ and let D be the associated fundamental domain. We choose $a \in \mathbb{C}$ s.t. D' = D + a contains no pole or zero of f on its boundary $\partial D'$. Applying the Residue Theorem to f, we obtain:

$$\sum_{p \in \mathbb{C}/\Lambda} \operatorname{Res}_p(f) = \int_{\partial D'} f(z) \, \mathrm{d}z$$

But using the Λ -periodicity of f, we have $\int_{\partial D'} f(z) dz = 0$. (ii) Apply (i) to $g = \frac{f'}{f}$. (iii) Set $h(z) = z \frac{f'(z)}{f(z)}$ (note that h is not an elliptic function). Apply the Residue Theorem to h on $\partial D'$, and note that:

$$\int_{a+\omega_1}^{a+\omega_1+\omega_2} h(z) \, \mathrm{d}z = \int_a^{a+\omega_2} h(z) \, \mathrm{d}z + \omega_1 \int_a^{a+\omega_2} \frac{f'(u)}{f(u)} \, \mathrm{d}u$$

Now, use the change of variable v = f(u) and note that $\gamma : u \in [a, a + \omega_2] \mapsto f(u) \in \mathbb{C}^{\times}$ is a closed \mathcal{C}^1 path. By the Residue Theorem, $\int_a^{a+\omega_2} \frac{f'(u)}{f(u)} du = \int_{\gamma} \frac{dv}{v} \in 2i\pi\mathbb{Z}$. Therefore, $\int_{a+\omega_1}^{a+\omega_1+\omega_2} h(z) dz - \int_a^{a+\omega_2} h(z) dz \in 2i\pi\Lambda$. We obtain $\int_{\partial D'} h(z) dz \in 2i\pi\Lambda$, which gives the desired result.

Remark 1.2.7. Note that, in Proposition 1.2.6, (iii) is an equality in the additive group \mathbb{C}/Λ .

Corollary 1.2.8. A nonconstant elliptic function has at least two poles (counted with multiplicity).

1.3 The Weierstraß p-function

Lemma 1.3.1. The sum $\sum_{\lambda \in \Lambda \setminus \{0\}} \frac{1}{|\lambda|^3}$ converges.

Proof. Use the fact that there exists $c_{\Lambda} > 0$ s.t.

$$\forall N \in \mathbb{N}^*, |\{\lambda \in \Lambda, N \le |\lambda| < N+1\}| \le c_\Lambda N.$$

Definition 1.3.2 (Weierstraß \wp -function). The Weierstraß \wp -function is defined on $\mathbb{C} \setminus \Lambda$ by:

$$\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right).$$

Proposition 1.3.3. \wp is an even elliptic function.

Proof. Show that \wp is defined by a series of holomorphic functions which converges uniformly on every compact subset of $\mathbb{C} \setminus \Lambda$.

Remark 1.3.4. In \mathbb{C}/Λ , \wp has only one pole (at 0); its order of vanishing is (-2).

Lemma 1.3.5. For every $z_0 \in \mathbb{C} \setminus \Lambda$, the elliptic function $(\wp - \wp(z_0))$ has a double pole at z = 0 and simple zeroes at $z = \pm z_0$.

Proof. By Remark 1.3.4, $(\wp - \wp(z_0))$ has a double pole at z = 0 and is holomorphic everywhere else. It is also clear that \wp has zeroes at $\pm z_0$. Now, Proposition 1.2.6 guarantees that \wp has no other zero.

1.4 Principal divisors

Definition 1.4.1 (Divisors). We define $\mathbb{Z}[\mathbb{C}/\Lambda]$ to be the free \mathbb{Z} -module with basis \mathbb{C}/Λ . Its elements will be denoted by $\sum_{i=1}^{r} n_i[p_i]$, with $n_i \in \mathbb{Z}$ and $p_i \in \mathbb{C}/\Lambda$; they will be called divisors. Note that divisors are formal sums, not elements of \mathbb{C}/Λ .

Definition 1.4.2 (Divisor of an elliptic function). Given $f \in \mathbb{C}(\Lambda)^{\times}$, we define the divisor of f by:

$$\operatorname{div}(f) = \sum_{p \in \mathbb{C}/\Lambda} \operatorname{ord}_p(f) \cdot [p] \in \mathbb{Z} [\mathbb{C}/\Lambda].$$

Example 1.4.3. Lemma 1.3.5 can be restated more concisely in the following way:

div
$$(\wp - \wp (z_0)) = [z_0] + [-z_0] - 2[0]$$
.

Proposition 1.4.4. The map div : $\mathbb{C}(\Lambda)^{\times} \to \mathbb{Z}[\mathbb{C}/\Lambda]$ is a group homomorphism. Elements of Im div will be called principal divisors.

Definition 1.4.5 (Degree of a divisor). We define a group homomorphism deg : $\mathbb{Z}[\mathbb{C}/\Lambda] \to \mathbb{Z}$ by deg $\left(\sum_{p \in \mathbb{C}/\Lambda} n_p[p]\right) = \sum_{p \in \mathbb{C}/\Lambda} n_p$. Moreover, we define the group of degree 0 divisors by:

$$I_{\Lambda} = \operatorname{Ker} \operatorname{deg} \subseteq \mathbb{Z} \left[\mathbb{C} / \Lambda \right].$$

Remark 1.4.6. $\mathbb{Z}[\mathbb{C}/\Lambda]$ can be equipped with the structure of a commutative ring by seeing it as the group algebra of \mathbb{C}/Λ . In other words, we set:

$$\left(\sum_{i=1}^{m} a_i \left[p_i\right]\right) \left(\sum_{j=1}^{n} b_j \left[q_j\right]\right) = \sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} a_i b_j \left[p_i + q_j\right].$$

With this ring structure, I_{Λ} is in fact an ideal of $\mathbb{Z}[\mathbb{C}/\Lambda]$, called the augmentation ideal.

Theorem 1.4.7. Let $D = \sum_{p \in \mathbb{C}/\Lambda} n_p[p] \in \mathbb{Z}[\mathbb{C}/\Lambda]$. Then $D \in \text{Im div if and only if deg } D = 0$ and $\sum_{p \in \mathbb{C}/\Lambda} n_p \cdot p = 0$.

Proof. Note that (\Rightarrow) was proved in Proposition 1.2.6, so it suffices to prove (\Leftarrow) . First step. Let $D \in \mathbb{Z}[\mathbb{C}/\Lambda]$ s.t. deg D = 0 and $\sum_{p \in \mathbb{C}/\Lambda} n_p \cdot p = 0$. We shall prove that $D \in I^2_{\Lambda}$. Consider the map:

$$\varphi: p \in \mathbb{C}/\Lambda \longmapsto [[p] - [0]] \in I_{\Lambda}/I_{\Lambda}^2.$$

Then φ is a group homomorphism. And:

$$D = \sum_{p \in \mathbb{C}/\Lambda} n_p \cdot [p] = \sum_{p \in \mathbb{C}/\Lambda} n_p \left([p] - [0] \right) = \sum_{p \in \mathbb{C}/\Lambda} n_p \varphi(p) = \varphi\left(\sum_{p \in \mathbb{C}/\Lambda} n_p \cdot p\right) \equiv 0 \mod I_\Lambda^2.$$

This shows that $D \in I_{\Lambda}^2$. Second step. We shall show that $I_{\Lambda}^2 \subseteq \text{Im div.}$ Note that I_{Λ} is generated by the divisors ([p] - [0]) with $p \in \mathbb{C}/\Lambda$; therefore, I_{Λ}^2 is generated (as an abelian group) by the divisors $D_{p,q} = ([p] - [0])([q] - [0])$ for $p, q \in \mathbb{C}/\Lambda$. Hence, it is enough to show that each $D_{p,q}$ is in Im div. This is obvious if p = 0 or q = 0. Otherwise, we choose $r \in \mathbb{C}/\Lambda$ s.t. 2r = q and $p + r \neq 0$, and we set:

$$f(z) = \frac{\wp(z-r) - \wp(p+r)}{(\wp(z) - \wp(p))(\wp(z-r) - \wp(r))}$$

We check that $f \in \mathbb{C}(\Lambda)^{\times}$ and that $D_{p,q} = \operatorname{div}(f)$.

1.5 Abel-Jacobi Theorem

Definition 1.5.1 (Picard group). The Picard group $Pic(\mathbb{C}/\Lambda)$ is defined by:

$$\operatorname{Pic}\left(\mathbb{C}/\Lambda\right) = \mathbb{Z}\left[\mathbb{C}/\Lambda\right]/\operatorname{Im}\operatorname{div}.$$

Moreover, we define $\operatorname{Pic}^{0}(\mathbb{C}/\Lambda) = I_{\Lambda}/\operatorname{Im}\operatorname{div}$. This is the analogue of the ideal class group of a number field.

Theorem 1.5.2 (Abel-Jacobi). *The map:*

$$\begin{vmatrix} \mathbb{C}/\Lambda \longrightarrow \operatorname{Pic}^{0}\left(\mathbb{C}/\Lambda\right) \\ p \longmapsto \left[\left[p \right] - \left[0 \right] \right] \end{vmatrix}$$

is a group isomorphism.

Proof. Define $\psi : I_{\Lambda}/I_{\Lambda}^2 \to \mathbb{C}/\Lambda$ by $\psi\left(\left[\sum_{p \in \mathbb{C}/\Lambda} n_p \cdot [p]\right]\right) = \sum_{p \in \mathbb{C}/\Lambda} n_p \cdot p$ and check that ψ is the inverse of the map φ defined in the proof of Theorem 1.4.7.

1.6 Structure of Riemann surface on the complex torus

Definition 1.6.1 (Holomorphic functions on the complex torus). Let \mathcal{U} be an open subset of \mathbb{C}/Λ and denote by $\pi : \mathbb{C} \to \mathbb{C}/\Lambda$ the canonical projection. Consider the open subset $\widetilde{\mathcal{U}} = \pi^{-1}(\mathcal{U})$ of \mathbb{C} ; it is stable by translation by Λ . Now define:

$$\mathcal{O}(\mathcal{U}) = \left\{ f : \mathcal{U} \to \mathbb{C}, \ (f \circ \pi) \text{ is holomorphic on } \widetilde{\mathcal{U}} \right\}.$$

 $\mathcal{O}(\mathcal{U})$ is a \mathbb{C} -algebra that is isomorphic to the algebra of Λ -periodic holomorphic functions on \mathcal{U} . Elements of $\mathcal{O}(\mathcal{U})$ are called holomorphic functions on \mathcal{U} .

Lemma 1.6.2. If G is a discrete group acting by homeomorphisms on a topological space X, then the projection map $\pi : X \to X/G$ is continuous (by definition of the quotient topology) and open.

Proposition 1.6.3. Every point $p \in \mathbb{C}/\Lambda$ has a neighbourhood that is homeomorphic to an open subset of \mathbb{C} .

Proof. Using the discreteness of Λ , choose an open neighbourhood W of 0 in \mathbb{C} s.t. $W \cap \Lambda = \{0\}$. Write $p_0 = [z_0]$, with $z_0 \in \mathbb{C}$ and consider $\tilde{V} = z_0 + W$ and $V = \pi(\tilde{V})$, where $\pi : \mathbb{C} \to \mathbb{C}/\Lambda$ is the canonical projection. By Lemma 1.6.2, V is an open subset of \mathbb{C}/Λ . Now the map $\pi_{|\tilde{V}} : \tilde{V} \to V$ is continuous, bijective and open, so it is a homeomorphism. \Box

Proposition 1.6.4. Let $p \in \mathbb{C}/\Lambda$. Let $\phi : \tilde{V} \subseteq \mathbb{C} \longrightarrow V \subseteq \mathbb{C}/\Lambda$ be the homeomorphism between an open subset of \mathbb{C} and an open neighbourhood of p in \mathbb{C}/Λ given by Proposition 1.6.3. Then ϕ sends the holomorphic functions on \tilde{V} to the holomorphic functions on V.

2 Riemann surfaces and holomorphic maps

2.1 Motivation

Example 2.1.1.

- (i) Algebraic curves. Let $P \in \mathbb{C}[X, Y]$ be an irreducible polynomial. Consider the set $C_P = \{(x, y) \in \mathbb{C}^2, P(x, y) = 0\}$; C_P is called the algebraic curve defined by P. Assume that C_P is nonsingular, i.e. $\forall (x, y) \in C_P$, $\left(\frac{\partial P}{\partial x}(x, y), \frac{\partial P}{\partial y}(x, y)\right) \neq (0, 0)$. Then C_P is a Riemann surface. Furthermore, there exists an integer $g \in \mathbb{N}$, called the genus of C_P s.t. C_P is isomorphic (as a Riemann surface) to the surface of genus g (i.e. with g holes), minus a finite set of points.
- (ii) Hyperbolic geometry. Consider the half-plane $\mathbb{H} = \{z \in \mathbb{C}, \Im(z) > 0\}$. Then we have an action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$. Moreover, the Riemann surface $\mathbb{H}/SL_2(\mathbb{Z})$ is isomorphic to \mathbb{C} . More generally, if Γ is a subgroup of $SL_2(\mathbb{Z})$ with finite index, then \mathbb{H}/Γ is a Riemann surface called a modular curve.
- (iii) Power series. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with positive radius of convergence. Then f defines a holomorphic function on an open ball B(0, R), with R > 0. And Riemann proved that there exists a largest Riemann surface X_f s.t. f extends to a holomorphic function on X_f . For instance, if $f = \log : B(1,1) \to \mathbb{C}$, then X_f is a covering of \mathbb{C}^{\times} , that is isomorphic to \mathbb{C} , and the isomorphism is given by the exponential map.

2.2 Definition of Riemann surfaces

Definition 2.2.1 (Chart). Let X be a topological space. A (holomorphic) chart on X is the data of an open subset $\mathcal{U} \subseteq X$ and of a homeomorphism $\phi : \mathcal{U} \to V$, where V is an open subset of \mathbb{C} . We say that two holomorphic charts $\phi : \mathcal{U} \to V$ and $\phi' : \mathcal{U}' \to V'$ are compatible if the map ψ defined by the following commutative diagram is holomorphic:

$$\begin{array}{cccc}
\mathcal{U} \cap \mathcal{U}' \\
\phi' \\
\phi' \\
\phi (\mathcal{U} \cap \mathcal{U}') \xrightarrow{\psi} \phi' (\mathcal{U} \cap \mathcal{U}')
\end{array}$$

Definition 2.2.2 (Atlas). Let X be a topological space. A (holomorphic) atlas on X is a collection $(\phi_i : \mathcal{U}_i \to V_i)_{i \in I}$ of holomorphic charts s.t. $X = \bigcup_{i \in I} \mathcal{U}_i$ and the charts are pairwise compatible. Two atlases $\mathcal{A} = (\phi_i)_{i \in I}$ and $\mathcal{A}' = (\phi'_j)_{j \in J}$ on X are said to be equivalent if ϕ_i is compatible with ϕ'_j for all $(i, j) \in I \times J$. This defines an equivalence relation on the set of atlases on X.

Definition 2.2.3 (Riemann surface). A Riemann surface is a nonempty Hausdorff topological space equipped with an atlas (or with an equivalence class of atlases).

Definition 2.2.4 (Holomorphic functions on a Riemann surface). Let X be a Riemann surface equipped with an atlas $\mathcal{A} = (\phi_i : \mathcal{U}_i \to V_i)_{i \in I}$. Let \mathcal{U} be an open subset of X. A function $f : \mathcal{U} \to \mathbb{C}$ is said to be holomorphic if for every $i \in I$, the map f_i defined by the following commutative diagram is holomorphic:

This notion of holomorphic functions does not change when \mathcal{A} is replaced by an equivalent atlas \mathcal{A}' . We denote by $\mathcal{O}_X(\mathcal{U})$ the \mathbb{C} -algebra of holomorphic functions on \mathcal{U} .

Remark 2.2.5. Let X be a Riemann surface. Then the \mathbb{C} -algebras $\mathcal{O}_X(\mathcal{U})$, for $\mathcal{U} \subseteq X$ open, have the following properties:

- (i) If $\mathcal{U}' \subseteq \mathcal{U} \subseteq X$ are open subsets, then there is a restriction map $\mathcal{O}_X(\mathcal{U}) \to \mathcal{O}_X(\mathcal{U}')$.
- (ii) The restriction maps satisfy the gluing condition: if $\mathcal{U} \subseteq X$ is an open subset and $(\mathcal{U}_i)_{i \in I}$ is an open covering of \mathcal{U} , and $(f_i)_{i \in I} \in \prod_{i \in I} \mathcal{O}_X(\mathcal{U}_i)$ is a collection of holomorphic functions s.t. $f_{i|\mathcal{U}_i \cap \mathcal{U}_i} = f_{j|\mathcal{U}_i \cap \mathcal{U}_i}$ for all $i, j \in I$, then there exists a unique $f \in \mathcal{O}_X(\mathcal{U})$ s.t. $\forall i \in I$, $f_i = f_{|\mathcal{U}_i}$.

This point of view gives rise to an alternative definition of Riemann surfaces: they are topological spaces equipped with a collection $(\mathcal{O}_X(\mathcal{U}))_{\substack{\mathcal{U}\subseteq X\\\mathcal{U} \text{ open}}}$ satisfying some conditions. \mathcal{O}_X is called a sheaf.

Example 2.2.6. Every open subset of \mathbb{C} is a Riemann surface (with a single chart).

Example 2.2.7 (Riemann sphere). The Riemann sphere is the space $\mathbb{P}^1(\mathbb{C}) = (\mathbb{C}^2 \setminus \{0\}) / \mathbb{C}^{\times}$, endowed with the quotient topology. It is a compact topological space (it is actually the one-point compactification of \mathbb{C}). We define two holomorphic charts on $\mathbb{P}^1(\mathbb{C})$ by:

$$\psi_0 : z \in \mathbb{C} \longmapsto (1:z) \in \mathbb{P}^1(\mathbb{C}) \setminus \{(0:1)\}, \psi_1 : z \in \mathbb{C} \longmapsto (z:1) \in \mathbb{P}^1(\mathbb{C}) \setminus \{(1:0)\}.$$

These charts cover $\mathbb{P}^1(\mathbb{C})$ and are compatible, so they give $\mathbb{P}^1(\mathbb{C})$ the structure of a Riemann sphere.

Proposition 2.2.8. Every holomorphic function on $\mathbb{P}^1(\mathbb{C})$ is constant. Hence, $\mathcal{O}(\mathbb{P}^1(\mathbb{C})) = \mathbb{C}$.

Proof. Let $f \in \mathcal{O}(\mathbb{P}^1(\mathbb{C}))$. If ψ_0 is the chart defined above, then $f \circ \psi_0$ is a holomorphic function defined on \mathbb{C} . Moreover, f is continuous (because f is holomorphic) on the compact space $\mathbb{P}^1(\mathbb{C})$, so f is bounded. As a consequence, $f \circ \psi_0$ is an entire function that is bounded, so $f \circ \psi_0$ is constant. Hence, f is constant on $\mathbb{P}^1(\mathbb{C}) \setminus \{(0:1)\}$, so f is constant on $\mathbb{P}^1(\mathbb{C})$.

Remark 2.2.9. From now on, the map ψ_0 will be used to identify \mathbb{C} with the corresponding subset of $\mathbb{P}^1(\mathbb{C})$, and the point (0:1) will be denoted by ∞ . Hence, $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}, \psi_0 : \mathbb{C} \to \mathbb{P}^1(\mathbb{C})$ is the inclusion and $\psi_1 : \mathbb{C} \to \mathbb{C}^{\times} \cup \{\infty\}$ is the map given by $z \mapsto \frac{1}{z}$.

Example 2.2.10 (Complex tori). If Λ is a lattice in \mathbb{C} , then the complex torus \mathbb{C}/Λ is a Riemann surface, with the structure defined in Section 1.6.

2.3 Holomorphic maps between Riemann surfaces

Definition 2.3.1 (Holomorphic map). Let X and Y be two Riemann surfaces. A continuous map $f: X \to Y$ is said to be holomorphic if for every open subset $V \subseteq Y$ and for every holomorphic map $h: V \to \mathbb{C}$, $h \circ f: f^{-1}(V) \to \mathbb{C}$ is holomorphic. In other words:

 $\forall V \subseteq Y \text{ open, } \forall h \in \mathcal{O}_Y(V), \ (h \circ f) \in \mathcal{O}_X\left(f^{-1}(V)\right).$

Remark 2.3.2. If $Y = \mathbb{C}$, then a holomorphic map $X \to Y$ is simply a holomorphic function $X \to \mathbb{C}$.

Proposition 2.3.3. Let $f: X \to Y$ be a continuous map between Riemann surfaces.

- (i) The property of being holomorphic is local on the source: for any open cover $X = \bigcup_{i \in I} \mathcal{U}_i$, $f: X \to Y$ is holomorphic iff $f_{|\mathcal{U}_i}: \mathcal{U}_i \to Y$ is holomorphic for all $i \in I$.
- (ii) The property of being holomorphic is local on the target: for any open cover $Y = \bigcup_{j \in J} \mathcal{V}_j$, $f: X \to Y$ is holomorphic iff $f_{|f^{-1}(\mathcal{V}_j)} : f^{-1}(\mathcal{V}_j) \to \mathcal{V}_j$ is holomorphic for all $j \in J$.

Proposition 2.3.4. If $f : X \to Y$ and $g : Y \to Z$ are holomorphic maps between Riemann surfaces, then $g \circ f : X \to Z$ is also holomorphic.

Example 2.3.5. Let Λ be a lattice in \mathbb{C} . Then the projection $\pi : \mathbb{C} \to \mathbb{C}/\Lambda$ is holomorphic.

Definition 2.3.6 (Biholomorphism). Let X and Y be two Riemann surfaces. A map $f : X \to Y$ is said to be an isomorphism (of Riemann surfaces) or a biholomorphism if f is holomorphic, bijective, and f^{-1} is holomorphic.

2.4 Generalisation to Riemann surfaces of standard results of complex analysis

Theorem 2.4.1 (Identity Theorem). Let X and Y be two Riemann surfaces. Assume that X is connected and consider two holomorphic maps $f, g: X \to Y$.

- (i) If $f \neq g$, then the set $\{p \in X, f(p) = g(p)\}$ is a closed discrete subset of X.
- (ii) If the set $\{p \in X, f(p) = g(p)\}$ has a limit point, then f = g.

In particular, if f and g coincide on some nonempty open subset of X, then f = g.

Proof. Assume that $f \neq g$. It is clear that $A_{f,g} = \{p \in X, f(p) = g(p)\}$ is closed. Let us show that $A_{f,g}$ is discrete. Let $x_0 \in A_{f,g}$ and let $y_0 = f(x_0) = g(x_0)$. Consider charts \mathcal{U}_0 of X around x_0 , \mathcal{V}_0 of Y around y_0 . We may assume that $f(\mathcal{U}_0) \subseteq \mathcal{V}_0$ and $g(\mathcal{U}_0) \subseteq \mathcal{V}_0$ by shrinking \mathcal{U}_0 if necessary. Thus, we have two maps $f, g : \mathcal{U}_0 \to \mathcal{V}_0$ with $f(x_0) = g(x_0)$. By reading these maps in the charts, we may assume that \mathcal{U}_0 and \mathcal{V}_0 are subsets of \mathbb{C} . We now set $h = (f - g) : \mathcal{U}_0 \to \mathbb{C}$. Since $h(x_0) = 0$ and h is holomorphic, either h does not vanish in a punctured neighbourhood of x_0 , or h = 0 in a neighbourhood of x_0 . In the first case, x_0 is isolated in $A_{f,g}$ and we are done. In the second case, consider the set:

 $\Omega = \left\{ p \in X, \exists W \text{ open neighbourhood of } p \text{ in } X, f_{|W} = g_{|W} \right\}.$

As $x_0 \in \Omega$, $\Omega \neq \emptyset$. It is clear that Ω is open in X. Moreover, if there existed $p \in \Omega \setminus \Omega$, then $p \in \overline{A}_{f,g} = A_{f,g}$, so f(p) = g(p). And p is not isolated in $A_{f,g}$ because $p \in \overline{\Omega} \setminus \Omega$. By the same reasoning as before, we deduce that f = g in a neighbourhood of p, so $p \in \Omega$, which is a contradiction. Therefore, Ω is open and closed in the connected space X, so $X = \Omega$, a contradiction. \Box

Corollary 2.4.2 (Discreteness of the fibres). Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces, with X connected. If f is not constant, then for every $q \in Y$, the fibre $f^{-1}(\{q\})$ is a closed discrete subset of X. In particular, if X is compact, then the fibre $f^{-1}(\{q\})$ is finite.

Theorem 2.4.3 (Oppen Mapping Theorem). Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces, with X connected. If f is not constant, then f is open.

Corollary 2.4.4. Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces, with X compact and connected and Y connected. If f is not constant, then f is surjective (and Y is compact).

Corollary 2.4.5. If X is a compact connected Riemann surface, then every holomorphic function on X is constant: $\mathcal{O}(X) = \mathbb{C}$.

3 Meromorphic functions

3.1 Meromorphic functions

Definition 3.1.1 (Meromorphic function at a point). Let X be a Riemann surface. Let Ω be an open subset of X containing a point p. Let $f : \Omega \setminus \{p\} \to \mathbb{C}$ be a holomorphic function. We say that f is meromorphic at p (resp. has an essential singularity at p) if for every holomorphic chart (\mathcal{U}, ϕ) of X around p, the map $g = f \circ \phi^{-1} : \phi(\mathcal{U} \cap \Omega) \setminus \{\phi(p)\} \to \mathbb{C}$ is meromorphic at $\phi(p)$ (resp. has an essential singularity at a holomorphic function on Ω iff g extends to a holomorphic function on Ω iff g extends to a holomorphic function on a neighbourhood of $\phi(p)$ for every holomorphic chart (\mathcal{U}, ϕ) .

Definition 3.1.2 (Meromorphic function). Let X be a Riemann surface. A meromorphic function on X is the data of a closed discrete subset S of X and of a holomorphic function $f: X \setminus S \to \mathbb{C}$, s.t. f is meromorphic at each point of S. In this case, we write $f: X \dashrightarrow \mathbb{C}$. We identify two meromorphic functions $f, g: X \dashrightarrow \mathbb{C}$ if there exists a closed discrete subset S of X s.t. f and g are defined and coincide on $X \setminus S$; in this case, we write $f \sim g$. We define $\mathcal{M}(X)$ to be the set of meromorphic functions on X, quotiented by the equivalence relation \sim .

Proposition 3.1.3. Let X be a Riemann surface. Let Ω be an open subset of X containing a point p. Let $f: \Omega \setminus \{p\} \to \mathbb{C}$ be a holomorphic function. Then f is meromorphic at p iff f extends to a holomorphic map $\hat{f}: \Omega \to \mathbb{P}^1(\mathbb{C})$, i.e. such that the following diagram commutes, with the notations of Example 2.2.7:

Corollary 3.1.4. If X is a Riemann surface, then any meromorphic function $f : X \to \mathbb{C}$ can be extended to a holomorphic map $\hat{f} : X \to \mathbb{P}^1(\mathbb{C})$.

Definition 3.1.5 (Order of vanishing). Let X be a Riemann surface. Let Ω be an open subset of X containing a point p. Let $f : \Omega \setminus \{p\} \to \mathbb{C}$ be a holomorphic function that is meromorphic at p. If $\phi : \mathcal{U} \to V$ is a holomorphic chart of X containing p, with $\phi(p) = z_0$, then $f \circ \phi^{-1}$ has a Laurent expansion at $z_0: f \circ \phi^{-1}(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$ around z_0 , for some $(a_n)_{n \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$. We define the order of vanishing of f at p by:

$$\operatorname{ord}_p(f) = \min \{ n \in \mathbb{Z}, a_n \neq 0 \} \in \mathbb{Z} \cup \{ \infty \}.$$

The order of vanishing does not depend on the choice of ϕ , because the transition maps are biholomorphic. Moreover:

- (i) We say that f has a zero at p if $\operatorname{ord}_p(f) > 0$; in this case, the order of the zero is $\operatorname{ord}_p(f)$.
- (ii) We say that f has a pole at p if $\operatorname{ord}_p(f) < 0$; in this case, the order of the pole is $|\operatorname{ord}_p(f)|$.

Example 3.1.6.

- (i) Let Λ be a lattice in \mathbb{C} . Then the Weierstraß \wp -function is a meromorphic function on \mathbb{C}/Λ with a pole of order 2 at 0, i.e. $\operatorname{ord}_0(\wp) = -2$.
- (ii) Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Viewing \mathbb{C} as a subset of $\mathbb{P}^1(\mathbb{C})$, f is meromorphic at ∞ iff f is a polynomial.

Proposition 3.1.7. If X is a connected Riemann surface, then $\mathcal{M}(X)$ is a field.

Proposition 3.1.8. Let X be a connected Riemann surface, $p \in X$. We have a function ord_p : $\mathcal{M}(X) \to \mathbb{Z} \cup \{\infty\}$, which has the following properties:

- (i) For $f \in \mathcal{M}(X)$, $\operatorname{ord}_p(f) = +\infty \iff f = 0$.
- (ii) For $f, g \in \mathcal{M}(X)$, $\operatorname{ord}_p(fg) = \operatorname{ord}_p(f) + \operatorname{ord}_p(g)$.
- (iii) For $f, g \in \mathcal{M}(X)$, $\operatorname{ord}_p(f+g) \ge \min \{ \operatorname{ord}_p(f), \operatorname{ord}_p(g) \}$.

We say that ord_p is a discrete valuation on $\mathcal{M}(X)$.

Theorem 3.1.9. If X is a compact connected Riemann surface, then there exists $f \in \mathcal{M}(X) \setminus \mathbb{C}$ s.t. $\mathcal{M}(X)$ is a finite extension of $\mathbb{C}(f)$. We say that the field extension $\mathcal{M}(X)/\mathbb{C}$ has transcendance degree 1.

Example 3.1.10.

- (i) $\mathcal{M}(\mathbb{P}^1(\mathbb{C})) = \mathbb{C}(z).$
- (ii) If Λ is a lattice in \mathbb{C} , then $\mathcal{M}(\mathbb{C}/\Lambda) = \mathbb{C}(\wp, \wp')$, and \wp' is algebraic over $\mathbb{C}(\wp)$.

Proposition 3.1.11. Let X be a connected Riemann surface. For $f \in \mathcal{M}(X)$, denote by \hat{f} the induced holomorphic map $X \to \mathbb{P}^1(\mathbb{C})$ (c.f. Corollary 3.1.4). Then the map $f \mapsto \hat{f}$ induces a bijection between $\mathcal{M}(X)$ and $\{g: X \to \mathbb{P}^1(\mathbb{C}) \text{ holomorphic, } g \neq \infty\}$.

Remark 3.1.12. Let X be a Riemann surface. Consider a meromorphic function $f : X \to \mathbb{C}$ and denote by \hat{f} the induced holomorphic map $X \to \mathbb{P}^1(\mathbb{C})$. Then, for $p \in X$, f has a pole at p iff $\hat{f}(p) = \infty$.

3.2 Ramification theory

Definition 3.2.1 (Ramification index of a holomorphic map). Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces, let $p \in X$ and set $q = f(p) \in Y$. Assume that f is not constant near p. Consider local coordinates (\mathcal{U}, ϕ) of X near p (i.e. a holomorphic chart with $\phi(p) = 0$) and (\mathcal{V}, ψ) of Y near q. In a neighbourhood of 0, we can write $\psi \circ f \circ \phi^{-1}(z) = \sum_{n \in \mathbb{N}^*} a_n z^n$. We define the ramification index of f at p by:

$$e_f(p) = \min \left\{ n \in \mathbb{N}^*, \ a_n \neq 0 \right\} \in \mathbb{N}^*.$$

This definition does not depend on the choice of local coordinates on X and Y. Moreover, using the local normal form of a holomorphic function, one can show that for every choice of (\mathcal{V}, ψ) , there exists a choice of (\mathcal{U}, ϕ) s.t. $\psi \circ f \circ \phi^{-1}(z) = z^e$ in a neighbourhood of 0, where $e = e_f(p)$.

Example 3.2.2.

- (i) Consider the map $f : z \in \mathbb{P}^1(\mathbb{C}) \longrightarrow z^2 \in \mathbb{P}^1(\mathbb{C})$. Then $e_f(z) = 1$ if $z \in \mathbb{C}^{\times}$ and $e_f(0) = e_f(\infty) = 2$.
- (ii) Consider $\cos : \mathbb{C} \to \mathbb{C}$. Then $e_{\cos}(z_0) = 1$ if $z_0 \notin \pi \mathbb{Z}$ and $e_{\cos}(z_0) = 2$ if $z_0 \in \pi \mathbb{Z}$.

Proposition 3.2.3. Let $f : X \to \mathbb{C}$ be a meromorphic function on a Riemann surface X and let $\hat{f} : X \to \mathbb{P}^1(\mathbb{C})$ be the induced holomorphic map. For $p \in X$, we have:

- (i) If f is holomorphic at p, then $e_{\hat{f}}(p) = \operatorname{ord}_p(f f(p))$.
- (ii) If f has a pole at p, then $e_{\hat{f}}(p) = |\operatorname{ord}_p(f)|$.

Corollary 3.2.4. If Λ is a lattice in \mathbb{C} , then the complex torus \mathbb{C}/Λ is not isomorphic to the Riemann sphere $\mathbb{P}^1(\mathbb{C})$.

Proof. Assume for contradiction that $f : \mathbb{C}/\Lambda \to \mathbb{P}^1(\mathbb{C})$ is an isomorphism. We may view f as a meromorphic function on \mathbb{C}/Λ with only one pole at some point $p \in \mathbb{C}/\Lambda$. By Proposition 3.2.3, the pole of f at p is simple. Therefore, $\operatorname{div}(f)$ must be of the form [q] - [p] for some $q \in \mathbb{C}/\Lambda$. But by Proposition 1.2.6, we must have q = p, which is a contradiction.

Remark 3.2.5. In fact, \mathbb{C}/Λ and $\mathbb{P}^1(\mathbb{C})$ are not even homeomorphic because $\Pi_1(\mathbb{P}^1(\mathbb{C})) = 0$ and $\Pi_1(\mathbb{C}/\Lambda) \simeq \mathbb{Z}^2$.

Definition 3.2.6 (Ramification points and branch points). Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces, let $p \in X$. We say that f is unramified at p if $e_f(p) = 1$ (equivalently, f is a local isomorphism, or homeomorphism, at p). Otherwise, we say that f is ramified at p, or that p is a ramification point of f. The set $R(f) \subseteq X$ of ramification points of f is called the ramification locus of f. The set $B(f) = f(R(f)) \subseteq Y$ is called the branch locus of f and its elements are called branch points.

Remark 3.2.7. In differential geometry, ramification points are called critical points and branch points are called critical values.

Proposition 3.2.8. Let $f : X \to Y$ be a holomorphic map between two Riemann surfaces. If X is connected and f is not constant, then R(f) is closed and discrete in X. If in addition X is compact (which implies that Y is compact), then R(f) and B(f) are both finite.

Proof. Let $p \in X \setminus R(f)$. Taking local coordinates (\mathcal{U}, ϕ) at p and (\mathcal{V}, ψ) at f(p), we have $\psi \circ f \circ \phi^{-1}(z) \underset{0}{\sim} \lambda z$ for some $\lambda \in \mathbb{C}^{\times}$. Therefore, f is a local isomorphism around p, so f is unramified in a neighbourhood of p. This shows that $X \setminus R(f)$ is open, i.e. R(f) is closed. Now, let $p \in R(f)$. We can find charts (\mathcal{U}, ϕ) at p and (\mathcal{V}, ψ) at f(p) s.t. $\psi \circ f \circ \phi^{-1}(z) = z^e$ in a neighbourhood of 0, with $e = e_f(p) \ge 2$. Hence, $(\psi \circ f \circ \phi^{-1})'(z) = ez^{e-1}$ in a neighbourhood of 0, so $(\psi \circ f \circ \phi^{-1})'(z) \neq 0$ if $z \neq 0$ in a neighbourhood of 0. This shows that p is isolated in R(f), so R(f) is discrete. \Box

Proposition 3.2.9. Let $f : X \to Y$ be a nonconstant holomorphic map between two compact connected Riemann surfaces.

- (i) If $h \in \mathcal{M}(Y)$, then $h \circ f \in \mathcal{M}(X)$.
- (ii) For every $p \in X$, we have:

$$\operatorname{ord}_p(h \circ f) = e_f(p) \cdot \operatorname{ord}_{f(p)}(h).$$

Remark 3.2.10. If $f : X \to Y$ is a nonconstant holomorphic map between two compact connected Riemann surfaces, then f induces a map:

$$f^*: h \in \mathcal{M}(Y) \longmapsto h \circ f \in \mathcal{M}(X),$$

which is a morphism of \mathbb{C} -algebras, and thus a morphism of fields. Therefore, we may view $\mathcal{M}(X)$ as a field extension of $\mathcal{M}(Y)$. Moreover, we have a discrete valuation ord_p on $\mathcal{M}(X)$, and the restriction to $\mathcal{M}(Y)$ is $e_f(p) \cdot \operatorname{ord}_{f(p)}$.

3.3 Degree of a holomorphic map

Theorem 3.3.1. Let $f : X \to Y$ be a nonconstant holomorphic map between two compact connected Riemann surfaces. For $q \in Y$, define:

$$d_q = \sum_{p \in f^{-1}(\{q\})} e_f(p) \in \mathbb{N}^*.$$

Then d_q does not depend on q; it is called the topological degree of f and denoted by deg f.

Remark 3.3.2. Let $f: X \to Y$ be a nonconstant holomorphic map between two compact connected Riemann surfaces. Write $R'(f) = f^{-1}(B(f))$. Then f induces a local isomorphism $X \setminus R'(f) \to Y \setminus B(f)$, which is a topological covering of degree deg f.

Example 3.3.3. If $f : X \to Y$ is a nonconstant holomorphic map between two compact connected Riemann surfaces, we have seen (in Remark 3.2.10) that f induces a field extension $\mathcal{M}(X)/\mathcal{M}(Y)$, and we have $[\mathcal{M}(X) : \mathcal{M}(Y)] = \deg f$.

Corollary 3.3.4. Let X be a compact connected Riemann surface. If there exists a meromorphic function on X with only a simple pole, then X is isomorphic to $\mathbb{P}^1(\mathbb{C})$.

Theorem 3.3.5. Let X be a compact connected Riemann surface. For every $f \in \mathcal{M}(X)^{\times}$, we have:

$$\sum_{p \in X} \operatorname{ord}_p(f) = 0.$$

Proof. We may assume that f is nonconstant, and we view it as a holomorphic map $\hat{f} : X \to \mathbb{P}^1(\mathbb{C})$. We have:

$$\sum_{p \in \hat{f}^{-1}(\{0\})} \operatorname{ord}_p(f) = \sum_{p \in \hat{f}^{-1}(\{0\})} e_{\hat{f}}(p) = \deg \hat{f} = \sum_{p \in \hat{f}^{-1}(\{\infty\})} e_{\hat{f}}(p) = -\sum_{p \in \hat{f}^{-1}(\{\infty\})} \operatorname{ord}_p(f).$$

Therefore $\sum_{p \in X} \operatorname{ord}_p(f) = \sum_{p \in \hat{f}^{-1}(\{0\})} \operatorname{ord}_p(f) + \sum_{p \in \hat{f}^{-1}(\{\infty\})} \operatorname{ord}_p(f) = 0.$

3.4 Divisors

Remark 3.4.1. Let X be a compact connected Riemann surface. Given $p_1, \ldots, p_r, q_1, \ldots, q_s \in X$, $m_1, \ldots, m_r, n_1, \ldots, n_s \in \mathbb{N}^*$, a fundamental problem is to tell whether or not there exists a meromorphic function $f \in \mathcal{M}(X)$ with a zero of order m_i at each point p_i and a pole of order n_j at each point q_j , and which is holomorphic and nonvanishing on $X \setminus \{p_1, \ldots, p_r, q_1, \ldots, q_s\}$. To state this problem in a more concise way, we shall introduce the language of divisors.

Definition 3.4.2 (Divisors). If X is a Riemann surface, we denote by Div(X) the free \mathbb{Z} -module with basis X. Its elements are called divisors; they are formal linear combinations of points of X.

- Given $D = \sum_{p \in X} n_p[p] \in \text{Div}(X)$, we define the order of D at p by $\text{ord}_p(D) = n_p \in \mathbb{Z}$, and the degree of D by $\text{deg } D = \sum_{p \in X} n_p \in \mathbb{Z}$.
- We say that a divisor $D = \sum_{p \in X} n_p[p] \in \text{Div}(X)$ is effective, and we write $D \ge 0$, if $\forall p \in X$, $n_p \ge 0$. If $D_1, D_2 \in \text{Div}(X)$, we say that $D_1 \ge D_2$ if $D_1 D_2 \ge 0$.
- Given $D = \sum_{p \in X} n_p[p] \in \text{Div}(X)$, the support of D is the finite set $\{p \in X, \text{ ord}_p(D) \neq 0\}$.

Definition 3.4.3 (Divisor of a meromorphic function). Let X be a compact connected Riemann surface and let $f \in \mathcal{M}(X)^{\times}$. The divisor of f is defined by:

$$\operatorname{div}(f) = \sum_{p \in X} \operatorname{ord}_p(f) \cdot [p] \in \operatorname{Div}(X).$$

Proposition 3.4.4. If X is a compact connected Riemann surface, then div : $\mathcal{M}(X)^{\times} \to \text{Div}(X)$ is a group homomorphism. Its image is called the group of principal divisors, and denoted by $\Pr(X)$.

Lemma 3.4.5. Let X be a compact connected Riemann surface. Then the following sequence is exact:

$$0 \to \mathbb{C}^{\times} \xrightarrow{\subseteq} \mathcal{M}(X)^{\times} \xrightarrow{\operatorname{div}} \Pr(X) \to 0$$

Definition 3.4.6 (Degree zero divisors and Picard group). Let X be a compact connected Riemann surface. Then we have a \mathbb{Z} -linear map deg : Div $(X) \to \mathbb{Z}$; we define the group of degree zero divisors by:

$$\operatorname{Div}^{0}(X) = \operatorname{Ker} \operatorname{deg} \subseteq \operatorname{Div}(X).$$

Theorem 3.3.5 implies that $Pr(X) \subseteq Div^0(X) \subseteq Div(X)$. The quotient:

$$\operatorname{Pic}^{0}(X) = \operatorname{Div}^{0}(X) / \operatorname{Pr}(X),$$

is called the Picard group of X; it can be interpreted as $H^1(X, \mathcal{O}_X^{\times})$.

Example 3.4.7.

- (i) $\operatorname{Pic}^{0}(\mathbb{P}^{1}(\mathbb{C})) = 0.$
- (ii) If Λ is a lattice in \mathbb{C} , then $\operatorname{Pic}^0(\mathbb{C}/\Lambda) \simeq \mathbb{C}/\Lambda$.

In general, according to the Abel-Jacobi Theorem, if X is a compact connected Riemann surface, then there exists an integer $g \in \mathbb{N}$, called the genus of X, s.t. $\operatorname{Pic}^{0}(X) \simeq \mathbb{C}^{g}/\Lambda$, where Λ is a Z-lattice of rank 2g in \mathbb{C}^{g} .

3.5 Riemann-Roch spaces

Definition 3.5.1 (Riemann-Roch space associated to a divisor). Let X be a compact connected Rieman surface. Given $D \in Div(X)$, we define:

$$\mathcal{L}(D) = \left\{ f \in \mathcal{M}(X)^{\times}, \, \operatorname{div}(f) \ge -D \right\} \cup \{0\} \subseteq \mathcal{M}(X).$$

 $\mathcal{L}(D)$ is called the Riemann-Roch space associated to D. Then $\mathcal{L}(D)$ is a sub- \mathbb{C} -vector space of $\mathcal{M}(X)$.

Proposition 3.5.2. Let X be a compact connected Riemann surface. If $D \in Div(X)$, then the \mathbb{C} -vector space $\mathcal{L}(D)$ is finite-dimensional.

Proof. Firstly, note that $\mathcal{L}(D_1) \subseteq \mathcal{L}(D_2)$ if $D_1 \leq D_2$, so it suffices to prove the proposition for effective divisors (i.e. $D \geq 0$). Thus, we can proceed by induction on deg D. If deg D = 0 (i.e. D = 0), then $\mathcal{L}(D) = \mathcal{O}(X) = \mathbb{C}$. Now, assume that the result is true for all effective divisors of degree $d \in \mathbb{N}$ and let D be an effective divisor with deg D = d + 1. Write D = D' + [p], with $p \in X$, D' effective and deg D' = d. We have $\mathcal{L}(D') \subseteq \mathcal{L}(D)$, and $\mathcal{L}(D')$ is finite-dimensional. We will construct a linear form on $\mathcal{L}(D)$ whose kernel is $\mathcal{L}(D')$. To do this, consider a holomorphic system of coordinates $\phi : \mathcal{U} \to V$ around p in X. If $f \in \mathcal{L}(D)$, then $f \circ \phi^{-1}(z)$ has a pole of order at most $n + 1 = \operatorname{ord}_p(D)$ at 0, so we can write:

$$f \circ \phi^{-1}(z) = \frac{\alpha}{z^{n+1}} + \mathcal{O}_0\left(\frac{1}{z^n}\right),$$

for some unique $\alpha \in \mathbb{C}$. Denote by $\lambda_{\phi} : \mathcal{L}(D) \to \mathbb{C}$ the linear map given by $f \mapsto \alpha$. By construction, Ker $\lambda_{\phi} = \mathcal{L}(D')$, so dim $\mathcal{L}(D) \leq \dim \mathcal{L}(D') + 1 < +\infty$.

Remark 3.5.3. Let X be a compact connected Riemann surface. If $D \in Div(X)$ is an effective divisor, then the proof of Proposition 3.5.2 gives a bound on the dimension of $\mathcal{L}(D)$:

$$\dim \mathcal{L}(D) \le \deg D + 1.$$

Theorem 3.5.4 (Riemann-Roch). Let X be a compact connected Riemann surface of genus g. If $D \in \text{Div}(X)$ is an effective divisor with deg D > 2g - 2, then:

$$\dim \mathcal{L}(D) = \deg D + 1 - g.$$

Corollary 3.5.5. If X is a compact connected Riemann surface, then for every $p \in X$, there exists a nonconstant meromorphic function on X whose only pole is at p.

Example 3.5.6. If $X = \mathbb{P}^1(\mathbb{C})$, then $\mathcal{L}(n[\infty])$ is the set of polynomials of degree at most n.

Remark 3.5.7. The genus g of a compact connected Riemann surface X is a topological invariant. The integer $\chi = 2 - 2g$ is called the Euler-Poincaré characteristic of X. To compute it, consider any triangulation of X, with V vertices, E edges and F faces. Then:

$$\chi = V - E + F.$$

4 Differential forms

4.1 Complex and holomorphic differential forms

Notation 4.1.1. Let X be a Riemann surface. In particular, X is a differentiable manifold of real dimension 2, and we denote by $\mathcal{A}_{\mathbb{R}}^{k}(X)$ the real vector space of smooth differential k-forms on X, for $0 \leq k \leq 2$.

Definition 4.1.2 (Complex differential forms). Let X be a Riemann surface. For $0 \le k \le 2$, we define:

$$\mathcal{A}^k_{\mathbb{C}}(X) = \mathcal{A}^k_{\mathbb{R}}(X) \otimes_{\mathbb{R}} \mathbb{C}.$$

Elements of $\mathcal{A}^k_{\mathbb{C}}(X)$ are called complex k-forms on X.

Remark 4.1.3. Let X be a Riemann surface.

- Any form $\omega \in \mathcal{A}^k_{\mathbb{C}}(X)$ can be written uniquely as $\omega = \alpha + i\beta$, with $\alpha, \beta \in \mathcal{A}^k_{\mathbb{R}}(X)$.
- For k = 0, we have $\mathcal{A}^0_{\mathbb{R}}(X) = \mathcal{C}^{\infty}(X, \mathbb{R})$ and $\mathcal{A}^0_{\mathbb{C}}(X) = \mathcal{C}^{\infty}(X, \mathbb{C})$.
- The operator $d: \mathcal{A}^k_{\mathbb{R}}(X) \to \mathcal{A}^{k+1}_{\mathbb{R}}(X)$ extends to $d: \mathcal{A}^k_{\mathbb{C}}(X) \to \mathcal{A}^{k+1}_{\mathbb{C}}(X)$.
- We have a complex conjugation operator $\overline{\cdot} : \mathcal{A}^k_{\mathbb{C}}(X) \to \mathcal{A}^k_{\mathbb{C}}(X)$ defined by $\overline{\omega \otimes \lambda} = \omega \otimes \overline{\lambda}$. The fixed points of this involution are the elements of $\mathcal{A}^k_{\mathbb{R}}(X)$.
- For $\omega \in \mathcal{A}^k_{\mathbb{C}}(X)$, we have $\overline{\mathrm{d}\omega} = \mathrm{d}\overline{\omega}$.

Notation 4.1.4. If V is an open subset of \mathbb{C} , we have the standard coordinate z = x + iy on V; we denote by $dz = dx + i dy \in \mathcal{A}^1_{\mathbb{C}}(V)$ and $d\overline{z} = dx - i dy \in \mathcal{A}^1_{\mathbb{C}}(V)$.

Definition 4.1.5 (Holomorphic differential form in a chart). Let X be a Riemann surface and let $\phi : \mathcal{U} \to V$ be a holomorphic chart of X. We say that a differential form $\omega \in \mathcal{A}^1_{\mathbb{C}}(\mathcal{U})$ is holomorphic (resp. anti-holomorphic) on \mathcal{U} if $\phi_*\omega = f(z) dz$ (resp. $\phi_*\omega = \overline{f(z)} d\overline{z}$), with $f \in \mathcal{O}(V)$.

Remark 4.1.6. A complex form ω is holomorphic iff $\overline{\omega}$ is anti-holomorphic.

Definition 4.1.7 (Holomorphic differential form). Let X be a Riemann surface. A differential form $\omega \in \mathcal{A}^{1}_{\mathbb{C}}(X)$ is said to be holomorphic (resp. anti-holomorphic) if it is holomorphic (resp. anti-holomorphic) on every holomorphic chart of X. We denote by $\Omega^{1}(X)$ (resp. $\overline{\Omega}^{1}(X)$) the set of holomorphic (resp. anti-holomorphic) differential forms on X.

Remark 4.1.8. Let X be a Riemann surface. Let $\phi_1 : \mathcal{U}_1 \to V_1$ and $\phi_2 : \mathcal{U}_2 \to V_2$ be two charts of X. Then a complex differential form $\omega \in \mathcal{A}^1_{\mathbb{C}}(X)$ is holomorphic on $\mathcal{U}_1 \cap \mathcal{U}_2$ for ϕ_1 iff it is holomorphic on $\mathcal{U}_1 \cap \mathcal{U}_2$ for ϕ_2 .

Example 4.1.9.

- (i) If \mathcal{U} is an open subset of \mathbb{C} , then $\Omega^1(\mathcal{U}) = \mathcal{O}(\mathcal{U}) \, \mathrm{d}z$.
- (ii) $\Omega^1(\mathbb{P}^1(\mathbb{C})) = 0.$
- (iii) If Λ is a lattice in \mathbb{C} , then $\Omega^1(\mathbb{C}/\Lambda) = \mathbb{C} dz$.

Proposition 4.1.10. Let $f : X \to Y$ be a holomorphic map between Riemann surfaces. Then f induces a \mathbb{C} -linear map $f^* : \mathcal{A}^1_{\mathbb{C}}(Y) \to \mathcal{A}^1_{\mathbb{C}}(X)$, and f^* sends $\Omega^1(Y)$ to $\Omega^1(X)$.

4.2 Integration of differential forms

Remark 4.2.1. Let X be a Riemann surface. Consider a C^1 path $\gamma : [0,1] \to X$. For any $\omega \in \mathcal{A}^1_{\mathbb{C}}(X)$, we can define $\int_{\gamma} \omega$.

- (i) If ω is closed, i.e. $d\omega = 0$, then for any $\gamma' : [0,1] \to X$ that is homotopic to γ (with fixed endpoints), we have $\int_{\gamma'} \omega = \int_{\gamma} \omega$.
- (ii) If ω is exact, i.e. $\omega = dF$, with $F \in \mathcal{C}^{\infty}(X, \mathbb{C})$, then $\int_{\gamma} \omega = F(\gamma(1)) F(\gamma(0))$.

Proposition 4.2.2. All holomorphic and anti-holomorphic forms are closed.

Proof. It suffices to prove the result for holomorphic forms. Moreover, the result being local, it suffices to prove it for holomorphic forms ω on an open subset $\mathcal{U} \subseteq \mathbb{C}$. Hence, we can write $\omega = f(z) \, \mathrm{d}z$ with $f \in \mathcal{O}(\mathcal{U})$, so that $\mathrm{d}\omega = f'(z) \, \mathrm{d}z \wedge \mathrm{d}z = 0$.

Remark 4.2.3. Every Rieman surface has a canonical orientation induced by the orientation of \mathbb{C} .

Definition 4.2.4 (Hermitian scalar product on Ω^1). Let X be a Riemann surface. We define a Hermitian scalar product $\langle \cdot, \cdot \rangle$ on $\Omega^1(X)$ by:

$$\langle \omega, \nu \rangle = \frac{i}{2} \int_X \omega \wedge \overline{\nu}.$$

Proof. It is clear that $\overline{\langle \omega, \nu \rangle} = \langle \nu, \omega \rangle$ and that $\langle \cdot, \nu \rangle$ is \mathbb{C} -linear. Let $\omega \in \Omega^1(X)$. We shall show that $\langle \omega, \omega \rangle \in \mathbb{R}_+$. In a holomorphic chart $\phi : \mathcal{U} \to V$, we have $\phi_* \omega = f(z) \, dz$ with $f \in \mathcal{O}(V)$, so $\phi_*\left(\frac{i}{2}\omega \wedge \overline{\omega}\right) = |f(z)|^2 \, dx \wedge dy$. Therefore, the restriction of the integral to any chart is nonnegative, so $\langle \omega, \omega \rangle \in \mathbb{R}_+$. Moreover, if $\langle \omega, \omega \rangle = 0$, then the restriction of ω to any chart is zero, so $\omega = 0$. \Box

Example 4.2.5. Let Λ be a lattice in \mathbb{C} . If $\omega = dz \in \Omega^1(\mathbb{C}/\Lambda)$, then $\langle \omega, \omega \rangle = \int_{\mathbb{C}/\Lambda} dx \wedge dy = \mathcal{A}(D_1)$, where D_1 is any fundamental domain of Λ .

4.3 Forms of type (1,0) or (0,1)

Definition 4.3.1 (Forms of type (1,0) or (0,1)). Let X be a Riemann surface. A differential form $\omega \in \mathcal{A}^1_{\mathbb{C}}(X)$ is said to be of type (1,0) (resp. of type (0,1)) if for every holomorphic chart $\phi : \mathcal{U} \to V$, there exists $\alpha \in \mathcal{C}^{\infty}(V,\mathbb{C})$ s.t. $\phi_*\omega = \alpha(z) dz$ (resp. $\phi_*\omega = \alpha(z) d\overline{z}$). We denote by $\mathcal{A}^{1,0}(X)$ (resp. $\mathcal{A}^{0,1}(X)$) the set of differential forms on X of type (1,0) (resp. (0,1)).

Lemma 4.3.2. Let X be a Riemann surface. Then:

$$\mathcal{A}^{1}_{\mathbb{C}}(X) = \mathcal{A}^{1,0}(X) \oplus \mathcal{A}^{0,1}(X)$$

For $\omega \in \mathcal{A}^1_{\mathbb{C}}(X)$, we shall write $\omega = \omega^{1,0} + \omega^{0,1}$, with $\omega^{1,0} \in \mathcal{A}^{1,0}(X)$ and $\omega^{0,1} \in \mathcal{A}^{0,1}(X)$.

Remark 4.3.3. For a Riemann surface X, we have $\Omega^1(X) \subseteq \mathcal{A}^{1,0}(X) \subseteq \mathcal{A}^1_{\mathbb{C}}(X)$ and $\overline{\Omega}^1(X) \subseteq \mathcal{A}^{0,1}(X) \subseteq \mathcal{A}^1_{\mathbb{C}}(X)$.

Notation 4.3.4. Let X be a Riemann surface. We define two \mathbb{C} -linear operators ∂ and $\overline{\partial}$ by:

$$\partial: \begin{vmatrix} \mathcal{C}^{\infty}\left(X,\mathbb{C}\right) \longrightarrow \mathcal{A}^{1,0}(X) \\ f \longmapsto \left(\mathrm{d}f\right)^{1,0} \end{matrix} \quad and \quad \overline{\partial}: \begin{vmatrix} \mathcal{C}^{\infty}\left(X,\mathbb{C}\right) \longrightarrow \mathcal{A}^{0,1}(X) \\ f \longmapsto \left(\mathrm{d}f\right)^{0,1} \end{vmatrix}.$$

For $f \in \mathcal{C}^{\infty}(X, \mathbb{C})$, we have $df = \partial f + \overline{\partial} f$.

Proposition 4.3.5. Let X be a Riemann surface. Then ∂ and $\overline{\partial}$ are \mathbb{C} -linear and we have:

$$\forall f,g \in \mathcal{C}^{\infty}\left(X,\mathbb{C}\right), \ \partial(fg) = f\partial g + g\partial f,$$

and similarly for $\overline{\partial}$.

Example 4.3.6. Let \mathcal{U} be an open subset of \mathbb{C} and let $f \in \mathcal{C}^{\infty}(\mathcal{U}, \mathbb{C})$. Then:

$$\partial f = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz$$
 and $\overline{\partial} f = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z}$

Hence, by Cauchy-Riemann, f is holomorphic iff $\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$ iff $df \in \mathcal{A}^{1,0}(X)$.

Lemma 4.3.7. Let X be a Riemann surface and let $f \in C^{\infty}(X, \mathbb{C})$. Then the following three assertions are equivalent:

- (i) $f \in \mathcal{O}(X)$.
- (ii) $\mathrm{d}f \in \mathcal{A}^{1,0}(X)$.
- (iii) $\overline{\partial} f = 0.$

Proof. All the assertions are local, so we may assume that X is an open subset of \mathbb{C} and use Example 4.3.6.

Lemma 4.3.8. Let X be a Riemann surface and let $\omega \in \mathcal{A}^{1,0}(X)$. Then:

$$\omega \in \Omega^1(X) \Longleftrightarrow \mathrm{d}\omega = 0.$$

In other words, $\Omega^1(X) = \mathcal{A}^{1,0}(X) \cap \text{Ker d.}$

Proof. We may assume that X is an open subset of \mathbb{C} and write $\omega = \alpha(z) \, dz$, with $\alpha \in \mathcal{C}^{\infty}(X, \mathbb{C})$. Thus:

$$\mathrm{d}\omega = \mathrm{d}\alpha \wedge \mathrm{d}z = \underbrace{\partial \alpha \wedge \mathrm{d}z}_{0} + \underbrace{\partial \alpha \wedge \mathrm{d}z}_{\beta(z) \ \mathrm{d}\overline{z} \wedge \mathrm{d}z},$$

with $\beta \in \mathcal{C}^{\infty}(X, \mathbb{C})$. Thus, $d\omega = 0$ iff $\overline{\partial}\alpha = 0$ iff $\alpha \in \mathcal{O}(X)$ iff $\omega \in \Omega^1(X)$.

Notation 4.3.9. Let X be a Riemann surface. We define a \mathbb{C} -linear operator $\partial \overline{\partial}$ by:

$$\partial \overline{\partial} : \begin{vmatrix} \mathcal{C}^{\infty} \left(X, \mathbb{C} \right) \longrightarrow \mathcal{A}^{2}_{\mathbb{C}} \left(X \right) \\ f \longmapsto \mathrm{d} \left(\overline{\partial} f \right) \end{vmatrix}$$

Example 4.3.10. Let \mathcal{U} be an open subset of \mathbb{C} and let $f \in \mathcal{C}^{\infty}(\mathcal{U}, \mathbb{C})$. Then:

$$\partial \overline{\partial} f = -\frac{i}{2} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) \, \mathrm{d}x \wedge \mathrm{d}y = \frac{i}{2} \Delta f \, \,\mathrm{d}x \wedge \mathrm{d}y.$$

Definition 4.3.11 (Harmonic functions). If X is a Riemann surface, we define $\mathcal{H}(X) = \text{Ker}(\partial\overline{\partial}) \subseteq \mathcal{C}^{\infty}(X,\mathbb{C})$. Elements of $\mathcal{H}(X)$ are called harmonic functions on X. We have $\mathcal{O}(X) \subseteq \mathcal{H}(X)$ and $\overline{\mathcal{O}}(X) \subseteq \mathcal{H}(X)$.

Proposition 4.3.12. If X is a compact connected Riemann surface, then $\mathcal{H}(X) = \mathbb{C}$.

Proof. Let $f \in \mathcal{H}(X)$ and let $\omega = \partial \overline{f} \in \mathcal{A}^{1,0}(X)$. Note that $\omega \wedge \overline{\omega} = \mathrm{d} \overline{f} \wedge \overline{\omega}$, so:

$$\int_X \omega \wedge \overline{\omega} = \int_X \mathrm{d}\overline{f} \wedge \overline{\omega} = \int_X \mathrm{d}\left(\overline{f\omega}\right) - \int_X \overline{f} \,\mathrm{d}\overline{\omega} = \int_{\partial X} \overline{f\omega} - \int_X \overline{f} \,\mathrm{d}\overline{\omega} = -\int_X \overline{f} \,\mathrm{d}\overline{\omega} = \int_X \overline{f} \left(\partial\overline{\partial}f\right) = 0.$$

Therefore, $\omega = 0$ so $f \in \mathcal{O}(X)$ by Lemma 4.3.7. Thus, $f \in \mathbb{C}$ because X is compact and connected.

Theorem 4.3.13. Let X be a compact connected Riemann surface. Then:

$$\operatorname{Im}\left(\partial\overline{\partial}\right) = \left\{\alpha \in \mathcal{A}^{2}_{\mathbb{C}}(X), \ \int_{X} \alpha = 0\right\}$$

4.4 Meromorphic differential forms

Definition 4.4.1 (Meromorphic form at a point). Let X be a Riemann surface and $p \in X$. Let $\phi : \mathcal{U} \to V$ be a holomorphic chart containing p, with $\phi(p) = z_0$. If $\omega \in \Omega^1(\mathcal{U} \setminus \{p\})$, we can write $\phi_*\omega = f(z) dz$ for some $f \in \mathcal{O}(V \setminus \{z_0\})$. We say that ω is meromorphic at p if f is meromorphic at z_0 . In this case, we define:

$$\operatorname{ord}_p(\omega) = \operatorname{ord}_{z_0}(f) \in \mathbb{Z} \cup \{\infty\}.$$

Remark 4.4.2. If X is a Riemann surface equipped with a chart $\phi : \mathcal{U} \to V$, $p \in \mathcal{U}$ and $\omega \in \Omega^1(\mathcal{U} \setminus \{p\})$ is meromorphic at p, then:

- (i) $\operatorname{ord}_p(\omega) \ge 0 \iff \omega$ extends to a holomorphic form at p.
- (ii) $\operatorname{ord}_p(\omega) = \infty \iff \omega = 0$ on a neighbourhood of p.
- (iii) $\operatorname{ord}_p(\omega) \ge 1 \iff \omega_p = 0.$

Definition 4.4.3 (Meromorphic form). A meromorphic form on X is the data of a closed discrete subset S of X and of $\omega \in \Omega^1(X \setminus S)$ s.t. ω is meromorphic at each point of S. We write $\Omega^1(\mathcal{M}(X))$ for the set of meromorphic forms on X. It is a $\mathcal{M}(X)$ -vector space if X is connected.

Example 4.4.4. On $\mathbb{P}^1(\mathbb{C})$, $dz \in \Omega^1(\mathbb{C})$ is meromorphic at ∞ and $\operatorname{ord}_{\infty}(dz) = -2$.

Definition 4.4.5 (Divisor of a meromorphic form). If X is a compact connected Riemann surface and $\omega \in \Omega^1(\mathcal{M}(X)) \setminus \{0\}$, we define the divisor of ω by:

$$\operatorname{div}(\omega) = \sum_{p \in X} \operatorname{ord}_p(\omega) \cdot [p] \in \operatorname{Div}(X).$$

Remark 4.4.6. Let X be a Riemann surface.

- (i) $\Omega^1(X) = \{ \omega \in \Omega^1(\mathcal{M}(X)), \operatorname{div}(\omega) \ge 0 \}.$
- (ii) For $f \in \mathcal{M}(X)$ and $\omega \in \Omega^1(\mathcal{M}(X))$, we have $\operatorname{div}(f\omega) = \operatorname{div}(f) + \operatorname{div}(\omega)$.

Definition 4.4.7 (Genus). If X is a compact connected Riemann surface, then $\Omega^1(X)$ is a finitedimensional \mathbb{C} -vector space. The genus of X is defined by:

$$g = \dim_{\mathbb{C}} \Omega^1(X).$$

Proof. If $\Omega^1(X) = 0$, then it is clearly finite-dimensional. Otherwise, let $\omega_0 \in \Omega^1(X) \setminus \{0\}$. For $\omega \in \Omega^1(\mathcal{M}(X))$, there exists a unique $f \in \mathcal{M}(X)$ s.t. $\omega = f\omega_0$. Now:

$$\omega \in \Omega^1(X) \iff \operatorname{div}(\omega) \ge 0 \iff f \in \mathcal{L}(\operatorname{div}(\omega_0)).$$

Hence, there is a surjection $\mathcal{L}(\operatorname{div}(\omega_0)) \to \Omega^1(X)$, which concludes the proof because $\mathcal{L}(\operatorname{div}(\omega_0))$ is finite-dimensional by Proposition 3.5.2.

Remark 4.4.8. The above argument actually shows that $\Omega^1(\mathcal{M}(X))$ is a $\mathcal{M}(X)$ -vector space of dimension ≤ 1 . In fact, one can prove that $\dim_{\mathcal{M}(X)} \Omega^1(\mathcal{M}(X)) = 1$.

4.5 Residues of differential forms

Remark 4.5.1. On Riemann surfaces, it is not possible to define the residue of a meromorphic function at a point, because such a residue would depend on the chart in which we read the function. However, we will be able to define the residue of a meromorphic differential form at a point.

Definition 4.5.2 (Residue of a meromorphic differential form). Let X be a Riemann surface. Let Ω be an open subset of X containing a point p. Let $\omega \in \Omega^1(\Omega \setminus \{p\})$ be a holomorphic differential form that is meromorphic at p. If $\phi : \mathcal{U} \to V$ is a holomorphic chart of X containing p, with $\phi(p) = z_0$, then we can write $\varphi_*\omega = f(z) dz$, with f meromorphic at z_0 . We define $\operatorname{Res}_p(\omega) = \operatorname{Res}_{z_0}(f)$. The following proposition will show that $\operatorname{Res}_p(\omega)$ is independent of the choice of the chart.

Proposition 4.5.3. Let X be a Riemann surface. Let Ω be an open subset of X containing a point p. Let $\omega \in \Omega^1(\Omega \setminus \{p\})$ be a holomorphic differential form that is meromorphic at p. Consider a small loop γ in X around p, s.t. in a holomorphic chart $\phi : \mathcal{U} \to V$ containing p, γ is the boundary of a disk containing no pole of ω except p, oriented counter-clockwise. Then:

$$\int_{\gamma} \omega = 2i\pi \cdot \operatorname{Res}_p(\omega).$$

Corollary 4.5.4. The residue of a meromorphic differential form at a point does not depend on the chart in which we read it.

Example 4.5.5. Consider $\omega = \frac{dz}{z} \in \Omega^1(\mathcal{M}(\mathbb{P}^1(\mathbb{C})))$. Then ω is holomorphic on \mathbb{C}^{\times} and has poles at 0 and ∞ , with $\operatorname{Res}_0(\omega) = 1$ and $\operatorname{Res}_{\infty}(\omega) = -1$.

Theorem 4.5.6 (Residue Theorem). Let X be a Riemann surface and let D be a compact domain in X whose boundary γ can be parametrised by paths $[0,1] \rightarrow X$ which are C^0 and piecewise C^1 . We endow the paths γ with a canonical orientation as follows: at a point $p \in \gamma$, we denote by \vec{n} a vector in T_pX that is normal to γ and pointing towards the exterior of D, and we orient γ with a tangent vector \vec{t} s.t. (\vec{n}, \vec{t}) is a direct basis of T_pX (which is canonically oriented because it is a 1-dimensional \mathbb{C} -vector space). Now, consider a meromorphic differential form ω defined on a neighbourhood of D and s.t. the only poles of ω are at $p_1, \ldots, p_n \in \mathring{D}$. Then:

$$\int_{\partial D} \omega = 2i\pi \sum_{j=1}^{n} \operatorname{Res}_{p_j}(\omega).$$

Proof. Let $D_1, \ldots, D_n \subseteq \mathring{D}$ be small non-overlapping open disks around p_1, \ldots, p_n respectively. Let $D' = D \setminus (D_1 \cup \cdots \cup D_n)$. Write $\gamma_j = \partial D_j$ for $1 \leq j \leq n$, and orient γ_j clockwise. Then ω is holomorphic on a neighbourhood of D' in X. And by Stokes' Theorem:

$$\int_{D'} d\omega = \int_{\partial D'} \omega = \int_{\partial D} \omega + \sum_{j=1}^n \int_{\gamma_j} \omega = \int_{\partial D} \omega - 2i\pi \sum_{j=1}^n \operatorname{Res}_{p_j}(\omega).$$

But ω is holomorphic and thus closed on D', so $d\omega = 0$, which gives the result.

Corollary 4.5.7. If X is a compact connected Riemann surface and $\omega \in \Omega^1(\mathcal{M}(X))$, then:

$$\sum_{p \in X} \operatorname{Res}_p(\omega) = 0.$$

Remark 4.5.8. Using the Residue Theorem, we can give a new proof of Theorem 3.3.5 by considering the differential form $\omega = \frac{df}{f}$.

4.6 Riemann-Roch Theorem

Definition 4.6.1 (Canonical divisor). A canonical divisor on a compact connected Riemann surface X is a divisor of the form $\operatorname{div}(\omega) \in \operatorname{Div}(X)$ for some $\omega \in \Omega^1(\mathcal{M}(X)) \setminus \{0\}$.

Remark 4.6.2. If D and D' are two canonical divisors on a compact connected Riemann surface X, then D - D' is a principal divisor (by the same argument as in the proof of Definition 4.4.7). In other words, X has a unique canonical divisor up to addition of a principal divisor. In particular, all the canonical divisors on X have the same degree.

Notation 4.6.3. Let X be a compact connected Riemann surface. For $D \in Div(X)$, we define:

$$\ell(D) = \dim_{\mathbb{C}} \mathcal{L}(D) \in \mathbb{N}.$$

Remark 4.6.4. Let X be a compact connected Riemann surface. If $D, D' \in \text{Div}(X)$ with D - D' principal, then we have an isomorphism $\mathcal{L}(D') \to \mathcal{L}(D)$ (given by $g \mapsto fg$ if D' - D = div(f)). In particular, $\ell(D') = \ell(D)$.

Theorem 4.6.5 (Riemann-Roch). Let X be a compact connected Riemann surface of genus g, let K_X be a canonical divisor on X. Then, for every $D \in Div(X)$, we have:

 $\ell(D) - \ell(K_X - D) = \deg D + 1 - g.$

In particular, $\ell(D) \ge \deg D + 1 - g$.

Corollary 4.6.6. Let X be a compact connected Riemann surface of genus g. If $D \in Div(X)$ is s.t. deg $D \ge g + 1$, then $\mathcal{L}(D)$ contains a nonconstant function.

Lemma 4.6.7. Let X be a compact connected Riemann surface of genus g. Then for any canonical divisor K_X on X, we have deg $(K_X) = 2g - 2$.

Proof. Apply Theorem 4.6.5 to $D = K_X$. Thus $\ell(K_X) - \ell(0) = \deg(K_X) + 1 - g$. But $\mathcal{L}(0) = \mathcal{O}(X) = \mathbb{C}$, so $\ell(0) = 1$. Moreover, we have an isomorphism $\mathcal{L}(K_X) \to \Omega^1(X)$ given by $f \mapsto f\omega$ if $K_X = \operatorname{div}(\omega)$; thus $\ell(K_X) = \dim_{\mathbb{C}} \Omega^1(X) = g$. This yields $\operatorname{deg}(K_X) = 2g - 2$.

Corollary 4.6.8. Let X be a compact connected Riemann surface of genus g. If $D \in Div(X)$ is s.t. deg D > 2g - 2, then:

$$\ell(D) = \deg D + 1 - g.$$

Proof. If deg $D > 2g - 2 = \deg(K_X)$, then deg $(K_X - D) < 0$, so $\ell(K_X - D) = 0$.

-	-	-	-	
L				
-				

Corollary 4.6.9. Every compact connected Riemann surface of genus 0 is isomorphic to $\mathbb{P}^1(\mathbb{C})$.

Proof. Let X be a compact connected Riemann surface of genus 0 and let $p \in X$. Consider $D = [p] \in \text{Div}(X)$. Then deg D = 1 > 2g - 2, so $\ell(D) = 1 + 1 - g = 2$ by Corollary 4.6.8. Thus, there exists $f \in \mathcal{L}(D) \setminus \mathbb{C}$. Now, f has only a simple pole at p, so X is isomorphic to $\mathbb{P}^1(\mathbb{C})$ by Corollary 3.3.4.

Theorem 4.6.10. Every compact connected Rieman surface is algebraic, i.e. can be defined by some polynomial equations in a projective space.

Proof. Let $D \in \text{Div}(X)$ s.t. $\ell(D) \ge 2$. Let (f_1, \ldots, f_n) be a \mathbb{C} -basis of $\mathcal{L}(D)$. Consider the map:

$$\phi_D: p \in X \setminus S \longmapsto (f_1(p): \dots : f_n(p)) \in \mathbb{P}^{n-1}(\mathbb{C}),$$

where S is the (finite) set consisting in poles of some f_i and common zeros of f_1, \ldots, f_n . Then one can show that ϕ_D extends to a holomorphic map $\phi_D : X \to \mathbb{P}^{n-1}(\mathbb{C})$, and that, if deg $D \ge 2g + 1$, then ϕ_D is a holomorphic embedding. Now, one uses Chow's Theorem, which states that every closed complex analytic submanifold of $\mathbb{P}^N(\mathbb{C})$ is algebraic.

4.7 Hodge decomposition

Theorem 4.7.1. Let X be a compact connected Riemann surface. Then the canonical map:

$$\psi: \left| \begin{array}{c} \Omega^1(X) \oplus \overline{\Omega}^1(X) \longrightarrow H^1_{\mathrm{dR}}(X, \mathbb{C}) \\ (\omega, \omega') \longmapsto [\omega + \omega'] \end{array} \right|,$$

is an isomorphism of \mathbb{C} -vector spaces. In particular:

$$\dim_{\mathbb{C}} H^1_{\mathrm{dR}}\left(X,\mathbb{C}\right) = 2g.$$

Therefore, the genus is a topological invariant: two homeomorphic Riemann surfaces have the same genus.

Proof. ψ is well-defined because holomorphic and anti-holomorphic differential forms are closed. Injectivity. Let $(\omega, \omega') \in \Omega^1(X) \oplus \overline{\Omega}^1(X)$ s.t. $[\omega + \omega'] = 0$, i.e. there exists $f \in \mathcal{C}^{\infty}(X, \mathbb{C})$ s.t. $\omega + \omega' = \mathrm{d}f$. Then $\overline{\partial}f = \omega'$, so $\partial\overline{\partial}f = \mathrm{d}\omega' = 0$, so f is harmonic, and so f is constant because X is compact and connected (c.f. Proposition 4.3.12). Hence, $\omega = -\omega' = 0$. Surjectivity. Let $\alpha \in \mathcal{A}^1_{\mathbb{C}}(X)$ be a closed 1-form. Write $\alpha = \alpha^{1,0} + \alpha^{0,1}$. By Stokes' Theorem:

$$\int_X \mathrm{d}\alpha^{0,1} = \int_{\partial X} \alpha^{0,1} = 0.$$

By Theorem 4.3.13, there exists $f \in \mathcal{C}^{\infty}(X, \mathbb{C})$ s.t. $d\alpha^{0,1} = \partial \overline{\partial} f$. In other words, $d(\alpha^{0,1} - \overline{\partial} f) = 0$. Now, consider $\alpha' = \alpha - df$; α' is a closed form that is cohomologous to α . Thus, $(\alpha')^{0,1} = \alpha^{0,1} - \overline{\partial} f$ is closed and of type (0, 1), so it is anti-holomorphic (c.f. Lemma 4.3.8). Likewise, $(\alpha')^{1,0}$ is holomorphic, so $\alpha' = (\alpha')^{1,0} + (\alpha')^{0,1} \in \Omega^1(X) \oplus \overline{\Omega}^1(X)$.

Theorem 4.7.2 (Hodge Theorem). Let $X \subseteq \mathbb{P}^N(\mathbb{C})$ be a compact complex analytic submanifold of any dimension. Then, for any $k \in \mathbb{N}$, there is a decomposition:

$$H^{k}_{\mathrm{dR}}(X,\mathbb{C}) = \bigoplus_{\substack{p,q \in \mathbb{N} \\ p+q=k}} H^{p,q}(X),$$

where $H^{p,q}(X)$ is defined by the closed forms of type (p,q).

Conjecture 4.7.3 (Hodge Conjecture). $H^{k,k}(X) \cap H^{2k}(X, \mathbb{Q})$ is spanned by algebraic classes, i.e. classes associated to algebraic subvarieties of X of codimension k.

5 Quotients of Riemann surfaces

5.1 Groups acting on topological spaces

Definition 5.1.1 (Faithful or free group action). Let G be a group acting on a set X.

- (i) We say that the action $G \curvearrowright X$ is faithful if $\forall g \in G \setminus \{1\}, \exists x \in X, gx \neq x$.
- (ii) We say that the action $G \curvearrowright X$ is free if $\forall g \in G \setminus \{1\}, \forall x \in X, gx \neq x$.

A free group action is faithful.

Proposition 5.1.2 (Universal property of the quotient). Let G be a group acting on a topological space X. Then, for every continuous map $f : X \to Y$ s.t. $\forall g \in G, \forall x \in X, f(gx) = f(x)$, there exists a unique continuous map $\overline{f} : X/G \to Y$ s.t. the following diagram commutes:

Definition 5.1.3 (Continuous group action). Let G be a topological group acting on a topological space X. The group action $G \curvearrowright X$ is said to be continuous if the map $\begin{vmatrix} G \times X \longrightarrow X \\ (g, x) \longmapsto gx \end{vmatrix}$ is continuous.

Remark 5.1.4. Let G be a topological group acting on a topological space X.

- (i) If the action $G \curvearrowright X$ is continuous, then it is by homeomorphisms.
- (ii) If G is discrete, then the action $G \curvearrowright X$ is continuous iff it is by homeomorphisms.

Proposition 5.1.5. Let G be a topological group acting by homeomorphisms on a topological space X. Then the projection map $\pi: X \to X/G$ is continuous and open.

Definition 5.1.6 (Proper group action). Let G be a topological group acting continuously on a topological space X. The group action $G \curvearrowright X$ is said to be proper if one of the following two equivalent conditions is satisfied:

- (i) The map $\begin{vmatrix} G \times X \longrightarrow X \\ (g, x) \longmapsto gx \end{vmatrix}$ is proper (i.e. the preimage of every compact subset is a compact subset).
- (ii) For every compact subset $K \subseteq X$, the set $\{g \in G, gK \cap K \neq \emptyset\}$ is compact.

If G is discrete, then the action $G \curvearrowright X$ is proper iff for every compact subset $K \subseteq X$, the set $\{g \in G, gK \cap K \neq \emptyset\}$ is finite.

Proposition 5.1.7. Let G be a discrete group acting properly and continuously on a Hausdorff and locally compact space X. Then X/G is Hausdorff and for all $x \in X$, the stabiliser $Stab(x) = \{g \in G, gx = x\}$ is finite.

5.2 Examples of quotients of Riemann surfaces

Remark 5.2.1. Given an action of a discrete group on a Riemann surface which is proper and holomorphic (i.e. by biholomorphisms), we will show (in Theorem 5.3.8) that the quotient can be endowed with a unique structure of Riemann surface s.t. it satisfies the universal property of quotients (Proposition 5.1.2), where continuous maps are replaced by holomorphic maps.

Example 5.2.2.

- (i) If Λ is a lattice in \mathbb{C} , then we have an action $\Lambda \curvearrowright \mathbb{C}$ by translation, which is proper and holomorphic. The quotient \mathbb{C}/Λ is the complex torus that we already know.
- (ii) We have an action $\mathbb{Z} \curvearrowright \mathbb{C}$ by translation, which is proper and holomorphic. The quotient \mathbb{C}/\mathbb{Z} is isomorphic to \mathbb{C}^{\times} via the map $e : z \in \mathbb{C} \mapsto \exp(2i\pi z) \in \mathbb{C}^{\times}$.
- (iii) If Λ is a lattice in \mathbb{C} and $\sigma : z \in \mathbb{C}/\Lambda \longrightarrow -z \in \mathbb{C}/\Lambda$, then σ is an involution so it induces an action of $\mathbb{Z}/2\mathbb{Z}$ on \mathbb{C}/Λ , which is proper and holomorphic. The quotient $\frac{\mathbb{C}/\Lambda}{\mathbb{Z}/2\mathbb{Z}}$ is isomorphic to $\mathbb{P}^1(\mathbb{C})$ via the Weierstraß function $\wp : \mathbb{C}/\Lambda \to \mathbb{P}^1(\mathbb{C})$.

5.3 Structure of Riemann surface on a quotient

Proposition 5.3.1. Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is faithful, proper and holomorphic.

- (i) For every $p \in X$, the stabiliser $G_p = \operatorname{Stab}(p)$ is a finite cyclic group.
- (ii) The set $\{p \in X, G_p \neq 1\}$ is closed and discrete in X.

Proof. (i) By properness, G_p must be finite. Now, choose a local coordinate z at p. For $g \in G_p$, we can write locally at p:

$$g(z) = \sum_{n \in \mathbb{N}} a_n(g) z^n.$$

Since gp = p, we have $a_0 = 0$. Moreover, g is biholomorphic so it is unramified at p, and therefore $a_1(g) \in \mathbb{C}^{\times}$. This defines a map $a_1 : G_p \to \mathbb{C}^{\times}$, which is a group homomorphism. Let us show that a_1 is injective. Let $g \in \text{Ker } a_1$. If $g \neq 1$, then g does not act as the identity (because the action is faithful), so the Taylor expansion at p of g(z) - z is nonzero (by connectedness). Thus, we can write:

$$g(z) = z + \alpha z^{n} + \mathcal{O}_{0}\left(z^{n+1}\right),$$

with $\alpha \in \mathbb{C}^{\times}$ and $n \geq 2$. Therefore, for $k \in \mathbb{N}$, we have $g^{k}(z) = z + k\alpha z^{n} + \mathcal{O}_{0}(z^{n+1})$. Taking $k = |G_{p}|$, we get a contradiction. Therefore, $a_{1}: G_{p} \to \mathbb{C}^{\times}$ is an injective group homomorphism, so G_{p} is isomorphic to a finite subgroup of \mathbb{C}^{\times} , so it is cyclic. (ii) Let $S = \{p \in X, G_{p} \neq 1\}$. Let $p \in S$ and let K be a compact neighbourhood of p in X. Then the set $E = \{g \in G, gK \cap K \neq \emptyset\}$ is finite by properness, and it contains G_{p} . Moreover, for $g \in E \setminus \{1\}$, the set $\operatorname{Fix}(g) = \{q \in X, gq = q\}$ is closed and discrete in X by the Identity Theorem (Theorem 2.4.1), so $\operatorname{Fix}(g) \cap K$ is finite. Now:

$$S \cap K \subseteq \bigcup_{g \in E \setminus \{1\}} \operatorname{Fix}(g) \cap K,$$

so $S \cap K$ is finite, and S is closed and discrete.

Remark 5.3.2. The map $a_1 : G_p \to \mathbb{C}^{\times}$ defined in the proof of Proposition 5.3.1 does not depend on the choice of the local coordinate around p. Indeed, it can be defined intrinsically by noting that, for $g \in G_p$, the linear map $dg : T_pX \to T_pX$ is the multiplication by $a_1(g)$. Therefore, locally around p, elements of G_p act as rotations.

Proposition 5.3.3. Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is faithful, proper and holomorphic. If $p \in X$ and $G_p = \text{Stab}(p)$, then there exists an open neighbourhood \mathcal{U} of p in X such that:

- (i) \mathcal{U} is stable by G_p .
- (ii) $\forall g \in G \setminus G_p, \ g\mathcal{U} \cap \mathcal{U} = \emptyset.$
- (iii) The natural map $\alpha : \mathcal{U}/G_p \to X/G$ is a homeomorphism onto an open subset of X/G.
- (iv) $\forall p' \in \mathcal{U} \setminus \{p\}, \ G_{p'} = 1.$

Moreover, we may assume that \mathcal{U} is contained in some fixed neighbourhood of p.

Proof. Let K be a compact neighbourhood of p in X. The set $E = \{g \in G, gK \cap K \neq \emptyset\}$ is finite and contains G_p . Write $E \setminus G_p = \{g_1, \ldots, g_n\}$. Since X is Hausdorff and $g_i p \neq p$, there exist open neighbourhoods V_i of p and V'_i of $g_i p$ s.t. $V_i \cap V'_i = \emptyset$. Now, define:

$$V = \mathring{K} \cap \bigcap_{i=1}^{n} \left(V_i \cap g_i^{-1} V_i' \right).$$

V is an open neighbourhood of p that is contained in K. Now, set $\mathcal{U} = \bigcap_{g \in G_p} gV$; this is an open neighbourhood of p that is stable by G_p . If $g \in G \setminus G_p$, then either $g \notin E$ and $g\mathcal{U} \cap \mathcal{U} \subseteq gK \cap K = \emptyset$, or $g = g_i$ for some i, and so $g\mathcal{U} \cap \mathcal{U} \subseteq g_i V \cap V \subseteq V'_i \cap V_i = \emptyset$. Furthermore, the natural map α : $\mathcal{U}/G_p \to X/G$ is injective by (ii), and we show that it is open by using the openness of $\pi : X \to X/G$ (c.f. Proposition 5.1.5). Finally, if $p' \in \mathcal{U} \setminus \{p\}$, then $G_{p'} = 1$ because $S = \{p' \in X, G_{p'} \neq 1\}$ is closed and discrete so we may assume that $S \cap K = \{p\}$.

Example 5.3.4. Consider the action of $\mu_n = \{z \in \mathbb{C}, z^n = 1\}$ on \mathbb{C} by multiplication. This action is faithful, proper and holomorphic. We have a holomorphic map $h : z \in \mathbb{C} \mapsto z^n \in \mathbb{C}$, which is μ_n -invariant and therefore induces a bijection $\overline{h} : \mathbb{C}/\mu_n \to \mathbb{C}$. This map \overline{h} can be taken as a chart on \mathbb{C}/μ_n .

Proposition 5.3.5. Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is faithful, proper and holomorphic. Then there exists a structure of Riemann surface on X/G. This structure satisfies the following properties:

- (i) The quotient map $\pi: X \to X/G$ is holomorphic.
- (ii) For every $p \in X$, $e_{\pi}(p) = |G_p|$, with $G_p = \text{Stab}(p)$.
- (iii) The map π has degree |G| (possibly ∞).

Proof. Definition of the charts. Let $p \in X$. Let \mathcal{U} be a neighbourhood of p as in Proposition 5.3.3, let $m = |G_p|$. We may assume that \mathcal{U} is contained in some chart of X, so that we have a chart $\varphi : \mathcal{U} \to V \subseteq \mathbb{C}$ with $\varphi(p) = 0$. First case: m = 1. Then we have a map $\alpha : \mathcal{U} \to X/G$ which is a homeomorphism onto its image \mathcal{W} ; this gives a chart $\varphi \circ \alpha^{-1} : \mathcal{W} \to V$ of X/G. Second case: $m \ge 2$. Now, consider:

$$h: q \in \mathcal{U} \longmapsto \prod_{g \in G_p} \varphi\left(gq\right) \in \mathbb{C}$$

Then $h \in \mathcal{O}_X(\mathcal{U})$, and h is G_p -invariant, so h induces a map $\overline{h} : \mathcal{U}/G_p \to \mathbb{C}$. Since h is open (as a nonconstant holomorphic function) and $\pi_p : \mathcal{U} \to \mathcal{U}/G_p$ is surjective, we see that \overline{h} is open. Moreover, we have:

$$\operatorname{ord}_p(h) = \sum_{g \in G_p} \operatorname{ord}_{gp}(\varphi) \cdot e_g(p) = |G_p| = m$$

Therefore, h is m-to-1 in a punctured neighbourhood of p, and so is π_p , so \overline{h} is injective near p. Hence, after possibly shrinking $\mathcal{U}, \overline{h} : \mathcal{U}/G_p \to \mathbb{C}$ is a homeomorphism onto its image W; so we take $\overline{h} \circ \alpha^{-1}$

as a chart on X/G. Compatibility of the charts. The charts thus defined cover X/G; let us prove that they are pairwise compatible. Note that the set $\{p \in X, G_p \neq 1\}$ is closed and discrete in X, so we may assume that no two charts of type $m \geq 2$ overlap in X/G. Let $p, p' \in X$, with respective charts $\varphi : \mathcal{W} \to V \subseteq \mathbb{C}$ and $\varphi' : \mathcal{W}' \to V' \subseteq \mathbb{C}$ of types m, m' in X/G. We assume that m = 1. Let \mathcal{U} and \mathcal{U}' be respective neighbourhoods of p and p' as in Proposition 5.3.3, so that $\mathcal{W} = \pi(\mathcal{U})$ and $\mathcal{W}' = \pi(\mathcal{U}')$. Let $q \in \mathcal{W} \cap \mathcal{W}'$ and let $\tilde{q} \in \pi^{-1}(\{q\})$. By replacing \mathcal{U} or \mathcal{U}' by some G-translate, we may assume that $\tilde{q} \in \mathcal{U} \cap \mathcal{U}'$. Now, we have to prove that $\varphi' \circ \varphi^{-1}$ is holomorphic near $\varphi(q)$, which amounts to prove that $\varphi' \circ \pi$ is holomorphic near \tilde{q} . But this map is indeed holomorphic because it is equal to the map h defined above. Therefore, the charts are compatible and they endow X/Gwith a structure of Riemann surface. And we easily check the three given properties.

Remark 5.3.6. Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is faithful, proper and holomorphic. Endow X/G with the structure of Riemann surface constructed in Proposition 5.3.5.

- The ramification points of the holomorphic map $\pi: X \to X/G$ are those $p \in X$ s.t. $G_p \neq 1$.
- If $p, p' \in X$ are in the same G-orbit, then G_p and $G_{p'}$ are conjugate in G, so $e_{\pi}(p) = e_{\pi}(p')$.
- We say that π is a ramified Galois covering with Galois group G. This property has an algebraic counterpart: if G is finite, then the field extension $\pi^* : \mathcal{M}(X/G) \to \mathcal{M}(X)$ is Galois with Galois group G. In particular, $\mathcal{M}(X/G)$ can be identified with $\mathcal{M}(X)^G$.

Theorem 5.3.7 (Linearisation of the action). Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is faithful, proper and holomorphic. Endow X/G with the structure of Riemann surface constructed in Proposition 5.3.5. Let $p \in X$ and write $m = |G_p|$. If w is a local coordinate around $\pi(p)$ on X/G, then there exists a local coordinate z around p on X such that:

- (i) Near $p, \pi: X \to X/G$ is given by $w = z^m$.
- (ii) There exists a group isomorphism $\lambda : G_p \to \mu_m = \{z \in \mathbb{C}, z^m = 1\}$ with $g(z) = \lambda(g) \cdot z$ near p for every $g \in G_p$.

Proof. We know that $e_{\pi}(p) = m$. The local normal form of a holomorphic function provides a holomorphic coordinate z on X satisfying (i). To construct an isomorphism $\lambda : G_p \to \mu_m$ as in (ii), note that for $g \in G_p$, we have $g(z)^m = z^m$, so we can define $\lambda(g) = \frac{g(z)}{z} \in \mu_m$.

Theorem 5.3.8. Let G be a discrete group acting on a connected Riemann surface X. We assume that the action is proper and holomorphic. Then there exists a unique structure of Riemann surface on X/G such that:

- (i) The quotient map $\pi: X \to X/G$ is holomorphic.
- (ii) For every open subset $V \subseteq X/G$ and for every function $f: V \to \mathbb{C}$, we have $f \in \mathcal{O}_{X/G}(V) \iff (f \circ \pi) \in \mathcal{O}_X(\pi^{-1}(V))$.
- (iii) Universal property of the quotient. Let $\varphi : X \to Y$ be a holomorphic map to a Riemann surface s.t. $\forall g \in G, \forall p \in X, \varphi(gp) = \varphi(p)$. Then there exists a unique holomorphic map $\overline{\varphi} : X/G \to Y$ s.t. $\varphi = \overline{\varphi} \circ \pi$.

Proof. We may assume that the action is faithful. Indeed, if $G_0 = \text{Ker}(G \to \text{Aut}(X))$, then G/G_0 acts on X properly, holomorphically and faithfully. Moreover, the uniqueness is a consequence of the universal property. Now, endow X/G with the structure of Riemann surface constructed in Proposition 5.3.5. Using Remark 5.3.9, it suffices to prove that (ii) is satisfied. Therefore, let $V \subseteq X/G$ be an open subset and let $f: V \to \mathbb{C}$ be a function. Since π is holomorphic, it is clear that $f \in \mathcal{O}_{X/G}(V) \Longrightarrow (f \circ \pi) \in \mathcal{O}_X(\pi^{-1}(V))$. Conversely, assume that $(f \circ \pi) \in \mathcal{O}_X(\pi^{-1}(V))$. Let $q \in V$ and let $p \in \pi^{-1}(\{q\})$. Choose a local coordinate w on X/G around q and let z be the local coordinate on X around p given by Theorem 5.3.7. We can write $f \circ \pi(z) = \sum_{n \in \mathbb{N}} a_n z^n$ near p. Since $f \circ \pi$ is G_p -invariant, we have $\forall \zeta \in \mu_m$, $\sum_{n \in \mathbb{N}} a_n (\zeta z)^n = \sum_{n \in \mathbb{N}} a_n z^n$, from which we deduce that $a_n = 0$ if $m \nmid n$. Therefore:

$$f \circ \pi(z) = \sum_{k \in \mathbb{N}} a_{km} z^{km} = \sum_{k \in \mathbb{N}} a_{km} \left(\pi(z) \right)^k$$

By openness of π , $f(w) = \sum_{k \in \mathbb{N}} a_{km} w^k$ near q, so f is holomorphic near q. Hence, $f \in \mathcal{O}_{X/G}(V)$. \Box

Remark 5.3.9. In Theorem 5.3.8, (ii) actually implies (iii).

Proof. Let $\varphi : X \to Y$ be a holomorphic map as in (iii). By Proposition 5.1.2, there exists a continuous map $\overline{\varphi} : X/G \to Y$ s.t. $\varphi = \overline{\varphi} \circ \pi$. To prove that $\overline{\varphi}$ is holomorphic, let $V \subseteq Y$ be an open subset and let $h \in \mathcal{O}_Y(V)$ be a holomorphic test function. Then $h \circ \overline{\varphi} \circ \pi = h \circ \varphi \in \mathcal{O}_X(\pi^{-1}(\overline{\varphi}^{-1}(V)))$, because φ is holomorphic, so $h \circ \overline{\varphi} \in \mathcal{O}_{X/G}(\overline{\varphi}^{-1}(V))$ by (ii). Hence, $\overline{\varphi}$ is holomorphic. \Box

5.4 Riemann-Hurwitz Formula

Theorem 5.4.1 (Riemann-Hurwitz). Let $\varphi : X \to Y$ be a nonconstant holomorphic map between two compact connected Riemann surfaces. Then:

$$2g(X) - 2 = (\deg \varphi) (2g(Y) - 2) + \sum_{p \in X} (e_{\varphi}(p) - 1).$$

Proof. Let $\omega \in \Omega^1(\mathcal{M}(Y)) \setminus \{0\}$. By Lemma 4.6.7, we have deg $(\operatorname{div}(\omega)) = 2g(Y) - 2$. Moreover, $\varphi^* \omega \in \Omega^1(\mathcal{M}(X)) \setminus \{0\}$, so deg $(\operatorname{div}(\varphi^* \omega)) = 2g(X) - 2$. Now, let $p \in X$, let $q = \varphi(p) \in Y$. Let u, v be local coordinates at p and q respectively. We can write $\omega = f(v) \, dv$ with f meromorphic near 0. Thus $\varphi^* v = h(u)u^e$ with h holomorphic near 0, $h(0) \neq 0$ and $e = e_{\varphi}(p)$. Hence:

$$\varphi^*\omega = f(h(u)u^e) \operatorname{d}(h(u)u^e) = \varphi^* f\left(\underbrace{h'(u)u^e}_{\operatorname{ord}_0 \ge e} + \underbrace{eh(u)u^{e-1}}_{\operatorname{ord}_0 = e-1}\right) \operatorname{d}u.$$

Therefore:

$$\operatorname{ord}_p(\varphi^*\omega) = \operatorname{ord}_p(\varphi^*f) + e_{\varphi}(p) - 1 = e_{\varphi}(p) \cdot \operatorname{ord}_q(f) + e_{\varphi}(p) - 1.$$

Hence, we obtain deg $(\operatorname{div}(\varphi^*\omega)) = \sum_{p \in X} (e_{\varphi}(p) \cdot \operatorname{ord}_{\varphi(p)}(f) + e_{\varphi}(p) - 1)$. The equality follows. \Box

Remark 5.4.2. We can give a topological proof of the Riemann-Hurwitz Formula by considering a triangulation T of Y s.t. the vertices of T contain the branch points of Y, and by considering φ^*T (c.f. Remark 3.5.7).

Corollary 5.4.3. Let $\varphi : X \to Y$ be a nonconstant holomorphic map between two compact connected Riemann surfaces.

- (i) $g(X) \ge g(Y)$ (this can also be proved using the injectivity of $\varphi^* : \Omega^1(Y) \to \Omega^1(X)$, which is a consequence of the surjectivity of φ).
- (ii) If g(X) = g(Y), then one of the following is true:
 - g(X) = g(Y) = 0,
 - g(X) = g(Y) = 1 and φ is unramified,
 - $g(X) = g(Y) \ge 2$ and φ is an isomorphism.

Example 5.4.4. Let $F_N = \{(X : Y : Z) \in \mathbb{P}^2(\mathbb{C}), X^N + Y^N = Z^N\}$. By applying the Riemann-Hurwitz Formula to the holomorphic map $\varphi : (X : Y : Z) \in F_N \longmapsto (X : Z) \in \mathbb{P}^1(\mathbb{C}), we show that <math>g(F_N) = \frac{(N-1)(N-2)}{2}$.

5.5 Uniformisation Theorem

Remark 5.5.1. Let X be a connected Riemann surface and $p \in X$. Consider the universal covering $\pi : \widetilde{X} \to X$ of (X, p). Since π is a local homeomorphism, we can equip \widetilde{X} with a structure of Riemann surface s.t. π is holomorphic and unramified. Hence, the action of $\Pi_1(X)$ on \widetilde{X} is free, holomorphic and proper, and we have:

$$X \simeq \widetilde{X} / \Pi_1(X).$$

Thus, every Riemann surface is a quotient of its universal covering.

Notation 5.5.2. We shall write $\mathbb{H} = \{z \in \mathbb{C}, \Im(z) > 0\}.$

Theorem 5.5.3 (Uniformisation Theorem).

- (i) Every simply connected Riemann surface is isomorphic to either $\mathbb{P}^1(\mathbb{C})$, \mathbb{C} or \mathbb{H} .
- (ii) Let X be a connected Riemann surface and let \widetilde{X} be the universal covering of X.
 - (a) If $\widetilde{X} \simeq \mathbb{P}^1(\mathbb{C})$, then $X \simeq \mathbb{P}^1(\mathbb{C})$ and $\Pi_1(X) = 1$.
 - (b) If $\widetilde{X} \simeq \mathbb{C}$, then $X \simeq \mathbb{C}/G$, where G is a discrete subgroup of \mathbb{C} acting by translations. Thus, if G = 0, $X \simeq \mathbb{C}$; if G has rank 1, then $X \simeq \mathbb{C}^{\times}$; if G has rank 2, then X is isomorphic to a complex torus.
 - (c) If $\widetilde{X} \simeq \mathbb{H}$, then $X \simeq \mathbb{H}/G$, where G is a discrete subgroup of $PSL_2(\mathbb{R})$ acting by Möbius transformations.

Remark 5.5.4. The Uniformisation Theorem leads one to study the quotients of \mathbb{H} .

5.6 Modular curves

Remark 5.6.1. We have a holomorphic action of $SL_2(\mathbb{R})$ on \mathbb{H} given by:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d}$$

Since -I acts trivially, this action induces an action of $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\{\pm I\}$ on \mathbb{H} which is faithful and transitive.

Lemma 5.6.2. If H is a discrete subgroup in a Hausdorff topological group G, then H is closed in G.

Proposition 5.6.3. Let Γ be a discrete subgroup of $SL_2(\mathbb{R})$. Then Γ acts holomorphically and properly on \mathbb{H} . The quotient \mathbb{H}/Γ will be denoted by $Y(\Gamma)$; if Γ is a finite index subgroup of $SL_2(\mathbb{Z})$, $Y(\Gamma)$ will be called a modular curve.

Proof. We first show that the map $\psi : g \in SL_2(\mathbb{R}) \longrightarrow gi \in \mathbb{H}$ is proper. Note that ψ is surjective and $\operatorname{Stab}(i) = SO_2(\mathbb{R})$. Therefore, we have a homeomorphism $SL_2(\mathbb{R})/SO_2(\mathbb{R}) \simeq \mathbb{H}$. Using the fact that $SO_2(\mathbb{R})$ is compact, we see that the projection map $SL_2(\mathbb{R}) \to SL_2(\mathbb{R})/SO_2(\mathbb{R})$ is proper, and therefore ψ is proper. Now, let $K \subseteq \mathbb{H}$ be a compact subset. Consider the compact subset $\widetilde{K} = \psi^{-1}(K) \subseteq SL_2(\mathbb{R})$. Then:

$$E = \{g \in \Gamma, \ gK \cap K \neq \emptyset\} \subseteq \left\{g \in \Gamma, \ g\widetilde{K} \cap \widetilde{K} \neq \emptyset\right\} \subseteq \left\{k_1 k_2^{-1}, \ k_1, k_2 \in \widetilde{K}\right\}.$$

Hence, E is closed and discrete in a compact space, so E is finite.

Example 5.6.4.

(i) Consider $Y(1) = \mathbb{H}/SL_2(\mathbb{Z})$. Then the map $\alpha : \tau \mapsto \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ induces a bijection between Y(1) and the set of isomorphism classes of complex tori.

(ii) If $N \ge 2$, we consider $\Gamma(N) = \text{Ker}\left(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/N\mathbb{Z})\right)$ and we define $Y(N) = \mathbb{H}/\Gamma(N)$. Lemma 5.6.5. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and $\tau \in \mathbb{H}$. Then:

$$\Im\left(g\tau\right) = \frac{\Im(\tau)}{\left|c\tau + d\right|^2}.$$

Theorem 5.6.6. Let $D = \{\tau \in \mathbb{H}, |\Re(\tau)| \leq \frac{1}{2} \text{ and } |\tau| \geq 1\}$. Then D is a fundamental domain for the action $SL_2(\mathbb{Z}) \curvearrowright \mathbb{H}$. More precisely:

- (i) For all $\tau \in \mathbb{H}$, there exists $g \in SL_2(\mathbb{Z})$ s.t. $g\tau \in D$.
- (ii) Let $\tau, \tau' \in D$ with $\tau \neq \tau'$ and $\tau' \in SL_2(\mathbb{Z}) \cdot \tau$. Then we are in one of the following two cases:
 - ℜ(τ) = ±¹/₂ and τ = τ' ± 1.
 |τ| = 1 and τ = -¹/_{τ'}.

Proof. (i) Let $\tau \in \mathbb{H}$. By Lemma 5.6.5, it is possible to choose $g \in SL_2(\mathbb{Z})$ s.t. $\mathfrak{S}(g\tau)$ is maximal. Replacing g by $T^n g$, with $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we may assume that $|\mathfrak{R}(g\tau)| \leq \frac{1}{2}$. Now, assume for contradiction that $|g\tau| < 1$. Then $Sg\tau = -\frac{1}{g\tau}$ with $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, so $\mathfrak{S}(Sg\tau) > \mathfrak{S}(g\tau)$, which contradicts the choice of g. Therefore, $g\tau \in D$. (ii) Write $\tau' = g\tau$, with $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. We may assume that $\mathfrak{S}(\tau') \geq \mathfrak{S}(\tau)$, i.e. $|c\tau + d| \leq 1$. But as $\tau \in D$, we deduce that $c \in \{0, -1, +1\}$, from which the result follows.

Definition 5.6.7 (Compactified modular curve). The modular curve Y(1) is not compact; we shall compactify it. If $\mathcal{U}_0 = \{\tau \in \mathbb{H}, \Im(\tau) > y_0\}$ for some $y_0 \in \mathbb{R}^*_+$ large enough, we have an isomorphism $\mathcal{U}_0/\mathbb{Z} \simeq B^*$ induced by $\tau \mapsto e^{2i\pi\tau}$, where B is the (open) unit disk and $B^* = B \setminus \{0\}$. By Theorem 5.6.6, \mathcal{U}_0/\mathbb{Z} is homeomorphic to an open subset of Y(1); therefore we can glue Y(1) and B along $\mathcal{U}_0/\mathbb{Z} \simeq B^*$: the resulting Riemann surface is denoted by X(1) and called the compactified modular curve. It can be written as $X(1) = Y(1) \cup \{\infty\}$; the point ∞ is called the cusp of X(1).

Notation 5.6.8. For $k \ge 3$, we define:

$$G_k:\tau\in\mathbb{H}\longmapsto\sum_{\substack{\lambda\in\mathbb{Z}+\tau\mathbb{Z}\\\lambda\neq 0}}\frac{1}{\lambda^k}\in\mathbb{C}$$

 $G_k : \mathbb{H} \to \mathbb{C}$ is a holomorphic map and $G_k(g\tau) = (c\tau + d)^k G_k(\tau)$ for every $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R});$ we say that G_k is a modular form of weight k.

Lemma 5.6.9. If $\tau \in \mathbb{H}$ and \wp is the Weierstraß function associated to $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$, then:

$$\wp'(z)^2 = 4\wp(z)^3 - 60G_4(\tau)\wp(z) - 140G_6(\tau).$$

Lemma 5.6.10. Let $\tau \in \mathbb{H}$. Then the polynomial $P(X) = 4X^3 - 60G_4(\tau)X - 140G_6(\tau)$ has simple roots.

Proof. Use Lemma 5.6.9.

Notation 5.6.11. We define:

$$\Delta: \tau \in \mathbb{H} \longmapsto \left(60G_4(\tau)\right)^3 - 27 \left(140G_6(\tau)\right)^2 \in \mathbb{C}.$$

Note that, up to a factor, $\Delta(\tau)$ is the discriminant of the polynomial P of Lemma 5.6.10.

Proposition 5.6.12. The map $\Delta : \mathbb{H} \to \mathbb{C}$ is holomorphic, nonvanishing, and modular of weight 12. Moreover, $\Delta(\tau)$ converges as $\Im(\tau) \to \infty$. Writing the Fourier expansion of Δ (which is 1-periodic), we obtain:

$$\Delta(\tau) = \sum_{n \in \mathbb{N}} a_n e^{2i\pi n\tau}.$$

Theorem 5.6.13. Define the *j*-invariant by:

$$j: \tau \in \mathbb{H} \longmapsto \frac{(720G_3(\tau))^3}{\Delta(\tau)} \in \mathbb{C}.$$

Then the map $j : \mathbb{H} \to \mathbb{C}$ is holomorphic, modular of weight 0, and induces an isomorphism $j : Y(1) \to \mathbb{C}$. In particular:

 $Y(1) \simeq \mathbb{C}$ and $X(1) \simeq \mathbb{P}^1(\mathbb{C}).$

Proof. We have $\Delta(\tau) = \sum_{n \in \mathbb{N}} a_n e^{2i\pi n\tau}$. Define $m = \operatorname{ord}_{\infty}(\Delta) = \min\{n \in \mathbb{N}, a_n \neq 0\}$. By construction, $\operatorname{ord}_{\infty}(j) = -m$. Now, consider the holomorphic form $\omega = \frac{d\Delta}{\Delta}$ on \mathbb{H} . With $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z})$, we have $S^*\omega = \omega - 12\frac{d\tau}{\tau}$. Consider the closed path γ which follows the arc $\{|\tau| = 1 \text{ and } \Re(\tau) \leq \frac{1}{2}\}$, then the lines $\{\Re(z) = \frac{1}{2}\}$ and $\{\Im(z) = y_0\}$ and finally $\{\Re(z) = -\frac{1}{2}\}$, and denote by K the compact subset of \mathbb{H} delimited by γ (thus $K \subseteq D$). As ω is holomorphic in a neighbourhood of K, we have $\int_{\gamma} \omega = 0$, which gives m = 1. This shows that j is meromorphic at $\infty \in X(1)$ with a simple pole, and j is holomorphic on Y(1). Therefore, $\hat{j} : X(1) \to \mathbb{P}^1(\mathbb{C})$ has degree 1 so it must be an isomorphism.

6 Monodromy representations

6.1 Monodromy representation associated to a holomorphic map

Example 6.1.1. Consider the punctured disk $\Delta^* = \{z \in \mathbb{C}, 0 < |z| < 1\}$. The universal covering of Δ^* is the map:

 $f_0: x \in \mathbb{H} \longmapsto \exp\left(2i\pi x\right) \in \Delta^*.$

The fundamental group is $\Pi_1(\Delta^*) = \mathbb{Z}$, which acts on \mathbb{H} by translations. The subgroups of $\Pi_1(\Delta^*)$ are the $n\mathbb{Z}$ for $n \in \mathbb{N}$, so by the Galois Correspondence, the connected coverings of Δ^* are the maps $f_n : z \in \Delta^* \longmapsto z^n \in \Delta^*$.

Definition 6.1.2 (Monodromy representation associated to an unramified holomorphic map). Let $f: X \to Y$ be an unramified holomorphic map between two connected Riemann surfaces. Then f is a topological covering of finite degree $d = \deg f$. Choose a basepoint $y \in Y$ and write $f^{-1}(\{y\}) = \{x_1, \ldots, x_d\}$. Since we have an action $\Pi_1(Y, y) \curvearrowright f^{-1}(\{y\})$, we obtain a group homomorphism:

$$\rho_f: \Pi_1(Y, y) \to \mathfrak{S}_d.$$

This homomorphism is called the monodromy representation associated to f. It can be characterised as follows: if γ is a loop based at y, then:

$$\rho_f(\gamma)(i) = j \iff \gamma x_i = x_j.$$

Lemma 6.1.3. Let $f : X \to Y$ be an unramified holomorphic map of degree d between two connected Riemann surfaces. Then for any $y \in Y$, Im ρ_f is a transitive subgroup of \mathfrak{S}_d .

Remark 6.1.4. Usually, holomorphic maps have ramification and the above discussion does not apply.

Definition 6.1.5 (Monodromy representation associated to a holomorphic map). Let $f: X \to Y$ be a holomorphic map between two connected Riemann surfaces. Let B = B(f) be the set of branch points of f, let $Y' = Y \setminus B$ and $X' = X \setminus f^{-1}(B)$. Then f induces a topological covering $X' \to Y'$ of finite degree $d = \deg f$. Thus, after choosing $y \in Y'$, we obtain a group homomorphism $\rho_f : \Pi_1(Y', y) \to \mathfrak{S}_d$ called the monodromy representation associated to f.

Remark 6.1.6. Let $f : X \to Y$ be a holomorphic map of degree d between two connected Riemann surfaces. Since $X' = X \setminus f^{-1}(B(f))$ is connected, the image of ρ_f is a transitive subgroup of \mathfrak{S}_d for any choice of $y \in Y' = Y \setminus B(f)$.

6.2 Correspondence between holomorphic maps and representations of the fundamental group

Lemma 6.2.1. Let $f : X \to Y$ be a holomorphic map of degree d between two connected Riemann surfaces. We write B = B(f), $Y' = Y \setminus B$ and $X' = X \setminus f^{-1}(B)$. Fix $y \in Y'$. For $b \in B$, consider a small loop γ_b going counter-clockwise around b, with endpoint $b' \in Y'$. More precisely, we assume that γ_b is contained in an open neighbourhood D_b of b in Y satisfying the following conditions:

- (i) D_b is isomorphic to $\Delta = \{z \in \mathbb{C}, |z| < 1\}$, with $b \in D_b$ corresponding to $0 \in \Delta$.
- (ii) $D_b \cap B = \{b\}.$
- (iii) $f^{-1}(D_b)$ is the disjoint union of open neighbourhoods U_1, \ldots, U_r of x_1, \ldots, x_r , where $f^{-1}(\{b\}) = \{x_1, \ldots, x_r\}$.

We also assume that γ_b is the pullback of a loop of index 1 around 0 in Δ . Now, we choose a path α on Y' from y to b'. This defines an element $\gamma = \alpha^{-1}\gamma_b\alpha \in \Pi_1(Y, y)$. Then $\rho_f(\gamma)$ is the product of r disjoint cycles in \mathfrak{S}_d of respective lengths $e_f(x_1), \ldots, e_f(x_r)$.

Example 6.2.2. Consider $f : z \in \mathbb{P}^1(\mathbb{C}) \mapsto z + \frac{1}{z} \in \mathbb{P}^1(\mathbb{C})$. Then $B = B(f) = \{\pm 2\}$ and $f^{-1}(B) = \{\pm 1\}$. We have a map $\Pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{\pm 2\}) \to \mathfrak{S}_2$, and this map sends γ_2 and γ_{-2} to (12). In fact, $\mathbb{P}^1(\mathbb{C}) \setminus \{\pm 2\} \simeq \mathbb{C}^{\times}$, so $\Pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{\pm 2\}) \simeq \mathbb{Z}$. Hence, γ_2 and γ_{-2} generate $\Pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{\pm 2\})$, and we actually have $\gamma_2 \gamma_{-2} = 1$.

Theorem 6.2.3. Let Y be a compact connected Riemann surface, let B be a finite subset of Y, and let $y \in Y \setminus B$. Then there is a natural bijection between the set of isomorphism classes of holomorphic maps $f : X \to Y$ of degree d with $B(f) \subseteq B$ and X compact and connected, and the set of group homomorphisms $\rho : \Pi_1(Y \setminus B, y) \to \mathfrak{S}_d$ with transitive action, up to conjugacy in \mathfrak{S}_d .

Example 6.2.4. Let $B = \{b_1, \ldots, b_n\} \subseteq \mathbb{P}^1(\mathbb{C})$. For $i \in \{1, \ldots, n\}$, let γ_i be a small loop around b_i . Then $\Pi_1(\mathbb{P}^1(\mathbb{C}) \setminus B)$ is generated by $\gamma_1, \ldots, \gamma_n$ with the relation $\gamma_1 \cdots \gamma_n = 1$. Therefore, a group homomorphism $\rho : \Pi_1(\mathbb{P}^1(\mathbb{C}) \setminus B) \to \mathfrak{S}_d$ corresponds to a n-tuple $(\sigma_1, \ldots, \sigma_n) \in \mathfrak{S}_d^n$ subject to the relation $\sigma_1 \cdots \sigma_n = 1$.

6.3 Applications

Theorem 6.3.1. Let X be a compact connected Riemann surface of genus $g \ge 1$. Assume that X has an involution σ with (2g+2) fixed points. Then X is isomorphic to an algebraic curved $C \cup \{\infty\}$, where:

$$C = \{(x, y) \in \mathbb{C}^2, y^2 = P(x)\},\$$

with P a polynomial of degree (2g+1) with simple roots. Moreover, the involution σ corresponds to the map $(x, y) \mapsto (x, -y)$.

Proof. Let $G = \{1, \sigma\} \simeq \mathbb{Z}/2\mathbb{Z}$. Consider Y = X/G and let $f : X \to Y$ be the canonical projection; it has degree 2. The ramification points of f are exactly the fixed points of σ and they have ramification index 2. The Riemann-Hurwitz Formula (Theorem 5.4.1) implies that:

$$2g - 2 = 2(2g(Y) - 2) + 2g + 2.$$

Therefore, g(Y) = 0, so $Y \simeq \mathbb{P}^1(\mathbb{C})$ (c.f. Corollary 4.6.9). Now, let $B = B(f) \subseteq \mathbb{P}^1(\mathbb{C})$. We know that |B| = 2g + 2; write $B = \{x_1, \ldots, x_{2g+2}\}$. By composing with a homography, we may assume that $x_{2g+2} = \infty$. Then consider $P = \prod_{i=1}^{2g+1} (T - x_i) \in \mathbb{C}[T]$ and consider the curve C defined as above. We check that $C \cup \{\infty\}$ is a compact Riemann surface. Consider:

$$\varphi: (x, y) \in C \cup \{\infty\} \longmapsto x \in \mathbb{P}^1(\mathbb{C}).$$

 φ is a holomorphic map of degree 2 and its branch points are $\{x_1, \ldots, x_{2g+2}\}$. We check that $f: X \to Y$ and $\varphi: C \cup \{\infty\} \to Y$ induce the same monodromy representation: $\rho_f = \rho_{\varphi}$. Hence, by Theorem 6.2.3, $X \simeq C \cup \{\infty\}$.

Theorem 6.3.2. Consider the modular curve $Y(7) = \mathbb{H}/\Gamma(7)$ (c.f. Example 5.6.4). Let X(7) be the compactification of Y(7) (as a set, we have $X(7) = (\mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}))/\Gamma(7)$). Then X(7) is isomorphic to the Klein quartic:

$$C = \left\{ (X:Y:Z) \in \mathbb{P}^2(\mathbb{C}), \ X^3Y + Y^3Z + Z^3X = 0 \right\}.$$

References

- [1] R. Miranda. Algebraic Curves and Riemann Surfaces.
- [2] J.-P. Serre. Cours d'arithmétique.