# Advanced Probability

### Lectures by Grégory Miermont Notes by Alexis Marchand

ENS de Lyon S1 2018-2019 M1 course

## Contents

| 1        | Con                            | ditional expectation                                               | <b>2</b> |  |
|----------|--------------------------------|--------------------------------------------------------------------|----------|--|
|          | 1.1                            | An elementary case                                                 | 2        |  |
|          | 1.2                            | The general case                                                   | 2        |  |
|          | 1.3                            | Elementary properties of conditional expectation                   | 3        |  |
|          | 1.4                            | Specific properties of conditional expectation                     | 4        |  |
|          | 1.5                            | Notion of conditional distribution                                 | 5        |  |
|          | 1.6                            | The Gaussian case                                                  | 5        |  |
| <b>2</b> | Martingales                    |                                                                    |          |  |
|          | 2.1                            | Filtrations and martingales                                        | 5        |  |
|          | 2.2                            | Building new martingales from old ones                             | 7        |  |
|          | 2.3                            | Stopping times and stopping theorems                               | 7        |  |
|          | 2.4                            | Almost sure convergence for (super)martingales                     | 8        |  |
|          | 2.5                            | Doob's $L^p$ -inequality and convergence in $L^p$                  | 10       |  |
|          | 2.6                            | Martingales in $L^2$                                               | 11       |  |
|          | 2.7                            | Uniform integrability                                              | 12       |  |
|          | 2.8                            | Martingales in $L^1$                                               | 13       |  |
| 3        | Applications of martingales 13 |                                                                    |          |  |
|          | 3.1                            | Lévy's Convergence Theorem                                         | 13       |  |
|          | 3.2                            | Backwards martingales                                              | 14       |  |
|          | 3.3                            | Radon-Nikodym Theorem                                              | 15       |  |
| 4        | Mar                            | kov chains                                                         | 16       |  |
|          | 4.1                            | Definitions and first properties                                   | 16       |  |
|          | 4.2                            | Existence of Markov chains, the canonical process                  | 17       |  |
|          | 4.3                            | The simple and strong Markov properties                            | 18       |  |
|          | 4.4                            | Classification of states                                           | 18       |  |
|          | 4.5                            | Invariant measures for Markov chains                               | 20       |  |
|          | 4.6                            | Invariant measures of finite mass                                  | 21       |  |
|          | 4.7                            | Asymptotic behaviour of recurrent chains – an ergodic theorem      | 22       |  |
|          | 4.8                            | Asymptotic behaviour of Markov chains – convergence in probability | 24       |  |
|          | 4.9                            | Harmonic functions                                                 | 26       |  |
|          | 4.10                           | The Poisson process                                                | 27       |  |

References

**Notation 0.0.1.** Throughout these notes,  $(\Omega, \mathcal{F}, \mathbb{P})$  will be a probability space.

### **1** Conditional expectation

#### 1.1 An elementary case

#### Example 1.1.1.

(i) If  $A \in \mathcal{F}$ , with  $\mathbb{P}(A) > 0$ , then one can define a new probability measure  $\mathbb{P}(\cdot | A)$  on  $(\Omega, \mathcal{F})$ by  $\mathbb{P}(B | A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$ . Now, if  $X : \Omega \to \mathbb{R}$  is an integrable or nonnegative random variable, measurable w.r.t.  $\mathcal{F}$ , one can consider its integral w.r.t.  $\mathbb{P}(\cdot | A)$ :

$$\mathbb{E}[X \mid A] = \int_{\Omega} X(\omega) \mathbb{P}(\mathrm{d}\omega \mid A) = \frac{\mathbb{E}[X\mathbb{1}_A]}{\mathbb{P}(A)}.$$

(ii) Let  $(A_i)_{i \in I}$  be a partition of  $\Omega$  indexed by a countable set I. Let X be an integrable random variable. By convention, we set  $\mathbb{E}[X \mid A_i] = 0$  if  $\mathbb{P}(A_i) = 0$ . Now, define:

$$X' = \sum_{i \in I} \mathbb{E} \left[ X \mid A_i \right] \mathbb{1}_{A_i}.$$

We note that (1) X' is a random variable, measurable w.r.t.  $\mathcal{G} = \sigma(A_i, i \in I)$ , and (2) for all  $B \in \mathcal{G}$ ,  $\mathbb{E}[X'\mathbb{1}_B] = \mathbb{E}[X\mathbb{1}_B]$ . Properties (1) and (2) will be the fundamental properties of conditional expectation.

#### 1.2 The general case

**Theorem 1.2.1** (Kolmogorov's Theorem). Let  $\mathcal{G} \subseteq \mathcal{F}$  be a sub- $\sigma$ -algebra of  $\mathcal{F}$ . Let  $X : \Omega \to \mathbb{R}$  be an integrable random variable. Then there exists a random variable X', integrable and s.t.

- (i) X' is  $\mathcal{G}$ -measurable.
- (ii)  $\forall B \in \mathcal{G}, \mathbb{E}[X\mathbb{1}_B] = \mathbb{E}[X'\mathbb{1}_B].$

The random variable X' is unique up to almost sure equality; its equivalence class will be called the expectation of X given  $\mathcal{G}$  and denoted by  $\mathbb{E}[X \mid \mathcal{G}]$ . It is an element of  $L^1(\Omega, \mathcal{G}, \mathbb{P})$ .

**Proof.** Uniqueness. Let X' and X" be two integrable random variables satisfying (i) and (ii). Consider  $B = (X' > X'') \in \mathcal{G}$ . We have  $X' \mathbb{1}_B \ge X'' \mathbb{1}_B$ ; therefore:

$$\mathbb{E}\left[X''\mathbb{1}_B\right] \le \mathbb{E}\left[X'\mathbb{1}_B\right] = \mathbb{E}\left[X\mathbb{1}_B\right] = \mathbb{E}\left[X''\mathbb{1}_B\right].$$

Hence, equality must hold throughout, which implies that  $X'\mathbb{1}_B = X''\mathbb{1}_B$  almost surely, i.e.  $\mathbb{P}(B) = 0$ . Thus,  $X' \leq X''$  a.s., and by symmetry,  $X' \geq X''$  a.s., so X' = X'' a.s. *Existence*. First step: we assume that  $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ . Note that  $L^2(\Omega, \mathcal{F}, \mathbb{P})$  is a Hilbert space, and  $L^2(\Omega, \mathcal{G}, \mathbb{P})$  is a closed subspace, so there exists a unique orthogonal projection  $\pi : L^2(\Omega, \mathcal{F}, \mathbb{P}) \to L^2(\Omega, \mathcal{G}, \mathbb{P})$ , and  $\pi$  is characterised by:

$$\forall Z \in L^2(\Omega, \mathcal{G}, \mathbb{P}), \ \langle X - \pi(X) \mid Z \rangle = 0,$$

or in other words:  $\forall Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ ,  $\mathbb{E}[XZ] = \mathbb{E}[\pi(X)Z]$ . In particular,  $\pi(X)$  satisfies (i) and (ii), which proves the theorem in the special case where X is in  $L^2$ . Second step: note that  $\mathbb{E}[\cdot | \mathcal{G}]$ :  $L^2(\Omega, \mathcal{F}, \mathbb{P}) \to L^2(\Omega, \mathcal{G}, \mathbb{P})$  is a positive linear map. Linearity is clear (it is a projection). For

positivity, take  $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$  s.t.  $X \ge 0$  a.s. and consider the event  $B = (\mathbb{E}[X \mid \mathcal{G}] < 0) \in \mathcal{G}$ . We have  $\mathbb{E}[X \mid \mathcal{G}] \mathbb{1}_B \le 0$ , therefore:

$$0 \leq \mathbb{E}\left[X\mathbb{1}_B\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right]\mathbb{1}_B\right] \leq 0$$

Hence, equality holds throughout and  $\mathbb{P}(B) = 0$ . Third step: we assume that X is a nonnegative random variable, measurable w.r.t.  $\mathcal{F}$  (but not necessarily integrable). For  $n \in \mathbb{N}$ , the random variable  $X \wedge n = \min(X, n)$  is bounded, so it is in  $L^2$  and has a conditional expectation given  $\mathcal{G}$  (according to the first step). Since  $X \wedge n \leq X \wedge (n+1)$  for all  $n \in \mathbb{N}$ , and  $\mathbb{E}[\cdot | \mathcal{G}]$  is positive linear on  $L^2$  (according to the second step), we have  $\mathbb{E}[X \wedge n | \mathcal{G}] \leq \mathbb{E}[X \wedge (n+1) | \mathcal{G}]$  for all  $n \in \mathbb{N}$ . Therefore, there exists a  $\mathcal{G}$ -measurable random variable X' with values in  $[0, +\infty]$  s.t.  $\mathbb{E}[X \wedge n | \mathcal{G}] \xrightarrow[n \to +\infty]{} X'$  a.s. But by monotone convergence, for all  $B \in \mathcal{G}$ ,  $\mathbb{E}[(X \wedge n) \mathbb{1}_B] \xrightarrow[n \to +\infty]{} \mathbb{E}[X'\mathbb{1}_B]$  and  $\mathbb{E}[(X \wedge n) \mathbb{1}_B] = \mathbb{E}[\mathbb{E}[X \wedge n | \mathcal{G}] \mathbb{1}_B] \xrightarrow[n \to +\infty]{} \mathbb{E}[X'\mathbb{1}_B]$ . This proves that  $\forall B \in \mathcal{G}$ ,  $\mathbb{E}[X\mathbb{1}_B] = \mathbb{E}[X'\mathbb{1}_B]$ . Moreover, note that if X is integrable, then so is X' because  $\mathbb{E}[X'] = \mathbb{E}[X'\mathbb{1}_\Omega] = \mathbb{E}[X\mathbb{1}_\Omega] < +\infty$ . This proves the result in the special case where X is nonnegative. Fourth step: we assume that X is any integrable random variable in  $L^1(\Omega, \mathcal{F}, \mathbb{P})$ . We write  $X = X^+ - X^-$ , with  $X^+ = X \vee 0$  and  $X^- = (-X) \vee 0$ , and apply the third step to  $X^+$  and  $X^-$ .

#### Remark 1.2.2.

- (i) One could also prove Kolmogorov's Theorem by applying the Radon-Nikodym Theorem and setting  $X' = \frac{(X \cdot d\mathbb{P})_{|\mathcal{G}}}{d\mathbb{P}_{|\mathcal{G}}}$ .
- (ii) Note that, by a standard approximation argument, one could replace property (ii) in the theorem by  $\mathbb{E}[XZ] = \mathbb{E}[X'Z]$  for every bounded and  $\mathcal{G}$ -measurable random variable Z.
- (iii) In the course of the proof, we have also showed the existence of  $\mathbb{E}[X \mid \mathcal{G}]$  if X is any random variable with values in  $[0, +\infty]$ . It is actually possible to adapt the proof of the uniqueness to this setting.

#### **1.3** Elementary properties of conditional expectation

**Proposition 1.3.1.** Let  $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$  and consider a sub- $\sigma$ -algebra  $\mathcal{G}$  of  $\mathcal{F}$ .

- (i)  $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right]\right] = \mathbb{E}\left[X\right].$
- (ii) If X is  $\mathcal{G}$ -measurable, then  $\mathbb{E}[X \mid \mathcal{G}] = X$  a.s.
- (iii) If X is independent of  $\mathcal{G}$ , then  $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X]$  a.s.
- (iv) If  $a, b \in \mathbb{R}$ , then  $\mathbb{E}[aX + bY \mid \mathcal{G}] = a\mathbb{E}[X \mid \mathcal{G}] + b\mathbb{E}[Y \mid \mathcal{G}]$  a.s.
- (v) If  $X \ge 0$  a.s., then  $\mathbb{E}[X \mid \mathcal{G}] \ge 0$  a.s.
- (vi)  $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$  a.s., and in particular  $\mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|] \leq \mathbb{E}[|X|]$ .

**Proposition 1.3.2** (Conditioned basic integration theorems). Let  $(X_n)_{n \in \mathbb{N}} \in L^1(\Omega, \mathcal{F}, \mathbb{P})^{\mathbb{N}}$  and  $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ .

- (i) Monotone Convergence. Assume that  $\forall n \in \mathbb{N}, X_n \geq 0$  a.s., and that  $(X_n)_{n \in \mathbb{N}}$  is a.s. nondecreasing and that  $X_n \xrightarrow[n \to +\infty]{} X$  a.s. Then  $\mathbb{E}[X_n \mid \mathcal{G}] \xrightarrow[n \to +\infty]{} \mathbb{E}[X \mid \mathcal{G}]$  a.s.
- (ii) Fatou's Lemma. Assume that  $\forall n \in \mathbb{N}, X_n \geq 0$  a.s. Then:

$$\mathbb{E}\left[\liminf_{n \to +\infty} X_n \mid \mathcal{G}\right] \le \liminf_{n \to +\infty} \mathbb{E}\left[X_n \mid \mathcal{G}\right] \ a.s.$$

- (iii) Dominated Convergence. If  $X_n \xrightarrow[n \to +\infty]{n \to +\infty} X$  a.s. and if there exists an integrable random variable  $\varphi$  s.t.  $\forall n \in \mathbb{N}, |X_n| \leq \varphi$  a.s., then  $\mathbb{E}[X_n \mid \mathcal{G}] \xrightarrow[n \to +\infty]{n \to +\infty} \mathbb{E}[X \mid \mathcal{G}]$  a.s.
- (iv) Jensen's Inequality. If  $\varphi : \mathbb{R} \to ]-\infty, +\infty]$  is a convex function and if  $\varphi(X)$  is integrable or nonnegative, then:

 $\mathbb{E}\left[\varphi(X) \mid \mathcal{G}\right] \geq \varphi\left(\mathbb{E}\left[X \mid \mathcal{G}\right]\right) \ a.s.$ 

(v) For all  $p \in [1, +\infty]$ ,  $\|\mathbb{E}[X \mid \mathcal{G}]\|_p \leq \|X\|_p$ , so  $\mathbb{E}[\cdot \mid \mathcal{G}] : L^p(\Omega, \mathcal{F}, \mathbb{P}) \to L^p(\Omega, \mathcal{G}, \mathbb{P})$  is a continuous projection.

#### **1.4** Specific properties of conditional expectation

**Proposition 1.4.1.** Let  $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . If  $Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$  is bounded and  $\mathcal{G}$ -measurable, then:

$$\mathbb{E}\left[XY \mid \mathcal{G}\right] = Y\mathbb{E}\left[X \mid \mathcal{G}\right].$$

**Proposition 1.4.2.** Let X be an integrable or nonnegative random variable. Consider  $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$  sub- $\sigma$ -algebras of  $\mathcal{F}$ . We have:

 $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mid \mathcal{H}\right] = \mathbb{E}\left[X \mid \mathcal{H}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{H}\right] \mid \mathcal{G}\right]$ 

**Notation 1.4.3.** If  $(\mathcal{G}_i)_{i\in I}$  is a family of sub- $\sigma$ -algebras of  $\mathcal{F}$ , we shall denote by  $\bigvee_{i\in I} \mathcal{G}_i$  the  $\sigma$ -algebra generated by  $\bigcup_{i\in I} \mathcal{G}_i$ .

**Proposition 1.4.4.** Let X be an integrable or nonnegative random variable. Consider sub- $\sigma$ -algebras  $\mathcal{G}$  and  $\mathcal{H}$  of  $\mathcal{F}$  and assume that  $\mathcal{H}$  is independent of  $\sigma(X) \vee \mathcal{G}$ . Then:

$$\mathbb{E}\left[X \mid \mathcal{G} \lor \mathcal{H}\right] = \mathbb{E}\left[X \mid \mathcal{G}\right].$$

**Proof.** Let  $(A, B) \in \mathcal{G} \times \mathcal{H}$ . Since  $\mathbb{1}_{A \cap B}$  is  $(\mathcal{G} \vee \mathcal{H})$ -measurable, we have:

$$\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G} \lor \mathcal{H}\right] \mathbb{1}_{A \cap B}\right] = \mathbb{E}\left[X\mathbb{1}_{A \cap B}\right] = \mathbb{E}\left[(X\mathbb{1}_{A}) \mathbb{1}_{B}\right] = \mathbb{E}\left[X\mathbb{1}_{A}\right] \mathbb{E}\left[\mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\right] \mathbb{E}\left[\mathbb{1}_{B}\right] \\ = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A \cap B}\right].$$

But note that  $\{A \cap B, (A, B) \in \mathcal{G} \times \mathcal{H}\}$  is stable under finite intersections and generates  $\mathcal{G} \vee \mathcal{H}$ . By the Monotone Class Theorem, we have  $\forall C \in \mathcal{G} \vee \mathcal{H}, \mathbb{E} [\mathbb{E} [X \mid \mathcal{G} \vee \mathcal{H}] \mathbb{1}_C] = \mathbb{E} [\mathbb{E} [X \mid \mathcal{G}] \mathbb{1}_C]$ , therefore  $\mathbb{E} [X \mid \mathcal{G} \vee \mathcal{H}] = \mathbb{E} [X \mid \mathcal{G}].$ 

**Notation 1.4.5.** If X and Y are two random variables s.t. X is integrable or nonnegative, we shall write  $\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid \sigma(Y)]$ .

**Proposition 1.4.6.** Let X and Y be random variables taking values in measurables spaces  $(E, \mathcal{E})$  and  $(E', \mathcal{E}')$  respectively. Assume that X and Y are independent and consider a function  $f : E \times E' \to \mathbb{R}_+$  that is measurable w.r.t.  $\mathcal{E} \otimes \mathcal{E}'$ . Then:

$$\mathbb{E}\left[f(X,Y) \mid Y\right] = \int_{E} f(x,Y)\mathbb{P}\left(X \in \mathrm{d}x\right).$$

Note that, according to Fubini's Theorem, the function  $y \mapsto \int_E f(x, y) \mathbb{P}(X \in dx)$  is measurable, so it makes sense to talk about the random variable  $\int_E f(x, Y) \mathbb{P}(X \in dx)$ .

#### 1.5 Notion of conditional distribution

**Definition 1.5.1** (Conditional distribution). If  $\mathcal{G}$  is a sub- $\sigma$ -algebra of  $\mathcal{F}$ , we define  $\mathbb{P}(A \mid \mathcal{G}) = \mathbb{E}[\mathbb{1}_A \mid \mathcal{G}]$  for  $A \in \mathcal{F}$ .

**Remark 1.5.2.** The latter definition is very dangerous because  $\mathbb{P}(A \mid \mathcal{G})$  is a random variable that is only defined  $\mathbb{P}$ -almost everywhere. For any fixed family  $(A_n)_{n \in \mathbb{N}}$  of pairwise disjoint  $\mathcal{F}$ -measurable sets, it will be  $\mathbb{P}$ -almost surely the case that  $\mathbb{P}(\bigsqcup_{n \in \mathbb{N}} A_n \mid \mathcal{G}) = \sum_{n \in \mathbb{N}} \mathbb{P}(A_n \mid \mathcal{G})$ . However, this needs not be true for all choices of  $(A_n)_{n \in \mathbb{N}} \mathbb{P}$ -almost surely.

**Definition 1.5.3** (Kernel). Let  $(E, \mathcal{E})$  and  $(F, \mathcal{F})$  be measurable spaces. A kernel from E to F is a function  $K : E \times \mathcal{F} \to \mathbb{R}_+$  s.t.

- (i) For all  $A \in \mathcal{F}$ ,  $K(\cdot, A) : E \to \mathbb{R}_+$  is measurable.
- (ii) For all  $x \in E$ ,  $K(x, \cdot) : \mathcal{F} \to \mathbb{R}_+$  is a probability measure.

**Definition 1.5.4** (Regular version of a conditional distribution). Let  $\mathcal{G}$  be a sub- $\sigma$ -algebra of  $\mathcal{F}$ . We say that the kernel Q from  $(\Omega, \mathcal{G})$  to  $(\Omega, \mathcal{F})$  is a regular version of  $\mathbb{P}(\cdot | \mathcal{G})$  if for all  $A \in \mathcal{F}$ ,  $Q(\omega, A) = \mathbb{P}(A | \mathcal{G})(\omega) \mathbb{P}$ -almost surely.

**Theorem 1.5.5.** Let  $(E, \mathcal{E})$  be a Borel space (i.e.  $(E, \mathcal{E})$  is isomorphic as a measurable space to a Borel subset of  $\mathbb{R}$ ). If X is a random variable with values in  $(E, \mathcal{E})$ , then the conditional distribution of X given  $\mathcal{G}$  admits a regular version, i.e. there exists a kernel Q from  $(\Omega, \mathcal{F})$  to  $(E, \mathcal{E})$  s.t. for all  $A \in \mathcal{E}$ ,  $Q(\omega, A) = \mathbb{P}(X \in A \mid \mathcal{G})(\omega) \mathbb{P}$ -almost surely.

**Example 1.5.6.** Assume that (X, Y) is a random variable in  $\mathbb{R}^2$  whose law has a density f w.r.t. Lebesgue's Measure:

$$\forall A \in \operatorname{Bor}\left(\mathbb{R}^{2}\right), \mathbb{P}\left((X,Y) \in A\right) = \int_{A} f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Then Y has a density given by  $f_Y(y) = \int_{\mathbb{R}} f(x, y) \, dx$ . Therefore, for all nonnegative measurable function h, we have:

$$\mathbb{E}\left[h(X) \mid Y\right] = \int_{\mathbb{R}} \left( \mathrm{d}x \cdot \frac{f(x,y)}{f_Y(y)} \right) h(x).$$

Hence the kernel  $Q(y, A) = \int_A \mathrm{d}x \cdot \frac{f(x, y)}{f_Y(y)}$  is a regular version of X given Y.

#### 1.6 The Gaussian case

**Example 1.6.1.** Let (X, Y) be a Gaussian vector in  $\mathbb{R}^2$ , i.e. (sX + tY) has a Gaussian law for all  $(s,t) \in \mathbb{R}^2$ . We assume that  $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ . Recall that for Gaussian variables, independence is equivalent to orthogonality. This leads to:

$$\mathbb{E}\left[X \mid Y\right] = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}Y.$$

More precisely, the conditional law of X given Y is  $\mathcal{N}\left(\frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(Y)}Y, \frac{\operatorname{Var}(X)\operatorname{Var}(Y)-\operatorname{Cov}(X,Y)^2}{\operatorname{Var}(Y)}\right)$ .

### 2 Martingales

#### 2.1 Filtrations and martingales

**Definition 2.1.1** (Filtration). Given  $(\Omega, \mathcal{F}, \mathbb{P})$ , a filtration is a nondecreasing sequence  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  of sub- $\sigma$ -algebras of  $\mathcal{F}$ :

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots \subseteq \mathcal{F}_n \subseteq \cdots$$

One should think of  $\mathcal{F}_n$  as the information available at time n. Given a filtration  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ , the space  $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\in\mathbb{N}}, \mathbb{P})$  is called a filtered probability space. A sequence  $(X_n)_{n\in\mathbb{N}}$  of random variables is said to be adapted to  $(\mathcal{F}_n)_{n\in\mathbb{N}}$  if  $X_n$  is  $\mathcal{F}_n$ -measurable for all  $n\in\mathbb{N}$ .

**Example 2.1.2** (Canonical filtration of a sequence of random variables). Let  $(X_n)_{n\in\mathbb{N}}$  be random variables on  $(\Omega, \mathcal{F}, \mathbb{P})$ . For  $n \in \mathbb{N}$ , define  $\mathcal{F}_n^X = \sigma(X_0, \ldots, X_n)$ . Then  $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$  is called the canonical filtration of  $(X_n)_{n\in\mathbb{N}}$ . The sequence  $(X_n)_{n\in\mathbb{N}}$  is adapted to  $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ .

**Definition 2.1.3** (Martingale, supermartingale, submartingale). Consider a filtration  $(\mathcal{F}_n)_{n\in\mathbb{N}}$  and a sequence  $(X_n)_{n\in\mathbb{N}}$  of integrable random variables.

- (i) We say that  $(X_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale if  $\forall n \in \mathbb{N}$ ,  $\mathbb{E}[X_{n+1} | \mathcal{F}_n] = X_n$ . Equivalently,  $\forall (m,n) \in \mathbb{N}^2$ ,  $m \leq n \Longrightarrow \mathbb{E}[X_n | \mathcal{F}_m] = X_m$ .
- (ii) We say that  $(X_n)_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -supermartingale if  $\forall n \in \mathbb{N}, \mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \leq X_n$ . Equivalently,  $\forall (m, n) \in \mathbb{N}^2, \ m \leq n \Longrightarrow \mathbb{E}[X_n \mid \mathcal{F}_m] \leq X_m$ .
- (iii) We say that  $(X_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -submartingale if  $\forall n\in\mathbb{N}, \mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \geq X_n$ . Equivalently,  $\forall (m,n)\in\mathbb{N}^2, m\leq n \Longrightarrow \mathbb{E}[X_n \mid \mathcal{F}_m] \geq X_m$ .

**Remark 2.1.4.** If  $(X_n)_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale (resp. supermartingale, submartingale), then the sequence  $(\mathbb{E}[X_n])_{n \in \mathbb{N}}$  is constant (resp. nonincreasing, nondecreasing).

**Proposition 2.1.5.** If  $(X_n)_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale and  $\varphi : \mathbb{R} \to \mathbb{R}$  is a convex function s.t.  $\varphi(X_n)$  is integrable for all  $n \in \mathbb{N}$ , then  $(\varphi(X_n))_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -submartingale.

**Proof.** Use Jensen's Inequality (Proposition 1.3.2).

**Remark 2.1.6.** If  $(X_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale), then it is also a  $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale). Therefore, when we say that a sequence  $(X_n)_{n\in\mathbb{N}}$  is a martingale (resp. supermartingale, submartingale) without mentioning a filtration, we mean that it is a  $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale, submartingale).

#### Example 2.1.7.

- (i) Random walks. Let  $(\xi_n)_{n\in\mathbb{N}}$  be a sequence of i.i.d. random variables s.t.  $\xi_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Define  $S_n = \sum_{i=1}^n \xi_i$  for  $n \in \mathbb{N}$ . Then  $(S_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -martingale if  $\mathbb{E}[\xi_1] = 0$ , a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -supermartingale if  $\mathbb{E}[\xi_1] \leq 0$ , and a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -submartingale if  $\mathbb{E}[\xi_1] \geq 0$ .
- (ii) Random products. Let  $(\xi_n)_{n\in\mathbb{N}}$  be a sequence of i.i.d. nonnegative random variables s.t.  $\xi_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Define  $P_n = \prod_{i=1}^n \xi_i$  for  $n \in \mathbb{N}$ . Then  $(P_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -martingale if  $\mathbb{E}[\xi_1] = 1$ , a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -supermartingale if  $\mathbb{E}[\xi_1] \leq 1$ , and a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -submartingale if  $\mathbb{E}[\xi_1] \geq 1$ .
- (iii) Closed martingales. Fix a random variable  $Z \in L^1(\Omega, \mathcal{F}, \mathbb{P})$  and a filtration  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ . Then  $(\mathbb{E}[Z \mid \mathcal{F}_n])_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale.
- (iv) Martingales in  $L^2$ . Consider a sequence  $(X_n)_{n\in\mathbb{N}} \in L^2(\Omega, \mathcal{F}, \mathbb{P})^{\mathbb{N}}$  that is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale. Then the increments  $(X_{n+1} - X_n)_{n\in\mathbb{N}}$  are orthogonal to each other in  $L^2(\Omega, \mathcal{F}, \mathbb{P})$ .

#### 2.2 Building new martingales from old ones

**Definition 2.2.1** (Previsible process). Given a filtration  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ , we say that a random process  $(C_n)_{n \in \mathbb{N}^*}$  is previsible if  $C_n$  is  $\mathcal{F}_{n-1}$ -measurable for all  $n \in \mathbb{N}^*$ .

**Proposition 2.2.2.** Let  $(X_n)_{n \in \mathbb{N}}$  be a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale (resp. supermartingale, submartingale) and let  $(C_n)_{n \in \mathbb{N}^*}$  be a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -previsible process that is almost surely bounded. Then the process  $C \cdot X$ defined by:

$$\forall n \in \mathbb{N}, \left( C \cdot X \right)_n = \sum_{k=1}^n C_k \left( X_k - X_{k-1} \right),$$

is also a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale (resp. supermartingale, submartingale).

**Remark 2.2.3.** One can interpret Proposition 2.2.2 in terms of gambling games:  $X_n - X_{n-1}$  represents the outcomes of a game,  $C_n$  represents the bet placed on the nth-outcome, so that  $(C \cdot X)_n$  represents the fortune of the gambler after n steps. Hence, Proposition 2.2.2 means that one cannot turn an unfair game (a supermartingale) into a fair one (a martingale or submartingale).

#### 2.3 Stopping times and stopping theorems

**Definition 2.3.1** (Stopping time). Given a filtration  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ , a stopping time is a random variable  $\tau : \Omega \to \mathbb{N} \cup \{\infty\}$  s.t. one of the three following equivalent assertions is verified:

- (i)  $\forall n \in \mathbb{N}, (\tau \leq n) \in \mathcal{F}_n.$
- (ii)  $\forall n \in \mathbb{N}, (\tau > n) \in \mathcal{F}_n.$
- (iii)  $\forall n \in \mathbb{N}, (\tau = n) \in \mathcal{F}_n.$

**Remark 2.3.2.** Intuitively, a stopping time is a random time at which a decision can be taken given the information available at that time.

#### Example 2.3.3.

- (i) Constant random variables are stopping times.
- (ii) Let  $(\xi_n)_{n\in\mathbb{N}}$  be a sequence of i.i.d. random variables with law Be  $(\frac{1}{2})$ . Then the random variable  $\tau = \inf \{n \in \mathbb{N}, \xi_n = 1\}$  is a  $(\mathcal{F}_n^{\xi})_{n\in\mathbb{N}}$ -stopping time.
- (iii) Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -adapted sequence of random variables. If A is a measurable subset of  $\Omega$ , then  $T_A = \inf \{n \in \mathbb{N}, X_n \in A\}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time. Moreover, if  $A \in \mathcal{F}_n$  for some  $n \in \mathbb{N}$ , then  $\tau = n\mathbb{1}_A + (n+1)\mathbb{1}_{(\mathfrak{C}_A)}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time.

**Proposition 2.3.4.** Let  $\sigma$ ,  $\tau$ ,  $(\tau_k)_{k\in\mathbb{N}}$  be  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping times. Then  $(\sigma + \tau)$ ,  $\inf_{k\in\mathbb{N}}\tau_k$ ,  $\sup_{k\in\mathbb{N}}\tau_k$ ,  $\lim \inf_{k\to+\infty}\tau_k$  and  $\limsup_{k\to+\infty}\tau_k$  are  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping times.

**Definition 2.3.5** (Events measurable before  $\tau$ ). Given a filtration  $(\mathcal{F}_n)_{n\in\mathbb{N}}$  and a stopping time  $\tau$ , the  $\sigma$ -algebra of events measurable before  $\tau$  is defined by:

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F}, \forall n \in \mathbb{N}, A \cap (\tau \leq n) \in \mathcal{F}_n \}$$

**Proposition 2.3.6.** Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -adapted process and consider  $\tau$  a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time. Then the random variable  $X_{\tau}\mathbb{1}_{(\tau<+\infty)}$  is  $\mathcal{F}_{\tau}$ -measurable.

**Proposition 2.3.7.** Let  $\sigma$  and  $\tau$  be two  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping times s.t.  $\sigma \leq \tau$ . Then  $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$ .

**Theorem 2.3.8** (Doob's Stopping Theorem, first version). Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale) and  $\sigma, \tau$  be two almost surely bounded  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping times s.t.  $\sigma \leq \tau$ , then:

$$\mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] = X_{\sigma} \quad (resp. \leq, \geq)$$

In particular, if  $\tau$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time that is bounded, then:

$$\mathbb{E}\left[X_{\tau}\right] = \mathbb{E}\left[X_{0}\right] \quad (resp. \leq, \geq).$$

**Proof.** Let  $N \in \mathbb{N}$  be s.t.  $\sigma \leq N$  almost surely. We shall compute  $\mathbb{E}[X_N | \mathcal{F}_{\sigma}]$ . For  $A \in \mathcal{F}_{\sigma}$ , we have:

$$\mathbb{E}\left[X_{N}\mathbb{1}_{A}\right] = \mathbb{E}\left[X_{N}\sum_{n=0}^{N}\mathbb{1}_{A\cap(\sigma=n)}\right] = \sum_{n=0}^{N}\mathbb{E}\left[X_{N}\mathbb{1}_{A\cap(\sigma=n)}\right] = \sum_{n=0}^{N}\mathbb{E}\left[\mathbb{E}\left[X_{N} \mid \mathcal{F}_{n}\right]\mathbb{1}_{A\cap(\sigma=n)}\right]$$
$$= \sum_{n=0}^{N}\mathbb{E}\left[X_{n}\mathbb{1}_{A\cap(\sigma=n)}\right] = \sum_{n=0}^{N}\mathbb{E}\left[X_{\sigma}\mathbb{1}_{A\cap(\sigma=n)}\right] = \mathbb{E}\left[X_{\sigma}\mathbb{1}_{A}\right].$$

Since  $X_{\sigma}$  is  $\mathcal{F}_{\sigma}$ -measurable, we get  $\mathbb{E}[X_N \mid \mathcal{F}_{\sigma}] = X_{\sigma}$ . Likewise,  $\mathbb{E}[X_N \mid \mathcal{F}_{\tau}] = X_{\tau}$ . Therefore:

$$\mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] = \mathbb{E}\left[\mathbb{E}\left[X_{N} \mid \mathcal{F}_{\tau}\right] \mid \mathcal{F}_{\sigma}\right] = \mathbb{E}\left[X_{N} \mid \mathcal{F}_{\sigma}\right] = X_{\sigma}.$$

The proof is similar for supermartingales and submartingales, using the fact that if X' is a  $\mathcal{G}$ -measurable random variable s.t.  $\forall A \in \mathcal{G}, \mathbb{E}[X\mathbb{1}_A] \geq \mathbb{E}[X'\mathbb{1}_A]$ , then  $\mathbb{E}[X \mid \mathcal{G}] \geq X'$ .  $\Box$ 

**Proposition 2.3.9.** If  $(X_n)_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale) and  $\tau$  is (any)  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time, then  $X^{\tau} = (X_{n\wedge\tau})_{n\in\mathbb{N}}$  is a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale), called the martingale stopped at  $\tau$  (resp. supermartingale, submartingale stopped at  $\tau$ ).

**Proof.** For  $n \in \mathbb{N}^*$ , set  $C_n = \mathbb{1}_{(n \leq \tau)}$ . Hence,  $(C_n)_{n \in \mathbb{N}^*}$  is a bounded previsible process. Therefore, according to Proposition 2.2.2,  $X^{\tau} = C \cdot X + X_0$  is a martingale (resp. supermartingale, submartingale).

**Proposition 2.3.10.** Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale (resp. supermartingale, submartingale) and  $\tau$  be an almost surely finite  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -stopping time. Assume that  $\mathbb{E}[\tau] < +\infty$  and that  $\exists M \in \mathbb{R}_+$ ,  $\forall n \in \mathbb{N}$ ,  $|X_{n+1} - X_n| \leq M$  almost surely. Then  $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$  (resp.  $\leq, \geq$ ).

**Proof.** Apply Theorem 2.3.8 to  $(X_{n \wedge \tau})_{n \in \mathbb{N}}$ , which is a martingale according to Proposition 2.3.9, and use the Dominated Convergence Theorem.

#### 2.4 Almost sure convergence for (super)martingales

**Definition 2.4.1** (Upcrossings). Let  $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ . Consider two real numbers a < b. Define two sequences  $(S_k(x))_{k \in \mathbb{N}^*}$  and  $(T_k(x))_{k \in \mathbb{N}^*}$  by induction:

 $S_1(x) = \inf \{n \ge 0, x_n < a\} \in \overline{\mathbb{N}} \quad and \quad T_1(x) = \inf \{n \ge S_1(x), x_n \ge b\} \in \overline{\mathbb{N}},$ 

and for all  $k \in \mathbb{N}^*$ :

$$S_{k+1}(x) = \inf \{ n \ge T_k(x), \ x_n < a \} \quad and \quad T_{k+1}(x) = \inf \{ n \ge S_{k+1}(x), \ x_n \ge b \}.$$

The number of upcrossings before time n is defined as  $\mathcal{N}_n(x, a, b) = \sup \{k \ge 1, T_k(x) \le n\}$ ; the total number of upcrossings is therefore  $\mathcal{N}_{\infty}(x, a, b) = \sup_{n \in \mathbb{N}} \mathcal{N}_n(x, a, b)$ .

**Proposition 2.4.2.** A sequence  $x \in \mathbb{R}^{\mathbb{N}}$  converges in  $\overline{\mathbb{R}}$  iff

$$\forall (a,b) \in \mathbb{Q}^2, \ a < b \Longrightarrow \mathcal{N}_{\infty}(x,a,b) < +\infty.$$

**Proof.** Use the fact that x converges in  $\overline{\mathbb{R}}$  iff  $\liminf_{n \to +\infty} x_n = \limsup_{n \to +\infty} x_n$ .

**Lemma 2.4.3** (Doob's Upcrossings Lemma). Let  $(X_n)_{n \in \mathbb{N}}$  be a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -supermartingale. Then, for every real numbers a < b:

$$\mathbb{E}\left[\mathcal{N}_n(X, a, b)\right] \le \frac{1}{b-a} \mathbb{E}\left[\left(X_n - a\right)^{-}\right].$$

**Proof.** Fix two real numbers a < b. Note that, for  $k \in \mathbb{N}^*$ ,  $S_k(X)$  and  $T_k(X)$  are  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -stopping times. For  $n \in \mathbb{N}^*$ , define:

$$C_n = \sum_{k \in \mathbb{N}^*} \mathbb{1}_{(S_k(X) < n \le T_k(X))}.$$

Hence  $(C_n)_{n\in\mathbb{N}}^*$  is a bounded  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -previsible process. According to Proposition 2.2.2,  $C \cdot X$  is a supermartingale. But:

$$\forall n \in \mathbb{N}, \ (C \cdot X)_n = \sum_{k=1}^{\mathcal{N}_n(X,a,b)} \left( \underbrace{X_{T_k(X)}}_{\geq b} - \underbrace{X_{S_k(X)}}_{$$

As  $(C \cdot X)$  is a supermartingale, we have  $\forall n \in \mathbb{N}$ ,  $\mathbb{E}[(C \cdot X)_n] \leq \mathbb{E}[(C \cdot X)_0] = 0$ , which gives the result.

**Theorem 2.4.4.** Let  $(X_n)_{n\in\mathbb{N}}$  be a supermartingale that is bounded in  $L^1$  (i.e.  $\sup_{n\in\mathbb{N}} \mathbb{E}[|X_n|] < +\infty$ , or equivalently  $\sup_{n\in\mathbb{N}} \mathbb{E}[X_n^-] < +\infty$ ). Then there exists  $X_\infty \in L^1(\Omega, \mathcal{F}, \mathbb{P})$  s.t.  $X_n \xrightarrow[n \to +\infty]{} X_\infty$  a.s.

**Proof.** Let a < b be two rational numbers. According to Lemma 2.4.3, we have:

$$\mathbb{E}\left[\mathcal{N}_n\left(X,a,b\right)\right] \le \frac{1}{b-a} \left(\mathbb{E}\left[|X_n|\right] + |a|\right) \le \frac{M+|a|}{b-a},$$

where  $M = \sup_{n \in \mathbb{N}} \mathbb{E}[|X_n|] < +\infty$ . By monotone convergence,  $\mathbb{E}[\mathcal{N}_{\infty}(X, a, b)] \leq \frac{M+|a|}{b-a} < +\infty$ , so  $\mathcal{N}_{\infty}(X, a, b) < +\infty$  a.s. This shows that:

$$\mathbb{P}\left(\bigcup_{\substack{(a,b)\in\mathbb{Q}^2\\a< b}} \left(\mathcal{N}_{\infty}\left(X,a,b\right) = +\infty\right)\right) \le \sum_{\substack{(a,b)\in\mathbb{Q}^2\\a< b}} \mathbb{P}\left(\mathcal{N}_{\infty}\left(X,a,b\right) = +\infty\right) = 0.$$

Using Proposition 2.4.2,  $(X_n)_{n \in \mathbb{N}}$  converges a.s. in  $\overline{\mathbb{R}}$  to some limit  $X_{\infty}$ . But:

$$\mathbb{E}\left[|X_{\infty}|\right] = \mathbb{E}\left[\liminf_{n \to +\infty} |X_n|\right] \le \liminf_{n \to +\infty} \mathbb{E}\left[|X_n|\right] \le \sup_{n \in \mathbb{N}} \mathbb{E}\left[|X_n|\right] < +\infty.$$

Therefore,  $X_{\infty}$  is a.s. finite and  $X_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ .

**Corollary 2.4.5.** If  $(X_n)_{n \in \mathbb{N}}$  is a nonnegative supermartingale, then there exists  $X_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ s.t.  $X_n \xrightarrow[n \to +\infty]{} X_{\infty}$  a.s.

**Proof.** If  $(X_n)_{n \in \mathbb{N}}$  is a nonnegative supermartingale, then  $\forall n \in \mathbb{N}$ ,  $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leq \mathbb{E}[X_0]$ , so Theorem 2.4.4 applies.

**Corollary 2.4.6.** Let  $(X_n)_{n\in\mathbb{N}}$  be a submartingale that is bounded in  $L^1$  (i.e.  $\sup_{n\in\mathbb{N}}\mathbb{E}[|X_n|] < +\infty$ , or equivalently  $\sup_{n\in\mathbb{N}}\mathbb{E}[X_n^+] < +\infty$ ). Then there exists  $X_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$  s.t.  $X_n \xrightarrow[n \to +\infty]{} X_{\infty}$  a.s.

**Proof.** Apply Theorem 2.4.4 to  $(-X_n)_{n \in \mathbb{N}}$ .

**Corollary 2.4.7.** Let  $(X_n)_{n \in \mathbb{N}}$  be a martingale with bounded increments:  $\sup_{n \in \mathbb{N}} ||X_{n+1} - X_n||_{\infty} < \infty$  $+\infty$ . Set:

$$A = \left( (X_n)_{n \in \mathbb{N}} \text{ converges in } \mathbb{R} \right) \quad and \quad B = \left( \liminf_{n \to +\infty} X_n = -\infty \text{ and } \limsup_{n \to +\infty} X_n = +\infty \right).$$
  
Then  $\mathbb{P}(A \cup B) = 1.$ 

*Proof.* Introduce  $\tau_k = \inf \{n \in \mathbb{N}, X_n \geq k\}$  and  $\tau_{-k} = \inf \{n \in \mathbb{N}, X_n < -k\}$  for  $k \in \mathbb{N}$ ;  $\tau_k$  and  $\tau_{-k}$  are stopping times. According to Proposition 2.3.9,  $X^{\tau_k}$  is a martingale that is bounded by  $k + \sup_{n \in \mathbb{N}} \|X_{n+1} - X_n\|_{\infty}$ , so it converges a.s. according to Theorem 2.4.4. Do the same thing for  $X^{\tau_{-k}}$  and obtain the result.

#### 2.5Doob's $L^p$ -inequality and convergence in $L^p$

**Lemma 2.5.1.** Let  $(X_n)_{n \in \mathbb{N}}$  be a submartingale. Set  $\overline{X}_n = \max_{0 \le k \le n} X_k$  for  $n \in \mathbb{N}$ . Then:

$$\forall x > 0, \ \mathbb{P}\left(\overline{X}_n > x\right) \le \frac{1}{x} \mathbb{E}\left[X_n \mathbb{1}_{\left(\overline{X}_n > x\right)}\right].$$

**Proof.** Let  $\tau = \inf \{n \in \mathbb{N}, X_n > x\}$ .  $\tau$  is a stopping time and  $(\overline{X}_n > x) = (\tau \le n)$ . According to Proposition 2.3.9,  $X^{\tau}$  is a submartingale, so  $\mathbb{E}[X_{n \wedge \tau}] \leq \mathbb{E}[X_n]$  for all  $n \in \mathbb{N}$ . But:

$$\mathbb{E}\left[X_{n\wedge\tau}\right] = \mathbb{E}\left[X_n\mathbb{1}_{(\tau>n)} + X_{\tau}\mathbb{1}_{(\tau\leq n)}\right] \ge \mathbb{E}\left[X_n\right] - \mathbb{E}\left[X_n\mathbb{1}_{(\tau\leq n)}\right] + x\mathbb{P}\left(\tau\leq n\right).$$

This gives the desired result.

**Theorem 2.5.2** (Doob's  $L^p$ -inequality). Let  $(X_n)_{n \in \mathbb{N}}$  be a martingale. For  $n \in \mathbb{N}$ , set  $X_n^* =$  $\max_{0 \le k \le n} |X_k|$ . Then:

$$\forall p > 1, \ \forall n \in \mathbb{N}, \ \|X_n^*\|_p \le \frac{p}{p-1} \|X_n\|_p.$$

**Proof.** Apply Lemma 2.5.1 to the submartingale  $(Y_n)_{n \in \mathbb{N}} = (|X_n|)_{n \in \mathbb{N}}$ . Note that  $\overline{Y}_n = X_n^*$  for all  $n \in \mathbb{N}$ . Hence, for  $n \in \mathbb{N}$ :

$$\mathbb{E}\left[ (X_n^*)^p \right] = \int_0^\infty p x^{p-1} \mathbb{P} \left( X_n^* > x \right) \, \mathrm{d}x \\ \leq \int_0^\infty p x^{p-1} \frac{1}{x} \mathbb{E} \left[ |X_n| \, \mathbb{1}_{(X_n^* > x)} \right] \, \mathrm{d}x \\ = p \mathbb{E} \left[ |X_n| \, \frac{1}{p-1} \, (X_n^*)^{p-1} \right] \\ \leq \frac{p}{p-1} \mathbb{E} \left[ |X_n|^p \right]^{1/p} \mathbb{E} \left[ (X_n^*)^{q(p-1)} \right]^{1/q},$$

where  $\frac{1}{p} + \frac{1}{q} = 1$ . Since (p-1)q = p, we obtain  $||X_n^*||_p = \mathbb{E}[(X_n^*)^p]^{1-1/q} \leq \frac{p}{p-1}\mathbb{E}[|X_n|^p]^{1/p} = \frac{1}{p-1}\mathbb{E}[|X_n|^p]^{1/p}$  $\frac{p}{p-1} \|X_n\|_p$  $\square$ 

**Corollary 2.5.3.** Fix p > 1. Let  $(X_n)_{n \in \mathbb{N}}$  be a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale that is bounded in  $L^p$  (i.e.  $\sup_{n\in\mathbb{N}} \|X_n\|_p < +\infty$ ). Then  $(X_n)_{n\in\mathbb{N}}$  converges a.s. and in  $L^p$  to a limit  $X_\infty$ . Moreover, for every bounded stopping time  $\tau$ , we have  $X_{\tau} = \mathbb{E}[X_{\infty} \mid \mathcal{F}_{\tau}].$ 

**Proof.** Our assumptions imply that  $(X_n)_{n\in\mathbb{N}}$  is bounded in  $L^1$ , so according to Theorem 2.4.4, it converges a.s. to some limit  $X_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Since  $(X_n)_{n \in \mathbb{N}}$  is bounded in  $L^p$ , Fatou's Lemma shows that  $X_{\infty} \in L^p(\Omega, \mathcal{F}, \mathbb{P})$ . Now, Doob's  $L^p$ -inequality (Theorem 2.5.2) gives:

$$\mathbb{E}\left[\left(X_{n}^{*}\right)^{p}\right] \leq \left(\frac{p}{p-1}\right)^{p} \sup_{n \in \mathbb{N}} \mathbb{E}\left[\left|X_{n}\right|^{p}\right] < +\infty.$$

Moreover,  $X_n^* \xrightarrow[n \to +\infty]{} X_\infty^* = \sup_{k \in \mathbb{N}} |X_k|$ ; by monotone convergence, we get  $\mathbb{E}[(X_\infty^*)^p] < +\infty$ . But  $|X_n - X_\infty|^p \leq 2^p (|X_\infty|^p + |X_n|^p) \leq 2^{p+1} (X_\infty^*)^p \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . By dominated convergence, we obtain  $X_n \xrightarrow[n \to +\infty]{} X_\infty$  in  $L^p$ . Moreover, as  $\mathbb{E}[\cdot | \mathcal{G}]$  sends  $L^p$  to  $L^p$ , we obtain that  $\mathbb{E}[X_\infty | \mathcal{F}_n] = X_n$ , and similarly for stopping times  $\tau$ .

**Corollary 2.5.4.** If  $(X_n)_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale that is bounded in  $L^p$ , then  $(X_n)_{n \in \mathbb{N}}$  is closed in  $L^p$ , i.e. there exists  $Z \in L^p(\Omega, \mathcal{F}, \mathbb{P})$  s.t.  $\forall n \in \mathbb{N}, X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$ .

#### **2.6** Martingales in $L^2$

**Proposition 2.6.1** (Doob's decomposition). Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -submartingale. Then there exists a unique  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale  $(M_n)_{n\in\mathbb{N}}$  and a nondecreasing  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -previsible process  $(A_n)_{n\in\mathbb{N}}$  with  $A_0 = 0$  s.t.

$$\forall n \in \mathbb{N}, X_n = M_n + A_n$$

Moreover, for all  $n \in \mathbb{N}$ , we have  $A_{n+1} - A_n = \mathbb{E} [X_{n+1} - X_n \mid \mathcal{F}_n].$ 

**Definition 2.6.2** (Angle bracket). If  $(X_n)_{n\in\mathbb{N}} \in L^2(\Omega, \mathcal{F}, \mathbb{P})^{\mathbb{N}}$  is a martingale, then  $(X_n^2)_{n\in\mathbb{N}}$  is a submartingale, and we define the angle bracket  $(\langle X \rangle_n)_{n\in\mathbb{N}}$  as the nondecreasing previsible process arising in Doob's decomposition of  $(X_n^2)_{n\in\mathbb{N}}$  (c.f. Proposition 2.6.1). Moreover, we set  $\langle X \rangle_{\infty} = \lim_{n \to +\infty} \langle X \rangle_n \in [0, +\infty]$ .

**Proposition 2.6.3.** Let  $(X_n)_{n \in \mathbb{N}} \in L^2(\Omega, \mathcal{F}, \mathbb{P})^{\mathbb{N}}$  be a martingale. Then:

- (i)  $(\langle X \rangle_{\infty} < +\infty) \xrightarrow{a.s.} ((X_n)_{n \in \mathbb{N}} \text{ converges}).$
- (ii) If in addition  $\sup_{n \in \mathbb{N}} \|X_{n+1} X_n\|_{\infty} < +\infty$ , then  $(\langle X \rangle_{\infty} < +\infty) \stackrel{a.s.}{\iff} ((X_n)_{n \in \mathbb{N}} \text{ converges}).$

**Proof.** (i) Fix K > 0 and define:

$$T_K = \inf \left\{ n \in \mathbb{N}, \left\langle X \right\rangle_{n+1} > K \right\}.$$

Then  $T_K$  is a stopping time and the stopped process  $(\langle X \rangle_{n \wedge T_k})_{n \in \mathbb{N}}$  is previsible. Therefore, Doob's decomposition for the submartingale  $(X^2_{n \wedge T_K})_{n \in \mathbb{N}}$  is given by:

$$\forall n \in \mathbb{N}, \ X_{n \wedge T_K}^2 = M_{n \wedge T_K} + \langle X \rangle_{n \wedge T_K}.$$

Hence,  $(X_{n\wedge T_K})_{n\in\mathbb{N}}$  is bounded in  $L^2$  by  $\mathbb{E}[M_0] + K$ . According to Corollary 2.5.3,  $(X_{n\wedge T_K})_{n\in\mathbb{N}}$  converges a.s. Thus, on the set  $(\langle X \rangle_{\infty} \leq K) = (T_K = +\infty)$ , one has that  $(X_n)_{n\in\mathbb{N}}$  converges a.s. Taking the union over all  $K \in \mathbb{N}$  gives the desired result. (ii) Since  $\forall n \in \mathbb{N}, X_n^2 = M_n + \langle X \rangle_n$ , we have  $\left(M_n \xrightarrow[n \to +\infty]{} -\infty\right)$  on the event  $(\langle X \rangle_{\infty} = +\infty) \cap ((X_n)_{n\in\mathbb{N}} \text{ converges})$ . As in Corollary 2.4.7, we prove that:

$$\mathbb{P}\left(\left(\langle X \rangle_{\infty} = +\infty\right) \cap \left(\left(X_n\right)_{n \in \mathbb{N}} \text{ converges}\right)\right) = 0.$$

**Corollary 2.6.4** (Conditioned Borel-Cantelli Lemma). Let  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  be a filtration and consider a sequence  $(A_n)_{n \in \mathbb{N}^*}$  of events s.t.  $A_n$  is  $\mathcal{F}_n$ -measurable for all  $n \in \mathbb{N}^*$ . Then:

$$\left(\sum_{k\in\mathbb{N}^*}\mathbb{P}\left(A_k\mid\mathcal{F}_{k-1}\right)<+\infty\right)\stackrel{a.s.}{\Longrightarrow}\left(\sum_{k\in\mathbb{N}^*}\mathbb{1}_{A_k}<+\infty\right).$$

**Proof.** Set  $Y_n = \sum_{k=1}^n \mathbb{1}_{A_k}$ ,  $Z_n = \sum_{k=1}^n \mathbb{P}(A_k | \mathcal{F}_{k-1})$  and  $X_n = Y_n - Z_n$ . Then  $(X_n)_{n \in \mathbb{N}}$  is a martingale and Doob's decomposition for the submartingale  $(Y_n)_{n \in \mathbb{N}}$  is given by  $\forall n \in \mathbb{N}$ ,  $Y_n = X_n + Z_n$ . Moreover, for  $n \in \mathbb{N}$ , we have:

$$\langle X \rangle_{n+1} - \langle X \rangle_n = \mathbb{E} \left[ X_{n+1}^2 - X_n^2 \mid \mathcal{F}_n \right] = \mathbb{E} \left[ (X_{n+1} - X_n)^2 \mid \mathcal{F}_n \right]$$
  
=  $\mathbb{P} \left( A_{n+1} \mid \mathcal{F}_n \right) \left( 1 - \mathbb{P} \left( A_{n+1} \mid \mathcal{F}_n \right) \right) \le \mathbb{P} \left( A_{n+1} \mid \mathcal{F}_n \right).$ 

Therefore, for  $n \in \mathbb{N}$ ,  $\langle X \rangle_n \leq Z_n$ . Thus, if  $Z_{\infty} = \sum_{k \in \mathbb{N}^*} \mathbb{P}(A_k \mid \mathcal{F}_{k-1}) < +\infty$ , then  $\langle X \rangle_{\infty} < +\infty$ , so  $(X_n)_{n \in \mathbb{N}}$  converges according to Proposition 2.6.3, and so does  $(Y_n)_{n \in \mathbb{N}}$ .

#### 2.7 Uniform integrability

**Proposition 2.7.1.** Let X be an integrable random variable. Then:

- (i)  $\mathbb{E}\left[|X| \mathbb{1}_{(|X|>a)}\right] \xrightarrow[a \to +\infty]{} 0.$
- (ii)  $\forall \varepsilon > 0, \exists \delta > 0, \forall A \in \mathcal{F}, \mathbb{P}(A) \leq \delta \Longrightarrow \mathbb{E}[|X| \mathbb{1}_A] \leq \varepsilon.$

**Definition 2.7.2** (Uniform integrability). A family  $(X_i)_{i \in I}$  is said to be uniformly integrable if:

$$\sup_{i \in I} \mathbb{E}\left[ |X_i| \mathbb{1}_{(|X_i| > a)} \right] \xrightarrow[a \to +\infty]{} 0.$$

**Example 2.7.3.** If X is an integrable random variable, then the family  $\{X\}$  is uniformly integrable.

**Proposition 2.7.4.** A uniformly integrable family of random variables is bounded in  $L^1$ , but the converse is false.

**Proposition 2.7.5.** If the family  $(X_i)_{i \in I}$  of random variables is dominated in the sense that there exists an integrable random variable Y s.t.  $\forall i \in I$ ,  $|X_i| \leq Y$ , then  $(X_i)_{i \in I}$  is uniformly integrable.

**Proposition 2.7.6.** Let  $(X_i)_{i \in I}$  be a family of random variables. The following assertions are equivalent:

- (i)  $(X_i)_{i \in I}$  is uniformly integrable.
- (ii)  $(X_i)_{i \in I}$  is bounded in  $L^1$  and:

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall A \in \mathcal{F}, \ \mathbb{P}(A) \le \delta \Longrightarrow \sup_{i \in I} \mathbb{E}\left[ |X_i| \ \mathbb{1}_A \right] \le \varepsilon.$$

(iii) There exists a nondecreasing function  $G : \mathbb{R}_+ \to \mathbb{R}_+$  s.t.

$$\frac{G(x)}{x} \xrightarrow[x \to +\infty]{} +\infty \quad \text{and} \quad \sup_{i \in I} \mathbb{E} \left[ G\left( |X_i| \right) \right] < +\infty.$$

**Corollary 2.7.7.** A family of random variables that is bounded in  $L^p$  for some p > 1 is uniformly integrable.

**Lemma 2.7.8.** If  $(X_i)_{i \in I}$  and  $(Y_j)_{j \in J}$  are uniformly integrable families of random variables, then  $(X_i + Y_j)_{(i,j) \in I \times J}$  is uniformly integrable.

**Theorem 2.7.9.** Let  $(X_n)_{n \in \mathbb{N}}$  and X be random variables. The following assertions are equivalent:

- (i)  $X_n \xrightarrow{L^1}{n \to +\infty} X$ .
- (ii)  $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$  and  $(X_n)_{n \in \mathbb{N}}$  is uniformly integrable.

**Proof.** (ii)  $\Rightarrow$  (i) Let us show that  $\mathbb{E}[|X_n - X|] \xrightarrow[n \to +\infty]{} 0$ , assuming that  $X_n \xrightarrow[n \to +\infty]{} X$  and  $(X_n)_{n \in \mathbb{N}}$  is uniformly integrable. Fix  $\varepsilon > 0$ . Note that:

$$\mathbb{E}\left[|X_n - X|\right] = \mathbb{E}\left[|X_n - X| \mathbb{1}_{\left(|X_n - X| \le \varepsilon\right)}\right] + \mathbb{E}\left[|X_n - X| \mathbb{1}_{\left(|X_n - X| > \varepsilon\right)}\right] \le \varepsilon + \mathbb{E}\left[|X_n - X| \mathbb{1}_{\left(|X_n - X| > \varepsilon\right)}\right].$$

By Lemma 2.7.8,  $(X_n - X)_{n \in \mathbb{N}}$  is uniformly integrable, therefore there exists  $\delta > 0$  s.t.  $\mathbb{P}(A) \leq \delta \implies \forall n \in \mathbb{N}, \mathbb{E}[|X_n - X| \mathbb{1}_A] \leq \varepsilon$ . Now, since  $X_n \xrightarrow{\mathbb{P}} X$ , choose  $N \in \mathbb{N}$  s.t.  $\forall n \geq N, \mathbb{P}(|X_n - X| > \varepsilon) \leq \delta$ . This yields  $\forall n \geq N, \mathbb{E}[|X_n - X|] \leq 2\varepsilon$ . (i)  $\Rightarrow$  (ii) If  $X_n \xrightarrow{L^1} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$  because of Markov's inequality. Now let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  s.t.  $\forall n \geq N, \mathbb{E}[|X_n - X|] \leq \frac{\varepsilon}{2}$ , then choose  $\delta > 0$  s.t. for any event A with  $\mathbb{P}(A) \leq \delta$ , we have  $\mathbb{E}[|X| \mathbb{1}_A] \leq \frac{\varepsilon}{2}$  and  $\max_{0 \leq n < N} \mathbb{E}[|X_n - X| \mathbb{1}_A] \leq \frac{\varepsilon}{2}$ . Hence, if A is an event s.t.  $\mathbb{P}(A) \leq \delta$ , we have:

$$\mathbb{E}\left[|X_n|\,\mathbb{1}_A\right] \le \mathbb{E}\left[|X|\,\mathbb{1}_A\right] + \mathbb{E}\left[|X_n - X|\,\mathbb{1}_A\right] \le \varepsilon.$$

#### **2.8** Martingales in $L^1$

**Theorem 2.8.1.** Let  $(X_n)_{n\in\mathbb{N}}$  be a  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale. Then  $(X_n)_{n\in\mathbb{N}}$  converges in  $L^1$  iff  $(X_n)_{n\in\mathbb{N}}$  is uniformly integrable. In this case,  $(X_n)_{n\in\mathbb{N}}$  is closed in  $L^1$  by its limit  $X_\infty$ :

$$\forall n \in \mathbb{N}, X_n = \mathbb{E} [X_\infty \mid \mathcal{F}_n].$$

**Proof.** Use Proposition 2.7.4, Theorem 2.4.4 and Theorem 2.7.9 (as well as the fact that if a sequence of random variables converges almost surely, then it converges in probability).  $\Box$ 

**Corollary 2.8.2** (Doob's Stopping Theorem, uniformly integrable version). Let  $(X_n)_{n \in \mathbb{N}}$  be a uniformly integrable martingale and consider two stopping times  $\sigma, \tau$  s.t.  $\sigma \leq \tau$ . Then:

$$\mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] = X_{\sigma}.$$

In particular, if  $\tau$  is a stopping time, then:

$$\mathbb{E}\left[X_{\tau}\right] = \mathbb{E}\left[X_{0}\right].$$

**Proof.** Note that, according to Theorem 2.8.1 and Theorem 2.4.4,  $(X_n)_{n \in \mathbb{N}}$  converges almost surely and in  $L^1$  towards a random variable  $X_{\infty} \in L^1$ . Now let  $\tau$  be a stopping time. We shall show that  $\mathbb{E}[X_{\infty} | \mathcal{F}_{\tau}] = X_{\tau}$ . For  $A \in \mathcal{F}_{\tau}$ , we have:

$$\mathbb{E} \left[ X_{\infty} \mathbb{1}_{A} \right] = \sum_{n \in \mathbb{N}} \mathbb{E} \left[ X_{\infty} \mathbb{1}_{A \cap (\tau=n)} \right] + \mathbb{E} \left[ X_{\infty} \mathbb{1}_{A \cap (\tau=\infty)} \right]$$
$$= \sum_{n \in \mathbb{N}} \mathbb{E} \left[ \mathbb{E} \left[ X_{\infty} \mid \mathcal{F}_{n} \right] \mathbb{1}_{A \cap (\tau=n)} \right] + \mathbb{E} \left[ X_{\tau} \mathbb{1}_{A \cap (\tau=\infty)} \right]$$
$$= \sum_{n \in \mathbb{N}} \mathbb{E} \left[ X_{n} \mathbb{1}_{A \cap (\tau=n)} \right] + \mathbb{E} \left[ X_{\tau} \mathbb{1}_{A \cap (\tau=\infty)} \right] = \mathbb{E} \left[ X_{\tau} \mathbb{1}_{A} \right]$$

Hence  $\mathbb{E}[X_{\infty} \mid \mathcal{F}_{\tau}] = X_{\tau}$ . We easily obtain the desired result using the fact that  $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$ .

### 3 Applications of martingales

#### 3.1 Lévy's Convergence Theorem

**Lemma 3.1.1.** If  $Z \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ , then the family  $\{\mathbb{E}[Z \mid \mathcal{G}], \mathcal{G} \text{ sub-}\sigma\text{-algebra of } \mathcal{F}\}$  is uniformly integrable.

**Proof.** For a > 0, we have:

$$\mathbb{E}\left[\left|\mathbb{E}\left[Z \mid \mathcal{G}\right]\right| \mathbb{1}_{\left(|\mathbb{E}[Z|\mathcal{G}]| > a\right)}\right] \leq \mathbb{E}\left[\mathbb{E}\left[|Z| \mid \mathcal{G}\right] \mathbb{1}_{\left(\mathbb{E}[|Z||\mathcal{G}] > a\right)}\right] = \mathbb{E}\left[|Z| \mathbb{1}_{\left(\mathbb{E}[|Z||\mathcal{G}] > a\right)}\right].$$

Now by Markov's Inequality,  $\mathbb{P}(\mathbb{E}[|Z| | \mathcal{G}] > a) \leq \frac{1}{a}\mathbb{E}[|Z|] \xrightarrow[a \to +\infty]{a \to +\infty} 0$ . We conclude by uniform integrability of  $\{Z\}$ .

**Theorem 3.1.2** (Lévy's Convergence Theorem). Let  $(\mathcal{F}_n)_{n\in\mathbb{N}}$  be a filtration and  $Z \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Then  $(\mathbb{E}[Z \mid \mathcal{F}_n])_{n\in\mathbb{N}}$  converges a.s. and in  $L^1$  to  $\mathbb{E}[Z \mid \mathcal{F}_\infty]$ .

**Proof.** Define  $X_n = \mathbb{E}[Z | \mathcal{F}_n]$  for  $n \in \mathbb{N}$ . By Lemma 3.1.1, the martingale  $(X_n)_{n \in \mathbb{N}}$  is uniformly integrable. By Theorem 2.8.1,  $(X_n)_{n \in \mathbb{N}}$  converges a.s. and in  $L^1$  to some limit  $X_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . We easily check that  $\forall A \in \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ ,  $\mathbb{E}[X_{\infty}\mathbb{1}_A] = \mathbb{E}[Z\mathbb{1}_A]$ . Since  $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$  is stable by finite intersections and generates  $\mathcal{F}_{\infty}$ , this is actually true for all  $A \in \mathcal{F}_{\infty}$ , which shows that  $X_{\infty} = \mathbb{E}[Z | \mathcal{F}_{\infty}]$ .

**Corollary 3.1.3.** Let  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  be a filtration.

(i) If  $\mathcal{M}_{UI}$  denotes the set of uniformly integrable  $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingales, then the map:

$$Z \in L^{1}(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto \left(\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]\right)_{n \in \mathbb{N}} \in \mathcal{M}_{UI}$$

is a bijection.

(ii) Let  $p \in [1, +\infty)$ . If  $\mathcal{M}_{L^p}$  denotes the set of  $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingales that are bounded in  $L^p$ , then the map:

 $Z \in L^{p}(\Omega, \mathcal{F}, \mathbb{P}) \longmapsto (\mathbb{E}[Z \mid \mathcal{F}_{n}])_{n \in \mathbb{N}} \in \mathcal{M}_{L^{p}}$ 

is a bijection.

In particular, a martingale is closed iff it is uniformly integrable.

**Corollary 3.1.4** (Kolmogorov's Zero-One Law). Let  $(\mathcal{H}_n)_{n\in\mathbb{N}}$  be a family of independent sub- $\sigma$ -algebras of  $\mathcal{F}$ . Let  $\mathcal{G}_n = \bigvee_{k\geq n} \mathcal{H}_k$  for  $n \in \mathbb{N}$  and  $\mathcal{G}_{\infty} = \bigcap_{n\in\mathbb{N}} \mathcal{G}_n$ . Then  $\mathcal{G}_{\infty}$  is trivial:

$$\forall A \in \mathcal{G}_{\infty}, \ \mathbb{P}(A) \in \{0, 1\}.$$

**Proof.** Let  $\mathcal{F}_n = \bigvee_{0 \le k \le n} \mathcal{H}_k$  for  $n \in \mathbb{N}$ . Then  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  is a filtration and  $\mathcal{F}_{\infty} = \mathcal{G}_0 \supseteq \mathcal{G}_{\infty}$ . Hence, if  $A \in \mathcal{G}_{\infty}$ , we have  $\mathbb{E} [\mathbb{1}_A \mid \mathcal{F}_n] \xrightarrow[n \to +\infty]{a.s.} \mathbb{E} [\mathbb{1}_A \mid \mathcal{F}_{\infty}] = \mathbb{1}_A$  by Lévy's Convergence Theorem (Theorem 3.1.2). But note that  $A \in \mathcal{G}_{n+1}$ , so A is independent from  $\mathcal{F}_n$ ; therefore  $\mathbb{E} [\mathbb{1}_A \mid \mathcal{F}_n] = \mathbb{E} [\mathbb{1}_A] = \mathbb{P}(A)$ . Therefore,  $\mathbb{P}(A) = \mathbb{1}_A$  a.s.

**Theorem 3.1.5** (Hewitt–Savage Zero-One Law). Let  $(\xi_n)_{n\in\mathbb{N}}$  be independent random variables. Consider a map  $F : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$  s.t.

$$\forall \sigma \in \mathfrak{S}_n, \ F\left(\left(\xi_n\right)_{n \in \mathbb{N}}\right) = F\left(\left(\xi_{\sigma(n)}\right)_{n \in \mathbb{N}}\right)$$

Then  $F\left(\left(\xi_n\right)_{n\in\mathbb{N}}\right)$  is a.s. constant.

#### **3.2** Backwards martingales

**Definition 3.2.1** (Backwards martingale). Consider a filtration  $(\mathcal{F}_n)_{n \in \mathbb{Z}_-}$  (i.e. s.t.  $\mathcal{F}_{n-1} \subseteq \mathcal{F}_n$  for all  $n \in \mathbb{Z}_-$ ; we then write  $\mathcal{F}_{-\infty} = \bigcap_{n \in \mathbb{Z}_-} \mathcal{F}_n$ ) and a sequence  $(X_n)_{n \in \mathbb{Z}_-}$  of integrable random variables. We say that  $(X_n)_{n \in \mathbb{Z}_-}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{Z}_-}$ -backwards martingale if  $\forall n \in \mathbb{Z}_-$ ,  $\mathbb{E}[X_n | \mathcal{F}_{n-1}] = X_{n-1}$ .

**Theorem 3.2.2.** Let  $(X_n)_{n \in \mathbb{Z}_-}$  be a  $(\mathcal{F}_n)_{n \in \mathbb{Z}_-}$ -backwards martingale. Then  $(X_n)_{n \in \mathbb{Z}_-}$  converges a.s. and in  $L^1$  to  $X_{-\infty} = \mathbb{E}[X_0 \mid \mathcal{F}_{-\infty}]$ .

**Proof.** Note that  $(X_n)_{n \in \mathbb{Z}_-} = (\mathbb{E} [X_0 | \mathcal{F}_n])_{n \in \mathbb{Z}_-}$  is uniformly integrable by Lemma 3.1.1. Adapt the proof of Theorem 2.4.4 to prove that  $(X_n)_{n \in \mathbb{Z}_-}$  converges a.s. The convergence is also  $L^1$  since  $(X_n)_{n \in \mathbb{Z}_-}$  is uniformly integrable. To show that  $X_{-\infty} = \mathbb{E} [X_0 | \mathcal{F}_{-\infty}]$ , adapt the proof of Lévy's Convergence Theorem (Theorem 3.1.2).

**Corollary 3.2.3** (Strong Law of Large Numbers). Consider i.i.d. random variables  $(\xi_n)_{n \in \mathbb{N}^*}$  in  $L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Set  $S_n = \sum_{k=1}^n \xi_k$  for  $n \in \mathbb{N}$ . Then  $\left(\frac{1}{n}S_n\right)_{n \in \mathbb{N}}$  converges a.s. and in  $L^1$  to  $\mathbb{E}[\xi_1]$ .

**Proof.** Let  $\mathcal{G}_n = \sigma(S_n, S_{n+1}, \dots) = \sigma(S_n, \xi_{n+1}, \xi_{n+2}, \dots)$  for  $n \in \mathbb{N}$ . Hence,  $(\mathcal{G}_{-n})_{n \in \mathbb{Z}_-}$  is a backwards filtration. Let us show that  $\left(\frac{1}{-n}S_{-n}\right)_{n \in \mathbb{Z}_-}$  is a backwards martingale. It is clearly integrable and adapted. Moreover, for  $n \in \mathbb{N}$ :

$$\mathbb{E}\left[\frac{1}{n}S_n \mid \mathcal{G}_{n+1}\right] = \frac{1}{n}\mathbb{E}\left[S_{n+1} - \xi_{n+1} \mid \mathcal{G}_{n+1}\right] = \frac{1}{n}\left(S_{n+1} - \mathbb{E}\left[\xi_{n+1} \mid S_{n+1}\right]\right),$$

using the fact that  $S_{n+1}$  is  $\mathcal{G}_{n+1}$ -measure and Proposition 1.4.4. Now, by symmetry, we have  $\mathbb{E}[\xi_{n+1} | S_{n+1}] = \mathbb{E}[\xi_k | S_{n+1}]$  for all  $k \in \{1, \ldots, n+1\}$ , so  $S_{n+1} = \sum_{k=1}^{n+1} \mathbb{E}[\xi_k | S_{n+1}] = (n+1)\mathbb{E}[\xi_{n+1} | S_{n+1}]$ , which gives:

$$\mathbb{E}\left[\frac{1}{n}S_n \mid \mathcal{G}_{n+1}\right] = \frac{1}{n+1}S_{n+1}.$$

So  $\left(\frac{1}{-n}S_{-n}\right)_{n\in\mathbb{Z}_{-}}$  is indeed a backwards martingale. By Theorem 3.2.2,  $\left(\frac{1}{n}S_{n}\right)_{n\in\mathbb{N}}$  converges a.s. and in  $L^{1}$  to  $Y_{\infty} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ . If  $k \in \mathbb{N}$  is fixed, we have  $Y_{\infty} = \lim_{n \to +\infty} \frac{1}{n} (\xi_{k+1} + \cdots + \xi_{n})$ , so  $Y_{\infty}$  is measurable w.r.t. the asymptotic  $\sigma$ -algebra  $\bigcap_{n\in\mathbb{N}} \bigvee_{k\geq n} \sigma(\xi_{k})$ . By Kolmogorov's Zero-One Law (Corollary 3.1.4),  $Y_{\infty}$  is a.s. constant, so  $Y_{\infty} = \mathbb{E}[Y_{\infty}] = \lim_{n \to +\infty} \mathbb{E}\left[\frac{1}{n}S_{n}\right] = \mathbb{E}[\xi_{1}]$ .

#### **3.3** Radon-Nikodym Theorem

**Lemma 3.3.1.** Let  $\mu$  and  $\nu$  be two finite measures on a measurable space  $(\Omega, \mathcal{F})$ . Assume that  $\mu \ll \nu$ , i.e.  $\forall A \in \mathcal{F}, \nu(A) = 0 \Longrightarrow \mu(A) = 0$ . Then:

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall A \in \mathcal{F}, \ \nu(A) \le \delta \Longrightarrow \mu(A) \le \varepsilon$$

**Proof.** Assume for contradiction the existence of  $\varepsilon_0 > 0$  s.t. for all  $n \in \mathbb{N}^*$ , there exists  $A_n \in \mathcal{F}$  s.t.  $\nu(A_n) \leq \frac{1}{2^n}$  and  $\mu(A_n) > \varepsilon_0$ . Then  $\nu(\limsup_{n \to +\infty} A_n) = 0$  but  $\mu(\limsup_{n \to +\infty} A_n) \geq \varepsilon_0$ . This is a contradiction.

**Theorem 3.3.2** (Radon-Nikodym Theorem). Consider a measurable space  $(\Omega, \mathcal{F})$  that is separable, i.e. s.t. there exists  $(F_n)_{n\in\mathbb{N}} \in \mathcal{P}(\Omega)^{\mathbb{N}}$  s.t.  $\mathcal{F} = \sigma(\{F_n\}, n \in \mathbb{N})$ . Let  $\mathbb{P}$  and  $\mathbb{Q}$  be finite measures on  $(\Omega, \mathcal{F})$  with  $\mathbb{P}$  a probability measure. If  $\mathbb{Q} \ll \mathbb{P}$ , then there exists a unique random variable X that is integrable and s.t.  $\forall A \in \mathcal{F}, \mathbb{Q}(A) = \mathbb{E}[X\mathbb{1}_A]$ .

**Proof.** Let  $\mathcal{F}_n = \sigma(\{F_0\}, \ldots, \{F_n\})$  for  $n \in \mathbb{N}$ . We have  $\mathcal{F}_n = \sigma(\{A_{\varepsilon}\}, \varepsilon \in \{-1, 1\}^{n+1})$ , where  $A_{\varepsilon} = \bigcap_{i=0}^n F_i^{\varepsilon_i}$ , with the notation  $F^1 = F$  and  $F^{-1} = \Omega \setminus F$ . We now define a  $\mathcal{F}_n$ -measurable random variable  $X_n$  as follows:

$$X_n = \sum_{\varepsilon \in \{-1,1\}^{n+1}} \frac{\mathbb{Q}(A_{\varepsilon})}{\mathbb{P}(A_{\varepsilon})} \mathbb{1}_{A_{\varepsilon}},$$

with the convention  $\frac{\mathbb{Q}(A_{\varepsilon})}{\mathbb{P}(A_{\varepsilon})} = 0$  if  $\mathbb{P}(A_{\varepsilon}) = 0$ . Hence, we have  $\forall A \in \mathcal{F}_n$ ,  $\mathbb{Q}(A) = \mathbb{E}[X_n \mathbb{1}_A]$  (i.e.  $X_n$  is the Radon-Nikodym derivative of  $\mathbb{Q}_{|\mathcal{F}_n}$  w.r.t.  $\mathbb{P}_{|\mathcal{F}_n}$ ). Now,  $(X_n)_{n \in \mathbb{N}}$  is a  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  martingale. With Lemma 3.3.1, we show that  $(X_n)_{n \in \mathbb{N}}$  is uniformly integrable. By Theorem 2.8.1,  $(X_n)_{n \in \mathbb{N}}$  converges a.s. and in  $L^1$  to a limit X. Therefore,  $\forall A \in \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ ,  $\mathbb{Q}(A) = \mathbb{E}[X\mathbb{1}_A]$ . Since  $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$  is stable by finite intersections and generates  $\mathcal{F}$ , we obtain the result for all  $A \in \mathcal{F}$ .

### 4 Markov chains

#### 4.1 Definitions and first properties

**Definition 4.1.1** (Markov transition function). Let S be a countable set. The elements of S will be viewed as states. A Markov transition function (or transition matrix, or transition kernel) on S is a map  $Q: S^2 \to \mathbb{R}_+$  s.t.

$$\forall x \in S, \ \sum_{y \in S} Q\left(x, y\right) = 1.$$

Hence, for all  $x \in S$ ,  $Q(x, \cdot)$  defines a probability distribution on S.

Notation 4.1.2. Let S be a countable set.

- (i) If Q, Q' are two transition functions on S (seen as matrices), we define a transition function  $QQ': (x, y) \in S^2 \longmapsto \sum_{z \in S} Q(x, z)Q(z, y).$
- (ii) If Q is a transition function and  $n \in \mathbb{N}$ , we define  $Q^n = Q \cdots Q$ .
- (iii) If Q is a transition function and  $f \in \mathbb{R}^S$  is a bounded function (seen as a column vector), we define a bounded function  $Qf : x \in S \mapsto \sum_{y \in S} Q(x, y)f(y)$ .
- (iv) If Q is a transition function and  $\mu \in \mathbb{R}^S$  is a bounded function (seen as a row vector), we define a bounded function  $\mu Q : y \in S \mapsto \sum_{x \in S} \mu(x)Q(x, y)$ .
- (v) If Q is a transition function, f is a column vector and  $\mu$  is a row vector, we define  $\mu Qf = \sum_{x,y\in S} \mu(x)Q(x,y)f(y)$ .

Row vectors should be seen as measures on S, while column vector should be seen as functions on S; they play different roles.

**Definition 4.1.3** (Markov chains). A Markov chain with transition function Q (or a Q-Markov chain) is a random process  $(X_n)_{n \in \mathbb{N}}$  with values in S and s.t., for all  $n \in \mathbb{N}$  and  $y, x_0, \ldots, x_n \in S$ , we have:

$$\mathbb{P}\left(X_{n+1}=y\mid X_0=x_0,\ldots,X_n=x_n\right)=Q\left(x_n,y\right),$$

as soon as this probability is well-defined.

**Proposition 4.1.4.** If  $(X_n)_{n \in \mathbb{N}}$  is a Q-Markov chain, then for all  $n \in \mathbb{N}$  and  $x_0, \ldots, x_n \in S$ :

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_0 = x_0) Q(x_0, x_1) Q(x_1, x_2) \cdots Q(x_{n-1}, x_n).$$

**Proposition 4.1.5.** The random process  $(X_n)_{n \in \mathbb{N}}$  is a Q-Markov chain iff for all  $y \in S$ , we have:

$$\mathbb{P}\left(X_{n+1}=y\mid X_0,\ldots,X_n\right)=Q\left(X_n,y\right).$$

In other words, the conditional law of  $X_{n+1}$  given  $X_0, \ldots, X_n$  is  $Q(X_n, \cdot)$ .

**Corollary 4.1.6.** Let  $(X_n)_{n \in \mathbb{N}}$  be a Q-Markov chain. Let  $f : S \to \mathbb{R}_+$  be a bounded function.

- (i) For all  $n \in \mathbb{N}$ ,  $\mathbb{E}[f(X_{n+1}) \mid X_0, \dots, X_n] = Qf(X_n)$ .
- (ii) For all  $x \in S$ ,  $\mathbb{E}[f(X_1) \mid X_0 = x] = Qf(x)$ .
- (iii) If  $\mu$  is the probability law of  $X_0$ , then  $\mathbb{E}[f(X_1)] = \mu Q f$ .

**Proposition 4.1.7.** Let  $(X_n)_{n \in \mathbb{N}}$  be a Q-Markov chain.

(i) For  $x_0, x_n \in S$ ,  $\mathbb{P}(X_n = x_n \mid X_0 = x_0) = Q^n(x_0, x_n)$ .

(ii) For  $y_1, ..., y_k, x_0, ..., x_n \in S$ :

$$\mathbb{P}(X_{n+1} = y_1, \dots, X_{n+k} = y_k \mid X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_1 = y_1, \dots, X_k = y_k \mid X_0 = x_n).$$

Therefore,  $(X_{k+np})_{n \in \mathbb{N}}$  is a  $Q^p$ -Markov chain for all  $p, k \in \mathbb{N}^*$ .

#### Example 4.1.8.

- (i) Independent and identically distributed sequences. Let  $\mu$  be a probability distribution on a countable set S. Set  $Q : (x, y) \in S^2 \mapsto \mu(y)$ . Then an i.i.d. sequence of random variables of law  $\mu$  is a Q-Markov chain.
- (ii) Random walks in abelian groups. Let G be a countable abelian group equipped with a probability law  $\mu$ . Let  $(\xi_n)_{n \in \mathbb{N}^*}$  be a sequence of i.i.d. random variables of law  $\mu$ . Then the sequence  $(\sum_{k=1}^n \xi_k)_{n \in \mathbb{N}}$  is a Markov chain associated to the transition function  $Q(x, y) = \mu(y - x)$ .
- (iii) Branching processes. Let  $\mu$  be a probability distribution on  $\mathbb{N}$ , let  $(\xi_{n,i})_{(n,i)\in\mathbb{N}^2}$  be i.i.d. random variables of law  $\mu$ . Let  $X_0$  be a random variable independent of  $(\xi_{n,i})_{(n,i)\in\mathbb{N}^2}$ , and define  $(X_n)_{n\in\mathbb{N}}$  by induction by:

$$X_{n+1} = \sum_{i=0}^{X_n - 1} \xi_{n,i}$$

Then  $(X_n)_{n \in \mathbb{N}}$  is a Markov chain associated to the transition function  $Q(x,y) = \mu^{*x}(y) = \sum_{n_1+\dots+n_x=y} \mu(n_1) \cdots \mu(n_x).$ 

#### 4.2 Existence of Markov chains, the canonical process

**Theorem 4.2.1.** For every probability distribution  $\mu$  and for every transition function Q on a countable set S, there exists a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  and a sequence  $(X_n)_{n \in \mathbb{N}}$  of random variables that is a Q-Markov chain with initial law  $\mu$ .

**Proof.** Take a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  on which we can define a sequence  $(U_n)_{n \in \mathbb{N}}$  of i.i.d. random variables with law  $\mathcal{U}([0, 1])$ . Now, arrange the elements of S into a list  $(s_i)_{i \in \mathbb{N}}$  and define:

$$X_{0} = \sum_{i \in \mathbb{N}^{*}} s_{i} \mathbb{1}_{\left\{\sum_{j < i} \mu(s_{j}) \le U_{0} < \sum_{j \le i} \mu(s_{j})\right\}}.$$

Thus,  $X_0$  has law  $\mu$ . Inductively, once  $X_0, \ldots, X_n$  have been constructed s.t.  $X_k$  is  $\sigma(U_0, \ldots, U_k)$ -measurable and  $(X_0, \ldots, X_n)$  is a Q-Markov chain, set:

$$X_{n+1} = \sum_{i \in \mathbb{N}^*} s_i \mathbb{1}_{\left\{\sum_{j < i} Q(X_n, s_j) \le U_{n+1} < \sum_{j \le i} Q(X_n, s_j)\right\}}.$$

Thus, for  $j \in \mathbb{N}^*$ ,  $\mathbb{P}\left(X_{n+1} = s_j \mid \mathcal{F}_n^U\right) = Q\left(X_n, x_j\right)$ . Hence, by induction, we construct a Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  with initial law  $\mu$ .

**Proposition 4.2.2.** Let  $(Y_n)_{n\in\mathbb{N}}$  be a Q-Markov chain defined on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Consider the measurable space  $(S^{\mathbb{N}}, \mathcal{P}(S)^{\otimes\mathbb{N}})$  and the (measurable) map  $\varphi : \omega \in \Omega \longmapsto (Y_n(\omega))_{n\in\mathbb{N}} \in S^{\mathbb{N}}$ . If  $(Y_n)_{n\in\mathbb{N}}$  is s.t.  $\mathbb{P}(Y_0 = x) = 1$  for some  $x \in S$  (i.e.  $(Y_n)_{n\in\mathbb{N}}$  has initial distribution  $\delta_x$ ), then we write  $\mathbb{P}_x = \varphi_*\mathbb{P}$ ; it is a probability distribution on  $(S^{\mathbb{N}}, \mathcal{P}(S)^{\otimes\mathbb{N}})$ . Now, the family of laws  $(\mathbb{P}_x)_{x\in S}$  does not depend on the choice of  $(\Omega, \mathcal{F}, \mathbb{P})$  and the sequence  $(X_n)_{n\in\mathbb{N}}$  of random variables on  $(S^{\mathbb{N}}, \mathcal{P}(S)^{\otimes\mathbb{N}}, \mathbb{P}_x)$  defined as the projections on each coordinate is called the canonical Q-Markov chain.

#### 4.3 The simple and strong Markov properties

**Notation 4.3.1.** For any set S and for any  $k \in \mathbb{N}$ , we define the shift operator  $\theta_k : x \in S^{\mathbb{N}} \mapsto (x_{n+k})_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ .

**Theorem 4.3.2** (Simple Markov Property). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain (write  $\mathbb{P}_x$  for the law of the canonical Markov chain starting at x, and  $\mathbb{E}_x$  for the corresponding expectation). Let  $\mathcal{F} = \bigvee_{n \in \mathbb{N}} \mathcal{F}_n^X$ . Let G be a nonnegative  $\mathcal{F}$ -measurable function. Then, for every  $n \in \mathbb{N}$  and for every nonnegative  $\mathcal{F}_n^X$ -measurable function F, we have:

$$\mathbb{E}_{x}\left[F\cdot\left(G\circ\theta_{n}\right)\right]=\mathbb{E}_{x}\left[F\cdot\mathbb{E}_{X_{n}}\left[G\right]\right].$$

In other words, for every  $n \in \mathbb{N}$ :

$$\mathbb{E}_{x}\left[G \circ \theta_{n} \mid \mathcal{F}_{n}^{X}\right] = \mathbb{E}_{X_{n}}\left[G\right]$$

Note that  $\mathbb{E}_{X_n}[G]$  is the random variable  $\omega \mapsto \mathbb{E}_{X_n(\omega)}[G]$ .

**Proof.** Show that the statement is true for  $F = \mathbb{1}_{\{X_0 = x_0, \dots, X_n = x_n\}}$  and  $G = \mathbb{1}_{\{X_0 = x_n, \dots, X_k = x_{n+k}\}}$  with  $x_0, \dots, x_{n+k} \in S$ . Use the Monotone Class Theorem to generalise to  $F = \mathbb{1}_A$ ,  $G = \mathbb{1}_B$  with  $A \in \mathcal{F}_n$  and  $B \in \mathcal{F}$ , and then use an approximation argument to obtain the result.  $\Box$ 

**Theorem 4.3.3** (Strong Markov Property). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Let  $\mathcal{F} = \bigvee_{n \in \mathbb{N}} \mathcal{F}_n^X$ . Let G be a nonnegative  $\mathcal{F}$ -measurable function. Then, for every  $(\mathcal{F}_n^X)_{n \in \mathbb{N}}$ -stopping time  $\tau$  and for every nonnegative  $\mathcal{F}_{\tau}$ -measurable function F, we have:

$$\mathbb{E}_x\left[F\mathbb{1}_{\{\tau<+\infty\}}\cdot (G\circ\theta_\tau)\right] = \mathbb{E}_x\left[F\mathbb{1}_{\{\tau<+\infty\}}\cdot \mathbb{E}_{X_\tau}\left[G\right]\right].$$

In other words, for every stopping time  $\tau$ :

$$\mathbb{1}_{\{\tau < +\infty\}} \mathbb{E}_x \left[ G \circ \theta_\tau \mid \mathcal{F}_\tau \right] = \mathbb{1}_{\{\tau < +\infty\}} \mathbb{E}_{X_\tau} \left[ G \right].$$

**Proof.** Let F, G be as above. Then:

$$\mathbb{E}_{x}\left[F\mathbb{1}_{\{\tau<+\infty\}}\cdot(G\circ\theta_{\tau})\right] = \sum_{t\in\mathbb{N}}\mathbb{E}_{x}\left[F\mathbb{1}_{\{\tau=t\}}\cdot(G\circ\theta_{t})\right] = \sum_{t\in\mathbb{N}}\mathbb{E}_{x}\left[F\mathbb{1}_{\{\tau=t\}}\cdot\mathbb{E}_{X_{t}}\left[G\right]\right]$$
$$= \mathbb{E}_{x}\left[F\mathbb{1}_{\{\tau<+\infty\}}\cdot\mathbb{E}_{X_{\tau}}\left[G\right]\right].$$

**Remark 4.3.4.** Consider the canonical Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$ . If  $\mu$  is any distribution on S, write:

$$\mathbb{P}_{\mu} = \sum_{x \in S} \mu(x) \mathbb{P}_x;$$

thus, under  $(S^{\mathbb{N}}, \mathcal{P}(S)^{\otimes \mathbb{N}}, \mathbb{P}_{\mu})$ ,  $(X_n)_{n \in \mathbb{N}}$  is a Q-Markov chain with initial law  $\mu$ . Hence, the simple and strong Markov properties remain valid if one replaces  $\mathbb{E}_x$  by  $\mathbb{E}_{\mu}$ .

#### 4.4 Classification of states

**Proposition 4.4.1.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. For  $x \in S$ , define  $T_x^+ = \inf \{n \in \mathbb{N}^*, X_n = x\}$  and  $N_x = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{X_n = x\}}$ . Then we are in one of the two following cases:

- (i) Either  $\mathbb{P}_x(T_x^+ < +\infty) = 1$  and  $N_x = +\infty \mathbb{P}_x$ -a.s. We then say that x is a recurrent state.
- (ii) Or  $\mathbb{P}_x(T_x^+ < +\infty) < 1$  and  $N_x < +\infty \mathbb{P}_x$ -a.s. Moreover:

$$\mathbb{E}_x\left[N_x\right] = \frac{1}{\mathbb{P}_x\left(T_x^+ = +\infty\right)}$$

We then say that x is a transient state.

**Proof.** Note that  $\{N_x \ge k+1\} = \{T_x^+ < +\infty, N_x \circ \theta_{T_x^+} \ge k\}$ . Therefore, by the Strong Markov Property:

$$\mathbb{P}_x\left(N_x \ge k+1\right) = \mathbb{E}_x\left[\mathbbm{1}_{\left\{T_x^+ < +\infty\right\}} \mathbb{E}_{X_{T_x^+}}\left[\mathbbm{1}_{\left\{N_x \ge k\right\}}\right]\right] = \mathbb{P}_x\left(T_x^+ < +\infty\right) \mathbb{P}_x\left(N_x \ge k\right).$$

Hence:

$$\mathbb{P}_x \left( N_x \ge k \right) = \mathbb{P}_x \left( T_x^+ < +\infty \right)^k.$$

So, under  $\mathbb{P}_x$ , we have shown that  $N_x$  follows a geometric distribution with parameter  $\mathbb{P}_x(T_x^+ = \infty)$ ; we easily deduce the result.

**Definition 4.4.2** (Green function of a Markov chain). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. We define the Green function of  $(X_n)_{n \in \mathbb{N}}$  by:

$$G: (x, y) \in S \longmapsto \mathbb{E}_x \left[ \sum_{n \in \mathbb{N}} \mathbb{1}_{\{X_n = y\}} \right].$$

We have shown that  $x \in S$  is recurrent iff  $G(x, x) = +\infty$ .

**Remark 4.4.3.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Then, for all  $x, y \in S$ :

$$G(x,y) = \sum_{n \in \mathbb{N}} Q^n(x,y).$$

In particular,  $G(x, y) > 0 \iff \exists n \in \mathbb{N}, Q^n(x, y) > 0.$ 

**Proposition 4.4.4** ("Recurrent states are contagious"). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Let  $x \neq y$  be two states s.t. x is recurrent and G(x, y) > 0. Write  $T_x = \inf \{n \in \mathbb{N}, X_n = x\}$  and similarly for  $T_y$ . Then:

- (i)  $\mathbb{P}_x(T_y < +\infty) = \mathbb{P}_y(T_x < +\infty) = 1.$
- (ii) y is a recurrent state.
- (iii) G(y, x) > 0.

**Proof.** Since x is recurrent, the Strong Markov Property implies that:

$$0 = \mathbb{P}_x \left( T_x^+ = +\infty \right) \ge \mathbb{P}_x \left( T_x^+ = +\infty, \ T_y = +\infty \right) = \mathbb{P}_x \left( T_x^+ \circ \theta_{T_y} = +\infty, \ T_y = +\infty \right)$$
$$= \mathbb{E}_x \left[ \mathbbm{1}_{\{T_y < +\infty\}} \mathbb{E}_{X_{T_y}} \left[ \mathbbm{1}_{\{T_x = +\infty\}} \right] \right] = \mathbb{P}_x \left( T_y < +\infty \right) \mathbb{P}_y \left( T_x = +\infty \right).$$

Since  $\mathbb{P}_x(T_y < +\infty) > 0$  (because G(x, y) > 0), we obtain  $\mathbb{P}_y(T_x = +\infty) = 0$ . In particular, G(y, x) > 0. Since G(x, y) > 0 and G(y, x) > 0, there exist  $n_1, n_2 \in \mathbb{N}$  s.t.  $Q^{n_1}(x, y) > 0$  and  $Q^{n_2}(y, x) > 0$ . Now:

$$G(y,y) \ge Q^{n_2}(y,x)G(x,x)Q^{n_1}(x,y) = +\infty,$$
  
by symmetry,  $\mathbb{P}_x(T_y < +\infty) = 1.$ 

so y is recurrent. Moreover, by symmetry,  $\mathbb{P}_x(T_y < +\infty) = 1$ .

**Definition 4.4.5** (Irreducible chain). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. We say that the Markov chain is irreducible if  $\forall x, y \in S$ , G(x, y) > 0. In this case, either all states are recurrent (and we say that the chain is recurrent) or all states are transient (and we say that the chain is transient).

**Definition 4.4.6** (Recurrence classes). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Let  $R \subseteq S$  be the set of recurrent states. Define an equivalence relation  $\sim$  on R by:

$$x \sim y \iff G(x, y) > 0.$$

The relation  $\sim$  is indeed an equivalence relation by Proposition 4.4.4. Its equivalence classes are called the recurrence classes of the Markov chain.

**Theorem 4.4.7.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. For  $x \in R$ , denote by  $R_x$  the recurrence class of x. For any  $y \in S$ , write  $N_y = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{X_n = y\}}$ .

(i) If  $x \in R$  is a recurrent state, then  $\mathbb{P}_x$ -a.s.:

 $\forall y \in R_x, N_y = +\infty$  and  $\forall y \in S \setminus R_x, N_y = 0.$ 

- (ii) If  $x \in S \setminus R$  is a transient state, we have  $N_y < +\infty \mathbb{P}_x$ -a.s. for all  $y \in S \setminus R$ . Moreover, if we let  $T = \inf \{n \in \mathbb{N}, X_n \in R\}$ , we have  $\mathbb{P}_x$ -a.s.:
  - Either  $T = +\infty$  and  $\forall y \in R, N_y = 0$ .
  - Or  $T < +\infty$  and  $\forall y \in R_{X_T}$ ,  $N_y = +\infty$  and  $\forall y \in R \setminus R_{X_T}$ ,  $N_y = 0$ .

#### Example 4.4.8.

- (i) Let  $(\xi_n)_{n\in\mathbb{N}^*}$  be a sequence of i.i.d. random variables with law  $\mu$  on S. If  $\xi_0$  is any random variable on S that is independent from  $(\xi_n)_{n\in\mathbb{N}^*}$ , then  $(\xi_n)_{n\in\mathbb{N}}$  is a Markov chain. The set of recurrent states is the support of  $\mu$ , and all recurrent states are in the same recurrence class.
- (ii) Let  $\mu$  be a law on  $\mathbb{Z}$  and let  $(\xi_n)_{n \in \mathbb{N}^*}$  be a sequence of i.i.d. random variables with law  $\mu$ . Let  $S_n = \sum_{k=1}^n \xi_k$  for  $n \in \mathbb{N}$ . Then  $(S_n)_{n \in \mathbb{N}}$  is a Markov chain on  $\mathbb{Z}$ . If we assume that  $\xi_1$  is  $L^1$ , then:
  - If  $\mathbb{E}[\xi_1] \neq 0$ , then all states are transient.
  - If  $\mathbb{E}[\xi_1] = 0$ , then all states are recurrent, and the chain is irreducible iff the support of  $\mu$  generates  $\mathbb{Z}$  (as an additive group).
- (iii) Let  $(X_n)_{n \in \mathbb{N}}$  be a Markov chain on a finite set S. Then the chain is irreducible iff the graph  $(S, \{(x, y) \in S^2, Q(x, y) > 0\})$  is strongly connected. Moreover, if the chain is irreducible, then it is recurrent.
- (iv) Let  $(X_n)_{n\in\mathbb{N}}$  be the branching process with law  $\mu$ , as in Example 4.1.8. Assume that  $\mu(1) < 1$ . Note that  $(X_n)_{n\in\mathbb{N}}$  is a Markov chain, where 0 is the only recurrent state (and 0 is even absorbing).

#### 4.5 Invariant measures for Markov chains

**Definition 4.5.1** (Invariant measure). Let  $\mu$  be a nonnegative measure on S. We say that  $\mu$  is invariant for the transition function Q if:

$$\mu Q = \mu$$

*i.e.*  $\forall y \in S, \ \mu(y) = \sum_{x \in S} \mu(x)Q(x, y)$ . In this case, we have  $\forall n \in \mathbb{N}, \ \mu Q^n = \mu$ .

**Remark 4.5.2.** Let  $\mu$  be an invariant measure for Q. If  $(X_n)_{n \in \mathbb{N}}$  is a Q-Markov chain with initial "law"  $\mu$  (which does not always make sense because  $\mu$  is not necessarily a probability distribution), then  $X_n$  also has "law"  $\mu$  for all  $n \in \mathbb{N}$ .

**Definition 4.5.3** (Reversible measure). Let  $\mu$  be a nonnegative measure on S. We say that  $\mu$  is reversible for the transition function Q if:

$$\forall x, y \in S, \ \mu(x)Q(x, y) = \mu(y)Q(y, x).$$

A reversible measure is always invariant.

**Theorem 4.5.4.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. If x is a recurrent state, set:

$$\mu_x: y \in S \longmapsto \mathbb{E}_x \left[ \sum_{n=0}^{T_x^+ - 1} \mathbb{1}_{\{X_n = y\}} \right],$$

where  $T_x^+ = \inf \{n \in \mathbb{N}^*, X_n = x\}$ . Then  $\mu_x$  is an invariant measure,  $\mu_x(x) = 1$  and  $\mu_x(y) > 0$  iff y is in the recurrence class of x.

**Proof.** Note that:

$$\mu_{x}(y) = \sum_{n \in \mathbb{N}^{*}} \mathbb{P}_{x} \left( X_{n} = y, \ n \leq T_{x}^{+} \right) = \sum_{n \in \mathbb{N}^{*}} \sum_{z \in S} \mathbb{P}_{x} \left( X_{n-1} = z, \ X_{n} = y, \ n \leq T_{x}^{+} \right)$$
$$= \sum_{n \in \mathbb{N}^{*}} \sum_{z \in S} \mathbb{E}_{x} \left[ \mathbb{1}_{\left\{ X_{n-1} = z, \ n \leq T_{x}^{+} \right\}} \mathbb{P}_{X_{n-1}} \left( X_{1} = y \right) \right]$$
$$= \sum_{n \in \mathbb{N}^{*}} \sum_{z \in S} \mathbb{P}_{x} \left( X_{n-1} = z, \ n \leq T_{x}^{+} \right) Q(z, y) = \sum_{z \in S} Q(z, y) \mu_{x}(z).$$

**Remark 4.5.5.** Let  $(X_n)_{n\in\mathbb{N}}$  be the canonical Q-Markov chain. If  $x_1, \ldots, x_r$  are recurrent states then for all  $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ ,  $\sum_{i=1}^r \alpha_i \mu_{x_i}$  is an invariant measure.

**Lemma 4.5.6.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent. If  $\nu$  is an invariant measure, then:

$$\forall x, y \in S, \forall p \in \mathbb{N}, \nu(y) \ge \nu(x) \mathbb{E}_x \left[ \sum_{k=0}^{(T_x^+ - 1) \wedge p} \mathbb{1}_{\{X_n = y\}} \right].$$

**Proof.** By induction on p, for x fixed and y arbitrary. The result is clear for p = 0. If it is true for p, then write  $\nu(y) = \sum_{z \in S} \nu(z)Q(z, y)$  and apply the induction hypothesis to obtain a lower bound for  $\nu(z)$ .

**Proposition 4.5.7.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent. Then, for all  $x \in S$ , any invariant measure  $\nu$  is equal to  $\nu(x)\mu_x$ .

**Proof.** Fix  $x \in S$  and let  $\nu$  be an invariant measure. Using Lemma 4.5.6, letting  $p \to +\infty$  and using the Monotone Convergence Theorem, we obtain:

$$\forall y \in S, \ \nu(y) \ge \nu(x)\mu_x(y).$$

But since  $\nu$  and  $\mu_x$  are both invariant, we have:

$$\forall n \in \mathbb{N}, \ \nu(x) = \sum_{y \in S} \nu(y) Q^n(y, x) \ge \sum_{y \in S} \nu(x) \mu_x(y) Q^n(y, x) = \nu(x) \mu_x(x) = \nu($$

Thus, equality must hold throughout, which gives  $\forall y \in S$ ,  $\forall n \in \mathbb{N}$ ,  $(\nu(y) - \nu(x)\mu_x(y)) Q^n(x, y) = 0$ . Fixing  $y \in S$  and summing over n gives  $(\nu(y) - \nu(x)\mu_x(y)) G(x, y) = 0$ , so  $\nu(y) = \nu(x)\mu_x(y)$  because G(x, y) > 0 since the chain is irreducible.

#### 4.6 Invariant measures of finite mass

**Remark 4.6.1.** For an irreducible and recurrent Markov chain, either all nonzero invariant measures have finite mass (in which case there exists an invariant probability distribution) or none of them does.

**Proposition 4.6.2.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and admits a nonzero invariant measure  $\mu$  of finite mass. Then the Markov chain is recurrent.

**Proof.** Let  $x \in S$  s.t.  $\mu(x) > 0$ . We have  $\forall n \in \mathbb{N}, \ \mu(x) = \sum_{y \in S} \mu(y) Q^n(y, x)$ , therefore:

$$+\infty = \sum_{y \in S} \mu(y)G(y,x) \le \sum_{y \in S} \mu(y) \frac{G(y,x)}{\mathbb{P}_y (T_x < +\infty)} = \sum_{y \in S} \mu(y)G(x,x) = \mu(S)G(x,x),$$

so  $G(x, x) = +\infty$  and x is recurrent.

**Theorem 4.6.3.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent. Then we are in one of the following two situations:

- (i) Either there exists an invariant probability distribution  $\pi$  (also called the stationary probability distribution), in which case  $\mathbb{E}_x[T_x^+] < +\infty$  and  $\pi(x) = \frac{1}{\mathbb{E}_x[T_x^+]}$  for all  $x \in S$ . We then say that the chain is positive recurrent.
- (ii) Or all nonzero invariant measures have infinite mass, in which case  $\mathbb{E}_x[T_x^+] = +\infty$  for all  $x \in S$ . We then say that the chain is null recurrent.

**Proof.** The dichotomy is clear given Remark 4.6.1 and the fact that  $\mu_x(S) = \mathbb{E}_x[T_x^+]$  for all  $x \in S$ . And in the case where the chain is positive recurrent, we have  $\pi = \frac{\mu_x}{\mu_x(S)} = \frac{\mu_x}{\mathbb{E}_x[T_x^+]}$  for all  $x \in S$ .  $\Box$ 

Corollary 4.6.4. An irreductible Markov chain with finite state space is positive recurrent.

**Example 4.6.5.** Consider a nonoriented simple graph G = (V, E). Define a transition function Q by  $Q(x, y) = \frac{1}{\deg x}$  if  $\{x, y\} \in E$ , and Q(x, y) = 0 otherwise. Consider the Q-Markov chain.

- (i) The chain is irreducible iff G is connected.
- (ii) An invariant measure is given by  $\mu(x) = \deg x$  for all  $x \in V$ .
- (iii) Assume that G is connected and finite. Then the chain is positive recurrent, with invariant probability measure  $\pi(x) = \frac{\deg x}{2|E|}$ . In particular:

$$\mathbb{E}_x\left[T_x^+\right] = \frac{2\left|E\right|}{\deg x}.$$

(iv) Assume that G is connected and infinite. Then the chain is either transient or null recurrent.

**Example 4.6.6.** The simple random walk on  $\mathbb{Z}$  is irreducible and null recurrent, and  $\mu(n) = 1$  defines an invariant measure.

#### 4.7 Asymptotic behaviour of recurrent chains – an ergodic theorem

**Theorem 4.7.1.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent. Let  $\mu$  be a nonzero invariant measure. Let  $f, g : S \to \mathbb{R}_+$  be s.t. the integrals  $\int_S f \, d\mu$  and  $\int_S g \, d\mu$  are not both infinite. Then, for all  $x \in S$ , the following holds  $\mathbb{P}_x$ -a.s.:

$$\frac{\sum_{k=0}^{n} f(X_k)}{\sum_{k=0}^{n} g(X_k)} \xrightarrow[n \to +\infty]{} \frac{\int_{S} f \, \mathrm{d}\mu}{\int_{S} g \, \mathrm{d}\mu}$$

**Proof.** Fix  $x \in S$ . We may assume that both integrals are finite (otherwise, approximate the function with infinite integral by a monotone sequence of functions with finite integrals). Define a sequence  $(T^{(k)})_{k\in\mathbb{N}}$  of random variable by  $T^{(0)} = 0$ , and:

$$\forall k \in \mathbb{N}, \ T^{(k+1)} = T^{(k)} + T_x^+ \circ \theta_{T^{(k)}}.$$

Hence  $0 = T^{(0)} < T^{(1)} < \cdots < T^{(k)} < \cdots$  are the consecutive visit times at x; they are all stopping times. Define another sequence  $(Z_k)_{k \in \mathbb{N}^*}$  of random variables by:

$$\forall k \in \mathbb{N}^*, \ Z_k = \sum_{i=T^{(k-1)}+1}^{T^{(k)}} f(X_i).$$

If  $h_1, \ldots, h_m$  are functions  $S \to \mathbb{R}_+$ , one shows by induction, using the Strong Markov Property (Theorem 4.3.3), that:

$$\mathbb{E}_{x}\left[h_{1}\left(Z_{1}\right)\cdots h_{m}\left(Z_{m}\right)\right]=\mathbb{E}_{x}\left[h_{1}\left(Z_{1}\right)\right]\cdots \mathbb{E}_{x}\left[h_{m}\left(Z_{m}\right)\right].$$

Therefore,  $(Z_k)_{k\in\mathbb{N}^*}$  is a sequence of independent random variables. They are also identically distributed, and we have  $\mathbb{E}_x[Z_1] = \frac{1}{\mu(x)} \int_S f \, d\mu$ . Using the Strong Law of Large Numbers (Corollary 3.2.3), we obtain,  $\mathbb{P}_x$ -a.s.:

$$\frac{1}{k} \sum_{i=1}^{k} Z_i \xrightarrow[k \to +\infty]{} \frac{1}{\mu(x)} \int_S f \, \mathrm{d}\mu.$$

Now, for  $n \in \mathbb{N}^*$ , there exists a unique random variable k(n) s.t.  $T^{(k(n))} < n \leq T^{(k(n)+1)}$ . We have  $k(n) \xrightarrow[n \to +\infty]{} + \infty \mathbb{P}_x$ -a.s. And, since  $f \geq 0$ :

$$\underbrace{\frac{1}{k(n)}\sum_{i=1}^{k(n)}Z_i}_{n\to+\infty} \leq \frac{1}{k(n)}\sum_{j=1}^n f\left(X_j\right) \leq \underbrace{\frac{1}{k(n)}\sum_{i=1}^{k(n)+1}Z_i}_{n\to+\infty}$$

Therefore  $\frac{1}{k(n)} \sum_{j=1}^{n} f(X_j) \xrightarrow[n \to +\infty]{} \frac{1}{\mu(x)} \int_S f d\mu$ . We obtain the result by dividing by the same sum for g instead of f.

**Remark 4.7.2.** Theorem 4.7.1 remains valid if we replace  $\mathbb{P}_x$  by  $\mathbb{P}_{\gamma}$  where  $\gamma$  is any probability distribution on S (because  $\mathbb{P}_{\gamma} = \sum_{x \in S} \gamma(x) \mathbb{P}_x$ ).

**Corollary 4.7.3.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent.

(i) If  $(X_n)_{n \in \mathbb{N}}$  is positive recurrent, then, for all  $x, y \in S$ , the following holds  $\mathbb{P}_x$ -a.s.:

$$\frac{1}{n} \sum_{k=0}^{n} \mathbb{1}_{\{X_k = y\}} \xrightarrow[n \to +\infty]{} \pi(y),$$

where  $\pi$  is the stationary probability distribution.

(ii) If  $(X_n)_{n \in \mathbb{N}}$  is null recurrent, then, for all  $x, y \in S$ , the following holds  $\mathbb{P}_x$ -a.s.:

$$\frac{1}{n}\sum_{k=0}^{n}\mathbb{1}_{\{X_k=y\}}\xrightarrow[n\to+\infty]{}0.$$

**Corollary 4.7.4.** Assume that the Q-Markov chain  $(X_n)_{n\in\mathbb{N}}$  is irreducible and positive recurrent. Let  $f: S \to \mathbb{R}$  be an integrable function w.r.t. the stationary probability distribution  $\pi$ . Then, for all  $x \in S$ , the following holds  $\mathbb{P}_x$ -a.s.:

$$\frac{1}{n}\sum_{i=0}^{n}f\left(X_{i}\right)\xrightarrow[n\to+\infty]{}\int_{S}f\ \mathrm{d}\pi.$$

#### 4.8 Asymptotic behaviour of Markov chains – convergence in probability

**Definition 4.8.1** (Period of a state). The period of a state  $x \in S$  of the Q-Markov chain is defined by:

$$d_x = \gcd \left\{ n \in \mathbb{N}, \ Q^n(x, x) > 0 \right\}$$

**Lemma 4.8.2.** Let  $x \in S$  be a state of the Q-Markov chain. Let  $A_x = \{n \in \mathbb{N}, Q^n(x, x) > 0\}$ . Then the subgroup of  $\mathbb{Z}$  generated by  $A_x$  is:

$$\langle A_x \rangle = A_x - A_x = d_x \mathbb{Z}.$$

**Proof.** Show that  $A_x$  is stable under addition.

**Proposition 4.8.3.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible. Then all states have the same period, and this period is called the period of the chain and denoted by d.

**Proof.** Let  $x, y \in S$ . Since the Markov chain is irreducible, there exist  $n_1, n_2 \in \mathbb{N}^*$  s.t.  $Q^{n_1}(y, x) > 0$ and  $Q^{n_2}(x, y) > 0$ . Thus,  $Q^{n_1+n_2}(y, y) \ge Q^{n_1}(y, x)Q^{n_2}(x, y) > 0$ , so  $n_1 + n_2 \in A_y$ . Now, for  $n \in A_x$ , we have  $n_1 + n + n_2 \in A_y$  for the same reason, and therefore:

$$n = (n_1 + n + n_2) - (n_1 + n_2) \in \langle A_y \rangle.$$

This proves that  $A_x \subseteq \langle A_y \rangle$ , so  $\langle A_x \rangle \subseteq \langle A_y \rangle$ . By symmetry,  $\langle A_x \rangle = \langle A_y \rangle$ , and by Lemma 4.8.2,  $d_x = d_y$ .

**Definition 4.8.4** (Aperiodic chain). An irreducible Markov chain is said to be aperiodic if it has period 1.

**Remark 4.8.5.** In an irreducible Markov chain, if there exists  $x_0 \in S$  s.t.  $Q(x_0, x_0) > 0$ , then the chain is aperiodic.

**Lemma 4.8.6.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and aperiodic. Then:

$$\forall x, y \in S, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, Q^n(x, y) > 0.$$

**Proof.** Note that we only need to prove the result for x = y (indeed, if  $x \neq y$ , there exists  $m_0 \in \mathbb{N}$  s.t.  $Q^{m_0}(x,y) > 0$  and thus, if  $Q^n(x,x) > 0$  then  $Q^{n+m_0}(x,y) \ge Q^n(x,x) + Q^{m_0}(x,y) > 0$ ). Since  $d_x = 1$ , we have  $\langle A_x \rangle = \mathbb{Z}$  by Lemma 4.8.2, so there exists  $m \in A_x$  s.t.  $m + 1 \in A_x$ . If  $m \in \{0,1\}$ , then  $1 \in A_x$  and we are done. So assume that  $m \ge 2$ . Note that:

$$\forall k \in \{0, \dots, m\}, \ m^2 + k = (m - k) \ m + k \ (m + 1) \in A_x.$$

We have found (m + 1) consecutive integers in  $A_x$ . Thus, if  $n \ge m^2$ , write n = km + i, with  $m^2 \le i < m^2 + m$  and  $k \in \mathbb{N}$ . Thus,  $m \in A_x$  and  $i \in A_x$ , so  $n \in A_x$ . This proves the result.  $\Box$ 

**Theorem 4.8.7.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible, aperiodic and positive recurrent. Then, for all  $x \in S$ :

$$\sum_{y \in S} \left| \mathbb{P}_x \left( X_n = y \right) - \pi(y) \right| \xrightarrow[n \to +\infty]{} 0,$$

where  $\pi$  is the stationary probability distribution.

**Proof.** Define a transition function  $\hat{Q}$  on  $S \times S$  by:

$$\hat{Q}((x,y),(x',y')) = Q(x,x')Q(y,y').$$

Now, consider the canonical process  $(X_n, Y_n)_{n \in \mathbb{N}}$  for the  $\hat{Q}$ -Markov chain under the law  $\hat{\mathbb{P}}_{\delta_x \otimes \pi}$ . Then  $(X_n)_{n \in \mathbb{N}}$  and  $(Y_n)_{n \in \mathbb{N}}$  are both Q-Markov chains, with respective initial distributions  $\delta_x$  and  $\pi$ . Using the aperiodicity of Q and Lemma 4.8.6, we show that  $(X_n, Y_n)_{n \in \mathbb{N}}$  is irreducible. Moreover, if  $\pi$  is the stationary probability distribution for Q, then  $\pi \otimes \pi$  is an invariant probability distribution for  $\hat{Q}$ ; by Proposition 4.6.2,  $(X_n, Y_n)_{n \in \mathbb{N}}$  is positive recurrent. Let:

$$\tau = \inf \left\{ n \in \mathbb{N}, \ X_n = Y_n \right\}.$$

Note that  $\tau \leq T_{(0,0)} = \inf \{n \in \mathbb{N}, (X_n, Y_n) = (0,0)\}$ . But since the Markov chain is recurrent,  $T_{(0,0)}$  is  $\hat{\mathbb{P}}_{\delta_x \otimes \pi}$ -a.s. finite, and so is  $\tau$ . Now, for  $n \in \mathbb{N}$ :

$$\begin{aligned} |\mathbb{P}_{x} \left( X_{n} = y \right) - \pi(y)| &= \left| \hat{\mathbb{P}}_{\delta_{x} \otimes \pi} \left( X_{n} = y \right) - \hat{\mathbb{P}}_{\delta_{x} \otimes \pi} \left( Y_{n} = y \right) \right| &= \left| \hat{\mathbb{E}}_{\delta_{x} \otimes \pi} \left[ \mathbb{1}_{\{X_{n} = y\}} - \mathbb{1}_{\{Y_{n} = y\}} \right] \right| \\ &\leq \left| \hat{\mathbb{E}}_{\delta_{x} \otimes \pi} \left[ \left( \mathbb{1}_{\{X_{n} = y\}} - \mathbb{1}_{\{Y_{n} = y\}} \right) \mathbb{1}_{\{\tau \leq n\}} \right] \right| + \hat{\mathbb{E}}_{\delta_{x} \otimes \pi} \left[ \left( \mathbb{1}_{\{X_{n} = y\}} + \mathbb{1}_{\{Y_{n} = y\}} \right) \mathbb{1}_{\{\tau > n\}} \right]. \end{aligned}$$

And:

$$\hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( X_n = y, \tau \le n \right) = \sum_{k=0}^n \sum_{z \in S} \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( X_n = y, X_k = z, \tau = k \right)$$
$$= \sum_{k=0}^n \sum_{z \in S} \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( X_k = z, \tau = k \right) Q^{n-k} \left( z, y \right)$$
$$= \sum_{k=0}^n \sum_{z \in S} \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( Y_k = z, \tau = k \right) Q^{n-k} \left( z, y \right)$$
$$= \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( Y_n = y, \tau \le n \right).$$

Thus  $\hat{\mathbb{E}}_{\delta_x \otimes \pi} \left[ \left( \mathbb{1}_{\{X_n = y\}} - \mathbb{1}_{\{Y_n = y\}} \right) \mathbb{1}_{\{\tau \le n\}} \right] = \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( X_n = y, \tau \le n \right) - \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( Y_n = y, \tau \le n \right) = 0.$  From this, we obtain:

$$\sum_{y \in S} \left| \mathbb{P}_x \left( X_n = y \right) - \pi(y) \right| \le \sum_{y \in S} \hat{\mathbb{E}}_{\delta_x \otimes \pi} \left[ \left( \mathbb{1}_{\{X_n = y\}} + \mathbb{1}_{\{Y_n = y\}} \right) \mathbb{1}_{\{\tau > n\}} \right] = 2 \hat{\mathbb{P}}_{\delta_x \otimes \pi} \left( \tau > n \right) \xrightarrow[n \to +\infty]{} 0.$$

 $\square$ 

**Remark 4.8.8.** If S is finite, then Theorem 4.8.7 is a consequence of the Perron-Frobenius Theorem: let M be a  $N \times N$  matrix with nonnegative entries. Assume that there exists  $n_0 \in \mathbb{N}$  s.t.  $M^{n_0}$  has strictly positive entries. Then:

- (i) The spectral radius of M is a real eigenvalue of M, which we denote by  $\lambda_*$ .
- (ii) The eigenvalues of M other than  $\lambda_*$  have strictly smaller modules than  $\lambda_*$ .
- (iii) The  $\lambda_*$ -eigenspace is of the form Vect  $(x_*)$ , where  $x_*$  is a vector in  $\mathbb{R}^N$  with strictly positive entries. Moreover, there is only one eigenvalue of M with this property.

**Remark 4.8.9.** If  $\mu$  and  $\nu$  are two measures on S, the distance of total variation between  $\mu$  and  $\nu$  is defined by:

$$\|\mu - \nu\|_{\mathrm{TV}} = \sup_{A \subseteq S} |\mu(A) - \nu(A)| = \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)|.$$

Therefore, Theorem 4.8.7 can be restated as:

$$\forall x \in S, \|\mathbb{P}_x \left( X_n \in \cdot \right) - \pi \left( \cdot \right) \|_{\mathrm{TV}} \xrightarrow[n \to +\infty]{} 0$$

#### 4.9 Harmonic functions

**Remark 4.9.1.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical *Q*-Markov chain. Let  $f : S \to \mathbb{R}$  be a function. In general,  $(f(X_n) + \sum_{i=0}^{n-1} (I - Q) f(X_i))_{n \in \mathbb{N}}$  is a martingale under  $\mathbb{P}_x$  for all  $x \in S$  if  $\forall x \in S, Q |f|(x) < +\infty$ .

**Definition 4.9.2** (Harmonic functions). Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Let  $f : S \to \mathbb{R}$  be a function.

- (i) We say that f is harmonic at  $x \in S$  if Qf(x) = f(x). We say that f is harmonic if it is harmonic at every state. In this case,  $(f(X_n))_{n \in \mathbb{N}}$  is a martingale under  $\mathbb{P}_x$  for all  $x \in S$ .
- (ii) We say that f is superharmonic (resp. subharmonic) at  $x \in S$  if  $Qf(x) \leq f(x)$  (resp.  $Qf(x) \geq f(x)$ ). We say that f is superharmonic (resp. subharmonic) if it is superharmonic (resp. subharmonic) at every state. In this case,  $(f(X_n))_{n\in\mathbb{N}}$  is a supermartingale (resp. submartingale) under  $\mathbb{P}_x$  for all  $x \in S$ .

**Proposition 4.9.3.** Let  $(X_n)_{n\in\mathbb{N}}$  be the canonical Q-Markov chain. Let  $h: S \to \mathbb{R}$  be a function that is harmonic (resp. superharmonic, subharmonic) on some subset  $A \subseteq S$ . Then  $\left(h\left(X_{n\wedge\tau_{S\setminus A}}\right)\right)_{n\in\mathbb{N}}$  is a martingale (resp. supermartingale, submartingale) under  $\mathbb{P}_x$  for all  $x \in S$ , where  $\tau_{S\setminus A} = \inf\{n \in \mathbb{N}, X_n \in S \setminus A\}$ .

**Proof.** Note that:

$$\mathbb{E}_{x}\left[h\left(X_{(n+1)\wedge\tau_{S\setminus A}}\right)-h\left(X_{n\wedge\tau_{S\setminus A}}\right)\mid\mathcal{F}_{n}^{X}\right]=\mathbb{E}_{x}\left[\left(h\left(X_{(n+1)\wedge\tau_{S\setminus A}}\right)-h\left(X_{n\wedge\tau_{S\setminus A}}\right)\right)\mathbb{1}_{\left\{n<\tau_{S\setminus A}\right\}}\mid\mathcal{F}_{n}^{X}\right]\right]$$
$$=\mathbb{1}_{\left\{n<\tau_{S\setminus A}\right\}}\mathbb{E}_{x}\left[h\left(X_{n+1}\right)-h\left(X_{n}\right)\mid\mathcal{F}_{n}^{X}\right]-h\left(X_{n}\right)\right)$$
$$=\mathbb{1}_{\left\{n<\tau_{S\setminus A}\right\}}\left(\mathbb{E}_{X_{n}}\left[h\left(X_{1}\right)\right]-h\left(X_{n}\right)\right)$$
$$=\mathbb{1}_{\left\{n<\tau_{S\setminus A}\right\}}\left(Qh\left(X_{n}\right)-h\left(X_{n}\right)\right).$$

**Remark 4.9.4.** Finding a harmonic function on some subset  $A \subseteq S$  amounts to solving a problem of the form:

$$\begin{cases} Qf - f = -\varphi & on \ A \\ f = g & on \ S \setminus A \end{cases}, \tag{P}$$

for some specified functions  $\varphi : A \to \mathbb{R}$  and  $g : S \setminus A \to \mathbb{R}$ . This is the discrete analogue of the Poisson problem:

$$\begin{cases} \Delta f = -\varphi & \text{on } \mathcal{D} \\ f = g & \text{on } \partial \mathcal{D} \end{cases}$$

We say that (Q - I) is the discrete Laplacian.

**Proposition 4.9.5.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Let  $A \subseteq S$  be a finite subset. Consider two functions  $\varphi : A \to \mathbb{R}$  and  $g : S \setminus A \to \mathbb{R}$ , with g bounded. Then the discrete Poisson problem (P) has a unique solution given by:

$$f(x) = \mathbb{E}_{x} \left[ g\left( X_{\tau_{S \setminus A}} \right) + \sum_{i=0}^{\tau_{S \setminus A}-1} \varphi\left( X_{i} \right) \right].$$

**Proof.** Uniqueness. If f is a solution of (P), set  $M_n = f(X_{n \wedge \tau_{S \setminus A}}) + \sum_{i=0}^{(n-1) \wedge (\tau_{S \setminus A}-1)} (I-Q) f(X_i)$ . Then  $(M_n)_{n \in \mathbb{N}}$  is a martingale, so:

$$f(x) = \mathbb{E}_x \left[ M_0 \right] = \mathbb{E}_x \left[ M_n \right] = \mathbb{E}_x \left[ f \left( X_{n \wedge \tau_{S \setminus A}} \right) + \sum_{i=0}^{(n-1) \wedge \left( \tau_{S \setminus A} - 1 \right)} \varphi \left( X_i \right) \right].$$

Since A is finite,  $\varphi$  is bounded and  $\mathbb{E}_x[\tau_{S\setminus A}] < +\infty$ . Moreover, g is bounded, so we can use the Dominated Convergence Theorem and make  $n \to +\infty$  in the above equation, which gives the result. *Existence*. Define f as above. Then f = g on  $S \setminus A$ . Now, if  $x \in A$ , we have:

$$f(x) = \mathbb{E}_{x} \left[ g\left(X_{\tau_{S\setminus A}}\right) \circ \theta_{1} + \left(\sum_{i=1}^{\tau_{S\setminus A}-1} \varphi\left(X_{i}\right)\right) \circ \theta_{1} \right] + \varphi(x) = \varphi(x) + \mathbb{E}_{x} \left[ f\left(X_{1}\right) \right] = \varphi(x) + Qf(x).$$

**Remark 4.9.6.** In Proposition 4.9.5, the existence of the solution remains valid with the same proof if A is infinite.

**Proposition 4.9.7.** Assume that the Q-Markov chain  $(X_n)_{n \in \mathbb{N}}$  is irreducible and recurrent. Then every bounded or nonnegative harmonic function  $h: S \to \mathbb{R}$  is constant.

**Proof.** Note that  $(h(X_n))_{n \in \mathbb{N}}$  is a bounded or nonnegative martingale, so it converges a.s. to a random variable Z (by Theorem 2.4.4). Now, for all  $x \in S$ ,  $h(X_n) = h(x)$  for infinitely many values of n; therefore Z = h(x) a.s. Since this is true for all x, h is constant.

**Definition 4.9.8** (Invariant and tail  $\sigma$ -algebras). If  $(X_n)_{n \in \mathbb{N}}$  is a sequence of random variables, we define:

- (i) The invariant  $\sigma$ -algebra  $\mathcal{J} = \{A \in \sigma (X_n, n \in \mathbb{N}), \theta_1(A) = A\},\$
- (ii) The tail  $\sigma$ -algebra  $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \sigma (X_n, X_{n+1}, \dots).$

We have  $\mathcal{J} \subseteq \mathcal{T}$ .

**Theorem 4.9.9.** Let  $(X_n)_{n \in \mathbb{N}}$  be the canonical Q-Markov chain. Then the set  $\mathscr{R}$  of bounded  $\mathcal{J}$ -measurable random variables is in bijection with the set  $\mathscr{H}$  of bounded harmonic functions, via:

$$Z \in \mathscr{R} \longmapsto (x \mapsto \mathbb{E}_x[Z]) \in \mathscr{H} \qquad and \qquad h \in \mathscr{H} \longmapsto \lim_{n \to +\infty} h(X_n) \in \mathscr{R}$$

**Example 4.9.10.** Using Theorem 3.1.5, we can show that bounded harmonic functions on  $\mathbb{Z}^d$  are constant. Therefore, by Theorem 4.9.9, the invariant  $\sigma$ -algebra of the simple random walk on  $\mathbb{Z}^d$  is trivial. In particular, it cannot happen that the simple random walk in  $\mathbb{Z}^d$  remains in some cone after a certain amount of time.

#### 4.10 The Poisson process

**Definition 4.10.1** (Poisson process). Let  $(\xi_n)_{n \in \mathbb{N}^*}$  be *i.i.d.* random variables with exponential law of parameter  $\theta$ , for  $\theta \in \mathbb{R}^*_+$ . We set  $T_n = \sum_{i=1}^n \xi_i$  for  $n \in \mathbb{N}$  and:

$$N_t = \sum_{n \in \mathbb{N}^*} \mathbb{1}_{\{T_n \le t\}}.$$

Then the collection  $(N_t)_{t \in \mathbb{R}_+}$  is called the Poisson process with intensity  $\theta$ .

**Theorem 4.10.2.** Consider the Poisson process  $(N_t)_{t \in \mathbb{R}_+}$  with intensity  $\theta \in \mathbb{R}^*_+$ . Then:

- (i) For  $t \in \mathbb{R}^*_+$ ,  $N_t$  has a Poisson law of parameter  $\theta t$ .
- (ii) For  $s, t \in \mathbb{R}^*_+$ , the variables  $(N_{t+s} N_t)$  and  $N_t$  have the same law and are independent.

### References

- [1] R. Durrett. Probability: Theory and Examples.
- [2] O. Kallenberg. Foundations of Modern Probability.
- [3] J. Neveu. Martingales à temps discret.
- [4] D. Williams. Probability with Martingales.