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1 Number fields and rings of integers

1.1 Algebraic and integral numbers
Definition 1.1.1 (Algebraic and integral numbers). Let K/Q be a field extension and α ∈ K.
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(i) We say that α is algebraic (over Q) if there exists f ∈ Q[T ]\{0} s.t. f(α) = 0. In this case,
there exists a unique monic polynomial fα,min ∈ Q[T ], called the minimal polynomial of α, s.t.
Ker evα = (fα,min), where evα : P ∈ Q[T ] 7→ P (α) ∈ K.

(ii) We say that α is integral (over Z), or that α is an algebraic integer, if there exists a monic
polynomial f ∈ Z[T ] s.t. f (α) = 0.

Proposition 1.1.2. Let K/Q be a field extension and let α ∈ K be an algebraic number. Then α is
integral iff fα,min ∈ Z[T ].

Proposition 1.1.3. Let K/Q be a field extension and α ∈ K.

(i) The following assertions are equivalent:

(a) α is algebraic.
(b) Q[α] is a finite-dimensional Q-vector space.
(c) There exists a nonzero finite-dimensional Q-vector space V ⊆ K s.t. αV ⊆ V .

(ii) The following assertions are equivalent:

(a) α is integral.
(b) Z[α] is a finitely generated Z-module.
(c) There exists a nonzero finitely generated Z-module M ⊆ K s.t. αM ⊆M .

Proof. In both cases, (c) ⇒ (a) is a consequence of the Cayley-Hamilton Theorem (and the other
implications are easy).

Corollary 1.1.4. Let K/Q be a field extension. If α, β ∈ K are algebraic (resp. integral), then
(α + β) and (αβ) are algebraic (resp. integral).

Remark 1.1.5. If K/Q is a field extension and α ∈ K is algebraic, then there exists β ∈ K integral
and m ∈ N∗ s.t. α = β

m
.

Proposition 1.1.6. Let K/Q be a field extension.

(i) K0 = {α ∈ K, α is algebraic} is a subfield of K containing Q.

(ii) A0 = {α ∈ K, α is integral} is a subring of K containing Z.

Moreover, K0 = Frac (A0).

Notation 1.1.7. If K = C, we write Q (resp. Z) for the set of algebraic (resp. integral) numbers.

1.2 Number fields
Definition 1.2.1 (Number field). A number field K is a finite extension of Q. Its degree, denoted
by [K : Q], is its dimension as a Q-vector space.

Remark 1.2.2. If K is a number field and α ∈ K, then the degree of α (i.e. the degree of fα,min)
divides the degree of K.

Theorem 1.2.3 (Primitive Element Theorem). If K is a number field, then there exists ϑ ∈ K s.t.
K = Q (ϑ).

Corollary 1.2.4. Let K = Q (ϑ) be a number field. Then the set Homfields (K,C) of embeddings of
K in C is in bijection with the set of complex roots of fϑ,min. In particular:

|Homfields (K,C)| = [K : Q] .
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Definition 1.2.5. Let K be a number field and let σ ∈ Homfields (K,C).

• If σ(K) ⊆ R, we say that σ is a real embedding.

• Otherwise, we say that σ is a complex (nonreal) embedding.

We write Σr (resp. Σc) for the set of real (resp. complex) embeddings K ↪→ C. We note that Σc

is stable under complex conjugation, and we fix Σ′c a set of representatives of the quotient of Σc by
complex conjugation.

Notation 1.2.6. If K is a number field, we have Homfields (K,C) = Σr ∪ Σc. We write r1 = |Σr|
and 2r2 = |Σc|. Hence [K : Q] = r1 + 2r2.

Corollary 1.2.7. If K is a number field, consider the map:

Φ : x ∈ K 7−→ (σ(x))σ∈Σr∪Σ′c ∈ RΣr ⊕ CΣ′c .

Then Φ is a homomorphism of Q-algebras, which induces a homomorphism of R-algebras:

ΦR : K ⊗Q R −→ RΣr ⊕ CΣ′c .

This homomorphism ΦR is actually an isomorphism.

Proof. Write K = Q (ϑ) = Q[T ]/(f), where f = fϑ,min. Hence, K ⊗Q R = R[T ]/(f). Now, if
g1, . . . , gr1 (resp. h1, . . . , hr2) are the irreducible factors in R[T ] of f of degree 1 (resp. of degree 2),
then:

K ⊗Q R = R[T ]/(f) = (R[T ]/ (g1)⊕ · · ·R[T ]/ (gr1))⊕ (R[T ]/ (h1)⊕ · · · ⊕ R[T ]/ (hr2)) = RΣr ⊕ CΣ′c .

Moreover, the implicit isomorphism is ΦR.

1.3 Traces, norms and discriminants
Definition 1.3.1 (Traces, norms and discriminants). Let K/K0 be a finite field extension. If α ∈ K,
then the map mα,K/K0 : x ∈ K 7→ αx ∈ K is K0-linear. We define:

(i) The trace of α: trK/K0(α) = tr
(
mα,K/K0

)
∈ K0.

(ii) The norm of α: NK/K0(α) = det
(
mα,K/K0

)
∈ K0.

(iii) The characteristic polynomial of α: fα,K/K0 = det
(
T idK −mα,K/K0

)
∈ K0[T ].

We have:
fα,K/K0 = T [K:K0] − trK/K0(α)T [K:K0]−1 + · · ·+ (−1)[K:K0]NK/K0(α).

Proposition 1.3.2. Let K be a number field and α ∈ K.

(i) We have:
fα,K/Q =

∏
σ∈Homfields(K,C)

(T − σ(α)) .

Therefore, trK/Q(α) = ∑
σ∈Homfields(K,C) σ(α) and NK/Q(α) = ∏

σ∈Homfields(K,C) σ(α).

(ii) If L is a finite extension of K, then:

fα,L/Q =
(
fα,K/Q

)[L:K]
.

Therefore, trL/Q(α) = [L : K] trK/Q(α) and NL/Q(α) =
(
NK/Q(α)

)[L:K]
.
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Proof. Note that mα,K/Q : K → K induces a R-linear map K⊗QR→ K⊗QR. By the isomorphism
K ⊗Q R ' RΣr ⊕ CΣ′c , it induces a R-linear map Λα : RΣr ⊕ CΣ′c → RΣr ⊕ CΣ′c . Now, compute the
matrix of Λα in the canonical basis and deduce the result.

Proposition 1.3.3. Let K be a number field. Then the map bK : (x, y) ∈ K×K 7−→ trK/Q(xy) ∈ Q
is a nondegenerate Q-bilinear form. Moreover, after extending the scalars to R, the signature of the
induced R-bilinear form bR : (K ⊗Q R)× (K ⊗Q R)→ R is (r1 + r2, r2).

Proof. The Q-bilinear form bK : K×K → Q induces a R-bilinear form bR : (K ⊗Q R)×(K ⊗Q R)→
R, which induces a R-bilinear form b′R :

(
RΣr ⊕ CΣ′c

)
×
(
RΣr ⊕ CΣ′c

)
→ R. Now, b′R is the orthogonal

sum of the bilinear forms trR/R and trC/R. Using this, we show that b′R is nondegenerate of signature
(r1 + r2, r2).

Remark 1.3.4. Proposition 1.3.3 gives an effective way to compute r1 and r2.

Definition 1.3.5 (Discriminant). Let K be a number field of degree n. The discriminant of a n-uple
(ω1, . . . , ωn) ∈ Kn is defined by:

∆ (ω1, . . . , ωn) = det
((

trK/Q (ωiωj)
)

1≤i,j≤n

)
.

Proposition 1.3.6. Let K be a number field of degree n and (ω1, . . . , ωn) ∈ Kn.

(i) If Homfields (K,C) = {σ1, . . . , σn}, then:

∆ (ω1, . . . , ωn) = det
(
(σj (ωi))1≤i,j≤n

)2
.

(ii) If A = (aij)1≤i,j≤n ∈Mn (Q) and ω′i = ∑n
j=1 aijωj for i ∈ {1, . . . , n}, then:

∆ (ω′1, . . . , ω′n) = (detA)2 ∆ (ω1, . . . , ωn) .

(iii) ∆ (ω1, . . . , ωn) 6= 0 if and only if (ω1, . . . , ωn) is a Q-basis of K.

Example 1.3.7. Assume that K = Q(α), and [K : Q] = n. Then ∆ (1, α, . . . , αn−1) can be expressed
as a Vandermonde determinant, which gives:

∆
(
1, α, . . . , αn−1

)
= (−1)

n(n−1)
2

∏
σ 6=τ

(σ(α)− τ(α))

= disc (fα,min)

= (−1)
n(n−1)

2 Res
(
fα,min, f

′
α,min

)
= (−1)

n(n−1)
2 NK/Q

(
f ′α,min(α)

)
.

Example 1.3.8. If d ∈ Z is not a square, and K = Q
(√

d
)
, then ∆

(
1,
√
d
)

= 4d.

1.4 Rings of integers
Definition 1.4.1 (Ring of integer). If K is a number field, then the ring of integer of K is defined
by:

OK = {α ∈ K, α is integral over Z} = {α ∈ K, fα,min ∈ Z[T ]} .
OK is a subring of K, and K = Frac (OK).

Example 1.4.2. Let d be a square-free integer. If K = Q
(√

d
)
, then:

OK =

Z
[√
d
]

if d 6≡ 1 mod 4
Z
[

1+
√
d

2

]
if d ≡ 1 mod 4

.
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Proposition 1.4.3. Let K be a number field. Then OK is a free Z-module of rank [K : Q].

Proof. Let ω1, . . . , ωn ∈ OK s.t. (ω1, . . . , ωn) is a Q-basis of K. Consider the bilinear form bK :
K ×K → Q given by the trace and let (ω∗1, . . . , ω∗n) be the dual basis of (ω1, . . . , ωn) w.r.t. bK , i.e.
bK
(
ωi, ω

∗
j

)
= δij for all i, j. For α ∈ OK , one can write:

α =
n∑
i=1

bK (α, ωi)ω∗i =
n∑
i=1

trK/Q (αωi)︸ ︷︷ ︸
∈Z

ω∗i .

Therefore:
n⊕
i=1

Zωi ⊆ OK ⊆
n⊕
i=1

Zω∗i .

This shows that OK is a free Z-module of rank n.

Proof (Alternative method). Choose ω1, . . . , ωn ∈ OK s.t. (ω1, . . . , ωn) is a Q-basis of K and
∆ (ω1, . . . , ωn) is minimal. Then we claim that (ω1, . . . , ωn) is a Z-basis of OK . By contradiction,
if there exists α ∈ OK\

⊕n
i=1 Zωi, write α = ∑n

i=1 aiωi, with a1, . . . , an ∈ Q. We may assume that
a1 ∈ Q\Z and that 0 < a1 < 1. Now, we obtain:

|∆ (α, ω2, . . . , ωn)| = a2
1 |∆ (ω1, . . . , ωn)| < |∆ (ω1, . . . , ωn)| ,

which contradicts the minimality of ∆ (ω1, . . . , ωn).

Definition 1.4.4 (Discriminant of a number field). If K is a number field, then all the Z-bases of
OK have the same discriminant. This discriminant is called the discriminant of K and denoted by
DK.

Proof. If (ω1, . . . , ωn) and (ω′1, . . . , ω′n) are two Z-bases of OK , then the matrix of change of basis is
A ∈ GLn(Z). Hence, detA ∈ {±1}, and so:

∆ (ω′1, . . . , ω′n) = (detA)2 ∆ (ω1, . . . , ωn) = ∆ (ω1, . . . , ωn) .

Example 1.4.5. Let d be a square-free integer. If K = Q
(√

d
)
, then:

DK =

4d if d 6≡ 1 mod 4
d if d ≡ 1 mod 4

.

Example 1.4.6. For any number field K, the sign of DK is (−1)r2.

Proposition 1.4.7. Let K be a number field. Let ω1, . . . , ωn ∈ OK s.t. (ω1, . . . , ωn) is a Q-basis of
K. Then:

∆ (ω1, . . . , ωn) =
(
OK :

n⊕
i=1

Zωi
)2

DK .

Proof. Let (e1, . . . , en) be a Z-basis of OK . Write ωi = ∑n
j=1 aijej for i ∈ {1, . . . , n}, with A =

(aij)1≤i,j≤n ∈Mn (Z). Then ∆ (ω1, . . . , ωn) = (detA)2DK . Now, we have the following commutative
diagram:

Zn Zn×A

⊕n
i=1 Zωi OK

⊆
' '
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By the Elementary Divisor Theorem, there exist P,Q ∈ GLn(Z), d1, . . . , dn ∈ N∗ s.t. di | di+1 for all
i and A = P diag (d1, . . . , dn)Q. Hence:(

OK :
n⊕
i=1

Zωi
)

= |Zn/ ImA| =
∣∣∣∣∣
n∏
i=1

Z/diZ
∣∣∣∣∣ = d1 · · · dn = |detA| .

Corollary 1.4.8. Let K be a number field. Let ω1, . . . , ωn ∈ OK s.t. (ω1, . . . , ωn) is a Q-basis of K.
If ∆ (ω1, . . . , ωn) is square-free, then DK = ∆ (ω1, . . . , ωn) and OK = ⊕n

i=1 Zωi.

Remark 1.4.9. We now have an algorithm to compute OK, given a number field K:

• Choose a Q-basis (ω1, . . . , ωn) of K in OK.

• Compute ∆ (ω1, . . . , ωn).

• Find a square factor d of ∆ (ω1, . . . , ωn) (if this is impossible, then OK = ⊕n
i=1 Zωi).

• Try to find a n-uple (a1, . . . , an) ∈ {0, . . . , d− 1}n s.t. a1
d
ω1 + · · · + an

d
ωn ∈ OK. If this is

possible, modify (ω1, . . . , ωn). Otherwise, try another square factor.

1.5 Cyclotomic number fields
Notation 1.5.1. If K is a field and n ∈ N∗, we define:

• µn(K) = {x ∈ K, xn = 1} ≤ K×.

• µ′n(K) = {x ∈ K, x is of order n in K×} ≤ µn(K).

We have µ′n(K) 6= ∅ ⇐⇒ |µn(K)| = n. If this is the case, then µn(K) is a cyclic group and µ′n(K)
is its set of generators. Elements of µ′n(K) are called primitive n-th roots of unity.

Proposition 1.5.2.

(i) There exists a unique sequence (Φn)n∈N∗ in Z[T ] s.t.

∀n ∈ N∗, T n − 1 =
∏
d|n

Φd.

Moreover, Φn is monic for all n ∈ N∗.

(ii) If K is a field of characteristic prime to n, then:

µ′n(K) = {x ∈ K, Φn(x) = 0} .

The polynomial Φn is called the n-th cyclotomic polynomial.

Remark 1.5.3. In C[T ], one can write Φn = ∏
ζ∈µ′n(C) (T − ζ).

Definition 1.5.4 (Cyclotomic number field). The n-th cyclotomic number field is by definition
Q (µn(C)) = Q (µ′n(C)).

Proposition 1.5.5. For n ∈ N∗, Φn is irreducible over Q. Therefore, if ζn ∈ µ′n(C), then:

Q (µn(C)) = Q (ζn) = Q[T ]/ (Φn) .

Hence [Q (µn(C)) : Q] = deg Φn = |µ′n(C)| = ϕ(n), where ϕ is the Euler function.

Lemma 1.5.6. Let p be a prime number and ν ∈ N∗. Then disc (Φpν ) is a power of p.
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Proof. Write n = pν . By Example 1.3.7, we have disc (Φn) = ±NQ(ζn)/Q (Φ′n (ζn)). Now, write:

T p
ν − 1 = Φpν (T )

(
T p

ν−1 − 1
)
.

After derivating and evaluating at ζn, we obtain:

nζn−1
n = Φ′n (ζn)

(
ζp

ν−1

n − 1
)
.

But NQ(ζn)/Q (ζn) = ±Φn(0) because fζn,min = Φn, which leads to NQ(ζn)/Q (ζn−1
n ) = ±1. To compute

NQ(ζn)/Q
(
ζp

ν−1
n − 1

)
, note that ξ = ζp

ν−1
n ∈ µ′p(C), so fξ,min = Φp and fξ−1,min = Φp(T + 1). Thus,

NQ(ξ)/Q(ξ − 1) = ±Φp(1) = ±p because Φp = T p−1 + T p−2 + · · ·+ T + 1. Now, we easily obtain that
disc (Φpν ) is a power of p.

Remark 1.5.7. For n ≥ 3, if ζn ∈ µ′n(C), we can show that:

disc Φn = ∆
(
1, ζn, . . . , ζϕ(n)−1

n

)
= (−1)

ϕ(n)
2

nϕ(n)∏
p prime
p|n

p
ϕ(n)
p−1

.

In particular, the prime factors of disc Φn are exactly the prime factors of n.

Lemma 1.5.8. Let p be a prime number. Consider a monic polynomial f ∈ Z[T ]. We say that f is
p-Eisenstein if f ≡ T n mod p and f(0) 6≡ 0 mod p2. In this case:

(i) f is irreducible over Q.

(ii) p - (OK : Z[α]) where K = Q[T ]/(f) and α is a root of f in K.

Proof. (ii) By contradiction, let x ∈ OK\Z[α] s.t. px ∈ Z[α]. Write x = 1
p

∑n−1
i=0 uiα

i, with
u0, . . . , un−1 ∈ Z. Since x 6∈ Z[α], there exists a minimal index i0 s.t. ui0 6∈ pZ. Hence:

αn−1−i0x = αn−1−i0
i0−1∑
i=0

ui
p
αi︸ ︷︷ ︸

x1

+ui0
p
αn−1 + αn

p

n−1∑
i=i0+1

uiα
i−(i0+1)

︸ ︷︷ ︸
x3

.

But α is a root of the Eisenstein polynomial f , so αn ∈ pZ[α], which shows that x3 ∈ Z[α] ⊆ OK .
Moreover, αn−1−i0x ∈ OK and x1 ∈ Z[α] ⊆ OK . As a consequence:

ui0
p
αn−1 ∈ OK .

Thus:
Z 3 NK/Q

(
ui0
p
αn−1

)
=
uni0f(0)n−1

pn
.

As p - ui0 , we obtain pn | f(0)n−1, so p2 | f(0), which is a contradiction.

Corollary 1.5.9. Let f ∈ Z[T ] be a p-Eisenstein polynomial. If K = Q[T ]/(f), then:

vp (DK) = vp (disc f) .

Theorem 1.5.10. If ζn ∈ µ′n(C), then:

OQ(µn(C)) = Z [ζn] .

Equivalently, DQ(µn(C)) = disc (Φn).
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Proof. First step: assume that n = pν is a power of a prime number p. By Lemma 1.5.6, disc (Φn)
is also a power of p, and so is DQ(µn(C)) because DQ(µn(C)) | disc (Φn). Therefore, it suffices to show
that vp

(
Dµn(C)

)
= vp (disc (Φn)). But we see that Φn (T + 1) is p-Eisenstein (because n = pν).

By Corollary 1.5.9, vp
(
Dµn(C)

)
= vp (disc (Φn (T + 1))) = vp (disc (Φn)). Second step: write n =

pν1
1 · · · pνrr , with p1, . . . , pr distinct primes. Let ξi = ζ

np
−νi
i

n ∈ µpνii (C) for i ∈ {1, . . . , r}. Then we have
an algebra homomorphism λ : Q (ξ1) ⊗Q · · · ⊗Q Q (ξr) −→ Q (ζn), which is surjective. As the two
Q-algebras have the same dimension, we conclude that λ is an isomorphism, so Q (ξ1)⊗Q · · ·⊗QQ (ξr)
is a field: we say that Q (ξ1) , . . . ,Q (ξr) are linearly disjoint. Moreover, DQ(ξ1), . . . , DQ(ξr) are coprime
because DQ(ξi) is a power of pi. These two facts imply that:

OQ(ζn) = λ
(
OQ(ξ1) ⊗Z · · · ⊗Z OQ(ξr)

)
= Z [ξ1, . . . , ξr] = Z [ζn] ,

and DQ(ζn) = DQ(ξ1) · · ·DQ(ξr).

Corollary 1.5.11. The prime factors of DQ(µn(C)) are exactly the prime factors of n.

2 Ideal factorisation of algebraic numbers
Remark 2.0.1. Let K = Q

(√
−5
)
. We know that OK = Z

[√
−5
]
. In OK, we have 6 = 2 × 3 =(

1 +
√
−5
) (

1−
√
−5
)
: these are two distinct factorisations of 6 in OK as products of irreducible

elements. Therefore, OK is not a factorial domain. The aim of what follows will be to restore
factorisation in OK.

2.1 Dedekind rings
Definition 2.1.1 (Dedekind ring). A ring A is said to be Dedekind if the three following conditions
are satisfied:

(i) A is integrally closed, i.e. integrally closed in its fraction field.

(ii) A is noetherian.

(iii) Every nonzero prime ideal of A is maximal.

Remark 2.1.2. Condition (iii) in the definition of Dedekind rings can be rewritten as dimA ≤ 1,
where dimA is the Krull dimension of A.

Example 2.1.3. Fields and principal ideal domains are Dedekind.

Proposition 2.1.4. Let K be a number field. Then OK is Dedekind.

Proof. As OK is a free Z-module of finite rank (by Proposition 1.4.3), OK is noetherian. Now, let
x ∈ Frac (OK) = K be integral over OK . Then there exists a sub OK-module 0 ( M ⊆ K of finite
type s.t. xM ⊆ M . But as OK is itself a Z-module of finite type, so is M . Therefore, x is integral
over Z and x ∈ OK ; this proves that OK is integrally closed. Finally, let p be a nonzero prime ideal in
OK and let x ∈ p\{0}. Then we have xOK ⊆ p ⊆ OK . As xOK and OK are free Z-modules of rank
[K : Q], so is p. Therefore, OK/p is a finite integral domain, so it is a field and p is maximal.

8



2.2 Factorisation of ideals in Dedekind rings
Proposition 2.2.1. Let A be a Dedekind ring. Let I+(A) be the set of nonzero ideals of A and let P
be the set of nonzero prime ideals of A. Then there is a natural monoid structure on I+(A) (given by
multiplication of ideals), and this structure is compatible with the inclusion: if a ⊆ b, then ac ⊆ bc.
Moreover, we have a monoid homomorphism:

ϕ :

∣∣∣∣∣∣∣
N(P ) −→ I+(A)

(mp)p∈P 7−→
∏
p∈P

pmp ,

where N(P ) is the set of sequences indexed by P with a finite number of nonzero terms.

Definition 2.2.2 (Fractional ideals). Let A be a Dedekind ring. A fractional ideal of A is a nonzero
A-submodule a of K = Frac(A) s.t. ∃d ∈ A\{0}, da ⊆ A. The set of fractional ideals of A will be
denoted by I(A); it is a monoid.

Lemma 2.2.3. Let A be a noetherian ring. Then every nonzero ideal of A contains a finite product
of nonzero prime ideals.

Proof. If there exists a nonzero ideal a of A s.t. a does not contain any finite product of nonzero
prime ideals, then, since A is noetherian, we may assume a to be maximal among the ideals satisfying
this property. Now, a is not a prime ideal so there exist a, b ∈ A\a s.t. ab ∈ a. Hence, a ( a+Aa, so
there exist prime ideals p1, . . . , pr s.t. a+Aa ⊇ p1 · · · pr. Likewise, there exist prime ideals q1, . . . , qs
s.t. a+Ab ⊇ q1 · · · qs. Now, a = a+Aab ⊇ (a + Aa) (a + Ab) ⊇ p1 · · · prq1 · · · qs, a contradiction.

Notation 2.2.4. Let A be a Dedekind ring. For a ∈ I+(A), we set:

ã = {x ∈ K, xa ⊆ A} ∈ I(A).

Lemma 2.2.5. Let A be a Dedekind ring and let p be a nonzero prime ideal of A.

(i) A ( p̃.

(ii) p · p̃ = A.

Proof. (i) Let x ∈ p\{0}. By Lemma 2.2.3, there exist prime ideals p1, . . . , pr s.t. p1 · · · pr ⊆ Ax,
with r minimal. Since p1 · · · pr ⊆ p, there exists i s.t. pi ⊆ p and therefore pi = p (because pi
is maximal since A is Dedekind). We may assume that i = 1, thus pp2 · · · pr ( Ax ⊆ p, and
p2 · · · pr 6⊆ Ax by minimality of r. Choose y ∈ p2 · · · pr\Ax. Hence, y

x
∈ p̃\A, which proves the

result. (ii) We have A ⊆ p̃, so p ⊆ pp̃ ⊆ A. Therefore, pp̃ = p or pp̃ = A (because p is maximal
because A is Dedekind). The first case cannot happen: if pp̃ = p, then elements of p̃ stabilise the
A-module p, so by the Cayley-Hamilton Theorem, they are integral over A, so they are in A because
A is integrally closed. Therefore, pp̃ = A.

Theorem 2.2.6. Let A be a Dedekind ring. Then the homomorphism ϕ : N(P ) → I+(A) of Proposi-
tion 2.2.1 is an isomorphism.

Proof. We extend ϕ to a map ϕ : Z(P ) → I(A). We shall prove that I(A) is a group, that ϕ is
a group isomorphism and that ϕ

(
N(P )

)
= I+(A). Surjectivity of ϕ. By contradiction, consider an

ideal a ∈ I+(A)\ Imϕ and assume that a is maximal among the ideals of I+(A)\ Imϕ (because A
is noetherian). Then a is a strict ideal of A that is not prime, so there exists a prime ideal p s.t.
a ( p. Therefore, a ( p̃a ⊆ A (using Lemma 2.2.5). By maximality of a, we have p̃a ∈ Imϕ,
so a = pp̃a ∈ p Imϕ ⊆ Imϕ, a contradiction. Now, if a ∈ I(A), let d ∈ A\{0} s.t. da ⊆ A.
Write da = ϕ

(
(mp)p∈P

)
, dA = ϕ

(
(np)p∈P

)
, so that a = ϕ

(
(mp)p∈P − (np)p∈P

)
∈ Imϕ. Injectivity

of ϕ. Let (mp)p∈P ∈ Z(P ), (np)p∈P ∈ Z(P ) s.t. ϕ
(
(mp)p∈P

)
= ϕ

(
(np)p∈P

)
. We may assume that
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∀p ∈ P, min {mp, np} = 0. Now, if there exists p ∈ P with mp > 0, then p ⊇ ∏q∈P qnq , so there exists
q ∈ P s.t. q ⊆ p and nq > 0. Thus q = p, which contradicts the assumption that min {mp, np} = 0.
Existence of inverses in I(A). If a ∈ I(A), we can write a = ∏

p∈P pmp , so that a−1 = ∏
p∈P p−mp ,

and we may check that a−1 = ã. Image of N(P ). It is clear that ϕ
(
N(P )

)
⊆ I+(A). Conversely, if

a ∈ I+(A), write a = ∏
p∈P pmp ⊆ A. Thus:∏

mp≥0
pmp ⊆

∏
mp<0

p−mp .

If there exists q s.t. mq < 0, then ∏
mp≥0 p

mp ⊆ q and there exists p with p = q and mp ≥ 0, a
contradiction. Thus, a ∈ ϕ

(
N(P )

)
.

Definition 2.2.7 (p-adic valuation). Let A be a Dedekind ring. For a ∈ I+(A), we can write uniquely
a = ∏

p∈P pvp(a). For p ∈ P , the function vp : I+(A)→ N thus defined is called the p-adic valuation.

Proposition 2.2.8. Let A be a Dedekind ring and let a, b ∈ I+(A). Then:

(i) ∀p ∈ P, vp (ab) = vp(a) + vp(b).

(ii) a ⊆ b⇐⇒ ∀p ∈ P, vp(b) ≤ vp(a).

(iii) ∀p ∈ P, vp (a + b) = min {vp(a), vp(b)}.

(iv) ∀p ∈ P, vp (a ∩ b) = max {vp(a), vp(b)}.

Definition 2.2.9 (Divisibility in I+(A)). Let A be a Dedekind ring. If a, b ∈ I+(A), we say that
a | b if one of the following two equivalent conditions is satisfied:

(i) ∃c ∈ I+(A), b = ac.

(ii) b ⊆ a.

Remark 2.2.10. Let A be a Dedekind ring. For a, b ∈ A\{0}, we have a | b (in A) if and only if
(a) | (b) (in I+(A)).

Proposition 2.2.11. Let A be a Dedekind ring.

(i) For a, b ∈ I+(A), we have a + b = gcd (a, b) and a∩ b = lcm (a, b) (where the gcd and lcm are
defined by the notion of divisibility in I+(A)). In particular:

gcd (a, b) · lcm (a, b) = ab.

(ii) Every a ∈ I+(A) has a multiple which is a principal ideal. Moreover, we have:

a = gcd ((x), x ∈ a\{0}) .

(iii) Let a, b ∈ I+(A) and assume that a and b are coprime (i.e. a + b = A). Then:

A/ab ' A/a⊕ A/b.

Example 2.2.12. Let K = Q
(√
−5
)
. We know that OK = Z

[√
−5
]
. We have 6 = 2 × 3 =(

1 +
√
−5
) (

1−
√
−5
)
. Now, if we set p2 =

(
2, 1 +

√
−5
)

=
(
2, 1−

√
−5
)
, p3 =

(
3, 1 +

√
−5
)
and

p′3 =
(
3, 1−

√
−5
)
, then p2, p3, p

′
3 are prime in OK (which we show by computing OK/p2, etc.). And

we have:
p2

2 = (2) , p2p3 =
(
1 +
√
−5
)
, p2p

′
3 =

(
1−
√
−5
)
, p3p

′
3 = (3) .

Thus, the unique factorisation of (6) is (6) = p2
2p3p

′
3.
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2.3 Class group
Definition 2.3.1 (Class group of a Dedekind ring). Let A be a Dedekind ring. Then we have an
exact sequence:

1 −→ A× −→ K× −→ I(A) −→ Cl(A) −→ 1,

where Cl(A) = I(A)/K× and where the map K× → I(A) is given by x 7→ Ax. The group Cl(A) is
called the class group of A.

Proposition 2.3.2. Let A be a Dedekind ring. Then the following three assertions are equivalent:

(i) A is principal.

(ii) A is factorial.

(iii) Cl(A) = {1}.

Remark 2.3.3. If K is a number field, then the group Cl (OK) is finite.

2.4 Factorisation and ramification
Definition 2.4.1 (Norm of an ideal). Let K be a number field. If a is a nonzero ideal of OK, we
define the norm of a by:

N (a) = |OK/a| ∈ N.

N (a) is finite because a is a free Z-module of rank [K : Q], as we have seen in the proof of Proposition
2.1.4.

Proposition 2.4.2. Let K be a number field.

(i) If α ∈ OK\{0}, then:
N (αOK) =

∣∣∣NK/Q (α)
∣∣∣ .

(ii) N is multiplicative: N (ab) = N (a)N (b) for every nonzero ideals a and b of OK.

Proof. (i) Note that NK/Q(α) = det (mα), where mα : OK → OK is the multiplication by α. Now,
consider the following commutative diagram:

Zn Zn×A

OK OK
mα

' '

Thus, N (αOK) = |OK/αOK | = |Zn/ ImA|. But using the Elementary Divisor Theorem, we see
that |Zn/ ImA| = |detA| =

∣∣∣NK/Q(α)
∣∣∣, as in the proof of Proposition 1.4.7. (ii) It suffices to prove

the result for prime ideals. Thus, let p and q be two nonzero prime ideals of A. If p 6= q, then
OK/pq ' (OK/p)× (OK/q), and the result is clear. If p = q, then we have an exact sequence:

0 −→ p/p2 −→ OK/p2 −→ OK/p −→ 0,

so it suffices to prove that |p/p2| = |OK/p|. But p/p2 is an (OK/p)-vector space, so it suffices to
prove that dimOK/p (p/p2) = 1. To do this, choose a ∈ p\p2. We can write (a) = pmb, with b prime
to p, m ∈ N. Since a ∈ p, we have m ≥ 1; since a 6∈ p2, we have m < 2, so m = 1 and (a) = pb. As
A = p + b, we obtain p = p2 + pb = p2 + (a), so p/p2 = VectOK/p (a).
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Definition 2.4.3 (Norm of a fractional ideal). Let K be a number field. If a is a fractional ideal of
OK and d ∈ OK\{0} is s.t. da ⊆ OK, then we define:

N (a) = N (da)
∣∣∣NK/Q(d)

∣∣∣−1
.

This definition does not depend on the choice of d.

Remark 2.4.4. Let K be a number field. If p is a prime ideal of OK, then there exists a unique
prime number p s.t. p ∩ Z = pZ, i.e. p ∈ p, i.e. p | p.

Definition 2.4.5 (Residual degree and ramification index). Let K be a number field. If p is a prime
ideal of OK, let p be the unique prime number s.t. p | p. Then the natural map Z → OK/p induces
a field extension Fp → OK/p.

(i) We define the residual degree of p by:

f (p/p) = dimFp (OK/p) .

(ii) We define the ramification index of p by:

e (p/p) = vp (pOK) .

We say that p is ramified in K is there exists a prime ideal p | p s.t. e (p/p) ≥ 2.

Proposition 2.4.6. Let K be a number field and let p be a prime number.

(i) ∑p|p e (p/p) f (p/p) = [K : Q].

(ii) For all c ∈ R, the set of ideals in OK whose norm is bounded by c is finite.

Proof. (i) Write:
pOK =

∏
p|p

pe(p/p).

Computing the norms of both sides gives the result. (ii) Let c ∈ R and let a be a nonzero ideal of
OK s.t. N (a) ≤ c. Write a = pm1

1 · · · pmrr , and let pi be a prime number s.t. pi | pi for all i. Then:

c ≥ N (a) = N (p1)m1 · · ·N (pr)mr = p
m1f(p1/p1)
1 · · · pmrf(pr/pr)

r .

Now, there is only a finite number of possibilities for p1, . . . , pr, so there is only a finite number of
possibilities for p1, . . . , pr (because each prime number has a finite number of divisors in OK). There
is also a finite number of possibilities for m1, . . . ,mr, so there is only a finite number of possibilities
for a.

Proposition 2.4.7. Let K = Q (α) be a number field, with α ∈ OK and f = fα,min ∈ Z[T ]. Let p
be a prime number s.t. p - (OK : Z[α]). Consider a factorisation f = he1

1 · · ·herr of f in Fp[T ], with
h1, . . . , hr distinct irreducible polynomials in Fp[T ] and e1, . . . , er ≥ 1. For 1 ≤ i ≤ r, let gi be a
representative of hi in Z[T ]. Then:

(i) The ideals pi = (p, gi(α)), for 1 ≤ i ≤ r, are prime and distinct.

(ii) For 1 ≤ i ≤ r, e (pi/p) = ei and f (pi/p) = deg hi.

(iii) pOK = ∏r
i=1 p

ei
i .

Proof. We have the following commutatives diagram with exact rows and columns:
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0 Z [α] OK OK/Z[α] 0

0 Z[α] OK OK/Z[α] 0

0 0 0

Z[α]/pZ[α] OK/pOK 0

×p ×p ×p

The Snake Lemma gives an exact sequence 0 −→ Z[α]/pZ[α] −→ OK/pOK −→ 0, which shows that:

Z[α]/pZ[α] ' OK/pOK .

Now, for 1 ≤ i ≤ r, we have:

OK/pi = OK/ (p, gi(α)) ' Z[α]/ (p, gi(α)) ' Z[T ]/ (f, p, gi) ' Fp[T ]/ (hi) ,

so OK/pi is a field and pi is prime. Moreover, we have a map ϕi : Fp[T ] → OK/pi ' Fp[T ]/ (hi)
given by the canonical projection. Since Kerϕi = (hi), it is clear that pi 6= pj for i 6= j (because
(hi) 6= (hj) for i 6= j). Furthermore:

f (pi/p) = dimFp (OK/pi) = dimFp (Fp[T ]/ (hi)) = deg hi.

Finally, note that:
r∏
i=1

peii =
r∏
i=1

(p, gi(α))ei ⊆
r∏
i=1

(p, gi(α)ei) ⊆
(
p,

r∏
i=1

gi(α)ei
)
⊆ pOK .

Computing the norms of both sides, we obtain N (∏r
i=1 p

ei
i ) = N (pOK), so ∏r

i=1 p
ei
i = pOK .

Remark 2.4.8. Factorisation of polynomials in Fp[T ] is effective, so Proposition 2.4.7 gives an
algorithm to compute pOK for some values of p.

Corollary 2.4.9. Let K = Q (α) be a number field, with α ∈ OK. Assume that f = fα,min is
p-Eisenstein. Then:

pOK = p[K:Q],

with p = (p, α).

Example 2.4.10. If K = Q (µpm(C)) and ζpm ∈ µ′pm (C), then Φpm (T + 1) is p-Eisenstein. By
Corollary 2.4.9, pOK = pp

m−1(p−1), with p = (p, ζpm − 1). Moreover, using the fact that Φpm (T + 1)
is p-Eisenstein, we see that p ∈ (ζpm − 1). Therefore pOK = (ζpm − 1)p

m−1(p−1), and there exists
ε ∈ O×K s.t. p = ε (ζpm − 1)p

m−1(p−1).

Lemma 2.4.11. Let L/K be a finite and separable field extension. Then the symmetric bilinear
form b : (x, y) ∈ L× L 7−→ trL/K (xy) is nondegenerate.

Proof. Let a ∈ L. Let Kalg be the algebraic closure of K. Thus, for x, y ∈ L

trL/K(xy) =
∑

σ∈Homfields(L,Kalg)
σ(x)σ(y).

If b (x, ·) = 0, then ∑
σ∈Homfields(L,Kalg) σ(x)σ = 0. By the linear independence of characters, this

implies that σ(x) = 0 for all σ ∈ Homfields
(
L,Kalg

)
, and therefore x = 0. This proves that b is

nondegenerate.
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Theorem 2.4.12. Let K be a number field. Then a prime number p is ramified in K if and only if
p | DK.

Proof. Consider the symmetric nondegenerate bilinear form b : (x, y) ∈ K ×K 7−→ trK/Q(xy) ∈ Q.
Note that b induces a Z-bilinear form b : OK×OK → Z. Now, consider the Fp-algebra A = OK/pOK ,
and denote by · the projection OK → A. We have:

∀x, y ∈ OK , b(x, y) = tr
(
OK

×xy−−→ OK
)

= tr
(
OK/pOK

×xy−−→ OK/pOK
)

= trA/Fp (xy) = b (x, y) ,

where b : A×A→ Fp is the bilinear form induced by the trace. If B ∈Mn (Z) is the matrix of b in a
Z-basis e of OK , then B ∈Mn (Fp) is the matrix of b in the basis e of A. Therefore, b is degenerate
iff detB = detB = 0 iff p | detB = DK . It remains to show that b is degenerate iff p ramifies in
K. To do this, factorise pOK = pe1

1 · · · perr and apply the Chinese Remainder Theorem to obtain the
following isomorphism of Fp-algebras:

A '
r⊕
i=1
OK/peii .

Thus b = ⊕r
i=1 bi, with bi = tr(OK/peii )/Fp . Thus, b is degenerate iff there exists 1 ≤ i ≤ r s.t. bi is

degenerate. We shall now show that bi is degenerate iff ei > 1. If ei > 1, then Ai = OK/peii contains
a nilpotent element x, so bi (x, y) = 0 for all y ∈ Ai, which shows that bi is degenerate. Conversely,
assume that ei = 1. Note that Ai is a finite (separable) extension of Fp, so by Lemma 2.4.11, bi is
nondegenerate.

Example 2.4.13. By Theorem 2.4.12 and Corollary 1.5.11, p ramifies in DQ(µn(C)) iff p | n.

2.5 Factorisation in Galois extensions
Theorem 2.5.1 (Galois Connection). Let L/K be a finite Galois extension with Galois group G =
Gal (L/K). If GG is the set of subgroups of G and FL/K is the set of subfields of L containing
K, then we have two reciprocal bijections GG → FL/K given by H ∈ GG 7−→ LH ∈ FL/K and
K ′ ∈ FL/K 7−→ Gal (L/K ′) ∈ GG.

Definition 2.5.2 (Residue field). Let K be a number field and let p be a nonzero prime ideal of OK.
Then the residue field of p is defined by:

κ (p) = OK/p.

Remark 2.5.3. Let K be a number field and let L/K be a finite Galois extension. Consider a
nonzero prime ideal p of OK.

(i) We can factorise pOL = ∏r
i=1 P

ei
i in OL.

(ii) If P is a prime ideal of OL with P | pOL, then κ (P) = OL/P is a finite extension of κ (p) =
OK/p.

(iii) Gal (L/K) acts on the set {P prime ideal of OL, P | pOL}. Indeed, if P | pOL and g ∈
Gal(L/K), then g (pOL) = pOL and therefore g (P) is a prime ideal of OL with g (P) | pOL.

Proposition 2.5.4. Let K be a number field and let L/K be a finite Galois extension. Consider a
nonzero prime ideal p of OK.

(i) Gal (L/K) acts transitively on {P prime ideal of OL, P | pOL}.
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(ii) The integer e (P/p) (resp. f (P/p)) does not depend on P and will be denoted by e (resp. f).
Moreover, if g is the number of prime factors of pOL, then:

[L : K] = efg.

Thus pOL = ∏g
i=1 P

e
i , and dimκ(p) κ (Pi) = f .

Proof. It suffices to prove (i). Let P1, . . . ,Pg be the distinct prime factors of pOL. By the Chinese
Remainder Theorem, there exists x ∈ P1\ (P2 ∪ · · · ∪Pg). Now, consider y = ∏

σ∈Gal(L/K) σ(x) ∈
OGL = OK , with G = Gal(L/K). We have y = x

∏
σ 6=id σ(x) ∈ P1, so y ∈ P1 ∩ OK = p. Thus, if

1 ≤ i ≤ g, then y = ∏
σ∈Gal(L/K) σ(x) ∈ p ⊆ Pi, so there exists σ ∈ Gal (L/K) s.t. σ(x) ∈ Pi (by

primality). But σ(x) ∈ σ (P1) \ (σ (P2) ∪ · · · ∪ σ (Pg)), which shows that Pi = σ (P1).

Definition 2.5.5 (Decomposition group and inertia group). Let K be a number field and let L/K
be a finite Galois extension. Consider a nonzero prime ideal p of OK.

(i) If P | pOL, define the decomposition group of P by:

D (P/p) = StabGal(L/K) (P) = {σ ∈ Gal (L/K) , σ (P) = P} .

(ii) Each automorphism σ ∈ D (P/p) induces an automorphism of OL/P which fixes κ (p). This
defines a group homomorphism ϕP : D (P/p) → Gal (κ (P) /κ (p)). Now, the inertia group of
P is defined by:

I (P/p) = KerϕP = {σ ∈ D (P/p) , ∀x ∈ OL, σ(x) ≡ x mod P} .

Proposition 2.5.6. Let K be a number field and let L/K be a finite Galois extension. Consider a
nonzero prime ideal p of OK and a prime ideal P | pOL. Then:

(i) The group homomorphism ϕP : D (P/p)→ Gal (κ (P) /κ (p)) is surjective.

(ii) With the notations of Proposition 2.5.4, we have:

|D (P/p)| = ef and |I (P/p)| = e.

Proof. (i) Consider a primitive element a ∈ κ (P), with minimal polynomial g ∈ κ (p) [T ]. By the
Chinese Remainder Theorem, OL/pOL is isomorphic to a direct sum OL/PeOL ⊕

⊕
Q6=POL/QeOL.

Now, choose α ∈ OL which corresponds to (a, 0, . . . , 0) in the direct sum (i.e. P is the only prime
ideal of OL dividing pOL and not containing α). If f ∈ OK [T ] is the minimal polynomial of α over
K, then g divides f in κ (p) [T ]. Now, let τ ∈ Gal (κ (P) /κ (p)). As τ(a) is a root of g, there is a
root β of f in OL s.t. β ≡ τ(α) mod P. As Gal(L/K) acts transitively on the roots of f in L, there
exists σ ∈ Gal(L/K) s.t. σ(α) = β. We now see that σ (P) = P, i.e. σ ∈ D (P/p), and ϕP(σ) = τ .
(ii) Use the fact that [κ (P) : κ (p)] = f .

Corollary 2.5.7. Let K be a number field and let L/K be a finite Galois extension. Consider a
nonzero prime ideal p of OK. Assume that e = 1, i.e. p is unramified in L, and write pOL =
P1 · · ·Pg. Then, for every 1 ≤ i ≤ g, we have:

D (Pi/p) ' Gal (κ (P) /κ (p)) =
〈
FrobN(p)

p

〉
,

with p | p and where FrobN(p)
p : x 7→ xN(p). The preimage of FrobN(p)

p in D (Pi/p) will be called the
Frobenius element of Pi and denoted by (Pi, L/K).
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Remark 2.5.8. Let K be a number field and let L/K be a finite Galois extension. Consider a
nonzero prime ideal p of OK. Assume that e = 1. For Pi | p and σ ∈ Gal (L/K), we can show that
(σ (Pi) , L/K) = σ (Pi, L/K)σ−1. Hence, p defines a conjugacy class in Gal (L/K). If Gal (L/K) is
abelian, then p defines a unique element of Gal (L/K), called the Frobenius element of p and denoted
by (p, L/K).

Remark 2.5.9. Let K be a number field and let L/K be a finite Galois extension. Let K ′ be a
subfield of L containing K. Consider a prime ideal p of OK, a prime ideal P of OL s.t. P | pOL,
and set p′ = P ∩ OK′.

(i) We have e (P/p) = e (P/p′) · e (p′/p) and likewise for f and g.

(ii) We have D (P/p′) = D (P/p) ∩Gal (L/K ′) and I (P/p′) = I (P/p) ∩Gal (L/K ′).

Proposition 2.5.10. Let K be a number field and let L/K be a finite Galois extension. Let K ′ be
a subfield of L containing K. Consider a prime ideal p of OK, a prime ideal P of OL s.t. P | pOL,
and set p′ = P ∩ OK′.

(i) p is unramified in p′ (i.e. e (p′/p) = 1) iff I (P/p) ⊆ Gal (L/K ′).

(ii) p is totally split in p′ (i.e. e (p′/p) f (p′/p) = 1) iff D (P/p) ⊆ Gal (L/K ′).

Corollary 2.5.11. Let F be a number field and let K1, K2 be two subfields s.t. F = K1K2. Let p be
a prime number.

(i) p is unramified in F iff p is unramified in K1 and in K2.

(ii) p is totally split in F iff p is totally split in K1 and in K2.

Proposition 2.5.12. Let n ∈ N∗. Consider the isomorphism:

χ : Gal (Q (µn (C)) /Q) −→ (Z/nZ)× ,

given by σ (ζn) = ζχ(σ)
n , where ζn ∈ µ′n (C) is fixed. Let p be a prime number; let a ∈ N and m ∈ N

with p - m s.t.
n = pam.

(i) If p | n, then p is ramified in Q (µn (C)), each prime divisor of p has ramification index e =
pa−1(p− 1) and residue degree f the order of p in (Z/mZ)×.

(ii) If p - n, then p is unramified in Q (µn (C)) and:

χ ((p,Q (µn (C)) /Q)) = p.

Moreover, pOQ(µn(C)) = P1 · · ·Pg, with residual degree f the order of p in (Z/nZ)×, and with
g = ϕ(n)

f
.

2.6 Quadratic Reciprocity Law
Definition 2.6.1 (Legendre symbol). Let a ∈ Z, let p be a prime number. We define:

(
a

p

)
=


0 if p | a
+1 if ∃x ∈ Z, a ≡ x2 mod p

−1 otherwise
.

This defines a p-periodic map
(
·
p

)
: Z→ {−1, 0,+1}.

16



Proposition 2.6.2. Let d ∈ Z\{0, 1} be a square-free integer and let K = Q
(√

d
)
.

(i) OK =

Z
[√
d
]

if d ≡ 2, 3 mod 4
Z
[

1+
√
d

2

]
if d ≡ 1 mod 4

.

(ii) DK =

4d if d ≡ 2, 3 mod 4
d if d ≡ 1 mod 4

.

(iii) If p is an odd prime number, then p is


ramified in K if

(
d
p

)
= 0

totally split in K if
(
d
p

)
= +1

inert in K if
(
d
p

)
= −1

.

Remark 2.6.3. We want to solve the two following problems:

(i) If p is a fixed prime number, what are the integers x s.t.
(
x
p

)
= 1?

(ii) If x is a fixed integer, what are the prime numbers p s.t.
(
x
p

)
= 1?

Proposition 2.6.4. Let p be an odd prime number.

(i) For a ∈ Z,
(
a
p

)
≡ a

p−1
2 mod p.

(ii) The map
(
·
p

)
: F×p → {±1} is a group homomorphism.

Proof. It suffices to prove (i). To do this, note that the group homomorphism x ∈ F×p 7−→ x2 ∈ F×p
has kernel {±1}, so its image F×,2p has cardinal p−1

2 . Now, consider the group homomorphism
g : x ∈ F×p 7−→ x

p−1
2 ∈ F×p . It is clear that Im g ⊆ {±1} and Ker g ⊇ F×,2p . As g is not trivial, we

obtain Ker g = F×,2p , so g(x) =
(
x
p

)
for all x ∈ F×p .

Remark 2.6.5. Let p and q be distinct odd prime numbers. The Galois group Gal
(
Q
(√

q
)
/Q
)
is

canonically isomorphic to {±1} via σ 7→ σ(√q)
√
q

. Moreover, p - DQ(√q), so p is unramified in Q
(√

q
)
.

Thus, we can consider the Frobenius element
(
p,Q

(√
q
)
/Q
)
, and we have:

(
p,Q

(√
q
)
/Q
) (√

q
)

√
q

=
(
q

p

)
.

In other words, the above isomorphism sends
(
p,Q

(√
q
)
/Q
)
to
(
q
p

)
.

Theorem 2.6.6 (Quadratic Reciprocity Law, Gauß). Let p and q be two odd prime numbers.

(i)
(
p
q

) (
q
p

)
= (−1)

(p−1)(q−1)
4 ,

(ii)
(
−1
p

)
= (−1) p−1

2 ,

(iii)
(

2
p

)
= (−1) p

2−1
8 .

Proof. It suffices to prove (i) and to use Proposition 2.6.4. Let L = Q (µp (C)) and consider the
isomorphism χ : Gal (L/Q) → F×p of Proposition 2.5.12. Define H = χ−1

(
F×,2p

)
; H is the only

subgroup of Gal (L/Q) of order 2, so K = LH is the only quadratic subextension of L. As p is the
only prime that ramifies in L, it is also the only prime that can ramify in K; therefore DK is a
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power of p. But K/Q is a quadratic extension, so DK = ±p. Therefore DK = p∗ =
(
−1
p

)
p and

K = Q (
√
p∗). We now show that

(
q
p

)
=
(
p∗

q

)
:(

q

p

)
= 1⇐⇒ q ∈ F×,2p ⇐⇒ χ ((q,Q (µp (C)) /Q)) ∈ F×,2p

⇐⇒ (q,Q (µp (C)) /Q) ∈ H = Gal (L/K)
⇐⇒ q is totally split in K = Q

(√
p∗
)

⇐⇒ T 2 − T + 1− p∗
4 is split modulo q

⇐⇒
(
p∗

q

)
= 1.

Remark 2.6.7. If p∗ is as in the proof of Theorem 2.6.6, it is possible to give an explicit expression
of a square root of p∗. To do this, we define the Gauß sum:

g =
∑
a∈Fp

ζa
2

p =
∑
a∈Fp

(
a

p

)
ζap .

Hence, we see that g2 = p∗. Using this, we can give an alternative proof of the Quadratic Reci-
procity Law. Indeed, we have

(
p∗

q

)
≡ (p∗)

q−1
2 ≡ gq−1 mod qZ [ζp], and gq ≡

∑
a∈F×p

(
a
p

)q
ζaqp ≡

(
q
p

)
g

mod qZ [ζp]. Hence, we obtain
(
p∗

q

)
≡
(
q
p

)
mod qZ [ζp] because g is invertible modulo q. Hence,(

p∗

q

)
=
(
q
p

)
because 2 6∈ qZ [ζp].

3 Class group and unit group

3.1 Lattices
Notation 3.1.1. In this section, V is a real finite-dimensional vector space.

Definition 3.1.2 (Lattice). A lattice Λ in V is an additive subgroup of V which is discrete and
which generates V as a vector space.

Example 3.1.3.

(i) Zn is a lattice in Rn. Actually, we shall see that every lattice is isomorphic to this one.

(ii) {(a, b) ∈ Z2, a ≡ 2b mod 3} is a lattice in R2.

Proposition 3.1.4. Let Λ be an additive subgroup of V . The following assertions are equivalent:

(i) Λ is a lattice in V .

(ii) Λ is generated by a basis of V .

(iii) Λ is discrete and cocompact in V (i.e. V/Λ is compact).

Proof. (i) ⇒ (ii) If Λ is a lattice, then it generates V , so it contains a basis (e1, . . . , en) of V .
Let Λ0 = ⊕n

i=1 Zei ⊆ Λ. Then V = Λ0 + B, with B = ∑n
i=1[0, 1]ei, a compact set. Therefore,

Λ = Λ0 + (B ∩ Λ). As B ∩ Λ is finite, we deduce that Λ/Λ0 is finite. Hence, if m = (Λ : Λ0), then
Λ0 ⊆ Λ ⊆ 1

m
Λ0, so Λ is a free abelian group of rank n. Moreover, there exists a basis (ε1, . . . , εn)

of Λ0 and d1, . . . , dn ∈ N∗ s.t.
(
d1
m
ε1, . . . ,

dn
m
εn
)
is a Z-basis of Λ, and it is clearly a R-basis of V .

(ii) ⇒ (iii) Note that, if B is a basis of V that generates Λ, then the isomorphisms Zn → Λ and
Rn → V induced by B give a commutative diagram of topological abelian groups:
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Zn Rn⊆

Λ V
⊆

' '

As a consequence, V/Λ ' Rn/Zn is compact. (iii) ⇒ (i) Assume that Λ is discrete and cocompact
in V . Let W = Vect(Λ) ⊆ V . Then we have an exact sequence of topological abelian groups:

0 −→ W/Λ −→ V/Λ −→ V/W −→ 0.

Therefore, V/W is a compact vector space, so V/W = 0, i.e. V = W .

Notation 3.1.5. We now assume that V is equipped with a scalar product 〈·, ·〉.

Definition 3.1.6 (Volume). There exists a unique translation-invariant measure µ on V s.t.

µ

(
n∑
i=1

[0, 1]εi
)

= 1,

for any unitary (i.e. orthonormal) basis (ε1, . . . , εn) of V . This measure will be denoted by Vol.

Definition 3.1.7 (Covolume of a lattice). If Λ is a lattice in V , then the covolume of Λ is defined
by:

Covol(Λ) = Vol
(

n∑
i=1

[0, 1]ei
)
,

for any Z-basis (e1, . . . , en) of Λ. This does not depend on the choice of the Z-basis: if (e′1, . . . , e′n) is
another Z-basis, then the matrix of change of basis is A ∈ GLn(Z), so that |detA| = 1.

Lemma 3.1.8. If Λ is a lattice in V , then:

Covol(Λ) =
∣∣∣∣∣ det
(ε1,...,εn)

(e1, . . . , en)
∣∣∣∣∣ ,

where (ε1, . . . , εn) is a unitary basis of V and (e1, . . . , en) is a Z-basis of Λ.

Proposition 3.1.9. Let Λ be a lattice in V and let Λ′ be a subgroup of Λ. Then Λ′ is a lattice in V
iff (Λ : Λ′) < +∞. In this case, we have:

Covol (Λ′) = (Λ : Λ′) · Covol(Λ).

Proof. Note that Λ′ is discrete and that we have an exact sequence of topological abelian groups:

0 −→ Λ/Λ′ −→ V/Λ′ −→ V/Λ −→ 0.

From this, we obtain that V/Λ′ is compact iff Λ/Λ′ is finite. Now, assume that (Λ : Λ′) < +∞. Then
there exists a Z-basis (e1, . . . , en) of Λ and d1, . . . , dn ∈ N∗ s.t. (d1e1, . . . , dnen) is a Z-basis of Λ′.
Thus:

Covol (Λ′) =
∣∣∣∣∣ det
(ε1,...,εn)

(d1e1, . . . , dnen)
∣∣∣∣∣ = d1 · · · dn

∣∣∣∣∣ det
(ε1,...,εn)

(e1, . . . , en)
∣∣∣∣∣ ,

and d1 · · · dn = (Λ : Λ′).

Theorem 3.1.10 (Minkowski). Let Λ be a lattice in V . Let C be a nonempty subset of V that is
bounded, convex and symmetric. If Vol(C) > 2n Covol(Λ), then C ∩ Λ\{0} 6= ∅. Moreover, if C is
closed, it suffices to assume that Vol(C) ≥ 2n Covol(Λ).
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Proof. Consider Λ′ = 2Λ. Then Λ′ is a lattice and Covol(Λ′) = 2n Covol(Λ). Pick a Z-basis
(e1, . . . , en) of Λ′ and let Π = ∑n

i=1[0, 1]ei. We have V = ⋃
λ∈Λ′ (λ+ Π), therefore:

C =
⋃
λ∈Λ′

(C ∩ (λ+ Π)) =
⋃
λ∈Λ′

(λ+ (Π ∩ (C − λ))) .

Now, Vol(C) > 2n Covol(Λ) = Covol (Λ′) = Vol (Π), therefore:

Vol(Π) < Vol(C) ≤
∑
λ∈Λ′

Vol (Π ∩ (C − λ)) .

Therefore, the subsets (Π ∩ (C − λ))λ∈Λ′ must have a nonempty intersection (for otherwise we would
have ∑λ∈Λ′ Vol (Π ∩ (C − λ)) = Vol(Π)). Hence, there exist λ 6= µ in Λ′ and u, v ∈ C s.t. u − λ =
v − µ. Thus, 1

2 (µ− λ) = 1
2 (v − u) ∈ C ∩ 1

2Λ′ = C ∩ Λ, and 1
2 (µ− λ) 6= 0.

3.2 Finiteness of the class group
Notation 3.2.1. Let K be a number field. Then we have an isomorphism K ⊗Q R ' RΣr ⊕ CΣ′c,
which induces an embedding K → RΣr ⊕ CΣ′c. This embedding will be denoted by Φ and is given by:

∀x ∈ K, Φ(x) = (σ(x))σ∈Σr∪Σ′c .

Proposition 3.2.2. Let K be a number field. Then Φ (OK) is a lattice in RΣr ⊕ CΣ′c, and:

Covol (Φ (OK)) = 2−r2 |DK |
1
2 ,

where RΣr ⊕ CΣ′c is equipped with the standard scalar product.

Proof. Write the matrix of Φ (OK) in the canonical basis of RΣr⊕CΣ′c , and use Proposition 1.3.6.

Corollary 3.2.3. Let K be a number field. If a is a fractional ideal of K, then Φ (a) is a lattice in
RΣr ⊕ CΣ′c, of covolume 2−r2 |DK |

1
2 N (a).

Remark 3.2.4. If we replace RΣr ⊕ CΣ′c by the subspace
(
RΣr ⊕ CΣc

)inv
of RΣr ⊕ CΣc composed of

the points that are invariant by complex conjugation, equipped with the scalar product induced by that
of RΣr ⊕ CΣc, then Covol (Φ (OK)) = |DK |

1
2 .

Lemma 3.2.5. If r1, r2 ∈ N, R ∈ R+, we define:

C (r1, r2, R) =

(x1, . . . , xr1 , z1, . . . , zr2) ∈ Rr1 ⊕ Cr2 ,
r1∑
i=1
|xi|+ 2

r2∑
j=1
|zj| ≤ R

 ⊆ Rr1 ⊕ Cr2 .

Then Vol (C (r1, r2, R)) = 2r1
(
π
2

)r2 Rn

n! .

Theorem 3.2.6 (Minkowski). Let K be a number field of degree n and let a be a fractional ideal of
K. Then there exists a ∈ a\{0} s.t.

|N(a)| ≤
(
n!
nn

( 4
π

)r2

|DK |
1
2

)
︸ ︷︷ ︸

MK

N (a) .

The number MK will be called the Minkowski constant of K.
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Proof. By Corollary 3.2.3, Φ (a) is a lattice of covolume 2−r2 |DK |
1
2 N (a). Therefore, for R ∈ R+:

Vol (C (r1, r2, R))
2n Covol (Φ (a)) = Rn

n!

(
π

4

)r2

|DK |−
1
2 N (a)−1 = Rn

nn
·M−1

K N (a)−1 .

Moreover, if x ∈ K is s.t. Φ(x) ∈ C (r1, r2, R), then, using the inequality of arithmetic and geometric
means:

|N(x)| = |σ1(x)| · · · |σr1(x)| · |τ1(x)|2 · · · |τr2(x)|2

≤ 1
nn

(|σ1(x)|+ · · ·+ |σr1(x)|+ 2 |τ1(x)|+ · · ·+ 2 |τr2(x)|)n ≤ Rn

nn
,

with Σr = {σ1, . . . , σr1} and Σ′c = {τ1, . . . , τr2}. By Theorem 3.1.10, if R is chosen s.t. Rn

nn
=

MKN (a), then there exists a ∈ a∩Φ−1 (C (r1, r2, R)) \{0}, and we have |N(a)| ≤ Rn

nn
= MKN (a).

Corollary 3.2.7. Let K be a number field of degree n.

(i) Each ideal class in Cl (OK) contains an ideal a ⊆ OK with N (a) ≤MK.

(ii) The group Cl (OK) is finite and generated by prime ideals witn norm ≤MK.

(iii) We have the inequality:

|DK | ≥
(
nn

n!

(
π

4

)r2)2
≥ πn

4 .

In particular, |DK | > 1 if K 6= Q.

Proof. (i) Let C ∈ Cl (OK). Let a be a fractional ideal in C−1. We may assume that a ⊆ OK by
multiplying a by some d ∈ N. Now, by Theorem 3.2.6, there exists a ∈ a\{0} with |N(a)| ≤MKN (a).
As aOK ⊆ a, we have aa−1 ⊆ OK , so that:

N
(
aa−1

)
= |N(a)| ·N (a)−1 ≤MK ,

and aa−1 ∈ C. (ii) By Proposition 2.4.6, the set of ideals with norm bounded by MK is finite,
so Cl (OK) is finite. Now, write Cl (OK) = {a1, . . . aN}, with ai ⊆ OK , N (ai) ≤ MK . For i ∈
{1, . . . , N}, we can write ai as a product of prime ideals p

(i)
j with N

(
p

(i)
j

)
≤ N (ai) ≤ MK , so

that Cl (OK) =
〈(

p
(i)
j

)
i,j

〉
. (iii) Apply Theorem 3.2.6 with a = OK : there exists x ∈ OK\{0} s.t.

|N(x)| ≤ MK . But |N(x)| ∈ N∗, so MK ≥ 1, which gives the first inequality. For the second one,
note that nn ≥ 2n−1n! and therefore nn

n!

(
π
4

)r2 ≥ 2n−1
(
π
4

)r2 ≥ 2n−1
(
π
4

)n
2 =

(
πn

4

) 1
2 .

Remark 3.2.8. By Theorem 2.4.12 and Corollary 3.2.7, Q is the only number field in which no
prime number ramifies.

Corollary 3.2.9. If K is a number field with MK < 2, then Cl (OK) is trivial.

Example 3.2.10. Let K = Q
(√

5
)
. Then DK = −20, so MK = π

2

√
5 < 3. By Corollary 3.2.7,

Cl (OK) is generated by prime ideals with norm ≤ 2; these prime ideals are therefore divisors of
2OK. Using Proposition 2.4.7, we see that 2OK = p2

2, where p2 =
(
2, 1 +

√
−5
)
is prime. Therefore,

Cl (OK) = 〈p2〉, and p2
2 = 1. Now, p2 is not principal, for otherwise there would exist x, y ∈ Z2 s.t.

2 = N (p2) =
∣∣∣NK/Q

(
x+ y

√
−5
)∣∣∣ = x2 + 5y2, which is impossible. As a consequence, p2 6= 1, which

shows that:
Cl (OK) ' Z/2Z.

This method allows one to compute Cl (OK) for many number fields.
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3.3 Binary quadratic forms and class groups
Definition 3.3.1 (Binary quadratic form). A binary quadratic form is a map q : Z2 → Z of the
form q(x, y) = ax2 + bxy + cy2 for some (a, b, c) ∈ Z3. The integers a, b, c are determined by q and
we shall sometimes make the identification q = (a, b, c). The discriminant of q is defined by:

disc(q) = b2 − 4ac.

We have a natural action of GL2(Z) on the set of binary quadratic forms given by:

(q · A) (x, y) = q
(
(x, y)tA

)
.

We say that two binary quadratic forms q and q′ are equivalent, and we write q ∼ q′, if q and q′ are
in the same orbit under the action of GL2(Z); we say that q and q′ are properly equivalent, and we
write q +∼ q′, if q and q′ are in the same orbit under the action of SL2(Z)

Lemma 3.3.2. SL2 (Z) = 〈S, T 〉, with S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Remark 3.3.3. If q = (a, b, c) is a binary quadratic form, then:

(a, b, c) · S = (c,−b, a) and (a, b, c) · T = (a, b+ 2a, c+ b+ a),

with the notations of Lemma 3.3.2. These are called elementary equivalences; they generate the
equivalence relation +∼.

Proposition 3.3.4. If q and q′ are two equivalent binary quadratic forms, then disc(q) = disc (q′).

Vocabulary 3.3.5. We say that a binary quadratic form q represents (resp. primitively represents)
an integer n if there exists (x, y) ∈ Z2 s.t. n = q(x, y) (resp. n = q(x, y) and gcd(x, y) = 1). Note
that, if q and q′ are two equivalent binary quadratic forms, then they represent the same integers,
and the same number of times.

Definition 3.3.6 (Fundamental discriminant). A fundamental discriminant is an integer D ∈ Z
which satisfies one of the following two properties:

• Either D is square-free and D ≡ 1 mod 4,

• Or D ≡ 0 mod 4, D
4 is square-free and D

4 6≡ 1 mod 4.

In other words, a fundamental discriminant is the discriminant of a quadratic number field (c.f.
Example 1.4.5). Given a fundamental discriminant D, we define:

F+(D) = {q binary quadratic form, disc(q) = D and q > 0} .

Remark 3.3.7. Let D < 0 be a fundamental discriminant. Consider K = Q
(√

D
)
, and assume

that =
(√

D
)
> 0 (this amounts to choosing an orientation of K). Let αK =

√
D
2 if D ≡ 0 mod 4,

or αK = 1+
√
D

2 if D ≡ 1 mod 4. Then OK = Z [αK ]. Now, if q = (a, b, c) ∈ F+(D), then:

q(x, y) = a (x− τ(q)y)
(
x− τ(q)y

)
,

with τ(q) = −b+
√
D

2 . Thus, if h = {z ∈ C, =(z) > 0}, then we have a map:

τ : F+(D)→ h.

Proposition 3.3.8. Consider the action of SL2(Z) on h = {z ∈ C, =(z) > 0} given by:(
α β
γ δ

)
z = αz + β

γz + δ
.
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(i) With the notations of Lemma 3.3.2, we have S · z = −1
z
and T · z = z + 1.

(ii) Choose a fundamental discriminant D < 0. If τ : F+(D) → h is the map of Remark 3.3.7,
then for q ∈ F+(D) and A ∈ SL2(Z):

τ (q · A) = A−1 · τ(q).

Lemma 3.3.9. Choose a fundamental discriminant D < 0. If q = (a, b, c) ∈ F+(D), then the
subgroup a = Za+ Zaτ(q) of K = Q

(√
D
)
is an ideal of OK of norm a, and:

q(x, y) = 1
a
NK/Q (ax− aτ(q)y) .

Proof. We start by showing that aτ(q) ∈ Z+αK . Using this, we show that aαK ∈ a and aτ(q)αK ∈ a,
so a is an ideal of OK . Moreover, its norm is given by:

N (a) = (OK : a) =
∣∣∣det Mat(1,αK) (a, aτ(q))

∣∣∣ =
∣∣∣∣∣det

(
a ∗
0 1

)∣∣∣∣∣ = a.

Finally q(x, y) = a (x− τ(q)y)
(
x− τ(q)y

)
= 1

a
NK/Q (ax− aτ(q)y).

Proposition 3.3.10. Choose a fundamental discriminant D < 0. Let K = Q
(√

D
)
. By Lemma

3.3.9, we have a map:

Φ :
∣∣∣∣∣F

+(D) −→ I(K)
q 7−→ Za+ Zaτ(q)

.

Composing Φ with the natural projection I(K)→ Cl (OK), we obtain a map:

ϕ̃ : F+(D) −→ Cl (OK) .

Then ϕ̃ is invariant under the action of SL2(Z): ϕ̃ (q · A) = ϕ̃(q) for all A ∈ SL2(Z).

Proof. By Lemma 3.3.2, it suffices to prove that ϕ̃ (q · S) = ϕ̃ (q · T ) = ϕ̃(q).

Theorem 3.3.11. Choose a fundamental discriminant D < 0. Let K = Q
(√

D
)
. Then the map

ϕ̃ : F+(D)→ Cl (OK) of Proposition 3.3.10 induces a map:

ϕ : F+(D)/SL2(Z) −→ Cl (OK) ,

and this map is a bijection.

Proof. We shall construct the inverse of ϕ. Let a ⊆ K be a fractional ideal; write a = Zω1 + Zω2,
with det(1,αK) (ω1, ω2) > 0. We may assume that a ⊆ OK Consider:

qω1,ω2(x, y) = 1
N (a)NK/Q (xω1 − yω2) .

This defines a binary quadratic form. We compute disc (qω1,ω2) = D. Note that the image of qω1,ω2

in F+(D)/SL2(Z) does not depend on the choice of the oriented basis (ω1, ω2) of a. Thus, we have a
map I(K) −→ F+(D)/SL2(Z). Moreover, for z ∈ K with NK/Q(z) > 0, we see that qzω1,zω2 = qω1,ω2 .
This implies that the map I(K) −→ F+(D)/SL2(Z) induces a map Cl (OK) −→ F+(D)/SL2(Z),
which is an inverse of ϕ.

23



3.4 Reduced forms
Definition 3.4.1 (Reduced form). A binary quadratic form q = (a, b, c) is said to be reduced if
|b| ≤ a ≤ c and if b ≥ 0 as soon as one of the two inequalities is an equality.

Remark 3.4.2. Choose a fundamental discriminant D < 0. Consider the map τ : F+(D) → h of
Remark 3.3.7. Then, for q ∈ F+(D), we have that q is reduced iff τ(q) ∈ D, where:

D =
{
z ∈ h, −1

2 ≤ <(z) < 1
2 and |z| > 1

}
∪
{
z ∈ h, |z| = 1 and − 1

2 ≤ <(z) ≤ 0
}
.

Note that D is a fundamental domain for the action of SL2(Z) on h.

Proposition 3.4.3 (Gauß). Choose a fundamental discriminant D < 0. Let K = Q
(√

D
)
.

(i) Every proper equivalence class in F+(D) contains a unique reduced form.

(ii) The set of reduced forms in F+(D) is finite and reduced forms (a, b, c) satisfy |b| ≤ a ≤
√
|D|
3 .

(iii) The class number hK = |Cl (OK)| is the number of reduced forms in F+(D).

Example 3.4.4. Let D = −20, K = Q
(√
−20

)
= Q

(√
−5
)
. Let us find the reduced forms of

discriminant −20. Let (a, b, c) ∈ Z3 s.t. b2 − 4ac = −20, with |b| ≤ a ≤
√

20
3 < 3. Thus, a ∈ {1, 2}.

If a = 1, we obtain q1 = (1, 0, 5); if a = 2, we obtain q2 = (2, 2, 3). Thus:

hQ(√−5) = 2.

In general, this method is very efficient for computing the class number of a number field.

3.5 Unit group
Definition 3.5.1 (Unit group). Let K be a number field. The unit group of OK is by definition its
group O×K of invertible elements. We have:

O×K =
{
x ∈ OK , NK/Q(x) ∈ {±1}

}
.

Lemma 3.5.2. If K is a number field and m ≥ 1, then the set
{
a ∈ OK ,

∣∣∣NK/Q(a)
∣∣∣ = m

}
is a finite

union of cosets of O×K.

Proof. If a ∈ OK with
∣∣∣NK/Q(a)

∣∣∣ = m then |OK/aOK | = m and mOK ⊆ aOK , hence aOK belongs
to the set of principal divisors of mOK , which is finite. If a1, . . . , as ∈ OK represent these principal
ideals, then each a ∈ OK with

∣∣∣NK/Q(a)
∣∣∣ = m can be written as a = εai for some ε ∈ O×K and

i ∈ {1, . . . , s}. Therefore
{
a ∈ OK ,

∣∣∣NK/Q(a)
∣∣∣ = m

}
= ⋃s

i=1 aiO×K .

Lemma 3.5.3. Let K be a number field. Consider the subgroup:

G =
{

(x, z) ∈ RΣr ⊕ CΣc , |x1| · · · |xr1| · |z1|2 · · · |zr2|
2 = 1

}
,

of (R×)Σr × (C×)Σc. Then the quotient G/Φ
(
O×K

)
is compact and Hausdorff, where Φ : K →

RΣr ⊕ CΣc is the natural embedding (c.f. Notation 3.2.1).

Proof. Write V = RΣr ⊕ CΣc . Let C ⊆ V be a bounded convex symmetric subset with volume
Vol(C) > 2n Covol (Φ (OK)), where n = [K : Q]. For g ∈ G, the set g−1C is bounded convex
symmetric and Vol (g−1C) = Vol(C) since g−1 induces an isomorphism V → V with determinant
±1. Consider the following map:

N : (x, z) ∈ V 7−→ |x1| · · · |xr1 | · |z1|2 · · · |zr2|
2 ∈ R.
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Then N (g−1C) = N (g−1)N(C) = N(C). By Minkowski’s Theorem (Theorem 3.1.10), g−1C con-
tains a nonzero element a ∈ Φ (OK). As a ∈ g−1C, we have

∣∣∣NK/Q(a)
∣∣∣ ∈ N(C), and N(C) is finite.

By Lemma 3.5.2, there exist a1, . . . , as ∈ OK s.t.

∅ ( g−1C ∩ Φ (OK) \{0} ⊆ g−1C ∩
s⋃
i=1

Φ
(
aiO×K

)
.

This shows that g ∈ Φ
(
O×K

)
· ⋃si=1CΦ (ai). Therefore, G/Φ

(
O×K

)
is Hausdorff (because Φ

(
O×K

)
is closed) and it is equal to the continuous image of the bounded set ⋃si=1CΦ (ai), so G/Φ

(
O×K

)
is

compact.

Theorem 3.5.4 (Dirichlet). Let K be a number field. Then O×K is of finite type. Its torsion subgroup
is:

µ(K) = {x ∈ K ∃m ≥ 1, xm = 1} .
The group O×K/µ(K) is free abelian of rank r = r1 + r2 − 1, where r1 (resp. 2r2) is the number of
real (resp. complex) embeddings K ↪→ C. In other words, there exist ε1, . . . , εr ∈ O×K s.t. the map:∣∣∣∣∣ µ(K)× Zr −→ O×K

(ε, a1, . . . , ar) 7−→ εεa1
1 · · · εarr

,

is an isomorphism.

Proof. With the notations of Lemma 3.5.3, we have Φ
(
O×K

)
= Φ (OK) ∩ G. Therefore, we know

that Φ
(
O×K

)
is discrete and cocompact in G. Now if V = RΣr ⊕ CΣc , consider the map:

L : (x, z) ∈ V × 7−→ (log |x1| , . . . , log |xr1| , 2 log |z1| , . . . , 2 log |zr2|) ∈ Rr+1.

Set H = L(G) = {y ∈ Rr+1, y1 + · · ·+ yr+1 = 0} and Λ = L
(
Φ
(
O×K

))
, so that Λ is a lattice in H.

In particular, Λ is a free abelian group of rank dimH = r. And we check that µ(K) = Ker (L ◦ Φ).
Thus, we have an exact sequence:

1 −→ µ(K) −→ O×K
L◦Φ−−→ Λ −→ 0.

This gives the result.

Remark 3.5.5. If K is a real number field (i.e. K ⊆ R), then µ(K) = {±1}.

Example 3.5.6. Let K = Q
(√

2
)
. By Dirichlet’s Theorem (Theorem 3.5.4), there exists ε ∈ O×K

s.t. O×K = {±1} × εZ. Let η = 1 +
√

2. We see that NK/Q(η) = −1, so η ∈ O×K. Now, let us show
that η generates O×K/{±1}. If u ∈ O×K is a generator of O×K/{±1}, then η = ±uk, with k ∈ Z. We
may assume that k ≥ 0 and we wish to show that k = 1. Let σ be the embedding K ↪→ C given
by σ

(√
2
)

= −
√

2. If k ≥ 2, then |u| = |η|
1
k =

(
1 +
√

2
) 1
k ≤

√
1 +
√

2 and |σ(u)| = |σ(η)|
1
k < 1.

Therefore (u, σ(u)) ∈ F =
{

(y, z) ∈ R2, |y| ≤
√

1 +
√

2 and |z| < 1
}
⊆ RΣr⊕CΣc. We finally prove

that F ∩ Φ (OK) = {0}, so u = 0, which is a contradiction. Therefore:

O×K = {±1} ×
(
1 +
√

2
)Z
.

3.6 Application to the Pell-Fermat Equation
Theorem 3.6.1 (Lagrange). Let d ≥ 0 be a square-free integer. Then there exists a nontrivial
solution (x1, y1) ∈ N∗ × N∗ of the equation X2 − dY 2 = 1 s.t. every solution of this equation in Z2

is of the form (±xn,±yn), with xn +
√
dyn =

(
x1 +

√
dy1

)n
for n ∈ Z.
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Proof. Let K = Q
(√

d
)
. We know that Z

[√
d
]×

is a subgroup of O×K with finite index. By
Dirichlet’s Theorem (Theorem 3.5.4), there exists ε ∈ Z

[√
d
]×

s.t.

Z
[√
d
]×

= {±1} × εZ.

Write ε = u + v
√
d, with u, v ∈ Z. If NK/Q(ε) = 1, then take x1 = |u| and x2 = |v|; otherwise

NK/Q(ε) = −1 and take x1 = |s| and x2 = |t| where ε2 = s+ t
√
d.

Proposition 3.6.2. Let x, y ∈ N∗. Then:

x2 − dy2 = 1⇐⇒
∣∣∣∣∣xy −

√
d

∣∣∣∣∣ < 1
2
√
dy2

.

Proof. Show that 0 < x2 − dy2 < 2⇐⇒
∣∣∣x
y
−
√
d
∣∣∣ < 1

2
√
dy2 .

Remark 3.6.3. Proposition 3.6.2 means that solutions of the Pell-Fermat Equation correspond to
good rational approximations of

√
d. These approximations can actually be computed using continued

fractions.

4 Introduction to analytic methods

4.1 Dirichlet series
Definition 4.1.1 (Dirichlet series). A Dirichlet series is a function of the form f(s) = ∑

n∈N∗ ann
−s,

with (an)n∈N∗ ∈ CN∗.

Proposition 4.1.2. Let (an)n∈N∗ ∈ CN∗. Suppose that there exists s0 ∈ C s.t. ∑n∈N∗ ann
−s0 con-

verges. Then, for any θ ∈
[
0, π2

)
, ∑n∈N∗ ann

−s converges uniformly over
(
s0 + R+e

iθ + R+e
−iθ
)
.

Corollary 4.1.3. Let (an)n∈N∗ ∈ CN∗. Then there exists ρ ∈ R s.t. ∑
n∈N∗ ann

−s converges if
<(s) > ρ and diverges if <(s) < ρ. Moreover, the function defined by f(s) = ∑

n∈N∗ ann
−s is

holomorphic over {<(s) > ρ}.

Example 4.1.4 (Riemann ζ-function). Consider the function:

ζ(s) =
∑
n∈N∗

1
ns
.

Then, with the notations of Corollary 4.1.3, we have ρ = 1.

Proposition 4.1.5. The Riemann ζ-function of Example 4.1.4 can be extended to a meromorphic
function on {<(s) > 0}, with only one pole at 1, which is simple and with residue 1.

Proof. For <(s) > 1, we have:

ζ(s) =
∫ ∞

1
t−s dt+

∑
n∈N∗

∫ n+1

n

( 1
ns
− 1
ts

)
dt︸ ︷︷ ︸

ϕ(s)

= 1
s− 1 + ϕ(s).

Therefore, it suffices to prove that ϕ defines a holomorphic function on {<(s) > 0}.

Remark 4.1.6. The Riemann ζ-function can actually be extended to a meromorphic function on C,
with two simple poles at 0 and 1, and vanishing on 2Z<0.
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4.2 Dedekind ζ-function of a number field
Definition 4.2.1 (Dedekind ζ-function). Let K be a number field. We define the Dedekind ζ-function
of K by:

ζK(s) =
∑

a∈I+(OK)
N (a)−s =

∑
n∈N∗

ann
−s,

where an = |{a ∈ I+ (OK) , N (a) = n}| for n ∈ N∗.

Example 4.2.2. For K = Q, ζQ = ζ is the Riemann ζ-function.

Proposition 4.2.3. Let K be a number field. Then:

ζK(s) =
∑

a∈I+(OK)
N (a)−s =

∏
p∈P

(
1−N (p)−s

)−1
,

where both the series and the product converge locally uniformly over {<(s) > 1}, and where P is the
set of prime ideals of OK.

Proof. Let d = [K : Q]. Note that, for p ∈ P , N(p) = pf(p/p) ≥ p and for any prime number p,
|{p ∈ P, p | p}| ≤ d. Therefore:∑

p∈P
N(p)≤X

∣∣∣N (p)−s
∣∣∣ ≤ d

∑
p prime
p≤X

∣∣∣p−s∣∣∣ ≤ d
∑

1≤n≤X
n−<(s).

This shows the convergence of∑p∈P N(p)−s, and therefore of ∏p∈P

(
1−N (p)−s

)−1
, over {<(s) > 1}.

Now, for s ∈ R with s > 1, we have:
∑

a∈I+(OK)
N(a)≤X

N(a)−s ≤
∏
p∈P

N(p)≤X

(
1 +N(p)−s +N(p)−2s + · · ·

)
=

∏
p∈P

N(p)≤X

(
1−N (p)−s

)−1

≤
∏
p∈P

(
1−N (p)−s

)−1
.

This shows the convergence of ∑a∈I+(OK) N(a)−s on {<(s) > 1}. Moreover, for any s with <(s) > 1:∣∣∣∣∣∣∣∣∣
∑

a∈I+(OK)
N(a)≤X

N(a)−s −
∏
p∈P

(
1−N (p)−s

)−1

∣∣∣∣∣∣∣∣∣ ≤
∑

a∈I+(OK)
N(a)>X

|N(a)|−s −−−−→
X→+∞

0.

Example 4.2.4. Let K = Q(i). Then:

ζQ(i)(s) =
(

1− 1
2s
)−1 ∏

p≡1 mod 4

(
1− 1

ps

)−2 ∏
p≡2,3 mod 4

(
1− 1

p2s

)−1

.

This example shows that ζK encodes the behaviour of prime numbers in OK.

Corollary 4.2.5. Let K be a number field. Then:∑
p∈P

N(p)−s∼
1
− log(s− 1)∼

1

∑
p∈P

f(p/p)=1

N(p)−s.
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Proof. Use the formula of Proposition 4.2.3 to compute log ζK(s), and write:

log ζK(s) =
∑
p∈P

f(p/p)=1

N(p)−s +
∑
p∈P

f(p/p)=2

N(p)−s +
∑
p∈P
m≥2

1
m
N(p)−ms.

Show that the two latter sums converge for <(s) > 1
2 . Using the fact that ζK extends to a mero-

morphic function over
{
<(s) > 1− 1

[K:Q]

}
with a simple pole at 1 (c.f. Theorem 4.3.6), we have

log ζK(s)∼
1
− log(s− 1). The result follows.

Corollary 4.2.6. Let K be a number field.

(i) The set of prime ideals in OK of degree 1 is infinite.

(ii) If K/Q is Galois, then the set of prime numbers which split totally in K is infinite.

Definition 4.2.7 (Analytic density). Let K be a number field. Let S be a subset of the set of prime
ideals of OK. If the quantity: ∑

p∈S N(p)−s∑
p∈P N(p)−s ∼1 −

∑
p∈S N(p)−s

log(s− 1) ,

has a limit δ as s→ 1, we say that S has analytic density δ.

Corollary 4.2.8. If K is a number field, then the set of prime ideals of OK of degree 1 has analytic
density 1.

4.3 Class Number Formula
Definition 4.3.1 (Regulator). Let K be a number field. Recall that Ψ

(
O×K

)
is a lattice in H =

{y ∈ Rr+1, y1 + · · ·+ yr+1 = 0}, where Ψ = L ◦ Φ with the notations of Theorem 3.5.4. We define
the regulator of K by:

RK = 1√
r + 1

Covol
(
Ψ
(
O×K

))
,

where H is equipped with the Euclidean structure induced by Rr+1.

Proposition 4.3.2. Let K be a number field. Let 1 ≤ i0 ≤ r + 1 and let π : Rr+1 → Rr be the
projection on the hyperplane {yi0 = 0}. Then:

RK = Covol
(
π ◦Ψ

(
O×K

))
.

In other words, if ε1, . . . , εr form a basis of O×K/µ(K), and if we write Σr = {σ1, . . . , σr1} and
Σ′c = {σr1+1, . . . , σr1+r2}, then:

RK =

∣∣∣∣∣∣∣det (log |σi (εj)|)1≤i≤r+1
i 6=i0

1≤j≤r

∣∣∣∣∣∣∣ .
Remark 4.3.3. Let K be a quadratic number field.

(i) If K is real, then RK = log |ε|, where ε is a fundamental unit of OK.

(ii) If K is imaginary, then RK = 1.

Lemma 4.3.4. Let (an)n∈N∗ ∈ CN∗. Consider the Dirichlet series ∑n∈N∗ ann
−s.

(i) If (an)n∈N∗ is bounded, then the series converges over {<(s) > 1}.
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(ii) Let AN = ∑N
n=1 an. If AN = κN +O

(
N1−δ

)
for some κ ∈ C and δ ∈ (0, 1], then ∑n∈N∗ ann

−s

has a meromorphic extension to {<(s) > 1− δ} with a simple pole at 1, and with residue κ.

Proof. Use an Abel Transform.

Lemma 4.3.5. Let Λ ⊆ Rn be a lattice, and let Γ ⊆ Rn be a bounded subset s.t. ∂Γ is covered by
images of a finite number of Lipschitz maps [0, 1]n−1 → Rn. Then:

|Λ ∩ tΓ| = Vol(Γ)
Covol(Λ)t

n +O∞
(
tn−1

)
.

Theorem 4.3.6 (Class Number Formula). Let K be a number field. Then the Dedekind ζ-function
ζK admits a meromorphic extension to

{
<(s) > 1− 1

[K:Q]

}
with only a simple pole at 1, and with:

Res1 (ζK) = 2r1 (2π)r2 RKhK

wK |DK |
1
2

,

where wk = |µ(K)| is the number of roots of unity, and hK = |Cl (OK)| is the class number.

Proof. By Lemma 4.3.4, it is enough to study the asymptotic behaviour of:

AN =
∣∣∣{a ∈ I+ (OK) , N (a) ≤ N

}∣∣∣ .
For C ∈ Cl (OK), we consider AN,C = |{a ∈ C ∩ I+ (OK) , N (a) ≤ N}|; thus AN = ∑

C∈Cl(OK) AN,C .
Now, fix a0 ∈ C and note that:

AN,C =
∣∣∣{(x)a0, x ∈ a−1

0 \{0} and
∣∣∣NK/Q(x)

∣∣∣ ≤ N ·N (a0)−1
}∣∣∣

=
∣∣∣{x ∈ a−1

0 \{0},
∣∣∣NK/Q(x)

∣∣∣ ≤ N ·N (a0)−1
}
/O×K

∣∣∣
= 1
wK

∣∣∣{x ∈ a−1
0 \{0},

∣∣∣NK/Q(x)
∣∣∣ ≤ N ·N (a0)−1

}
/UK

∣∣∣ ,
where UK is the free abelian part of Cl (OK)×, i.e. such that O×K ' µ(K) × UK (c.f. Theorem
3.5.4). Hence, in order to compute AN,C , we are led to find a fundamental domain for the action
UK y K×. Recall that we have a map Ψ : K× → Rr+1 s.t. Ψ

(
O×K

)
is a lattice in H (c.f.

Theorem 3.5.4). Consider a fundamental domain P ⊆ H for the action Ψ (UK) y H. Then, if
w = (1, . . . , 1, 2, . . . , 2) ∈ Rr+1, Ψ−1 (P + Rw) is a fundamental domain for the action UK y K×.
Hence, we deduce that:

AN,C = 1
wK

∣∣∣ΓN ·N(a0)−1 ∩ a−1
0 \{0}

∣∣∣ ,
where Γt = Ψ−1

(
P +

(
−∞, 1

n
log t

]
· w
)
. Now, note that Γt = t1/nΓ1. Hence, using Lemma 4.3.5, we

obtain:
AN,C = 1

wK
· Vol (Φ (Γ1))

Covol
(
Φ
(
a−1

0

)) ·N ·N (a0)−1 +O
(
N1− 1

n

)
.

Using the facts that Vol
(
Γ̃1
)

= 2r1 (2π)r2 2−r2RK and AN = ∑
C∈Cl(OK) AN,C , we obtain:

AN = 2r1 (2π)r2 RKhK

wK |DK |
1
2

N +O
(
N1− 1

n

)
.

The result follows by Lemma 4.3.4.
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4.4 Dirichlet characters and Dirichlet L-functions
Notation 4.4.1. Let a,N ≥ 2 with gcd(a,N) = 1. We define:

Pa,N = {p ∈ P , p ≡ a mod N} ,

where P is the set of all prime numbers. Our goal is to prove that Pa,N is infinite.

Remark 4.4.2. We have a holomorphic function defined by ∑p∈Pa,N p
−s on {<(s) > 1}. Our aim

will be to prove that it diverges at 1. In particular, this will imply that Pa,N is infinite. We note that:∑
p∈Pa,N

p−s =
∑
p∈P

1a(p)p−s,

where a is the class of a in Z/NZ. The map 1a : Z→ {0, 1} induces a map 1a : (Z/NZ)× → {0, 1}.
But Representation Theory tells us that the set X of irreducible characters on (Z/NZ)× forms a
unitary basis of the set of maps (Z/NZ)× → C, relative to the Hermitian scalar product (· | ·) given
by (f | g) = 1

ϕ(n)
∑
x∈(Z/NZ)× f(x)g(x). Therefore, we have:

1a =
∑
χ∈X

(χ | 1a)χ = 1
ϕ(N)

∑
χ∈X

χ(a)χ.

Thus: ∑
p∈Pa,N

p−s = 1
ϕ(N)

∑
χ∈X

χ(a)
∑
p∈P

χ(p)p−s

︸ ︷︷ ︸
fχ(s)

.

Now, for every irreducible character χ, fχ defines a holomorphic function on {<(s) > 1} which has
the same behaviour at 1 as:

− log
∏
p∈P

(
1− χ(p)p−s

)
= fχ(s) +

∑
m≥2
p∈P

χ(p)m
mpms

.

Notation 4.4.3. If χ is a character on (Z/NZ)× and s ∈ C with <(s) > 1, we define:

L (χ, s) =
∏
p∈P

(
1− χ(p)p−s

)−1
=
∑
n∈N∗

χ(n)n−s.

For any χ, L(χ, ·) is a holomorphic function on {<(s) > 1}.

Lemma 4.4.4. If χ is a nontrivial character on (Z/NZ)×, then L (χ, ·) can be extended to a holo-
morphic function on {<(s) > 0}.

Proof. Note that ∑N
n=1 χ(n) = (χ | 1) = 0 = O(1) and apply Lemma 4.3.4.

Lemma 4.4.5. If χ0 is the trivial character on (Z/NZ)×, then L (χ0, ·) can be extended to a mero-
morphic function on {<(s) > 0}, with a simple pole at 1. Therefore:

logL (χ0, s) = − log (s− 1) +O1(1).

Definition 4.4.6 (Dirichlet characters). Let N ≥ 1. A Dirichlet character modulo N is a group
homomorphism χ : (Z/NZ)× → C which extends to Z by defining χ(n) = 0 if gcd(n,N) 6= 1. The
conductor of χ, denoted by cond(χ), is the smallest integer M | N s.t. χ factors through (Z/MZ)×.
We say that χ is primitive if cond(χ) = N .

Definition 4.4.7 (Dirichlet L-functions). The Dirichlet L-function of a Dirichlet character χ is the
function L (χ̃, ·) (c.f. Notation 4.4.3), where χ̃ is the unique primitive character induced by χ.
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Example 4.4.8. If χ is the trivial character modulo N , then χ̃ is the trivial character modulo 1 and
L (χ̃, ·) is the Riemann ζ-function.

Proposition 4.4.9. Let K be a subfield of Q (µN (C)). Thus, K/Q is a Galois extension; we write
G = Gal (K/Q). Then, if Ĝ is the set of group homomorphisms G→ C, we have:

ζK =
∏
χ∈Ĝ

L(χ, ·).

Corollary 4.4.10. Let χ be a nontrivial character on (Z/NZ)×. We know that L (χ, ·) extends to a
holomorphic function on {<(s) > 0} (c.f. Lemma 4.4.4), and we have L (χ, 1) 6= 0.

Theorem 4.4.11 (Dirichlet). Let a,N ≥ 2 with gcd(a,N) = 1. Then the set Pa,N is infinite.
Moreover, it has analytic density 1

ϕ(N) .

Proof. Consider the holomorphic function defined by ∑p∈Pa,N p
−s on {<(s) > 1}. Then we have:

∑
p∈Pa,N

p−s = − 1
ϕ(N) log(s− 1) + 1

ϕ(N)
∑
χ 6=χ0

χ(a)fχ(s) +O1(1).

Using Corollary 4.4.10, we conclude that∑p∈Pa,N p
−s has a pole at 1, and therefore Pa,N is infinite.
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