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1 Elliptic functions and complex tori

1.1 Lattices and complex tori
Definition 1.1.1 (Lattice). A lattice in C is an additive subgroup of C of the form:

Λ = {n1ω1 + n2ω2, n1, n2 ∈ Z} ,

where (ω1, ω2) is a R-basis of C. We then say that (ω1, ω2) is a basis of Λ. We also say that
D = {t1ω1 + t2ω2, t1, t2 ∈ [0, 1]} is a fundamental domain for the action of Λ on C by translation.

Remark 1.1.2. A lattice can have several different bases. If (ω1, ω2) is a basis of Λ, then the bases

of Λ are the couples (aω1 + bω2, cω1 + dω2), with
(
a b
c d

)
∈ GL2(Z).

Proposition 1.1.3. An additive subgroup Λ of C is a lattice iff Λ is discrete and the quotient C/Λ
is compact.

Corollary 1.1.4. If Λ is a lattice in C and K is a compact subset of C, then Λ ∩K is finite.

Definition 1.1.5 (Complex torus). A complex torus is a space of the form C/Λ, where Λ is a lattice
in C. Topologically, a complex torus is homeomorphic to (R/Z)2.

1.2 Elliptic functions
Notation 1.2.1. In this section, Λ is a lattice in C.

Definition 1.2.2 (Elliptic function). An elliptic function for Λ is a meromorphic function f ∈M(C)
which is Λ-periodic, i.e. for every z ∈ C and λ ∈ Λ, if z and z + λ are not poles of f , then
f(z) = f(z + λ). We write C(Λ) for the set of elliptic functions for Λ.

Remark 1.2.3. Let f ∈ C(Λ). Then the set S of poles of f is stable by translation by Λ, so it defines
a subset S ⊆ C/Λ. Moreover, S is discrete and closed in C/Λ, which is compact, so S is finite.

Lemma 1.2.4. C(Λ) is a field.

Proof. We know thatM(C) is a field, and it is clear that if f ∈ C(Λ), then 1
f
is Λ-periodic.

Definition 1.2.5 (Order of vanishing and residue of an elliptic function at a point). Let f ∈ C(Λ)×
and p ∈ C/Λ. The order of vanishing of f at p and the residue of f at p are well-defined; we denote
them by ordp(f) and Resp(f) respectively.

Proposition 1.2.6. Let f ∈ C(Λ)×. We have the following equalities:

(i) ∑p∈C/Λ Resp(f) = 0,

(ii) ∑p∈C/Λ ordp(f) = 0,

(iii) ∑p∈C/Λ ordp(f) · p = 0.
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Proof. (i) Let (ω1, ω2) be a basis of Λ and let D be the associated fundamental domain. We choose
a ∈ C s.t. D′ = D + a contains no pole or zero of f on its boundary ∂D′. Applying the Residue
Theorem to f , we obtain: ∑

p∈C/Λ
Resp(f) =

∫
∂D′

f(z) dz.

But using the Λ-periodicity of f , we have
∫
∂D′ f(z) dz = 0. (ii) Apply (i) to g = f ′

f
. (iii) Set

h(z) = z f
′(z)
f(z) (note that h is not an elliptic function). Apply the Residue Theorem to h on ∂D′, and

note that: ∫ a+ω1+ω2

a+ω1
h(z) dz =

∫ a+ω2

a
h(z) dz + ω1

∫ a+ω2

a

f ′(u)
f(u) du.

Now, use the change of variable v = f(u) and note that γ : u ∈ [a, a+ ω2] 7−→ f(u) ∈ C× is a closed
C1 path. By the Residue Theorem,

∫ a+ω2
a

f ′(u)
f(u) du =

∫
γ

dv
v
∈ 2iπZ. Therefore,

∫ a+ω1+ω2
a+ω1

h(z) dz −∫ a+ω2
a h(z) dz ∈ 2iπΛ. We obtain

∫
∂D′ h(z) dz ∈ 2iπΛ, which gives the desired result.

Remark 1.2.7. Note that, in Proposition 1.2.6, (iii) is an equality in the additive group C/Λ.

Corollary 1.2.8. A nonconstant elliptic function has at least two poles (counted with multiplicity).

1.3 The Weierstraß ℘-function
Lemma 1.3.1. The sum ∑

λ∈Λ\{0}
1
|λ|3 converges.

Proof. Use the fact that there exists cΛ > 0 s.t.

∀N ∈ N∗, |{λ ∈ Λ, N ≤ |λ| < N + 1}| ≤ cΛN.

Definition 1.3.2 (Weierstraß ℘-function). The Weierstraß ℘-function is defined on C\Λ by:

℘(z) = 1
z2 +

∑
λ∈Λ\{0}

(
1

(z + λ)2 −
1
λ2

)
.

Proposition 1.3.3. ℘ is an even elliptic function.

Proof. Show that ℘ is defined by a series of holomorphic functions which converges uniformly on
every compact subset of C\Λ.

Remark 1.3.4. In C/Λ, ℘ has only one pole (at 0); its order of vanishing is (−2).

Lemma 1.3.5. For every z0 ∈ C\Λ, the elliptic function (℘− ℘ (z0)) has a double pole at z = 0 and
simple zeroes at z = ±z0.

Proof. By Remark 1.3.4, (℘− ℘ (z0)) has a double pole at z = 0 and is holomorphic everywhere
else. It is also clear that ℘ has zeroes at ±z0. Now, Proposition 1.2.6 guarantees that ℘ has no other
zero.

1.4 Principal divisors
Definition 1.4.1 (Divisors). We define Z [C/Λ] to be the free Z-module with basis C/Λ. Its elements
will be denoted by ∑r

i=1 ni [pi], with ni ∈ Z and pi ∈ C/Λ; they will be called divisors. Note that
divisors are formal sums, not elements of C/Λ.

Definition 1.4.2 (Divisor of an elliptic function). Given f ∈ C(Λ)×, we define the divisor of f by:

div(f) =
∑

p∈C/Λ
ordp(f) · [p] ∈ Z [C/Λ] .
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Example 1.4.3. Lemma 1.3.5 can be restated more concisely in the following way:

div (℘− ℘ (z0)) = [z0] + [−z0]− 2 [0] .

Proposition 1.4.4. The map div : C (Λ)× → Z [C/Λ] is a group homomorphism. Elements of Im div
will be called principal divisors.
Definition 1.4.5 (Degree of a divisor). We define a group homomorphism deg : Z [C/Λ] → Z by
deg

(∑
p∈C/Λ np[p]

)
= ∑

p∈C/Λ np. Moreover, we define the group of degree 0 divisors by:

IΛ = Ker deg ⊆ Z [C/Λ] .

Remark 1.4.6. Z [C/Λ] can be equipped with the structure of a commutative ring by seeing it as the
group algebra of C/Λ. In other words, we set:(

m∑
i=1

ai [pi]
) n∑

j=1
bj [qj]

 =
∑

1≤i≤m
1≤j≤n

aibj [pi + qj] .

With this ring structure, IΛ is in fact an ideal of Z [C/Λ], called the augmentation ideal.
Theorem 1.4.7. Let D = ∑

p∈C/Λ np[p] ∈ Z [C/Λ]. Then D ∈ Im div if and only if degD = 0 and∑
p∈C/Λ np · p = 0.

Proof. Note that (⇒) was proved in Proposition 1.2.6, so it suffices to prove (⇐). First step. Let
D ∈ Z [C/Λ] s.t. degD = 0 and ∑p∈C/Λ np · p = 0. We shall prove that D ∈ I2

Λ. Consider the map:

ϕ : p ∈ C/Λ 7−→ [[p]− [0]] ∈ IΛ/I
2
Λ.

Then ϕ is a group homomorphism. And:

D =
∑

p∈C/Λ
np · [p] =

∑
p∈C/Λ

np ([p]− [0]) =
∑

p∈C/Λ
npϕ(p) = ϕ

 ∑
p∈C/Λ

np · p

 ≡ 0 mod I2
Λ.

This shows that D ∈ I2
Λ. Second step. We shall show that I2

Λ ⊆ Im div. Note that IΛ is generated by
the divisors ([p]− [0]) with p ∈ C/Λ; therefore, I2

Λ is generated (as an abelian group) by the divisors
Dp,q = ([p]− [0]) ([q]− [0]) for p, q ∈ C/Λ. Hence, it is enough to show that each Dp,q is in Im div.
This is obvious if p = 0 or q = 0. Otherwise, we choose r ∈ C/Λ s.t. 2r = q and p + r 6= 0, and we
set:

f(z) = ℘ (z − r)− ℘ (p+ r)
(℘(z)− ℘(p)) (℘ (z − r)− ℘(r)) .

We check that f ∈ C(Λ)× and that Dp,q = div(f).

1.5 Abel-Jacobi Theorem
Definition 1.5.1 (Picard group). The Picard group Pic (C/Λ) is defined by:

Pic (C/Λ) = Z [C/Λ] / Im div .

Moreover, we define Pic0 (C/Λ) = IΛ/ Im div. This is the analogue of the ideal class group of a
number field.

Theorem 1.5.2 (Abel-Jacobi). The map:∣∣∣∣∣C/Λ −→ Pic0 (C/Λ)
p 7−→ [[p]− [0]]

is a group isomorphism.

Proof. Define ψ : IΛ/I
2
Λ → C/Λ by ψ

([∑
p∈C/Λ np · [p]

])
= ∑

p∈C/Λ np · p and check that ψ is the
inverse of the map ϕ defined in the proof of Theorem 1.4.7.
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1.6 Structure of Riemann surface on the complex torus
Definition 1.6.1 (Holomorphic functions on the complex torus). Let U be an open subset of C/Λ
and denote by π : C→ C/Λ the canonical projection. Consider the open subset Ũ = π−1 (U) of C; it
is stable by translation by Λ. Now define:

O (U) =
{
f : U → C, (f ◦ π) is holomorphic on Ũ

}
.

O (U) is a C-algebra that is isomorphic to the algebra of Λ-periodic holomorphic functions on Ũ .
Elements of O (U) are called holomorphic functions on U .

Lemma 1.6.2. If G is a discrete group acting by homeomorphisms on a topological space X, then
the projection map π : X → X/G is continuous (by definition of the quotient topology) and open.

Proposition 1.6.3. Every point p ∈ C/Λ has a neighbourhood that is homeomorphic to an open
subset of C.

Proof. Using the discreteness of Λ, choose an open neighbourhood W of 0 in C s.t. W ∩ Λ = {0}.
Write p0 = [z0], with z0 ∈ C and consider Ṽ = z0 + W and V = π

(
Ṽ
)
, where π : C → C/Λ is the

canonical projection. By Lemma 1.6.2, V is an open subset of C/Λ. Now the map π|Ṽ : Ṽ → V is
continuous, bijective and open, so it is a homeomorphism.

Proposition 1.6.4. Let p ∈ C/Λ. Let φ : Ṽ ⊆ C −→ V ⊆ C/Λ be the homeomorphism between an
open subset of C and an open neighbourhood of p in C/Λ given by Proposition 1.6.3. Then φ sends
the holomorphic functions on Ṽ to the holomorphic functions on V .

2 Riemann surfaces and holomorphic maps

2.1 Motivation
Example 2.1.1.

(i) Algebraic curves. Let P ∈ C[X, Y ] be an irreducible polynomial. Consider the set CP =
{(x, y) ∈ C2, P (x, y) = 0}; CP is called the algebraic curve defined by P . Assume that CP is
nonsingular, i.e. ∀(x, y) ∈ CP ,

(
∂P
∂x

(x, y), ∂P
∂y

(x, y)
)
6= (0, 0). Then CP is a Riemann surface.

Furthermore, there exists an integer g ∈ N, called the genus of CP s.t. CP is isomorphic (as a
Riemann surface) to the surface of genus g (i.e. with g holes), minus a finite set of points.

(ii) Hyperbolic geometry. Consider the half-plane H = {z ∈ C, =(z) > 0}. Then we have an

action of SL2 (R) on H given by
(
a b
c d

)
z = az+b

cz+d . Moreover, the Riemann surface H/SL2(Z)

is isomorphic to C. More generally, if Γ is a subgroup of SL2 (Z) with finite index, then H/Γ
is a Riemann surface called a modular curve.

(iii) Power series. Let f(z) = ∑∞
n=0 anz

n be a power series with positive radius of convergence. Then
f defines a holomorphic function on an open ball B(0, R), with R > 0. And Riemann proved
that there exists a largest Riemann surface Xf s.t. f extends to a holomorphic function on Xf .
For instance, if f = log : B(1, 1) → C, then Xf is a covering of C×, that is isomorphic to C,
and the isomorphism is given by the exponential map.

2.2 Definition of Riemann surfaces
Definition 2.2.1 (Chart). Let X be a topological space. A (holomorphic) chart on X is the data of
an open subset U ⊆ X and of a homeomorphism φ : U → V , where V is an open subset of C. We
say that two holomorphic charts φ : U → V and φ′ : U ′ → V ′ are compatible if the map ψ defined by
the following commutative diagram is holomorphic:
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U ∩ U ′

φ (U ∩ U ′)

φ

φ′ (U ∩ U ′)

φ′

ψ

Definition 2.2.2 (Atlas). Let X be a topological space. A (holomorphic) atlas on X is a collection
(φi : Ui → Vi)i∈I of holomorphic charts s.t. X = ⋃

i∈I Ui and the charts are pairwise compatible. Two
atlases A = (φi)i∈I and A′ =

(
φ′j
)
j∈J

on X are said to be equivalent if φi is compatible with φ′j for
all (i, j) ∈ I × J . This defines an equivalence relation on the set of atlases on X.
Definition 2.2.3 (Riemann surface). A Riemann surface is a nonempty Hausdorff topological space
equipped with an atlas (or with an equivalence class of atlases).
Definition 2.2.4 (Holomorphic functions on a Riemann surface). Let X be a Riemann surface
equipped with an atlas A = (φi : Ui → Vi)i∈I . Let U be an open subset of X. A function f : U → C is
said to be holomorphic if for every i ∈ I, the map fi defined by the following commutative diagram
is holomorphic:

C

U ∩ Ui f

φi (U ∩ Ui) fi
φi

This notion of holomorphic functions does not change when A is replaced by an equivalent atlas A′.
We denote by OX (U) the C-algebra of holomorphic functions on U .
Remark 2.2.5. Let X be a Riemann surface. Then the C-algebras OX (U), for U ⊆ X open, have
the following properties:
(i) If U ′ ⊆ U ⊆ X are open subsets, then there is a restriction map OX (U)→ OX (U ′).

(ii) The restriction maps satisfy the gluing condition: if U ⊆ X is an open subset and (Ui)i∈I is
an open covering of U , and (fi)i∈I ∈

∏
i∈I OX (Ui) is a collection of holomorphic functions s.t.

fi|Ui∩Uj
= fj |Ui∩Uj

for all i, j ∈ I, then there exists a unique f ∈ OX (U) s.t. ∀i ∈ I, fi = f|Ui
.

This point of view gives rise to an alternative definition of Riemann surfaces: they are topological
spaces equipped with a collection (OX (U)) U⊆X

U open
satisfying some conditions. OX is called a sheaf.

Example 2.2.6. Every open subset of C is a Riemann surface (with a single chart).
Example 2.2.7 (Riemann sphere). The Riemann sphere is the space P1 (C) = (C2\{0}) /C×, en-
dowed with the quotient topology. It is a compact topological space (it is actually the one-point
compactification of C). We define two holomorphic charts on P1 (C) by:

ψ0 : z ∈ C 7−→ (1 : z) ∈ P1(C)\ {(0 : 1)} ,
ψ1 : z ∈ C 7−→ (z : 1) ∈ P1(C)\ {(1 : 0)} .

These charts cover P1 (C) and are compatible, so they give P1(C) the structure of a Riemann sphere.
Proposition 2.2.8. Every holomorphic function on P1(C) is constant. Hence, O (P1(C)) = C.
Proof. Let f ∈ O (P1(C)). If ψ0 is the chart defined above, then f ◦ ψ0 is a holomorphic function
defined on C. Moreover, f is continuous (because f is holomorphic) on the compact space P1(C), so
f is bounded. As a consequence, f ◦ ψ0 is an entire function that is bounded, so f ◦ ψ0 is constant.
Hence, f is constant on P1(C)\ {(0 : 1)}, so f is constant on P1(C).
Remark 2.2.9. From now on, the map ψ0 will be used to identify C with the corresponding subset
of P1 (C), and the point (0 : 1) will be denoted by ∞. Hence, P1 (C) = C ∪ {∞}, ψ0 : C→ P1 (C) is
the inclusion and ψ1 : C→ C× ∪ {∞} is the map given by z 7→ 1

z
.

Example 2.2.10 (Complex tori). If Λ is a lattice in C, then the complex torus C/Λ is a Riemann
surface, with the structure defined in Section 1.6.
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2.3 Holomorphic maps between Riemann surfaces
Definition 2.3.1 (Holomorphic map). Let X and Y be two Riemann surfaces. A continuous map
f : X → Y is said to be holomorphic if for every open subset V ⊆ Y and for every holomorphic map
h : V → C, h ◦ f : f−1(V )→ C is holomorphic. In other words:

∀V ⊆ Y open, ∀h ∈ OY (V ), (h ◦ f) ∈ OX
(
f−1(V )

)
.

Remark 2.3.2. If Y = C, then a holomorphic map X → Y is simply a holomorphic function
X → C.

Proposition 2.3.3. Let f : X → Y be a continuous map between Riemann surfaces.

(i) The property of being holomorphic is local on the source: for any open cover X = ⋃
i∈I Ui,

f : X → Y is holomorphic iff f|Ui
: Ui → Y is holomorphic for all i ∈ I.

(ii) The property of being holomorphic is local on the target: for any open cover Y = ⋃
j∈J Vj,

f : X → Y is holomorphic iff f|f−1(Vj) : f−1 (Vj)→ Vj is holomorphic for all j ∈ J .

Proposition 2.3.4. If f : X → Y and g : Y → Z are holomorphic maps between Riemann surfaces,
then g ◦ f : X → Z is also holomorphic.

Example 2.3.5. Let Λ be a lattice in C. Then the projection π : C→ C/Λ is holomorphic.

Definition 2.3.6 (Biholomorphism). Let X and Y be two Riemann surfaces. A map f : X → Y is
said to be an isomorphism (of Riemann surfaces) or a biholomorphism if f is holomorphic, bijective,
and f−1 is holomorphic.

2.4 Generalisation to Riemann surfaces of standard results of complex
analysis

Theorem 2.4.1 (Identity Theorem). Let X and Y be two Riemann surfaces. Assume that X is
connected and consider two holomorphic maps f, g : X → Y .

(i) If f 6= g, then the set {p ∈ X, f(p) = g(p)} is a closed discrete subset of X.

(ii) If the set {p ∈ X, f(p) = g(p)} has a limit point, then f = g.

In particular, if f and g coincide on some nonempty open subset of X, then f = g.

Proof. Assume that f 6= g. It is clear that Af,g = {p ∈ X, f(p) = g(p)} is closed. Let us show that
Af,g is discrete. Let x0 ∈ Af,g and let y0 = f (x0) = g (x0). Consider charts U0 of X around x0,
V0 of Y around y0. We may assume that f (U0) ⊆ V0 and g (U0) ⊆ V0 by shrinking U0 if necessary.
Thus, we have two maps f, g : U0 → V0 with f (x0) = g (x0). By reading these maps in the charts,
we may assume that U0 and V0 are subsets of C. We now set h = (f − g) : U0 → C. Since h (x0) = 0
and h is holomorphic, either h does not vanish in a punctured neighbourhood of x0, or h = 0 in a
neighbourhood of x0. In the first case, x0 is isolated in Af,g and we are done. In the second case,
consider the set:

Ω =
{
p ∈ X, ∃W open neighbourhood of p in X, f|W = g|W

}
.

As x0 ∈ Ω, Ω 6= ∅. It is clear that Ω is open in X. Moreover, if there existed p ∈ Ω\Ω, then
p ∈ Af,g = Af,g, so f(p) = g(p). And p is not isolated in Af,g because p ∈ Ω\Ω. By the same
reasoning as before, we deduce that f = g in a neighbourhood of p, so p ∈ Ω, which is a contradiction.
Therefore, Ω is open and closed in the connected space X, so X = Ω, a contradiction.
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Corollary 2.4.2 (Discreteness of the fibres). Let f : X → Y be a holomorphic map between two
Riemann surfaces, with X connected. If f is not constant, then for every q ∈ Y , the fibre f−1 ({q})
is a closed discrete subset of X. In particular, if X is compact, then the fibre f−1 ({q}) is finite.

Theorem 2.4.3 (Oppen Mapping Theorem). Let f : X → Y be a holomorphic map between two
Riemann surfaces, with X connected. If f is not constant, then f is open.

Corollary 2.4.4. Let f : X → Y be a holomorphic map between two Riemann surfaces, with
X compact and connected and Y connected. If f is not constant, then f is surjective (and Y is
compact).

Corollary 2.4.5. If X is a compact connected Riemann surface, then every holomorphic function
on X is constant: O(X) = C.

3 Meromorphic functions

3.1 Meromorphic functions
Definition 3.1.1 (Meromorphic function at a point). Let X be a Riemann surface. Let Ω be an
open subset of X containing a point p. Let f : Ω\{p} → C be a holomorphic function. We say that
f is meromorphic at p (resp. has an essential singularity at p) if for every holomorphic chart (U , φ)
of X around p, the map g = f ◦ φ−1 : φ (U ∩ Ω) \ {φ(p)} → C is meromorphic at φ(p) (resp. has an
essential singularity at φ(p)). Moreover, f extends to a holomorphic function on Ω iff g extends to
a holomorphic function on a neighbourhood of φ(p) for every holomorphic chart (U , φ).

Definition 3.1.2 (Meromorphic function). Let X be a Riemann surface. A meromorphic function
on X is the data of a closed discrete subset S of X and of a holomorphic function f : X\S → C,
s.t. f is meromorphic at each point of S. In this case, we write f : X 99K C. We identify two
meromorphic functions f, g : X 99K C if there exists a closed discrete subset S of X s.t. f and g
are defined and coincide on X\S; in this case, we write f ∼ g. We define M(X) to be the set of
meromorphic functions on X, quotiented by the equivalence relation ∼.

Proposition 3.1.3. Let X be a Riemann surface. Let Ω be an open subset of X containing a point
p. Let f : Ω\{p} → C be a holomorphic function. Then f is meromorphic at p iff f extends to a
holomorphic map f̂ : Ω→ P1 (C), i.e. such that the following diagram commutes, with the notations
of Example 2.2.7:

Ω\{p} C
f

Ω P1 (C)f̂

⊆ ψ0

Corollary 3.1.4. If X is a Riemann surface, then any meromorphic function f : X 99K C can be
extended to a holomorphic map f̂ : X → P1 (C).

Definition 3.1.5 (Order of vanishing). Let X be a Riemann surface. Let Ω be an open subset of X
containing a point p. Let f : Ω\{p} → C be a holomorphic function that is meromorphic at p. If
φ : U → V is a holomorphic chart of X containing p, with φ(p) = z0, then f ◦ φ−1 has a Laurent
expansion at z0: f ◦ φ−1(z) = ∑

n∈Z an (z − z0)n around z0, for some (an)n∈Z ∈ CZ. We define the
order of vanishing of f at p by:

ordp(f) = min {n ∈ Z, an 6= 0} ∈ Z ∪ {∞}.

The order of vanishing does not depend on the choice of φ, because the transition maps are biholo-
morphic. Moreover:

8



(i) We say that f has a zero at p if ordp(f) > 0; in this case, the order of the zero is ordp(f).

(ii) We say that f has a pole at p if ordp(f) < 0; in this case, the order of the pole is |ordp(f)|.

Example 3.1.6.

(i) Let Λ be a lattice in C. Then the Weierstraß ℘-function is a meromorphic function on C/Λ
with a pole of order 2 at 0, i.e. ord0 (℘) = −2.

(ii) Let f : C→ C be an entire function. Viewing C as a subset of P1 (C), f is meromorphic at ∞
iff f is a polynomial.

Proposition 3.1.7. If X is a connected Riemann surface, thenM(X) is a field.

Proposition 3.1.8. Let X be a connected Riemann surface, p ∈ X. We have a function ordp :
M(X)→ Z ∪ {∞}, which has the following properties:

(i) For f ∈M(X), ordp(f) = +∞⇐⇒ f = 0.

(ii) For f, g ∈M(X), ordp(fg) = ordp(f) + ordp(g).

(iii) For f, g ∈M(X), ordp(f + g) ≥ min {ordp(f), ordp(g)}.

We say that ordp is a discrete valuation onM(X).

Theorem 3.1.9. If X is a compact connected Riemann surface, then there exists f ∈M(X)\C s.t.
M(X) is a finite extension of C(f). We say that the field extension M(X)/C has transcendance
degree 1.

Example 3.1.10.

(i) M (P1(C)) = C(z).

(ii) If Λ is a lattice in C, thenM (C/Λ) = C (℘, ℘′), and ℘′ is algebraic over C (℘).

Proposition 3.1.11. Let X be a connected Riemann surface. For f ∈ M(X), denote by f̂ the
induced holomorphic map X → P1 (C) (c.f. Corollary 3.1.4). Then the map f 7→ f̂ induces a
bijection betweenM(X) and {g : X → P1 (C) holomorphic, g 6=∞}.

Remark 3.1.12. Let X be a Riemann surface. Consider a meromorphic function f : X 99K C
and denote by f̂ the induced holomorphic map X → P1 (C). Then, for p ∈ X, f has a pole at p iff
f̂(p) =∞.

3.2 Ramification theory
Definition 3.2.1 (Ramification index of a holomorphic map). Let f : X → Y be a holomorphic
map between two Riemann surfaces, let p ∈ X and set q = f(p) ∈ Y . Assume that f is not constant
near p. Consider local coordinates (U , φ) of X near p (i.e. a holomorphic chart with φ(p) = 0) and
(V , ψ) of Y near q. In a neighbourhood of 0, we can write ψ ◦ f ◦ φ−1(z) = ∑

n∈N∗ anz
n. We define

the ramification index of f at p by:

ef (p) = min {n ∈ N∗, an 6= 0} ∈ N∗.

This definition does not depend on the choice of local coordinates on X and Y . Moreover, using the
local normal form of a holomorphic function, one can show that for every choice of (V , ψ), there
exists a choice of (U , φ) s.t. ψ ◦ f ◦ φ−1(z) = ze in a neighbourhood of 0, where e = ef (p).

Example 3.2.2.
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(i) Consider the map f : z ∈ P1 (C) 7−→ z2 ∈ P1 (C). Then ef (z) = 1 if z ∈ C× and ef (0) =
ef (∞) = 2.

(ii) Consider cos : C→ C. Then ecos (z0) = 1 if z0 6∈ πZ and ecos (z0) = 2 if z0 ∈ πZ.

Proposition 3.2.3. Let f : X 99K C be a meromorphic function on a Riemann surface X and let
f̂ : X → P1(C) be the induced holomorphic map. For p ∈ X, we have:

(i) If f is holomorphic at p, then ef̂ (p) = ordp (f − f(p)).

(ii) If f has a pole at p, then ef̂ (p) = |ordp (f)|.

Corollary 3.2.4. If Λ is a lattice in C, then the complex torus C/Λ is not isomorphic to the Riemann
sphere P1(C).

Proof. Assume for contradiction that f : C/Λ → P1(C) is an isomorphism. We may view f as a
meromorphic function on C/Λ with only one pole at some point p ∈ C/Λ. By Proposition 3.2.3, the
pole of f at p is simple. Therefore, div(f) must be of the form [q] − [p] for some q ∈ C/Λ. But by
Proposition 1.2.6, we must have q = p, which is a contradiction.

Remark 3.2.5. In fact, C/Λ and P1(C) are not even homeomorphic because Π1 (P1(C)) = 0 and
Π1 (C/Λ) ' Z2.

Definition 3.2.6 (Ramification points and branch points). Let f : X → Y be a holomorphic map
between two Riemann surfaces, let p ∈ X. We say that f is unramified at p if ef (p) = 1 (equivalently,
f is a local isomorphism, or homeomorphism, at p). Otherwise, we say that f is ramified at p, or that
p is a ramification point of f . The set R(f) ⊆ X of ramification points of f is called the ramification
locus of f . The set B(f) = f (R(f)) ⊆ Y is called the branch locus of f and its elements are called
branch points.

Remark 3.2.7. In differential geometry, ramification points are called critical points and branch
points are called critical values.

Proposition 3.2.8. Let f : X → Y be a holomorphic map between two Riemann surfaces. If X is
connected and f is not constant, then R(f) is closed and discrete in X. If in addition X is compact
(which implies that Y is compact), then R(f) and B(f) are both finite.

Proof. Let p ∈ X\R(f). Taking local coordinates (U , φ) at p and (V , ψ) at f(p), we have ψ ◦ f ◦
φ−1(z)∼

0
λz for some λ ∈ C×. Therefore, f is a local isomorphism around p, so f is unramified in a

neighbourhood of p. This shows that X\R(f) is open, i.e. R(f) is closed. Now, let p ∈ R(f). We
can find charts (U , φ) at p and (V , ψ) at f(p) s.t. ψ ◦ f ◦ φ−1(z) = ze in a neighbourhood of 0, with
e = ef (p) ≥ 2. Hence, (ψ ◦ f ◦ φ−1)′ (z) = eze−1 in a neighbourhood of 0, so (ψ ◦ f ◦ φ−1)′ (z) 6= 0 if
z 6= 0 in a neighbourhood of 0. This shows that p is isolated in R(f), so R(f) is discrete.

Proposition 3.2.9. Let f : X → Y be a nonconstant holomorphic map between two compact con-
nected Riemann surfaces.

(i) If h ∈M(Y ), then h ◦ f ∈M(X).

(ii) For every p ∈ X, we have:
ordp(h ◦ f) = ef (p) · ordf(p)(h).

Remark 3.2.10. If f : X → Y is a nonconstant holomorphic map between two compact connected
Riemann surfaces, then f induces a map:

f ∗ : h ∈M(Y ) 7−→ h ◦ f ∈M(X),

which is a morphism of C-algebras, and thus a morphism of fields. Therefore, we may viewM(X) as
a field extension ofM(Y ). Moreover, we have a discrete valuation ordp onM(X), and the restriction
toM(Y ) is ef (p) · ordf(p).
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3.3 Degree of a holomorphic map
Theorem 3.3.1. Let f : X → Y be a nonconstant holomorphic map between two compact connected
Riemann surfaces. For q ∈ Y , define:

dq =
∑

p∈f−1({q})
ef (p) ∈ N∗.

Then dq does not depend on q; it is called the topological degree of f and denoted by deg f .

Remark 3.3.2. Let f : X → Y be a nonconstant holomorphic map between two compact connected
Riemann surfaces. Write R′(f) = f−1 (B(f)). Then f induces a local isomorphism X\R′(f) →
Y \B(f), which is a topological covering of degree deg f .

Example 3.3.3. If f : X → Y is a nonconstant holomorphic map between two compact connected
Riemann surfaces, we have seen (in Remark 3.2.10) that f induces a field extensionM(X)/M(Y ),
and we have [M(X) :M(Y )] = deg f .

Corollary 3.3.4. Let X be a compact connected Riemann surface. If there exists a meromorphic
function on X with only a simple pole, then X is isomorphic to P1 (C).

Theorem 3.3.5. Let X be a compact connected Riemann surface. For every f ∈M(X)×, we have:∑
p∈X

ordp(f) = 0.

Proof. We may assume that f is nonconstant, and we view it as a holomorphic map f̂ : X → P1 (C).
We have: ∑

p∈f̂−1({0})

ordp(f) =
∑

p∈f̂−1({0})

ef̂ (p) = deg f̂ =
∑

p∈f̂−1({∞})

ef̂ (p) = −
∑

p∈f̂−1({∞})

ordp(f).

Therefore ∑p∈X ordp(f) = ∑
p∈f̂−1({0}) ordp(f) +∑

p∈f̂−1({∞}) ordp(f) = 0.

3.4 Divisors
Remark 3.4.1. Let X be a compact connected Riemann surface. Given p1, . . . , pr, q1, . . . , qs ∈ X,
m1, . . . ,mr, n1, . . . , ns ∈ N∗, a fundamental problem is to tell whether or not there exists a meromor-
phic function f ∈M(X) with a zero of order mi at each point pi and a pole of order nj at each point
qj, and which is holomorphic and nonvanishing on X\ {p1, . . . , pr, q1, . . . , qs}. To state this problem
in a more concise way, we shall introduce the language of divisors.

Definition 3.4.2 (Divisors). If X is a Riemann surface, we denote by Div(X) the free Z-module
with basis X. Its elements are called divisors; they are formal linear combinations of points of X.

• Given D = ∑
p∈X np[p] ∈ Div(X), we define the order of D at p by ordp(D) = np ∈ Z, and the

degree of D by degD = ∑
p∈X np ∈ Z.

• We say that a divisor D = ∑
p∈X np[p] ∈ Div(X) is effective, and we write D ≥ 0, if ∀p ∈

X, np ≥ 0. If D1, D2 ∈ Div(X), we say that D1 ≥ D2 if D1 −D2 ≥ 0.

• Given D = ∑
p∈X np[p] ∈ Div(X), the support of D is the finite set {p ∈ X, ordp(D) 6= 0}.

Definition 3.4.3 (Divisor of a meromorphic function). Let X be a compact connected Riemann
surface and let f ∈M(X)×. The divisor of f is defined by:

div(f) =
∑
p∈X

ordp(f) · [p] ∈ Div(X).
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Proposition 3.4.4. If X is a compact connected Riemann surface, then div :M(X)× → Div(X) is
a group homomorphism. Its image is called the group of principal divisors, and denoted by Pr(X).

Lemma 3.4.5. Let X be a compact connected Riemann surface. Then the following sequence is
exact:

0→ C× ⊆−→M(X)× div−→ Pr(X)→ 0.

Definition 3.4.6 (Degree zero divisors and Picard group). Let X be a compact connected Riemann
surface. Then we have a Z-linear map deg : Div(X)→ Z; we define the group of degree zero divisors
by:

Div0(X) = Ker deg ⊆ Div(X).

Theorem 3.3.5 implies that Pr(X) ⊆ Div0(X) ⊆ Div(X). The quotient:

Pic0(X) = Div0(X)/Pr(X),

is called the Picard group of X; it can be interpreted as H1
(
X,O×X

)
.

Example 3.4.7.

(i) Pic0 (P1 (C)) = 0.

(ii) If Λ is a lattice in C, then Pic0 (C/Λ) ' C/Λ.

In general, according to the Abel-Jacobi Theorem, if X is a compact connected Riemann surface, then
there exists an integer g ∈ N, called the genus of X, s.t. Pic0(X) ' Cg/Λ, where Λ is a Z-lattice of
rank 2g in Cg.

3.5 Riemann-Roch spaces
Definition 3.5.1 (Riemann-Roch space associated to a divisor). Let X be a compact connected
Rieman surface. Given D ∈ Div(X), we define:

L(D) =
{
f ∈M(X)×, div(f) ≥ −D

}
∪ {0} ⊆ M(X).

L(D) is called the Riemann-Roch space associated to D. Then L(D) is a sub-C-vector space of
M(X).

Proposition 3.5.2. Let X be a compact connected Riemann surface. If D ∈ Div(X), then the
C-vector space L(D) is finite-dimensional.

Proof. Firstly, note that L (D1) ⊆ L (D2) if D1 ≤ D2, so it suffices to prove the proposition for
effective divisors (i.e. D ≥ 0). Thus, we can proceed by induction on degD. If degD = 0 (i.e.
D = 0), then L(D) = O(X) = C. Now, assume that the result is true for all effective divisors of
degree d ∈ N and let D be an effective divisor with degD = d+ 1. Write D = D′ + [p], with p ∈ X,
D′ effective and degD′ = d. We have L (D′) ⊆ L(D), and L (D′) is finite-dimensional. We will
construct a linear form on L(D) whose kernel is L (D′). To do this, consider a holomorphic system
of coordinates φ : U → V around p in X. If f ∈ L(D), then f ◦ φ−1(z) has a pole of order at most
n+ 1 = ordp(D) at 0, so we can write:

f ◦ φ−1(z) = α

zn+1 +O0

( 1
zn

)
,

for some unique α ∈ C. Denote by λφ : L(D)→ C the linear map given by f 7→ α. By construction,
Kerλφ = L (D′), so dimL(D) ≤ dimL (D′) + 1 < +∞.
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Remark 3.5.3. Let X be a compact connected Riemann surface. If D ∈ Div(X) is an effective
divisor, then the proof of Proposition 3.5.2 gives a bound on the dimension of L(D):

dimL(D) ≤ degD + 1.

Theorem 3.5.4 (Riemann-Roch). Let X be a compact connected Riemann surface of genus g. If
D ∈ Div(X) is an effective divisor with degD > 2g − 2, then:

dimL(D) = degD + 1− g.

Corollary 3.5.5. If X is a compact connected Riemann surface, then for every p ∈ X, there exists
a nonconstant meromorphic function on X whose only pole is at p.

Example 3.5.6. If X = P1 (C), then L (n [∞]) is the set of polynomials of degree at most n.

Remark 3.5.7. The genus g of a compact connected Riemann surface X is a topological invariant.
The integer χ = 2− 2g is called the Euler-Poincaré characteristic of X. To compute it, consider any
triangulation of X, with V vertices, E edges and F faces. Then:

χ = V − E + F.

4 Differential forms

4.1 Complex and holomorphic differential forms
Notation 4.1.1. Let X be a Riemann surface. In particular, X is a differentiable manifold of real
dimension 2, and we denote by AkR(X) the real vector space of smooth differential k-forms on X, for
0 ≤ k ≤ 2.

Definition 4.1.2 (Complex differential forms). Let X be a Riemann surface. For 0 ≤ k ≤ 2, we
define:

AkC(X) = AkR(X)⊗R C.

Elements of AkC(X) are called complex k-forms on X.

Remark 4.1.3. Let X be a Riemann surface.

• Any form ω ∈ AkC(X) can be written uniquely as ω = α + iβ, with α, β ∈ AkR(X).

• For k = 0, we have A0
R(X) = C∞(X,R) and A0

C(X) = C∞(X,C).

• The operator d : AkR(X)→ Ak+1
R (X) extends to d : AkC(X)→ Ak+1

C (X).

• We have a complex conjugation operator · : AkC(X) → AkC(X) defined by ω ⊗ λ = ω ⊗ λ. The
fixed points of this involution are the elements of AkR(X).

• For ω ∈ AkC(X), we have dω = dω.

Notation 4.1.4. If V is an open subset of C, we have the standard coordinate z = x+ iy on V ; we
denote by dz = dx+ i dy ∈ A1

C (V ) and dz = dx− i dy ∈ A1
C (V ).

Definition 4.1.5 (Holomorphic differential form in a chart). Let X be a Riemann surface and let
φ : U → V be a holomorphic chart of X. We say that a differential form ω ∈ A1

C (U) is holomorphic
(resp. anti-holomorphic) on U if φ∗ω = f(z) dz (resp. φ∗ω = f(z) dz), with f ∈ O(V ).

Remark 4.1.6. A complex form ω is holomorphic iff ω is anti-holomorphic.
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Definition 4.1.7 (Holomorphic differential form). Let X be a Riemann surface. A differential form
ω ∈ A1

C(X) is said to be holomorphic (resp. anti-holomorphic) if it is holomorphic (resp. anti-
holomorphic) on every holomorphic chart of X. We denote by Ω1(X) (resp. Ω1(X)) the set of
holomorphic (resp. anti-holomorphic) differential forms on X.

Remark 4.1.8. Let X be a Riemann surface. Let φ1 : U1 → V1 and φ2 : U2 → V2 be two charts of X.
Then a complex differential form ω ∈ A1

C(X) is holomorphic on U1 ∩ U2 for φ1 iff it is holomorphic
on U1 ∩ U2 for φ2.

Example 4.1.9.

(i) If U is an open subset of C, then Ω1 (U) = O (U) dz.

(ii) Ω1 (P1 (C)) = 0.

(iii) If Λ is a lattice in C, then Ω1 (C/Λ) = C dz.

Proposition 4.1.10. Let f : X → Y be a holomorphic map between Riemann surfaces. Then f
induces a C-linear map f ∗ : A1

C(Y )→ A1
C(X), and f ∗ sends Ω1(Y ) to Ω1(X).

4.2 Integration of differential forms
Remark 4.2.1. Let X be a Riemann surface. Consider a C1 path γ : [0, 1] → X. For any ω ∈
A1

C(X), we can define
∫
γ ω.

(i) If ω is closed, i.e. dω = 0, then for any γ′ : [0, 1] → X that is homotopic to γ (with fixed
endpoints), we have

∫
γ′ ω =

∫
γ ω.

(ii) If ω is exact, i.e. ω = dF , with F ∈ C∞ (X,C), then
∫
γ ω = F (γ(1))− F (γ(0)).

Proposition 4.2.2. All holomorphic and anti-holomorphic forms are closed.

Proof. It suffices to prove the result for holomorphic forms. Moreover, the result being local,
it suffices to prove it for holomorphic forms ω on an open subset U ⊆ C. Hence, we can write
ω = f(z) dz with f ∈ O (U), so that dω = f ′(z) dz ∧ dz = 0.

Remark 4.2.3. Every Rieman surface has a canonical orientation induced by the orientation of C.

Definition 4.2.4 (Hermitian scalar product on Ω1). Let X be a Riemann surface. We define a
Hermitian scalar product 〈·, ·〉 on Ω1(X) by:

〈ω, ν〉 = i

2

∫
X
ω ∧ ν.

Proof. It is clear that 〈ω, ν〉 = 〈ν, ω〉 and that 〈·, ν〉 is C-linear. Let ω ∈ Ω1(X). We shall show
that 〈ω, ω〉 ∈ R+. In a holomorphic chart φ : U → V , we have φ∗ω = f(z) dz with f ∈ O(V ), so
φ∗
(
i
2ω ∧ ω

)
= |f(z)|2 dx∧ dy. Therefore, the restriction of the integral to any chart is nonnegative,

so 〈ω, ω〉 ∈ R+. Moreover, if 〈ω, ω〉 = 0, then the restriction of ω to any chart is zero, so ω = 0.

Example 4.2.5. Let Λ be a lattice in C. If ω = dz ∈ Ω1 (C/Λ), then 〈ω, ω〉 =
∫
C/Λ dx∧dy = A (D1),

where D1 is any fundamental domain of Λ.
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4.3 Forms of type (1, 0) or (0, 1)
Definition 4.3.1 (Forms of type (1, 0) or (0, 1)). Let X be a Riemann surface. A differential form
ω ∈ A1

C(X) is said to be of type (1, 0) (resp. of type (0, 1)) if for every holomorphic chart φ : U → V ,
there exists α ∈ C∞(V,C) s.t. φ∗ω = α(z) dz (resp. φ∗ω = α(z) dz). We denote by A1,0(X) (resp.
A0,1(X)) the set of differential forms on X of type (1, 0) (resp. (0, 1)).

Lemma 4.3.2. Let X be a Riemann surface. Then:

A1
C(X) = A1,0(X)⊕A0,1(X).

For ω ∈ A1
C(X), we shall write ω = ω1,0 + ω0,1, with ω1,0 ∈ A1,0(X) and ω0,1 ∈ A0,1(X).

Remark 4.3.3. For a Riemann surface X, we have Ω1(X) ⊆ A1,0(X) ⊆ A1
C(X) and Ω1(X) ⊆

A0,1(X) ⊆ A1
C(X).

Notation 4.3.4. Let X be a Riemann surface. We define two C-linear operators ∂ and ∂ by:

∂ :

∣∣∣∣∣∣
C∞ (X,C) −→ A1,0(X)

f 7−→ (df)1,0 and ∂ :

∣∣∣∣∣∣
C∞ (X,C) −→ A0,1(X)

f 7−→ (df)0,1 .

For f ∈ C∞(X,C), we have df = ∂f + ∂f .

Proposition 4.3.5. Let X be a Riemann surface. Then ∂ and ∂ are C-linear and we have:

∀f, g ∈ C∞ (X,C) , ∂(fg) = f∂g + g∂f,

and similarly for ∂.

Example 4.3.6. Let U be an open subset of C and let f ∈ C∞ (U ,C). Then:

∂f = 1
2

(
∂f

∂x
− i∂f

∂y

)
dz and ∂f = 1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz

Hence, by Cauchy-Riemann, f is holomorphic iff ∂f
∂x

+ i∂f
∂y

= 0 iff df ∈ A1,0(X).

Lemma 4.3.7. Let X be a Riemann surface and let f ∈ C∞ (X,C). Then the following three
assertions are equivalent:

(i) f ∈ O(X).

(ii) df ∈ A1,0(X).

(iii) ∂f = 0.

Proof. All the assertions are local, so we may assume that X is an open subset of C and use Example
4.3.6.

Lemma 4.3.8. Let X be a Riemann surface and let ω ∈ A1,0(X). Then:

ω ∈ Ω1(X)⇐⇒ dω = 0.

In other words, Ω1(X) = A1,0(X) ∩Ker d.

Proof. We may assume that X is an open subset of C and write ω = α(z) dz, with α ∈ C∞ (X,C).
Thus:

dω = dα ∧ dz = ∂α ∧ dz︸ ︷︷ ︸
0

+ ∂α ∧ dz︸ ︷︷ ︸
β(z) dz∧dz

,

with β ∈ C∞ (X,C). Thus, dω = 0 iff ∂α = 0 iff α ∈ O(X) iff ω ∈ Ω1(X).
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Notation 4.3.9. Let X be a Riemann surface. We define a C-linear operator ∂∂ by:

∂∂ :

∣∣∣∣∣∣
C∞ (X,C) −→ A2

C(X)
f 7−→ d

(
∂f
) .

Example 4.3.10. Let U be an open subset of C and let f ∈ C∞ (U ,C). Then:

∂∂f = − i2

(
∂2f

∂x2 + ∂2f

∂y2

)
dx ∧ dy = i

2∆f dx ∧ dy.

Definition 4.3.11 (Harmonic functions). If X is a Riemann surface, we define H(X) = Ker
(
∂∂
)
⊆

C∞ (X,C). Elements of H(X) are called harmonic functions on X. We have O(X) ⊆ H(X) and
O(X) ⊆ H(X).

Proposition 4.3.12. If X is a compact connected Riemann surface, then H(X) = C.

Proof. Let f ∈ H(X) and let ω = ∂f ∈ A1,0(X). Note that ω ∧ ω = df ∧ ω, so:∫
X
ω ∧ ω =

∫
X

df ∧ ω =
∫
X

d
(
fω
)
−
∫
X
f dω =

∫
∂X
fω −

∫
X
f dω = −

∫
X
f dω =

∫
X
f
(
∂∂f

)
= 0.

Therefore, ω = 0 so f ∈ O(X) by Lemma 4.3.7. Thus, f ∈ C because X is compact and connected.

Theorem 4.3.13. Let X be a compact connected Riemann surface. Then:

Im
(
∂∂
)

=
{
α ∈ A2

C(X),
∫
X
α = 0

}
.

4.4 Meromorphic differential forms
Definition 4.4.1 (Meromorphic form at a point). Let X be a Riemann surface and p ∈ X. Let
φ : U → V be a holomorphic chart containing p, with φ(p) = z0. If ω ∈ Ω1 (U\{p}), we can write
φ∗ω = f(z) dz for some f ∈ O (V \ {z0}). We say that ω is meromorphic at p if f is meromorphic
at z0. In this case, we define:

ordp(ω) = ordz0(f) ∈ Z ∪ {∞} .

Remark 4.4.2. If X is a Riemann surface equipped with a chart φ : U → V , p ∈ U and ω ∈
Ω1 (U\{p}) is meromorphic at p, then:

(i) ordp(ω) ≥ 0⇐⇒ ω extends to a holomorphic form at p.

(ii) ordp(ω) =∞⇐⇒ ω = 0 on a neighbourhood of p.

(iii) ordp(ω) ≥ 1⇐⇒ ωp = 0.

Definition 4.4.3 (Meromorphic form). A meromorphic form on X is the data of a closed discrete
subset S of X and of ω ∈ Ω1 (X\S) s.t. ω is meromorphic at each point of S. We write Ω1 (M(X))
for the set of meromorphic forms on X. It is aM(X)-vector space if X is connected.

Example 4.4.4. On P1 (C), dz ∈ Ω1 (C) is meromorphic at ∞ and ord∞ (dz) = −2.

Definition 4.4.5 (Divisor of a meromorphic form). If X is a compact connected Riemann surface
and ω ∈ Ω1 (M(X)) \{0}, we define the divisor of ω by:

div(ω) =
∑
p∈X

ordp(ω) · [p] ∈ Div(X).

Remark 4.4.6. Let X be a Riemann surface.
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(i) Ω1(X) = {ω ∈ Ω1 (M(X)) , div(ω) ≥ 0}.

(ii) For f ∈M(X) and ω ∈ Ω1 (M(X)), we have div(fω) = div(f) + div(ω).

Definition 4.4.7 (Genus). If X is a compact connected Riemann surface, then Ω1(X) is a finite-
dimensional C-vector space. The genus of X is defined by:

g = dimC Ω1(X).

Proof. If Ω1(X) = 0, then it is clearly finite-dimensional. Otherwise, let ω0 ∈ Ω1(X)\{0}. For
ω ∈ Ω1 (M(X)), there exists a unique f ∈M(X) s.t. ω = fω0. Now:

ω ∈ Ω1(X)⇐⇒ div(ω) ≥ 0⇐⇒ f ∈ L (div (ω0)) .

Hence, there is a surjection L (div (ω0))→ Ω1(X), which concludes the proof because L (div (ω0)) is
finite-dimensional by Proposition 3.5.2.

Remark 4.4.8. The above argument actually shows that Ω1 (M(X)) is a M(X)-vector space of
dimension ≤ 1. In fact, one can prove that dimM(X) Ω1 (M(X)) = 1.

4.5 Residues of differential forms
Remark 4.5.1. On Riemann surfaces, it is not possible to define the residue of a meromorphic
function at a point, because such a residue would depend on the chart in which we read the function.
However, we will be able to define the residue of a meromorphic differential form at a point.

Definition 4.5.2 (Residue of a meromorphic differential form). Let X be a Riemann surface. Let Ω
be an open subset of X containing a point p. Let ω ∈ Ω1 (Ω\{p}) be a holomorphic differential form
that is meromorphic at p. If φ : U → V is a holomorphic chart of X containing p, with φ(p) = z0,
then we can write ϕ∗ω = f(z) dz, with f meromorphic at z0. We define Resp(ω) = Resz0(f). The
following proposition will show that Resp(ω) is independent of the choice of the chart.

Proposition 4.5.3. Let X be a Riemann surface. Let Ω be an open subset of X containing a point
p. Let ω ∈ Ω1 (Ω\{p}) be a holomorphic differential form that is meromorphic at p. Consider a
small loop γ in X around p, s.t. in a holomorphic chart φ : U → V containing p, γ is the boundary
of a disk containing no pole of ω except p, oriented counter-clockwise. Then:∫

γ
ω = 2iπ · Resp(ω).

Corollary 4.5.4. The residue of a meromorphic differential form at a point does not depend on the
chart in which we read it.

Example 4.5.5. Consider ω = dz
z
∈ Ω1 (M (P1(C))). Then ω is holomorphic on C× and has poles

at 0 and ∞, with Res0(ω) = 1 and Res∞(ω) = −1.

Theorem 4.5.6 (Residue Theorem). Let X be a Riemann surface and let D be a compact domain
in X whose boundary γ can be parametrised by paths [0, 1]→ X which are C0 and piecewise C1. We
endow the paths γ with a canonical orientation as follows: at a point p ∈ γ, we denote by ~n a vector
in TpX that is normal to γ and pointing towards the exterior of D, and we orient γ with a tangent
vector ~t s.t.

(
~n,~t

)
is a direct basis of TpX (which is canonically oriented because it is a 1-dimensional

C-vector space). Now, consider a meromorphic differential form ω defined on a neighbourhood of D
and s.t. the only poles of ω are at p1, . . . , pn ∈ D̊. Then:

∫
∂D
ω = 2iπ

n∑
j=1

Respj
(ω).

17



Proof. Let D1, . . . , Dn ⊆ D̊ be small non-overlapping open disks around p1, . . . , pn respectively. Let
D′ = D\ (D1 ∪ · · · ∪Dn). Write γj = ∂Dj for 1 ≤ j ≤ n, and orient γj clockwise. Then ω is
holomorphic on a neighbourhood of D′ in X. And by Stokes’ Theorem:

∫
D′

dω =
∫
∂D′

ω =
∫
∂D
ω +

n∑
j=1

∫
γj

ω =
∫
∂D
ω − 2iπ

n∑
j=1

Respj
(ω).

But ω is holomorphic and thus closed on D′, so dω = 0, which gives the result.

Corollary 4.5.7. If X is a compact connected Riemann surface and ω ∈ Ω1 (M(X)), then:∑
p∈X

Resp(ω) = 0.

Remark 4.5.8. Using the Residue Theorem, we can give a new proof of Theorem 3.3.5 by considering
the differential form ω = df

f
.

4.6 Riemann-Roch Theorem
Definition 4.6.1 (Canonical divisor). A canonical divisor on a compact connected Riemann surface
X is a divisor of the form div(ω) ∈ Div(X) for some ω ∈ Ω1 (M(X)) \{0}.

Remark 4.6.2. If D and D′ are two canonical divisors on a compact connected Riemann surface
X, then D−D′ is a principal divisor (by the same argument as in the proof of Definition 4.4.7). In
other words, X has a unique canonical divisor up to addition of a principal divisor. In particular,
all the canonical divisors on X have the same degree.

Notation 4.6.3. Let X be a compact connected Riemann surface. For D ∈ Div(X), we define:

`(D) = dimC L(D) ∈ N.

Remark 4.6.4. Let X be a compact connected Riemann surface. If D,D′ ∈ Div(X) with D − D′
principal, then we have an isomorphism L (D′) → L(D) (given by g 7→ fg if D′ −D = div(f)). In
particular, ` (D′) = ` (D).

Theorem 4.6.5 (Riemann-Roch). Let X be a compact connected Riemann surface of genus g, let
KX be a canonical divisor on X. Then, for every D ∈ Div(X), we have:

`(D)− ` (KX −D) = degD + 1− g.

In particular, `(D) ≥ degD + 1− g.

Corollary 4.6.6. Let X be a compact connected Riemann surface of genus g. If D ∈ Div(X) is s.t.
degD ≥ g + 1, then L(D) contains a nonconstant function.

Lemma 4.6.7. Let X be a compact connected Riemann surface of genus g. Then for any canonical
divisor KX on X, we have deg (KX) = 2g − 2.

Proof. Apply Theorem 4.6.5 to D = KX . Thus ` (KX) − ` (0) = deg (KX) + 1 − g. But L(0) =
O(X) = C, so `(0) = 1. Moreover, we have an isomorphism L (KX) → Ω1(X) given by f 7→ fω if
KX = div(ω); thus ` (KX) = dimC Ω1(X) = g. This yields deg (KX) = 2g − 2.

Corollary 4.6.8. Let X be a compact connected Riemann surface of genus g. If D ∈ Div(X) is s.t.
degD > 2g − 2, then:

`(D) = degD + 1− g.

Proof. If degD > 2g − 2 = deg (KX), then deg (KX −D) < 0, so ` (KX −D) = 0.
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Corollary 4.6.9. Every compact connected Riemann surface of genus 0 is isomorphic to P1 (C).

Proof. Let X be a compact connected Riemann surface of genus 0 and let p ∈ X. Consider
D = [p] ∈ Div(X). Then degD = 1 > 2g−2, so `(D) = 1+1−g = 2 by Corollary 4.6.8. Thus, there
exists f ∈ L(D)\C. Now, f has only a simple pole at p, so X is isomorphic to P1 (C) by Corollary
3.3.4.

Theorem 4.6.10. Every compact connected Rieman surface is algebraic, i.e. can be defined by some
polynomial equations in a projective space.

Proof. Let D ∈ Div(X) s.t. `(D) ≥ 2. Let (f1, . . . , fn) be a C-basis of L(D). Consider the map:

φD : p ∈ X\S 7−→ (f1(p) : · · · : fn(p)) ∈ Pn−1 (C) ,

where S is the (finite) set consisting in poles of some fi and common zeros of f1, . . . , fn. Then one
can show that φD extends to a holomorphic map φD : X → Pn−1 (C), and that, if degD ≥ 2g + 1,
then φD is a holomorphic embedding. Now, one uses Chow’s Theorem, which states that every closed
complex analytic submanifold of PN (C) is algebraic.

4.7 Hodge decomposition
Theorem 4.7.1. Let X be a compact connected Riemann surface. Then the canonical map:

ψ :

∣∣∣∣∣∣Ω
1(X)⊕ Ω1(X) −→ H1

dR (X,C)
(ω, ω′) 7−→ [ω + ω′]

,

is an isomorphism of C-vector spaces. In particular:

dimCH
1
dR (X,C) = 2g.

Therefore, the genus is a topological invariant: two homeomorphic Riemann surfaces have the same
genus.

Proof. ψ is well-defined because holomorphic and anti-holomorphic differential forms are closed.
Injectivity. Let (ω, ω′) ∈ Ω1(X) ⊕ Ω1(X) s.t. [ω + ω′] = 0, i.e. there exists f ∈ C∞ (X,C) s.t.
ω + ω′ = df . Then ∂f = ω′, so ∂∂f = dω′ = 0, so f is harmonic, and so f is constant because X is
compact and connected (c.f. Proposition 4.3.12). Hence, ω = −ω′ = 0. Surjectivity. Let α ∈ A1

C(X)
be a closed 1-form. Write α = α1,0 + α0,1. By Stokes’ Theorem:∫

X
dα0,1 =

∫
∂X
α0,1 = 0.

By Theorem 4.3.13, there exists f ∈ C∞ (X,C) s.t. dα0,1 = ∂∂f . In other words, d
(
α0,1 − ∂f

)
= 0.

Now, consider α′ = α−df ; α′ is a closed form that is cohomologous to α. Thus, (α′)0,1 = α0,1−∂f is
closed and of type (0, 1), so it is anti-holomorphic (c.f. Lemma 4.3.8). Likewise, (α′)1,0 is holomorphic,
so α′ = (α′)1,0 + (α′)0,1 ∈ Ω1(X)⊕ Ω1(X).

Theorem 4.7.2 (Hodge Theorem). Let X ⊆ PN (C) be a compact complex analytic submanifold of
any dimension. Then, for any k ∈ N, there is a decomposition:

Hk
dR (X,C) =

⊕
p,q∈N
p+q=k

Hp,q(X),

where Hp,q(X) is defined by the closed forms of type (p, q).

Conjecture 4.7.3 (Hodge Conjecture). Hk,k(X) ∩ H2k (X,Q) is spanned by algebraic classes, i.e.
classes associated to algebraic subvarieties of X of codimension k.
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5 Quotients of Riemann surfaces

5.1 Groups acting on topological spaces
Definition 5.1.1 (Faithful or free group action). Let G be a group acting on a set X.

(i) We say that the action Gy X is faithful if ∀g ∈ G\{1}, ∃x ∈ X, gx 6= x.

(ii) We say that the action Gy X is free if ∀g ∈ G\{1}, ∀x ∈ X, gx 6= x.

A free group action is faithful.

Proposition 5.1.2 (Universal property of the quotient). Let G be a group acting on a topological
space X. Then, for every continuous map f : X → Y s.t. ∀g ∈ G, ∀x ∈ X, f(gx) = f(x), there
exists a unique continuous map f : X/G→ Y s.t. the following diagram commutes:

X Y
f

X/G
f

π

Definition 5.1.3 (Continuous group action). Let G be a topological group acting on a topological

space X. The group action Gy X is said to be continuous if the map
∣∣∣∣∣G×X −→ X

(g, x) 7−→ gx
is continuous.

Remark 5.1.4. Let G be a topological group acting on a topological space X.

(i) If the action Gy X is continuous, then it is by homeomorphisms.

(ii) If G is discrete, then the action Gy X is continuous iff it is by homeomorphisms.

Proposition 5.1.5. Let G be a topological group acting by homeomorphisms on a topological space
X. Then the projection map π : X → X/G is continuous and open.

Definition 5.1.6 (Proper group action). Let G be a topological group acting continuously on a
topological space X. The group action G y X is said to be proper if one of the following two
equivalent conditions is satisfied:

(i) The map
∣∣∣∣∣G×X −→ X

(g, x) 7−→ gx
is proper (i.e. the preimage of every compact subset is a compact

subset).

(ii) For every compact subset K ⊆ X, the set {g ∈ G, gK ∩K 6= ∅} is compact.

If G is discrete, then the action G y X is proper iff for every compact subset K ⊆ X, the set
{g ∈ G, gK ∩K 6= ∅} is finite.

Proposition 5.1.7. Let G be a discrete group acting properly and continuously on a Hausdorff
and locally compact space X. Then X/G is Hausdorff and for all x ∈ X, the stabiliser Stab(x) =
{g ∈ G, gx = x} is finite.
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5.2 Examples of quotients of Riemann surfaces
Remark 5.2.1. Given an action of a discrete group on a Riemann surface which is proper and
holomorphic (i.e. by biholomorphisms), we will show (in Theorem 5.3.8) that the quotient can be
endowed with a unique structure of Riemann surface s.t. it satisfies the universal property of quotients
(Proposition 5.1.2), where continuous maps are replaced by holomorphic maps.

Example 5.2.2.

(i) If Λ is a lattice in C, then we have an action Λ y C by translation, which is proper and
holomorphic. The quotient C/Λ is the complex torus that we already know.

(ii) We have an action Z y C by translation, which is proper and holomorphic. The quotient C/Z
is isomorphic to C× via the map e : z ∈ C 7−→ exp (2iπz) ∈ C×.

(iii) If Λ is a lattice in C and σ : z ∈ C/Λ 7−→ −z ∈ C/Λ, then σ is an involution so it induces an
action of Z/2Z on C/Λ, which is proper and holomorphic. The quotient C/Λ

Z/2Z is isomorphic to
P1(C) via the Weierstraß function ℘ : C/Λ→ P1(C).

5.3 Structure of Riemann surface on a quotient
Proposition 5.3.1. Let G be a discrete group acting on a connected Riemann surface X. We assume
that the action is faithful, proper and holomorphic.

(i) For every p ∈ X, the stabiliser Gp = Stab(p) is a finite cyclic group.

(ii) The set {p ∈ X, Gp 6= 1} is closed and discrete in X.

Proof. (i) By properness, Gp must be finite. Now, choose a local coordinate z at p. For g ∈ Gp, we
can write locally at p:

g(z) =
∑
n∈N

an(g)zn.

Since gp = p, we have a0 = 0. Moreover, g is biholomorphic so it is unramified at p, and therefore
a1(g) ∈ C×. This defines a map a1 : Gp → C×, which is a group homomorphism. Let us show that
a1 is injective. Let g ∈ Ker a1. If g 6= 1, then g does not act as the identity (because the action is
faithful), so the Taylor expansion at p of g(z)− z is nonzero (by connectedness). Thus, we can write:

g(z) = z + αzn +O0
(
zn+1

)
,

with α ∈ C× and n ≥ 2. Therefore, for k ∈ N, we have gk(z) = z + kαzn + O0 (zn+1). Taking
k = |Gp|, we get a contradiction. Therefore, a1 : Gp → C× is an injective group homomorphism, so
Gp is isomorphic to a finite subgroup of C×, so it is cyclic. (ii) Let S = {p ∈ X, Gp 6= 1}. Let p ∈ S
and let K be a compact neighbourhood of p in X. Then the set E = {g ∈ G, gK ∩K 6= ∅} is finite
by properness, and it contains Gp. Moreover, for g ∈ E\{1}, the set Fix(g) = {q ∈ X, gq = q} is
closed and discrete in X by the Identity Theorem (Theorem 2.4.1), so Fix(g) ∩K is finite. Now:

S ∩K ⊆
⋃

g∈E\{1}
Fix(g) ∩K,

so S ∩K is finite, and S is closed and discrete.

Remark 5.3.2. The map a1 : Gp → C× defined in the proof of Proposition 5.3.1 does not depend
on the choice of the local coordinate around p. Indeed, it can be defined intrinsically by noting that,
for g ∈ Gp, the linear map dg : TpX → TpX is the multiplication by a1(g). Therefore, locally around
p, elements of Gp act as rotations.
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Proposition 5.3.3. Let G be a discrete group acting on a connected Riemann surface X. We assume
that the action is faithful, proper and holomorphic. If p ∈ X and Gp = Stab(p), then there exists an
open neighbourhood U of p in X such that:

(i) U is stable by Gp.

(ii) ∀g ∈ G\Gp, gU ∩ U = ∅.

(iii) The natural map α : U/Gp → X/G is a homeomorphism onto an open subset of X/G.

(iv) ∀p′ ∈ U\{p}, Gp′ = 1.

Moreover, we may assume that U is contained in some fixed neighbourhood of p.

Proof. Let K be a compact neighbourhood of p in X. The set E = {g ∈ G, gK ∩K 6= ∅} is finite
and contains Gp. Write E\Gp = {g1, . . . , gn}. Since X is Hausdorff and gip 6= p, there exist open
neighbourhoods Vi of p and V ′i of gip s.t. Vi ∩ V ′i = ∅. Now, define:

V = K̊ ∩
n⋂
i=1

(
Vi ∩ g−1

i V ′i
)
.

V is an open neighbourhood of p that is contained in K. Now, set U = ⋂
g∈Gp

gV ; this is an open
neighbourhood of p that is stable by Gp. If g ∈ G\Gp, then either g 6∈ E and gU ∩U ⊆ gK ∩K = ∅,
or g = gi for some i, and so gU ∩ U ⊆ giV ∩ V ⊆ V ′i ∩ Vi = ∅. Furthermore, the natural map α :
U/Gp → X/G is injective by (ii), and we show that it is open by using the openness of π : X → X/G
(c.f. Proposition 5.1.5). Finally, if p′ ∈ U\{p}, then Gp′ = 1 because S = {p′ ∈ X, Gp′ 6= 1} is closed
and discrete so we may assume that S ∩K = {p}.

Example 5.3.4. Consider the action of µn = {z ∈ C, zn = 1} on C by multiplication. This action
is faithful, proper and holomorphic. We have a holomorphic map h : z ∈ C 7−→ zn ∈ C, which is
µn-invariant and therefore induces a bijection h : C/µn → C. This map h can be taken as a chart
on C/µn.

Proposition 5.3.5. Let G be a discrete group acting on a connected Riemann surface X. We assume
that the action is faithful, proper and holomorphic. Then there exists a structure of Riemann surface
on X/G. This structure satisfies the following properties:

(i) The quotient map π : X → X/G is holomorphic.

(ii) For every p ∈ X, eπ(p) = |Gp|, with Gp = Stab(p).

(iii) The map π has degree |G| (possibly ∞).

Proof. Definition of the charts. Let p ∈ X. Let U be a neighbourhood of p as in Proposition 5.3.3,
let m = |Gp|. We may assume that U is contained in some chart of X, so that we have a chart
ϕ : U → V ⊆ C with ϕ(p) = 0. First case: m = 1. Then we have a map α : U → X/G which is a
homeomorphism onto its imageW ; this gives a chart ϕ◦α−1 :W → V of X/G. Second case: m ≥ 2.
Now, consider:

h : q ∈ U 7−→
∏
g∈Gp

ϕ (gq) ∈ C.

Then h ∈ OX (U), and h is Gp-invariant, so h induces a map h : U/Gp → C. Since h is open
(as a nonconstant holomorphic function) and πp : U → U/Gp is surjective, we see that h is open.
Moreover, we have:

ordp(h) =
∑
g∈Gp

ordgp(ϕ) · eg(p) = |Gp| = m.

Therefore, h ism-to-1 in a punctured neighbourhood of p, and so is πp, so h is injective near p. Hence,
after possibly shrinking U , h : U/Gp → C is a homeomorphism onto its image W ; so we take h ◦α−1
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as a chart on X/G. Compatibility of the charts. The charts thus defined cover X/G; let us prove
that they are pairwise compatible. Note that the set {p ∈ X, Gp 6= 1} is closed and discrete in X,
so we may assume that no two charts of type m ≥ 2 overlap in X/G. Let p, p′ ∈ X, with respective
charts ϕ :W → V ⊆ C and ϕ′ :W ′ → V ′ ⊆ C of types m,m′ in X/G. We assume that m = 1. Let
U and U ′ be respective neighbourhoods of p and p′ as in Proposition 5.3.3, so that W = π (U) and
W ′ = π (U ′). Let q ∈ W ∩W ′ and let q̃ ∈ π−1 ({q}). By replacing U or U ′ by some G-translate, we
may assume that q̃ ∈ U ∩ U ′. Now, we have to prove that ϕ′ ◦ ϕ−1 is holomorphic near ϕ(q), which
amounts to prove that ϕ′ ◦ π is holomorphic near q̃. But this map is indeed holomorphic because
it is equal to the map h defined above. Therefore, the charts are compatible and they endow X/G
with a structure of Riemann surface. And we easily check the three given properties.

Remark 5.3.6. Let G be a discrete group acting on a connected Riemann surface X. We assume that
the action is faithful, proper and holomorphic. Endow X/G with the structure of Riemann surface
constructed in Proposition 5.3.5.

• The ramification points of the holomorphic map π : X → X/G are those p ∈ X s.t. Gp 6= 1.

• If p, p′ ∈ X are in the same G-orbit, then Gp and Gp′ are conjugate in G, so eπ(p) = eπ (p′).

• We say that π is a ramified Galois covering with Galois group G. This property has an algebraic
counterpart: if G is finite, then the field extension π∗ :M(X/G)→M(X) is Galois with Galois
group G. In particular,M(X/G) can be identified withM(X)G.

Theorem 5.3.7 (Linearisation of the action). Let G be a discrete group acting on a connected
Riemann surface X. We assume that the action is faithful, proper and holomorphic. Endow X/G with
the structure of Riemann surface constructed in Proposition 5.3.5. Let p ∈ X and write m = |Gp|.
If w is a local coordinate around π(p) on X/G, then there exists a local coordinate z around p on X
such that:

(i) Near p, π : X → X/G is given by w = zm.

(ii) There exists a group isomorphism λ : Gp → µm = {z ∈ C, zm = 1} with g(z) = λ(g) · z near p
for every g ∈ Gp.

Proof. We know that eπ(p) = m. The local normal form of a holomorphic function provides a
holomorphic coordinate z on X satisfying (i). To construct an isomorphism λ : Gp → µm as in (ii),
note that for g ∈ Gp, we have g(z)m = zm, so we can define λ(g) = g(z)

z
∈ µm.

Theorem 5.3.8. Let G be a discrete group acting on a connected Riemann surface X. We assume
that the action is proper and holomorphic. Then there exists a unique structure of Riemann surface
on X/G such that:

(i) The quotient map π : X → X/G is holomorphic.

(ii) For every open subset V ⊆ X/G and for every function f : V → C, we have f ∈ OX/G(V )⇐⇒
(f ◦ π) ∈ OX (π−1(V )).

(iii) Universal property of the quotient. Let ϕ : X → Y be a holomorphic map to a Riemann surface
s.t. ∀g ∈ G, ∀p ∈ X, ϕ(gp) = ϕ(p). Then there exists a unique holomorphic map ϕ : X/G→ Y
s.t. ϕ = ϕ ◦ π.

Proof. We may assume that the action is faithful. Indeed, if G0 = Ker (G→ Aut(X)), then G/G0
acts on X properly, holomorphically and faithfully. Moreover, the uniqueness is a consequence of
the universal property. Now, endow X/G with the structure of Riemann surface constructed in
Proposition 5.3.5. Using Remark 5.3.9, it suffices to prove that (ii) is satisfied. Therefore, let
V ⊆ X/G be an open subset and let f : V → C be a function. Since π is holomorphic, it is clear
that f ∈ OX/G(V ) =⇒ (f ◦ π) ∈ OX (π−1(V )). Conversely, assume that (f ◦ π) ∈ OX (π−1(V )). Let
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q ∈ V and let p ∈ π−1 ({q}). Choose a local coordinate w on X/G around q and let z be the local
coordinate on X around p given by Theorem 5.3.7. We can write f ◦π(z) = ∑

n∈N anz
n near p. Since

f ◦ π is Gp-invariant, we have ∀ζ ∈ µm,
∑
n∈N an (ζz)n = ∑

n∈N anz
n, from which we deduce that

an = 0 if m - n. Therefore:

f ◦ π(z) =
∑
k∈N

akmz
km =

∑
k∈N

akm (π(z))k .

By openness of π, f(w) = ∑
k∈N akmw

k near q, so f is holomorphic near q. Hence, f ∈ OX/G(V ).

Remark 5.3.9. In Theorem 5.3.8, (ii) actually implies (iii).

Proof. Let ϕ : X → Y be a holomorphic map as in (iii). By Proposition 5.1.2, there exists a
continuous map ϕ : X/G→ Y s.t. ϕ = ϕ ◦π. To prove that ϕ is holomorphic, let V ⊆ Y be an open
subset and let h ∈ OY (V ) be a holomorphic test function. Then h◦ϕ◦π = h◦ϕ ∈ OX (π−1 (ϕ−1(V ))),
because ϕ is holomorphic, so h ◦ ϕ ∈ OX/G (ϕ−1(V )) by (ii). Hence, ϕ is holomorphic.

5.4 Riemann-Hurwitz Formula
Theorem 5.4.1 (Riemann-Hurwitz). Let ϕ : X → Y be a nonconstant holomorphic map between
two compact connected Riemann surfaces. Then:

2g(X)− 2 = (degϕ) (2g(Y )− 2) +
∑
p∈X

(eϕ(p)− 1) .

Proof. Let ω ∈ Ω1 (M(Y )) \{0}. By Lemma 4.6.7, we have deg (div(ω)) = 2g(Y ) − 2. Moreover,
ϕ∗ω ∈ Ω1 (M(X)) \{0}, so deg (div (ϕ∗ω)) = 2g(X)− 2. Now, let p ∈ X, let q = ϕ(p) ∈ Y . Let u, v
be local coordinates at p and q respectively. We can write ω = f(v) dv with f meromorphic near 0.
Thus ϕ∗v = h(u)ue with h holomorphic near 0, h(0) 6= 0 and e = eϕ(p). Hence:

ϕ∗ω = f (h(u)ue) d(h(u)ue) = ϕ∗f

h′(u)ue︸ ︷︷ ︸
ord0≥e

+ eh(u)ue−1︸ ︷︷ ︸
ord0=e−1

 du.

Therefore:
ordp (ϕ∗ω) = ordp (ϕ∗f) + eϕ(p)− 1 = eϕ(p) · ordq(f) + eϕ(p)− 1.

Hence, we obtain deg (div (ϕ∗ω)) = ∑
p∈X

(
eϕ(p) · ordϕ(p)(f) + eϕ(p)− 1

)
. The equality follows.

Remark 5.4.2. We can give a topological proof of the Riemann-Hurwitz Formula by considering a
triangulation T of Y s.t. the vertices of T contain the branch points of Y , and by considering ϕ∗T
(c.f. Remark 3.5.7).

Corollary 5.4.3. Let ϕ : X → Y be a nonconstant holomorphic map between two compact connected
Riemann surfaces.

(i) g(X) ≥ g(Y ) (this can also be proved using the injectivity of ϕ∗ : Ω1(Y ) → Ω1(X), which is a
consequence of the surjectivity of ϕ).

(ii) If g(X) = g(Y ), then one of the following is true:

• g(X) = g(Y ) = 0,
• g(X) = g(Y ) = 1 and ϕ is unramified,
• g(X) = g(Y ) ≥ 2 and ϕ is an isomorphism.

Example 5.4.4. Let FN =
{

(X : Y : Z) ∈ P2(C), XN + Y N = ZN
}
. By applying the Riemann-

Hurwitz Formula to the holomorphic map ϕ : (X : Y : Z) ∈ FN 7−→ (X : Z) ∈ P1(C), we show that
g (FN) = (N−1)(N−2)

2 .
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5.5 Uniformisation Theorem
Remark 5.5.1. Let X be a connected Riemann surface and p ∈ X. Consider the universal covering
π : X̃ → X of (X, p). Since π is a local homeomorphism, we can equip X̃ with a structure of Riemann
surface s.t. π is holomorphic and unramified. Hence, the action of Π1(X) on X̃ is free, holomorphic
and proper, and we have:

X ' X̃/Π1(X).
Thus, every Riemann surface is a quotient of its universal covering.

Notation 5.5.2. We shall write H = {z ∈ C, =(z) > 0}.

Theorem 5.5.3 (Uniformisation Theorem).

(i) Every simply connected Riemann surface is isomorphic to either P1(C), C or H.

(ii) Let X be a connected Riemann surface and let X̃ be the universal covering of X.

(a) If X̃ ' P1(C), then X ' P1(C) and Π1(X) = 1.
(b) If X̃ ' C, then X ' C/G, where G is a discrete subgroup of C acting by translations.

Thus, if G = 0, X ' C; if G has rank 1, then X ' C×; if G has rank 2, then X is
isomorphic to a complex torus.

(c) If X̃ ' H, then X ' H/G, where G is a discrete subgroup of PSL2(R) acting by Möbius
transformations.

Remark 5.5.4. The Uniformisation Theorem leads one to study the quotients of H.

5.6 Modular curves
Remark 5.6.1. We have a holomorphic action of SL2(R) on H given by:(

a b
c d

)
τ = aτ + b

cτ + d
.

Since −I acts trivially, this action induces an action of PSL2(R) = SL2(R)/ {±I} on H which is
faithful and transitive.

Lemma 5.6.2. If H is a discrete subgroup in a Hausdorff topological group G, then H is closed in
G.

Proposition 5.6.3. Let Γ be a discrete subgroup of SL2(R). Then Γ acts holomorphically and
properly on H. The quotient H/Γ will be denoted by Y (Γ); if Γ is a finite index subgroup of SL2(Z),
Y (Γ) will be called a modular curve.

Proof. We first show that the map ψ : g ∈ SL2(R) 7−→ gi ∈ H is proper. Note that ψ is surjective
and Stab(i) = SO2(R). Therefore, we have a homeomorphism SL2(R)/SO2(R) ' H. Using the
fact that SO2(R) is compact, we see that the projection map SL2(R)→ SL2(R)/SO2(R) is proper,
and therefore ψ is proper. Now, let K ⊆ H be a compact subset. Consider the compact subset
K̃ = ψ−1(K) ⊆ SL2(R). Then:

E = {g ∈ Γ, gK ∩K 6= ∅} ⊆
{
g ∈ Γ, gK̃ ∩ K̃ 6= ∅

}
⊆
{
k1k

−1
2 , k1, k2 ∈ K̃

}
.

Hence, E is closed and discrete in a compact space, so E is finite.

Example 5.6.4.

(i) Consider Y (1) = H/SL2(Z). Then the map α : τ 7→ C/ (Z + τZ) induces a bijection between
Y (1) and the set of isomorphism classes of complex tori.
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(ii) If N ≥ 2, we consider Γ(N) = Ker (SL2(Z)→ SL2 (Z/NZ)) and we define Y (N) = H/Γ(N).

Lemma 5.6.5. Let g =
(
a b
c d

)
∈ SL2(R) and τ ∈ H. Then:

= (gτ) = =(τ)
|cτ + d|2

.

Theorem 5.6.6. Let D =
{
τ ∈ H, |<(τ)| ≤ 1

2 and |τ | ≥ 1
}
. Then D is a fundamental domain for

the action SL2(Z) y H. More precisely:

(i) For all τ ∈ H, there exists g ∈ SL2(Z) s.t. gτ ∈ D.

(ii) Let τ, τ ′ ∈ D with τ 6= τ ′ and τ ′ ∈ SL2(Z) · τ . Then we are in one of the following two cases:

• <(τ) = ±1
2 and τ = τ ′ ± 1.

• |τ | = 1 and τ = − 1
τ ′
.

Proof. (i) Let τ ∈ H. By Lemma 5.6.5, it is possible to choose g ∈ SL2(Z) s.t. =(gτ) is maximal.

Replacing g by T ng, with T =
(

1 1
0 1

)
, we may assume that |<(gτ)| ≤ 1

2 . Now, assume for contra-

diction that |gτ | < 1. Then Sgτ = − 1
gτ

with S =
(

0 −1
1 0

)
, so = (Sgτ) > = (gτ), which contradicts

the choice of g. Therefore, gτ ∈ D. (ii) Write τ ′ = gτ , with g =
(
a b
c d

)
∈ SL2(Z). We may assume

that = (τ ′) ≥ = (τ), i.e. |cτ + d| ≤ 1. But as τ ∈ D, we deduce that c ∈ {0,−1,+1}, from which the
result follows.

Definition 5.6.7 (Compactified modular curve). The modular curve Y (1) is not compact; we shall
compactify it. If U0 = {τ ∈ H, =(τ) > y0} for some y0 ∈ R∗+ large enough, we have an isomorphism
U0/Z ' B∗ induced by τ 7→ e2iπτ , where B is the (open) unit disk and B∗ = B\{0}. By Theorem
5.6.6, U0/Z is homeomorphic to an open subset of Y (1); therefore we can glue Y (1) and B along
U0/Z ' B∗: the resulting Riemann surface is denoted by X(1) and called the compactified modular
curve. It can be written as X(1) = Y (1) ∪ {∞}; the point ∞ is called the cusp of X(1).

Notation 5.6.8. For k ≥ 3, we define:

Gk : τ ∈ H 7−→
∑

λ∈Z+τZ
λ 6=0

1
λk
∈ C.

Gk : H → C is a holomorphic map and Gk (gτ) = (cτ + d)kGk(τ) for every g =
(
a b
c d

)
∈ SL2(R);

we say that Gk is a modular form of weight k.

Lemma 5.6.9. If τ ∈ H and ℘ is the Weierstraß function associated to Λ = Z + τZ, then:

℘′(z)2 = 4℘(z)3 − 60G4(τ)℘(z)− 140G6(τ).

Lemma 5.6.10. Let τ ∈ H. Then the polynomial P (X) = 4X3 − 60G4(τ)X − 140G6(τ) has simple
roots.

Proof. Use Lemma 5.6.9.

Notation 5.6.11. We define:

∆ : τ ∈ H 7−→ (60G4(τ))3 − 27 (140G6(τ))2 ∈ C.

Note that, up to a factor, ∆(τ) is the discriminant of the polynomial P of Lemma 5.6.10.
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Proposition 5.6.12. The map ∆ : H→ C is holomorphic, nonvanishing, and modular of weight 12.
Moreover, ∆(τ) converges as =(τ)→∞. Writing the Fourier expansion of ∆ (which is 1-periodic),
we obtain:

∆(τ) =
∑
n∈N

ane
2iπnτ .

Theorem 5.6.13. Define the j-invariant by:

j : τ ∈ H 7−→ (720G3(τ))3

∆(τ) ∈ C.

Then the map j : H → C is holomorphic, modular of weight 0, and induces an isomorphism j :
Y (1)→ C. In particular:

Y (1) ' C and X(1) ' P1(C).

Proof. We have ∆(τ) = ∑
n∈N ane

2iπnτ . Define m = ord∞(∆) = min {n ∈ N, an 6= 0}. By con-
struction, ord∞(j) = −m. Now, consider the holomorphic form ω = d∆

∆ on H. With S =(
0 −1
1 0

)
∈ SL2(Z), we have S∗ω = ω − 12dτ

τ
. Consider the closed path γ which follows the

arc
{
|τ | = 1 and <(τ) ≤ 1

2

}
, then the lines

{
<(z) = 1

2

}
and {=(z) = y0} and finally

{
<(z) = −1

2

}
,

and denote by K the compact subset of H delimited by γ (thus K ⊆ D). As ω is holomorphic in
a neighbourhood of K, we have

∫
γ ω = 0, which gives m = 1. This shows that j is meromorphic

at ∞ ∈ X(1) with a simple pole, and j is holomorphic on Y (1). Therefore, ĵ : X(1) → P1(C) has
degree 1 so it must be an isomorphism.

6 Monodromy representations

6.1 Monodromy representation associated to a holomorphic map
Example 6.1.1. Consider the punctured disk ∆∗ = {z ∈ C, 0 < |z| < 1}. The universal covering of
∆∗ is the map:

f0 : x ∈ H 7−→ exp (2iπx) ∈ ∆∗.

The fundamental group is Π1 (∆∗) = Z, which acts on H by translations. The subgroups of Π1 (∆∗)
are the nZ for n ∈ N, so by the Galois Correspondence, the connected coverings of ∆∗ are the maps
fn : z ∈ ∆∗ 7−→ zn ∈ ∆∗.

Definition 6.1.2 (Monodromy representation associated to an unramified holomorphic map). Let
f : X → Y be an unramified holomorphic map between two connected Riemann surfaces. Then f is
a topological covering of finite degree d = deg f . Choose a basepoint y ∈ Y and write f−1 ({y}) =
{x1, . . . , xd}. Since we have an action Π1 (Y, y) y f−1 ({y}), we obtain a group homomorphism:

ρf : Π1 (Y, y)→ Sd.

This homomorphism is called the monodromy representation associated to f . It can be characterised
as follows: if γ is a loop based at y, then:

ρf (γ)(i) = j ⇐⇒ γxi = xj.

Lemma 6.1.3. Let f : X → Y be an unramified holomorphic map of degree d between two connected
Riemann surfaces. Then for any y ∈ Y , Im ρf is a transitive subgroup of Sd.

Remark 6.1.4. Usually, holomorphic maps have ramification and the above discussion does not
apply.
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Definition 6.1.5 (Monodromy representation associated to a holomorphic map). Let f : X → Y be a
holomorphic map between two connected Riemann surfaces. Let B = B(f) be the set of branch points
of f , let Y ′ = Y \B and X ′ = X\f−1(B). Then f induces a topological covering X ′ → Y ′ of finite
degree d = deg f . Thus, after choosing y ∈ Y ′, we obtain a group homomorphism ρf : Π1 (Y ′, y)→ Sd

called the monodromy representation associated to f .

Remark 6.1.6. Let f : X → Y be a holomorphic map of degree d between two connected Riemann
surfaces. Since X ′ = X\f−1 (B(f)) is connected, the image of ρf is a transitive subgroup of Sd for
any choice of y ∈ Y ′ = Y \B(f).

6.2 Correspondence between holomorphic maps and representations of
the fundamental group

Lemma 6.2.1. Let f : X → Y be a holomorphic map of degree d between two connected Riemann
surfaces. We write B = B(f), Y ′ = Y \B and X ′ = X\f−1(B). Fix y ∈ Y ′. For b ∈ B, consider
a small loop γb going counter-clockwise around b, with endpoint b′ ∈ Y ′. More precisely, we assume
that γb is contained in an open neighbourhood Db of b in Y satisfying the following conditions:

(i) Db is isomorphic to ∆ = {z ∈ C, |z| < 1}, with b ∈ Db corresponding to 0 ∈ ∆.

(ii) Db ∩B = {b}.

(iii) f−1 (Db) is the disjoint union of open neighbourhoods U1, . . . , Ur of x1, . . . , xr, where f−1 ({b}) =
{x1, . . . , xr}.

We also assume that γb is the pullback of a loop of index 1 around 0 in ∆. Now, we choose a path α
on Y ′ from y to b′. This defines an element γ = α−1γbα ∈ Π1 (Y, y). Then ρf (γ) is the product of r
disjoint cycles in Sd of respective lengths ef (x1) , . . . , ef (xr).

Example 6.2.2. Consider f : z ∈ P1 (C) 7−→ z + 1
z
∈ P1 (C). Then B = B(f) = {±2} and

f−1(B) = {±1}. We have a map Π1 (P1 (C) \{±2})→ S2, and this map sends γ2 and γ−2 to (1 2). In
fact, P1 (C) \{±2} ' C×, so Π1 (P1 (C) \{±2}) ' Z. Hence, γ2 and γ−2 generate Π1 (P1 (C) \{±2}),
and we actually have γ2γ−2 = 1.

Theorem 6.2.3. Let Y be a compact connected Riemann surface, let B be a finite subset of Y , and
let y ∈ Y \B. Then there is a natural bijection between the set of isomorphism classes of holomorphic
maps f : X → Y of degree d with B(f) ⊆ B and X compact and connected, and the set of group
homomorphisms ρ : Π1 (Y \B, y)→ Sd with transitive action, up to conjugacy in Sd.

Example 6.2.4. Let B = {b1, . . . , bn} ⊆ P1 (C). For i ∈ {1, . . . , n}, let γi be a small loop around
bi. Then Π1 (P1 (C) \B) is generated by γ1, . . . , γn with the relation γ1 · · · γn = 1. Therefore, a group
homomorphism ρ : Π1 (P1 (C) \B) → Sd corresponds to a n-tuple (σ1, . . . , σn) ∈ Sn

d subject to the
relation σ1 · · ·σn = 1.

6.3 Applications
Theorem 6.3.1. Let X be a compact connected Riemann surface of genus g ≥ 1. Assume that X
has an involution σ with (2g+2) fixed points. Then X is isomorphic to an algebraic curved C∪{∞},
where:

C =
{

(x, y) ∈ C2, y2 = P (x)
}
,

with P a polynomial of degree (2g + 1) with simple roots. Moreover, the involution σ corresponds to
the map (x, y) 7→ (x,−y).
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Proof. Let G = {1, σ} ' Z/2Z. Consider Y = X/G and let f : X → Y be the canonical projection;
it has degree 2. The ramification points of f are exactly the fixed points of σ and they have
ramification index 2. The Riemann-Hurwitz Formula (Theorem 5.4.1) implies that:

2g − 2 = 2 (2g(Y )− 2) + 2g + 2.

Therefore, g(Y ) = 0, so Y ' P1 (C) (c.f. Corollary 4.6.9). Now, let B = B(f) ⊆ P1 (C). We know
that |B| = 2g + 2; write B = {x1, . . . , x2g+2}. By composing with a homography, we may assume
that x2g+2 = ∞. Then consider P = ∏2g+1

i=1 (T − xi) ∈ C[T ] and consider the curve C defined as
above. We check that C ∪ {∞} is a compact Riemann surface. Consider:

ϕ : (x, y) ∈ C ∪ {∞} 7−→ x ∈ P1 (C) .

ϕ is a holomorphic map of degree 2 and its branch points are {x1, . . . , x2g+2}. We check that
f : X → Y and ϕ : C ∪ {∞} → Y induce the same monodromy representation: ρf = ρϕ. Hence, by
Theorem 6.2.3, X ' C ∪ {∞}.

Theorem 6.3.2. Consider the modular curve Y (7) = H/Γ(7) (c.f. Example 5.6.4). Let X(7) be the
compactification of Y (7) (as a set, we have X(7) = (H ∪ P1 (Q)) /Γ(7)). Then X(7) is isomorphic
to the Klein quartic:

C =
{

(X : Y : Z) ∈ P2 (C) , X3Y + Y 3Z + Z3X = 0
}
.
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