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1 Differentiable manifolds

1.1 Generalities
Definition 1.1.1 (Chart, transition map, atlas). Let X be a topological space; let n ∈ N.

(i) A n-dimensional chart on X is a homeomorphism ϕ : U → V , where U is an open set in X
and V is an open set in Rn. We say that ϕ is centred at x ∈ U if ϕ(U) = 0.

(ii) If ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are two n-dimensional charts on X, the associated transition
maps are ψ1,2 = ϕ2 ◦ ϕ−1

1 : ϕ1 (U1 ∩ U2)→ ϕ2 (U1 ∩ U2) and its inverse map ψ2,1 = ϕ1 ◦ ϕ−1
2 .

(iii) A n-dimensional atlas on X is a collection (ϕi)i∈I ∈
∏
i∈I Vi

Ui of n-dimensional charts s.t. the
(Ui)i∈I cover X.

Definition 1.1.2 (Locally Euclidean space). A topological space X admitting a n-dimensional atlas
is said to be locally Euclidean of dimension n (it is true, but by no means obvious, that the dimension
of X is well-defined).

Definition 1.1.3 (Compatibility). Let X be a topological space.

(i) Two charts on X are said to be (smoothly) compatible if the associated transition maps are
smooth (i.e. C∞).

(ii) A n-dimensional atlas on X is said to be smooth if all its transition maps are smooth.
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(iii) Two smooth atlases are said to be (smoothly) compatible if all the transition maps between the
two atlases are smooth. This is an equivalence relation of atlases.

Definition 1.1.4 (Differentiable manifold). A n-dimensional differentiable manifold is a topological
space M equipped with a maximal n-dimensional smooth atlas (or with an equivalence class of smooth
atlases of dimension n, which amounts to the same), with the following two properties:

(i) M is Hausdorff.

(ii) M admits a smoothly compatible countable atlas.

Remark 1.1.5.

(i) The fact that the dimension of a differentiable manifold is well-defined is a consequence of the
fact that if there exists a linear isomorphism Rn → Rm, then n = m.

(ii) In the definition, one can replace “smooth” by Ck (k ∈ N∗) or “real-analytic” to obtain a notion
of Ck-manifolds or real-analytic manifolds.

(iii) If n = 2m, m ∈ N∗, one can identify Rn ' Cm and require the transition maps to be holomorphic
functions. One obtains a notion of complex (analytic) manifolds, with a completely different
theory.

Definition 1.1.6 (Isomorphism of differentiable manifolds). Two differentiable manifolds M1 and
M2 are said to be C∞-diffeomorphic or isomorphic if there exists a bijection ϕ : M1 → M2 taking
the maximal atlas of M1 (or a smooth atlas of M1) to the maximal atlas of M2 (or a smooth atlas of
M2). In this case, ϕ is called a C∞-diffeomorphism.

Example 1.1.7. The following spaces are n-dimensional differentiable manifolds:

(i) Open subsets of Rn,

(ii) The n-sphere Sn = {(x0, . . . , xn) ∈ Rn+1,
∑n
i=0 x

2
i = 1}.

(iii) The n-torus Tn = (S1)n.

(iv) The real projective space of dimension n: PRn = (Rn+1\{0}) /R∗.

(v) The abstract Möbius band M = (R× ]−1, 1[) /Z, where the action Z y R× ]−1, 1[ is given by
n · (x, y) = (x+ n, (−1)ny).

1.2 Submanifolds of RN

Definition 1.2.1 (Submanifold of RN). Recall that a n-dimensional submanifold of RN is a subset
M ⊆ RN s.t. every x ∈ M admits a straightening chart, i.e. a diffeomorphism Φ : Û ⊆ Rn −→
V̂ ⊆ Rn s.t. Φ

(
M ∩ Û

)
= (Rn × {0}) ∩ V̂ . To such a straightening chart, we associate the map

ϕ = prRn ◦ Φ|M∩Û . This is a homeomorphism, and therefore a chart on M .

Proposition 1.2.2. Every n-dimensional submanifold of RN is a n-dimensional differentiable man-
ifold.

Definition 1.2.3. Differentiable manifolds which are isomorphic to submanifolds of RN are said to
embed in RN .

Remark 1.2.4. Whitney proved that every n-dimensional manifold embeds in R2n.
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2 Differentiable maps and tangent bundle

2.1 Differentiable maps
Definition 2.1.1 (Differentiable map). Let f : M → N be a map between two manifolds and let
x ∈M .

(i) The map f is said to be differentiable (resp. Ck, smooth) at x if there exist charts ϕ for M at x
and ψ for N at f(x) s.t. ψ ◦ f ◦ϕ−1 is differentiable (resp. Ck, smooth) at ϕ(x). Equivalently,
this condition is true for all such charts ϕ and ψ.

(ii) The map f is said to be differentiable (resp. Ck, smooth) on M if it is differentiable (resp. Ck,
smooth) at every point of M . Equivalently, M and N admit respective atlases ((Ui, ϕi))i∈I and
((Vi, ψi))i∈I s.t. f (Ui) ⊆ Vi and ψi ◦ f ◦ ϕ−1

i is differentiable (resp. Ck, smooth) on ϕ (Ui) for
all i ∈ I.

Notation 2.1.2. If M and N are two manifolds and k ∈ N ∪ {∞}, we write Ck (M,N) for the set
of Ck maps from M to N .

Proposition 2.1.3. Let f : M → N be a map between two manifolds.

(i) If N = R, f is smooth iff f ◦ ϕ−1 is smooth for all ϕ in some atlas on M .

(ii) If N = Rn, f = (f1, . . . , fn) is smooth iff f1, . . . , fn are smooth.

(iii) If M is an open subset of Rn, f is smooth iff ψ ◦ f is smooth for all ψ in some atlas on N .

(iv) If f ∈ Ck (M,N) and U is an open subset of M , then f|U ∈ Ck (U,N).

(v) If (Ui)i∈I is an open cover of M and ∀i ∈ I, f|Ui
∈ Ck (Ui, N), then f ∈ Ck (M,N).

(vi) If f ∈ Ck (M,N) and g ∈ Ck (N,P ), then g ◦ f ∈ Ck (M,P ).

(vii) The set Ck (M,R) is a unital subalgebra of C0 (M,R).

2.2 Diffeomorphisms between manifolds
Definition 2.2.1 (Diffeomorphism). A map f : M → N between manifolds is said to be a diffeo-
morphism if it is bijective and f and f−1 are smooth. This is equivalent to f being an isomorphism
of manifolds (c.f. Definition 1.1.6).

Definition 2.2.2 (Group of diffeomorphisms). If M is a manifold, then the set of diffeomorphisms
of M is a group for composition, denoted by Diff(M).

Remark 2.2.3. Let M and N be two manifolds. Filipkiewicz proved that if Φ : Diff(M) →
Diff(N) is a group isomorphism, then there exists a unique diffeomorphism ϕ : M → N s.t.
∀f ∈ Diff(M), Φ(f) = ϕ ◦ f ◦ ϕ−1. In particular, Diff(M) (as a group) determines M (as a
manifold).

Proposition 2.2.4. Let M be a connected manifold.

(i) Diff(M) is transitive.

(ii) If in addition dimM ≥ 2, then Diff(M) is k-transitive for all k ∈ N∗, i.e. if (x1, . . . , xk)
and (y1, . . . , yk) are two k-uples of distinct points in M , then there exists f ∈ Diff(M) s.t.
∀i ∈ {1, . . . , k} , yi = f (xi).
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2.3 Tangent bundle
Definition 2.3.1 (Tangent space at a point). Let M be a n-dimensional manifold and let x ∈ M .
We denote by S the set of maps γ : ]−ε,+ε[ → M for ε > 0 s.t. γ(0) = x and γ is differentiable
at 0 (here, we could suppose that γ is smooth and this would lead to the same notion of tangent
space). We endow S with the equivalence relation R defined by γ1Rγ2 iff (ϕ ◦ γ1)′ (0) = (ϕ ◦ γ2)′ (0)
for some (or for all) chart ϕ at x. A tangent vector of M at x is an equivalence class of S for R,
i.e. an element of S/R. The tangent space TxM of M at x is the set of all tangent vectors; it is
equipped with a linear structure defined as follows. We choose a chart ϕ at x and we note that the
map [γ] ∈ S/R 7−→ (ϕ ◦ γ)′ (0) ∈ Rn is a bijection, denoted by dϕx; we use this bijection to transport
the linear structure from Rn to TxM by setting:

∀ (λ1, λ2) ∈ R2, ∀ (v1, v2) ∈ TxM2, λ1v1 + λ2v2 = dϕ−1
x (λ1 dϕx (v1) + λ2 dϕx (v2)) .

This linear structure is well-defined and independent of the choice of ϕ. Hence, TxM is a real vector
space and dimTxM = dimM .
Remark 2.3.2. There are two other common (equivalent) definitions of TxM :
(i) TxM is the set of equivalence classes of elements of the form [ϕ, v], where ϕ is a centered chart

at x, v ∈ Rn and (ϕ1, v1) ∼ (ϕ2, v2)⇐⇒ v2 = d(ψ1,2)0 · v1.

(ii) Consider the R-algebra A = C∞ (M,R). A derivation of A is a linear map D : A → A s.t.
∀(f, g) ∈ A2, D(fg) = fDg+gDf . Let D(M) be the vector space of all derivations of C∞ (M,R)
and Dx(M) be the subspace of all D ∈ D(M) s.t. ∀f ∈ C∞ (M,R) , (Df) (x) = 0. Then we
define TxM = D(M)/Dx(M).

Remark 2.3.3. The definition of the tangent space of a manifold at a point agrees with that of the
tangent space of a submanifold of RN at a point.
Definition 2.3.4 (Tangent bundle). Let M be a n-dimensional manifold. The tangent bundle of M
is defined by:

TM =
⊔
x∈M

TxM =
⋃
x∈M

({x} × TxM) .

It is equipped with a natural projection π : TM →M . It has a fibered atlas defined in the following
way. To each chart ϕ : U ⊆ M → V ⊆ Rn, we associate the fibered chart Tϕ : π−1(U) → V × Rn

defined by Tϕ(x, v) = (ϕ(x), dϕx · v). Hence, we obtain a smooth atlas on TM . Therefore, TM is a
manifold.

2.4 Tangent map
Definition 2.4.1 (Differential at a point). Let f : M → N be a map between manifolds which is
differentiable at a point x ∈ M . If ϕ and ψ are charts of M at x and of N at f(x) respectively, the
differential dfx : TxM → Tf(x)N is defined by:

dfx = dψ−1
f(x) ◦ d

(
ψ ◦ f ◦ ϕ−1

)
ϕ(x)
◦ dϕx.

The map dfx is linear and independent of the choice of ϕ and ψ.
Definition 2.4.2 (Tangent map). If f : M → N is a differentiable map between manifolds, we define
its tangent map Tf : TM → TN by:

∀(x, v) ∈ TM, Tf(x, v) = (f(x), dfx · v) .
Proposition 2.4.3. Let f : M → N and g : N → P be differentiable maps between manifolds.
(i) If f is Ck, then Tf is Ck−1.

(ii) If f is smooth, then Tf is smooth.

(iii) T (f ◦ g) = Tf ◦ Tg.

(iv) If f is bijective and f−1 is differentiable, then T (f−1) = (Tf)−1.
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2.5 Immersions and submersions
Theorem 2.5.1 (Classification of linear maps in finite dimension). Let E and F be two vector spaces
of respective dimensions m and n over a field k. If u : E → F is a linear map with rank r, then
there exist linear isomorphisms P : E → km and Q : F → kn s.t. the following diagram commutes:

E F
u

km kn
`m,n,r

P Q

where `m,n,r : (x1, . . . , xm) ∈ km 7−→ (x1, . . . , xr, 0, . . . , 0) ∈ kn. Moreover, if u is injective (i.e.
r = m), then we can choose P arbitrarily; if u is surjective (i.e. r = n), then we can choose Q
arbitrarily.

Definition 2.5.2 (Immersion, submersion, constant rank). Let f : M → N be a C1 map between
manifolds and let x ∈M .

(i) f is said to be an immersion at x if dfx : TxM → Tf(x)N is injective (thus dimM ≤ dimN).

(ii) f is said to be a submersion at x if dfx : TxM → Tf(x)N is surjective (thus dimM ≥ dimN).

(iii) f is said to have constant rank at x if the map y 7→ rk (dfy) is constant in a neighbourhood of
x.

The map f is said to be an immersion (resp. a submersion) on M if it is an immersion (resp. a
submersion) at every point of M .

Proposition 2.5.3. If E and F are two finite dimensional real vector spaces, then the map rk :
L(E,F )→ R+ is upper-semicontinuous, i.e. for all m ∈ R+, rk−1 (]m,+∞[) is open in L(E,F ).

Proof. Use the fact that a linear map has rank at least r iff it has a nonzero minor of order r.

Corollary 2.5.4. Let f : M → N be a C1 map. Then {x ∈M, rk (dfx) = min (dimM, dimN)} is
an open set. In particular:

(i) If dimM ≤ dimN , then {x ∈M, f is an immersion at x} is open.

(ii) If dimM ≥ dimN , then {x ∈M, f is a submersion at x} is open.

Theorem 2.5.5 (Constant Rank Theorem). Let f : M → N be a Ck map (k ∈ N∗ ∪ {∞}) between
manifolds and let p ∈M . If f has constant rank r at p, then there exists Ck charts (U,ϕ) centred at
p and (V, ψ) centred at f(p) s.t. the following diagram commutes:

U V
f

ϕ(U)
⊆ Rm

ψ(V )
⊆ Rn

`m,n,r

ϕ ψ

Moreover, if f is a immersion at p, then we can choose ϕ arbitrarily; if f is a submersion at p, then
we can choose ψ arbitrarily.
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2.6 Submanifolds and embeddings
Definition 2.6.1 (Submanifold). Let M be a manifold of dimension n. A subset W ⊆M is said to
be a submanifold of M of dimension m (or of codimension (n−m)) if every x ∈ W admits a smooth
straightening chart between open sets Φ : Û ⊆M → V̂ ⊆ Rn s.t. Φ

(
W ∩ Û

)
= (Rm × {0}) ∩ V̂ .

Remark 2.6.2. A submanifold is naturally a manifold.

Definition 2.6.3 (Topological embedding). A map f : X → Y between topological spaces is called
a topological embedding if f is continuous, injective, and f : X → f(X) is a homeomorphism.

Definition 2.6.4 (Embedding). A smooth map f : W →M between manifolds is called an embed-
ding if it is an injective immersion and a topological embedding.

Theorem 2.6.5. Let f : W →M be a smooth injective immersion between manifolds. Then f is an
embedding iff f(W ) is a submanifold of M of dimension dimW .

2.7 Regular and critical points, regular and critical values
Definition 2.7.1 (Regular and critical points). Let f : M → N be a C1 map between manifolds.

(i) A point x ∈M is said to be a regular point of f if f is a submersion at x (thus dimM ≥ dimN).
The set of regular points of f is denoted by Reg(f); it is an open subset of M .

(ii) A point x ∈ M is said to be a critical point of f if it is not regular. The set of critical points
of f is denoted by Crit(f); it is a closed subset of M .

Definition 2.7.2 (Regular and critical values). Let f : M → N be a C1 map between manifolds.

(i) A point y ∈ N is said to be a regular value of f if f−1 ({y}) ⊆ Reg(f).

(ii) A point y ∈ N is said to be a critical value of f if y ∈ f (Crit(f)).

Remark 2.7.3. Note that a regular value of f may not be attained, i.e. it may not be an element of
f(M).

Theorem 2.7.4. Let f : M → N be a smooth map between manifolds. Consider a regular value y
which is attained (i.e. f−1 ({y}) 6= ∅). Then f−1 ({y}) is a submanifold of M of codimension dimN .

Remark 2.7.5. Theorem 2.7.4 has a local converse: if W is a submanifold of M and x ∈ W ,
then there exists an open neighbourhood U of x in M and a submersion f : U → RcodimW s.t.
W ∩ U = f−1 ({0}).

2.8 Partitions of unity
Definition 2.8.1 (Standard plateau function). Let M be a manifold of dimension n. A standard
plateau function on M is a smooth map ρ : M → [0, 1] s.t. there exists a chart ϕ : U → Rn with
ρ = 1 on ϕ−1 (Bn(0, 1)), ρ > 0 on ϕ−1 (Bn(0, 2)) and ρ = 0 on M\ϕ−1

(
B
n(0, 2)

)
.

Remark 2.8.2. If M is a manifold of dimension n, we may obtain an atlas of M of the form
(ϕi : Ui → Rn)i∈I by restricting charts so that they are homeomorphisms ϕ̂i : Ûi → Bn(0, ε), and by
using the fact that Bn(0, ε) is diffeomorphic to Rn.

Remark 2.8.3. By using the smooth map f : x ∈ R 7−→

exp
(
− 1
x2

)
if x > 0

0 otherwise
, one may construct

standard plateau functions.

Proposition 2.8.4. Any compact manifold can be embedded in RN for some N ∈ N.
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Proposition 2.8.5. Any manifold M admits a compact exhaustion, i.e. a sequence (Kn)n∈N ∈
P(M)N of compact subsets of M s.t. ∀n ∈ N, Kn ⊆ K̊n+1 and M = ⋃

n∈NKn.

Definition 2.8.6 (Local finiteness). Let X be a topological space.

(i) A family (Ai)i∈I ∈ P(X)I is said to be locally finite if every x ∈ X has a neighbourhood V in
X s.t. {i ∈ I, V ∩ Ai 6= ∅} is finite.

(ii) A family (fi)i∈I ∈ C0 (X,R)I is said to be locally finite if (Supp fi)i∈I is locally finite, where
Supp fi = {x ∈ X, fi(x) 6= 0} is the support of fi. In this case, the function ∑

i∈I fi is well-
defined and continuous. If in addition X is a manifold and (fi)i∈I ∈ C∞ (X,R)I , then ∑i∈I fi
is smooth.

Lemma 2.8.7. Let X be a topological space. If (Ai)i∈I ∈ P(X)I is locally finite, then:⋃
i∈I
Ai =

⋃
i∈I
Ai.

Definition 2.8.8 (Partition of unity). Let X be a topological space (resp. a manifold). If (fi)i∈I
is a locally finite family of continuous (resp. smooth) functions X → [0,+∞[ s.t. ∑

i∈I fi = 1,
we say that (fi)i∈I is a partition of unity. If in addition (Uj)j∈J is an open covering of X s.t.
∀i ∈ I, ∃j ∈ J, Supp fi ⊆ Uj, we say that the partition of unity (fi)i∈I is subordinated to (Uj)j∈J .
Theorem 2.8.9. If M is a manifold and (Uj)j∈J is an open covering of M , then there exists a
partition of unity (fi)i∈I subordinated to (Uj)j∈J .

3 Vector fields

3.1 Generalities
Definition 3.1.1 (Vector field). Let M be a manifold. A (smooth) vector field on M is a smooth
section X : M → TM of the projection TM →M , i.e. a smooth map s.t.

∀x ∈M, X(x) ∈ TxM.

We write X (M) for the set of all vector fields on M .

Proposition 3.1.2. If M is a manifold, then X (M) is a C∞(M,R)-module.

Remark 3.1.3. If (Xi)i∈I is a locally finite family of vector fields on a manifold M , then ∑i∈I Xi is
a vector field.

3.2 Vector fields in coordinate systems
Notation 3.2.1. Let M be a manifold. Consider a local system of coordinates (i.e. a chart) ϕ =
(x1, . . . , xn) : U → Rn on M . Let (e1, . . . , en) be the canonical basis of Rn. Then the vector field
defined on U by p 7→ (p, dϕp−1 · ei) is denoted by ∂

∂xi
.

Proposition 3.2.2.

(i) If V ⊆ Rn is an open set, then X (V ) is isomorphic to C∞ (V,Rn).

(ii) If U is the domain of a chart on a manifold M of dimension n and X ∈ X (U) is the restriction
to U of a vector field on M , then we can find a unique family (f1, . . . , fn) ∈ C∞ (U,R)n s.t.

∀p ∈ U, X(p) =
n∑
i=1

fi(p)
(
∂

∂xi

)
p

.

Corollary 3.2.3. If U is the domain of a chart on a manifold M of dimension n, then X (U) is a
free C∞ (U,R)-module with basis ∂

∂x1
, . . . , ∂

∂xn
.
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3.3 Vector fields viewed as derivations
Definition 3.3.1 (Derivation). Let A be a unital (not necessarily commutative) k-algebra, where k
is a field. A derivation of A is a linear map D : A→ A satisfying Leibniz’s rule:

∀(x, y) ∈ A2, D(xy) = (Dx) y + x (Dy) .

Definition 3.3.2 (Lie derivative along a vector field). Let X be a vector field on a manifold M . If
f ∈ C∞ (M,R), we define the Lie derivative of f along X by:

∀p ∈M, (LXf) (p) = dfp ·X(p).

LXf is also written as df ·X or X · f . The R-linear operator LX is a derivation on C∞ (M,R).

Lemma 3.3.3 (Locality Lemma). Let M be a manifold and consider a derivation D on C∞ (M,R).
Consider an open subset U ⊆M .

(i) If f, g ∈ C∞ (M,R) s.t. f|U = g|U , then (Df)|U = (Dg)|U .

(ii) There exists a unique derivation DU on C∞ (U,R) s.t. DU

(
f|U

)
= (Df)|U for all f ∈

C∞ (M,R).

Proof. (i) By linearity, we may assume that g = 0. Fix x ∈ U . There exists a function ρ ∈ C∞ (M,R)
s.t. Supp ρ ⊆ U and ρ|W = 1 for a sufficiently small neighbourhood W ⊆ U of x in M . Thus,
f = (1 − ρ)f on M , so Df = fD(1 − ρ) + (1 − ρ)Df , which gives Df(x) = 0 = Dg(x). (ii) Let
f ∈ C∞ (U,R). If x ∈ U and ρ ∈ C∞ (M,R) are as above, we extend ρf to a function g ∈ C∞ (M,R)
(with g|M\U = 0). We now define (DUf) (x) = Dg(x). One checks that DU is well-defined, and
satisfies DU

(
f|U

)
= (Df)|U for all f ∈ C∞ (M,R). The uniqueness follows from (i).

Theorem 3.3.4. If M is a manifold and D is a derivation on C∞ (M,R), then there exists a unique
vector field X ∈ X (M) s.t. LX = D.

Proof. First step: M is diffeomorphic to Rn with (global) coordinates (x1, . . . , xn). Define X =∑n
i=1Dxi

∂
∂xi

and check that LX = D. Second step: general case. CoverM by open sets diffeomorphic
to Rn, use the first step and the Locality Lemma (Lemma 3.3.3).

3.4 Autonomous ordinary differential equations on a manifold
Definition 3.4.1 (Autonomous ODE asociated to a vector field). Consider a manifold M and a
vector field X ∈ X (M). We associate to X the autonomous ordinary differential equation (ODE)
x′ = X(x), whose solutions are differentiable maps γ : I →M , where I is an interval of R, s.t.

∀t ∈ I, γ′(t) = X (γ(t)) .

Since X is smooth, every solution of x′ = X(x) is also smooth.

Theorem 3.4.2 (Cauchy–Lipschitz Theorem for manifolds). Consider a manifold M and a vector
field X ∈ X (M).

(i) If x0 ∈M , the equation x′ = X(x) has a unique solution γ s.t. γ(0) = x0, defined on a maximal
open interval I (x0) 3 0. This solution is denoted by γ(t) = ϕtX (x0) = X t (x0).

(ii) The set U = ⋃
x0∈M I (x0) × {x0} ⊆ R ×M is open and the global solution map Φ : (t, x) ∈

U 7−→ ϕtX(x) ∈M is smooth.

Proposition 3.4.3. Consider a manifold M and a vector field X ∈ X (M). The following equality
holds for all (t, s, x) ∈ R2 ×M s.t. the right-hand side is defined:

X t+s(x) = X t (Xs(x)) .

The family (X t)t∈R is called the flow of X.
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3.5 Complete vector fields and one-parameter subgroups
Definition 3.5.1 (Orbit). Consider a manifold M and a vector field X ∈ X (M). For x ∈ M , the
map t ∈ I(x) 7−→ X t(x) is called the orbit (or trajectory) of x.

Definition 3.5.2 (Complete vector field). Let M be a manifold. A vector field X ∈ X (M) is said
to be complete if all its orbits are defined on R, i.e. the global solution map is defined on R×M .

Proposition 3.5.3. All vector fields on a compact manifold are complete.

Definition 3.5.4 (One-parameter subgroup). Let M be a manifold. A one-parameter subgroup of
Diff(M) is a group homomorphism t ∈ (R,+) 7−→ ϕt ∈ (Diff(M), ◦) s.t. the map (t, x) ∈ R×M 7−→
ϕt(x) ∈M is smooth.

Proposition 3.5.5. If X is a complete vector field on a manifold M , then the flow (X t)t∈R is a
one-parameter subgroup of Diff(M).

Proposition 3.5.6. Let M be a manifold. If (ϕt)t∈R is a one-parameter subgroup of Diff(M), then
there exists a unique X ∈ X (M) s.t. ϕt = X t for all t ∈ R.

Proof. Define X(x) =
(

dϕt(x)
dt

)
t=0

.

3.6 Nonautonomous ODEs on a manifold
Definition 3.6.1 (Nonautonomous vector field). A nonautonomous vector field on a manifold M
is a map t ∈ I 7−→ Xt ∈ X (M), where I is an interval of R, s.t. (t, x) ∈ I ×M 7→ Xt(x) ∈ TxM
is smooth. We associate to (Xt)t∈I the nonautonomous ODE x′ = Xt(x), whose solutions are the
differntiable maps γ : J →M , where J ⊆ I is an interval of R, s.t.

∀t ∈ J, γ′(t) = Xt (γ(t)) .

Theorem 3.6.2 (Nonautonomous Cauchy–Lipschitz Theorem for manifolds). Consider a manifold
M and a nonautonomous vector field (Xt)t∈I on M .

(i) If (t0, x0) ∈ I×M , the equation x′ = Xt(x) has a unique solution γ s.t. γ (t0) = x0, defined on a
maximal open interval I (t0, x0) 3 t0. This solution is denoted by γ(t) = ϕt0,tX (x0) = X t0,t (x0).

(ii) The set U = ⋃
(t0,x0)∈I×M {t0} × I (t0, x0) × {x0} ⊆ I × I ×M is open and the global solution

map Φ : (t0, t, x) ∈ U 7−→ ϕt0,tX (x) ∈M is smooth.

4 Lie bracket of vector fields

4.1 Generalities
Definition 4.1.1 (Commutant of two derivations). If A is a unital k-algebra and D1, D2 are two
derivations of A, then the commutant of D1 and D2 is defined by:

[D1, D2] = D1D2 −D2D1.

[D1, D2] is again a derivation of A.

Corollary 4.1.2. LetM be a manifold. If X, Y ∈ X (M), then [LX , LY ] is a derivation of C∞ (M,R),
so according to Theorem 3.3.4, there exists a unique vector field [X, Y ] ∈ X (M) s.t.

L[X,Y ] = [LX , LY ] .

[X, Y ] is called the Lie bracket of X and Y .
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Proposition 4.1.3. Let M be a manifold.

(i) [·, ·] : X (M)2 → X (M) is a skew-symmetric R-bilinear map.

(ii) If X, Y, Z are three vector fields, we have Jacobi’s Identity:

[[X, Y ] , Z] + [[Y, Z] , X] + [[Z,X] , Y ] = 0.

Hence, the R-vector space X (M) endowed with the bilinear map [·, ·] is a Lie algebra.

Remark 4.1.4. Let M be a manifold. The map [·, ·] : X (M)2 → X (M) is R-bilinear but not
C∞ (M,R)-bilinear. In fact, for X, Y ∈ X (M) and f, g ∈ C∞ (M,R), we have:

[fX, gY ] = fg [X, Y ] + f (Xg)Y − g (Y f)X.

Example 4.1.5. Let M be a manifold. If (x1, . . . , xn) is a local system of coordinates for M , then[
∂
∂xi
, ∂
∂xj

]
= 0 for all i, j ∈ {1, . . . , n}.

4.2 Flow-box Theorem
Theorem 4.2.1 (Flow-box Theorem). Let M be a manifold and p0 ∈ M . If X ∈ X (M) is s.t.
X (p0) 6= 0, then there exist local coordinates (x1, . . . , xn) near p0 s.t. X = ∂

∂x1
. Equivalently, if

ϕ = (x1, . . . , xn), we have X t (ϕ−1 (x1, . . . , xn)) = ϕ−1 (x1 + t, x2, . . . , xn) for t, x1, . . . , xn sufficiently
small.

4.3 Pushforwards and pullbacks of vector fields
Definition 4.3.1 (Pushforward and pullback). Let ϕ : M → N be an isomorphism between mani-
folds.

(i) ϕ induces an isomorphism ϕ∗ : X (M)→ X (N). For X ∈ X (M), ϕ∗X is called the pushforward
of X and is defined by:

∀y ∈ N, (ϕ∗X) (y) = dϕϕ−1(y) ·X
(
ϕ−1(y)

)
.

(ii) ϕ induces an isomorphism ϕ∗ : X (N)→ X (M). For Y ∈ X (N), ϕ∗Y is called the pullback of
Y and is defined by:

∀x ∈M, (ϕ∗Y ) (x) = dϕ−1
x · Y (ϕ(x)) .

We have ϕ∗ = (ϕ∗)−1.

Proposition 4.3.2. Let ϕ : M → N be an isomorphism between manifolds.

(i) For X1, X2 ∈ X (M), we have ϕ∗ [X1, X2] = [ϕ∗X1, ϕ∗X2].

(ii) For Y1, Y2 ∈ X (N), we have ϕ∗ [Y1, Y2] = [ϕ∗Y1, ϕ
∗Y2].

(iii) If X ∈ X (M), then ϕ ◦X t = (ϕ∗X)t ◦ ϕ whenever this is defined.

(iv) If Y ∈ X (N), then Y t ◦ ϕ = ϕ ◦ (ϕ∗Y )t whenever this is defined.

Proposition 4.3.3. If M is a manifold, then any vector field X ∈ X (M) is invariant by the flow
(X t)t, i.e. (

X t
)
∗
X = X =

(
X t
)∗
X.
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4.4 Commuting vector fields
Definition 4.4.1 (Commuting flows). Let M be a manifold and X, Y ∈ X (M). We say that the
(partially defined) flows (X t)t and (Y u)u commute if X t ◦ Y u = Y u ◦X t for all t, u small enough.

Proposition 4.4.2 (Second formula for the Lie bracket). Let M be a manifold and X, Y ∈ X (M).
Then:

[X, Y ] =
(

d
dt
(
X t
)∗
Y

)
t=0

.

Definition 4.4.3 (Commuting vector fields). LetM be a manifold and X, Y ∈ X (M). The following
assertions are equivalent:

(i) The flows (X t)t and (Y u)u commute.

(ii) (X t)∗ Y = Y whenever this is defined.

(iii) [X, Y ] = 0.

We then say that X and Y commute.

4.5 Normal form of an independent family of commuting vector fields
Theorem 4.5.1. Let M be a manifold and p0 ∈ M . Let X1, . . . , Xk ∈ X (M) be commuting vector
fields (i.e. [Xi, Xj] = 0 for all i, j ∈ {1, . . . , k}) s.t. X1 (p0) , . . . , Xk (p0) are (linearly) independent.
Then there exist local coordinates (x1, . . . , xn) near p0 s.t. Xi = ∂

∂xi
for all i ∈ {1, . . . , k}.

4.6 Distributions of tangent spaces
Definition 4.6.1 (Distribution). Let M be a manifold and 0 < k < n = dimM . A distribution
D of dimension k in M is a map x ∈ M 7→ Dx, where Dx is a subspace of TxM of dimension k,
which is smooth in the following sense: for every x0 ∈ M , there exist local vector fields X1, . . . , Xk

s.t. Dx = Vect (X1(x), . . . , Xk(x)) near x0.

Definition 4.6.2 (Vector field tangent to a distribution). Let M be a manifold. A vector field
X ∈ X (M) is said to be tangent to a distribution D if ∀x ∈ M, X(x) ∈ Dx. We denote by X (D)
the space of vector fields that are tangent to D; this is a C∞ (M,R)-submodule of X (M).

Definition 4.6.3 (Integral submanifold of a distribution). Let M be a manifold. A submanifold
W ⊆ M is said to be an integral submanifold of a distribution D if TW ⊆ D, i.e. ∀x ∈ W, TxW ⊆
Dx.

Proposition 4.6.4. Let M be a manifold. If D is a distribution, W is an integral submanifold of D
and X, Y ∈ X (D) s.t. X|W , Y|W , [X, Y ]|W ∈ X (W ), then:

[X, Y ]|W =
[
X|W , Y|W

]
.

Definition 4.6.5 (Integrable distribution). Let D be a distribution over a manifold M .

(i) D is said to be integrable if X (D) is a Lie subalgebra of X (M), i.e.

X, Y ∈ X (D) =⇒ [X, Y ] ∈ X (D) .

(ii) D is said to be maximally nonintegrable if X (D) generates X (M) as a Lie subalgebra.

Theorem 4.6.6 (Frobenius’ Theorem). Let D be an integrable k-dimensional distribution over a
manifold M . Then for each p ∈ M , there exist local coordinates (x1, . . . , xn) near p s.t. D =
Vect

(
∂
∂x1
, . . . , ∂

∂xk

)
. Hence, maximal integral submanifolds are of the form W1×{c}, where W1 is an

open subset of Rk.
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5 Exterior algebra
Notation 5.0.1. In this section, V will be a vector space over R (or over any field of characteristic
6= 2).

5.1 Exterior forms
Definition 5.1.1 (Exterior p-forms). For p ∈ N, we denote by ⊗pV ∗ the space of p-linear forms
u : V p → R. Moreover, we denote by ΛpV ∗ the subspace of ⊗pV ∗ consisting of alternating (or
equivalently: antisymmetric) p-linear forms. The elements of ΛpV ∗ are called exterior p-forms on V .

Example 5.1.2. ⊗0V ∗ = R and ⊗1V ∗ = V ∗.

Remark 5.1.3. We define a linear left action of Sp on ⊗pV ∗ by:

(σ · u) (x) = ε(σ)u
(
xσ−1(1), . . . , xσ−1(p)

)
.

Thus, ΛpV ∗ is the space of Sp-invariant forms.

Notation 5.1.4. For p,∈ N, we define:

Jp,n = {(i1, . . . , ip) ∈ {1, . . . , n}p , i1 < · · · < ip} .

We have |Jp,n| =
(
n
p

)
.

Proposition 5.1.5. Assume that V is finite-dimensional and equipped with a basis (e1, . . . , en). Then
the map Φ : ΛpV ∗ → RJp,n defined by:

Φ(u) =
(
u
(
ei1 , . . . , eip

))
(i1,...,ip)∈Jp,n

∈ RJp,n .

is a linear isomorphism. In particular:

dim ΛpV ∗ =
(
n

p

)
.

Remark 5.1.6. If (i1, . . . , ip) ∈ Jp,n and if f(i1,...,ip) is the basis element of RJp,n associated to
(i1, . . . , ip), the element Φ−1

(
f(i1,...,ip)

)
will later be denoted by e∗i1 ∧ · · · ∧ e

∗
ip ∈ ΛpV ∗.

Remark 5.1.7. Λ0V ∗ = R. On the other hand, ΛnV ∗ is isomorphic to R, but not canonically. A
generating element u ∈ ΛnV ∗ will be called an oriented volume element.

5.2 Exterior product
Definition 5.2.1 (Exterior product). We want to define a product ∧ : ΛpV ∗ × ΛqV ∗ → Λp+qV ∗.

• We start by defining ⊗ : ⊗pV ∗ ×⊗qV ∗ → ⊗p+qV ∗ by:

(u⊗ v) (x1, . . . , xp+q) = u (x1, . . . , xp) v (xp+1, . . . , xp+q) .

⊗ is “partially antisymmetric”, i.e. if σ ∈ Hp,q = Sp×Sq ⊆ Sp+q, then σ · (u⊗ v) = u⊗ v as
soon as u ∈ ΛpV ∗ and v ∈ ΛqV ∗. Therefore, it makes sense to define [σ] · (u⊗ v) = σ · (u× v)
for [σ] ∈ Sp+q/Hp,q.
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• We can now define ∧ : ΛpV ∗ × ΛqV ∗ → Λp+qV ∗ by:

u ∧ v =
∑

[σ]∈Sp+q/Hp,q

[σ] · (u⊗ v) .

Explicitly, if Ap,q = {σ ∈ Sp+q, σ increases on {1, . . . , p} and on {p+ 1, . . . , p+ q}}, then Ap,q
is a set of representatives of left cosets of Hp,q, and:

u ∧ v =
∑

σ∈Ap,q

σ · (u⊗ v) .

Thus, we have defined a bilinear map ∧ : ΛpV ∗ × ΛqV ∗ → Λp+qV ∗; it is called the exterior product.

Proposition 5.2.2. The exterior product is associative, i.e. if u ∈ ΛpV ∗, v ∈ ΛqV ∗, w ∈ ΛrV ∗,
then (u ∧ v) ∧ w = u ∧ (v ∧ w).

Proof. Note that:

(u ∧ v) ∧ w =
∑

σ∈Ap+q,r

σ · ((u ∧ v)⊗ w) =
∑

σ∈Ap+q,r

∑
τ∈Ap,q

σ · ((τ · (u⊗ v))⊗ w)

=
∑

σ∈Ap+q,r

∑
τ∈Ap,q

σ ◦ (τ × id) · (u⊗ v ⊗ w) .

Now, the map (σ, τ) ∈ Ap+q,r ×Ap,q 7−→ σ ◦ (τ × id) ∈ Ap,q,r is a bijection, where Ap,q,r is the subset
of Sp+q+r consisting of permutations which are increasing on {1, . . . , p}, on {p+ 1, . . . , p+ q} and
on {p+ q + 1, . . . , p+ q + r}. Therefore:

(u ∧ v) ∧ w =
∑

θ∈Ap,q,r

θ · (u⊗ v ⊗ w) .

By symmetry, we obtain (u ∧ v) ∧ w = u ∧ (v ∧ w).

Remark 5.2.3. If (e1, . . . , en) is a basis of V , and if (i1, . . . , ip) ∈ Jp,n, then the element e∗i1 ∧ · · · ∧
e∗ip ∈ ΛpV ∗ is well-defined and its definition coincides with that of Remark 5.1.6.

5.3 Exterior algebra
Definition 5.3.1 (Exterior algebra). We define:

Λ∗V ∗ =
⊕
p∈N

ΛpV ∗.

An element of ΛpV ∗ ⊆ Λ∗V ∗ is called pure of degree p. In general, if:

u =
d∑
i=0

ui︸︷︷︸
∈ΛiV ∗

,

with ud 6= 0, we define deg u = d. The exterior product ∧ : Λ∗V ∗ × Λ∗V ∗ → Λ∗V ∗ is defined by
extending the product of pure elements by bilinearity. We obtain an algebra over R, which is:

(i) Associative,

(ii) Unital, because R = Λ0V ∗ ⊆ Λ∗V ∗,

(iii) Graded, because deg (u ∧ v) = deg u+ deg v,

(iv) Anticommutative (or graded-commutative), because u ∧ v = (−1)(deg u)(deg v) v ∧ u.
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This algebra is called the exterior algebra. To summarise these properties, we shall say that it is a
graded algebra over R.

Remark 5.3.2.

(i) If u ∈ R = Λ0V ∗ and v ∈ ΛqV ∗, then u ∧ v = uv.

(ii) If u ∈ V ∗ = Λ1V ∗ and v ∈ ΛqV ∗, then:

(u ∧ v) (x0, . . . , xq) =
q∑
i=0

(−1)iu (xi) v (x0, . . . , xi−1, xi+1, . . . , xq) .

5.4 Functoriality
Definition 5.4.1. If V,W are two real vector spaces, any linear map f : V → W induces linear
maps Λpf ∗ : ΛpW ∗ → ΛpV ∗ (sometimes simply denoted by f ∗), defined by:

Λpf ∗u = u ◦ (f × · · · × f) .

By linear extension, f induces a linear map Λ∗f ∗ : Λ∗W ∗ → Λ∗V ∗ (sometimes simply denoted by
f ∗).

Remark 5.4.2. Λ0f ∗ = idR and Λ1f ∗ is the usual dual map.

Proposition 5.4.3. Λ∗ is a contravariant functor from the category of R-vector spaces to the category
of graded R-algebras.

5.5 Exterior forms of degree 2
Definition 5.5.1 (Rank of an exterior form of degree 2). If u ∈ Λ2V ∗ and dim V < +∞, define
rk u = rk (x ∈ V 7→ u(x, ·) ∈ V ∗) = rk (y ∈ V 7→ u (·, y) ∈ V ∗).

Proposition 5.5.2. Assume that V is finite-dimensional. If u ∈ Λ2V ∗, then rk u is even, and there
exists a basis (e1, . . . , en) of V s.t.

u = e∗1 ∧ e∗2 + · · ·+ e∗r−1 ∧ e∗r,

where r = rk u.

Corollary 5.5.3. Assume that V is finite-dimensional and let u ∈ Λ2V ∗.

(i) If dim V is odd, then u is always degenerate.

(ii) If dim V = 2m, then u is nondegenerate iff um = u ∧ · · · ∧ u 6= 0.

5.6 Interior product
Definition 5.6.1 (Interior product). If x ∈ V and u ∈ ΛpV ∗, we define the interior product ιxu ∈
Λp−1V ∗ by:

ιxu (x1, . . . , xp−1) = u (x, x1, . . . , xp−1) .

We extend the map ιx : ΛpV ∗ → Λp−1V ∗ by linearity to a map ιx : Λ∗V ∗ → Λ∗V ∗ (with Λ−1V ∗ = 0).

Proposition 5.6.2. If x ∈ V , then ιx is a derivation of the graded algebra Λ∗V ∗, i.e.

ιx (u ∧ v) = (ιxu) ∧ v + (−1)deg uu ∧ (ιxv) .
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6 Differential forms

6.1 Cotangent bundle
Definition 6.1.1 (Cotangent bundle). Let M be a n-dimensional manifold. The cotangent bundle
of M is defined by:

T ∗M =
⊔
x∈M

T ∗xM,

where T ∗xM = (TxM)∗ is the cotangent space of M at x. T ∗M is equipped with a natural projection
π : T ∗M →M . It has a fibered atlas defined in the following way. To each chart ϕ : U ⊆M → V ⊆
Rn, we associate the fibered chart Φϕ : π−1(U) → V × Rn defined by Φϕ(x, v) = (ϕ(x), v ◦ dϕ−1

x ).
Hence, we obtain a smooth atlas on T ∗M . Therefore, T ∗M is a manifold.

Remark 6.1.2. If M is a manifold, then π : T ∗M →M is a vector bundle of rank dimM .

Remark 6.1.3. If M is a manifold, it turns out that T ∗M is isomorphic to TM .

Proposition 6.1.4. Let M be a manifold. If ϕ = (x1, . . . , xn) is a local coordinate system on M ,
one can define a local coordinate system (x1, . . . , xn, p1, . . . , pn) on T ∗M , where xi represents xi ◦ π
and pi(u) = u

(
∂
∂xi

)
.

6.2 Bundles of exterior forms
Definition 6.2.1 (Bundle of exterior p-forms). Let M be a n-dimensional manifold and let p ∈
{0, . . . , n}. The bundle of exterior p-forms of M is defined by:

ΛpT ∗M =
⊔
x∈M

ΛpT ∗xM,

where ΛpT ∗xM = Λp (TxM)∗. Similarly to T ∗M , ΛpT ∗M is equipped with a natural projection π :
ΛpT ∗M →M , and with a structure of manifold of dimension

(
n
p

)
+n. If p > n, we set ΛpT ∗M = {0}.

Remark 6.2.2. If M is a manifold, then π : ΛpT ∗M →M is a vector bundle of rank
(
n
p

)
.

Example 6.2.3. Let M be a n-dimensional manifold.

(i) If p = 0, then Λ0T ∗M = M × R.

(ii) If p = 1, then Λ1T ∗M = T ∗M .

(iii) If p = n, then ΛnT ∗M is a line bundle; we shall see that it is isomorphic to M × R (but not
canonically) iff M is orientable.

Definition 6.2.4 (Bundle of all exterior forms). Let M be a n-dimensional manifold. We define the
bundle of all exterior forms of M by:

Λ∗T ∗M =
⊕

0≤p≤dimM

ΛpT ∗M =
⊕
p∈N

ΛpT ∗M.

This is a vector bundle over M with fibers π−1 ({x}) = Λ∗T ∗xM = Λ∗ (TxM)∗.
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6.3 Differential forms and their algebra
Definition 6.3.1 (Differential form). Let M be a n-dimensional manifold and let p ∈ N. A dif-
ferential p-form (or differential form of degree p, or p-form) is a smooth section of the projection
π : ΛpT ∗M →M , i.e. a map α : x ∈M 7−→ αx ∈ ΛpT ∗M s.t.

∀x ∈M, αx ∈ ΛpT ∗xM.

We denote by Ωp(M) the vector space of all p-forms.

Example 6.3.2. Let M be a n-dimensional manifold.

(i) If p = 0, then Ω0(M) = C∞(M,R).

(ii) If p > n, then Ωp(M) = {0}.

Definition 6.3.3 (Algebra of differential forms). Let M be a n-dimensional manifold. We define the
algebra of differential forms of M by:

Ω∗(M) =
⊕

0≤p≤dimM

Ωp(M) =
⊕
p∈N

Ωp(M).

It is a graded algebra over C∞(M,R) = Ω0(M).

Example 6.3.4 (Differential of a function). IfM is a manifold and f ∈ C∞(M,R), then df ∈ Ω1(M).
Therefore, we have a linear operator d : Ω0(M)→ Ω1(M).

6.4 Evaluation of a differential form on tangent vectors and vector fields
Proposition 6.4.1. Let M be a n-dimensional manifold and p ∈ {1, . . . , n}. Let α ∈ Ωp(M). If
x ∈M and v1, . . . , vp ∈ TxM , one can define:

α (v1, . . . , vp) = αx (v1, . . . , vp) ∈ R.

Thus, we obtain a smooth function α : Πp (TM) → R, where Πp (TM) is the product of p copies of
TM :

Πp (TM) = {(v1, . . . , vp) ∈ TM × · · · × TM, π (v1) = · · · = π (vp)} .
This function α : Πp (TM) → R is p-linear and alternating on each fiber TxM × · · · × TxM . Con-
versely, any smooth map α : Πp (TM)→ R which is p-linear and alternating on each fiber defines an
element α ∈ Ωp(M).

Proposition 6.4.2. Let M be a n-dimensional manifold and p ∈ {1, . . . , n}. If α ∈ Ωp(M) and
X1, . . . , Xp ∈ X (M), one can define:

α (X1, . . . , Xp) : x ∈M 7−→ αx (X1(x), . . . , Xp(x)) ∈ R.

Thus, α (X1, . . . , Xp) is a smooth map M → R. In this way, one can interpret α ∈ Ωp(M) as a
p-C∞ (M,R)-linear alternating map X (M)× · · · × X (M)→ R.

6.5 Differential forms in local coordinates
Proposition 6.5.1. Let M be a n-dimensional manifold. If (U,ϕ) is a local system of coordinates
on M , with ϕ = (x1, . . . , xn), then the differentials dx1, . . . , dxn ∈ Ω1(M) form a basis of T ∗xM at
each x ∈ U . Thus, a differential 1-form α ∈ Ω1(U) can be written uniquely:

α =
n∑
i=1

fi dxi,

with f1, . . . , fn ∈ C∞(U,R). In particular, if α = df , with f ∈ C∞(U,R), then df = ∑n
i=1

∂f
∂xi

dxi.
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Proposition 6.5.2. Let M be a n-dimensional manifold. Let (x1, . . . , xn) and (y1, . . . , yn) be two
local systems of coordinates on M (defined on an open set U). Let α ∈ Ω1(M) and write:

α =
n∑
i=1

fi dxi =
n∑
j=1

gj dxj,

with f1, . . . , fn, g1, . . . , gn ∈ C∞(U,R). Then, for i ∈ {1, . . . , n}, we have:

fi (x1, . . . , xn) =
n∑
j=1

gj (y1, . . . , yn) ∂yj
∂xi

.

Remark 6.5.3. Let M be a n-dimensional manifold. If (U,ϕ) is a local system of coordinates on
M , with ϕ = (x1, . . . , xn), then can construct a basis of ΛpT ∗xM by defining:

dxI = dxi1 ∧ · · · ∧ dxip ,

for I = (i1, . . . , ip) ∈ Jp,n. We can then generalise the results related to 1-forms.

6.6 Functoriality
Definition 6.6.1 (Pullbacks of differential forms). Let ϕ : M → N be a smooth map between
manifolds. We define:

ϕ∗ :

∣∣∣∣∣∣∣∣∣
Ω∗(N) −→ Ω∗(M)

β 7−→

∣∣∣∣∣∣
M −→ Λ∗T ∗M
x 7−→ dϕ∗x

(
βϕ(x)

) .
Note that ϕ∗ sends Ωp(N) to Ωp(M) for all p ∈ N. For β ∈ Ω(N), the map ϕ∗β is called the pullback
of β by ϕ.

Proposition 6.6.2. Ω∗ is a contravariant functor from the category of manifolds to the category of
graded R-algebras.

6.7 Tautological 1-form on T ∗M

Definition 6.7.1 (Tautological 1-form). If M is a manifold, then the tautological 1-form on M is
λM ∈ Ω1 (T ∗M) defined by:

(λM)(x,p) = p ◦ dπx.

Remark 6.7.2. Let M be a manifold. If (x1, . . . , xn) is a local system of coordinates on M inducing
a local system of coordinates (x1, . . . , xn, p1, . . . , pn) on T ∗M , we have:

λM =
∑

1≤i≤dimM

pi dxi = p dx.

Proposition 6.7.3. Let M be a manifold. Then:

∀α ∈ Ω1(M), α∗λM = α.

6.8 Orientations and volume forms
Definition 6.8.1 (Orientation of a vector space). An orientation of a finite dimension real vector
space V is an equivalence class of bases of V for the equivalence relation ∼ defined by:

β ∼ β′ ⇐⇒ det
β

(β′) > 0.

A real vector space equipped with an orientation is said to be oriented; its set of orientations is
denoted by Or(V ). If ω ∈ Or(V ), the opposite orientation is denoted by (−ω). If V = {0}, we define
Or(V ) = {±1}.
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Definition 6.8.2 (Orientation of a manifold). Let M be a manifold of positive dimension. An
orientation of M is an atlas for which the transition maps have positive jacobians. Such an atlas is
called oriented. A chart in this atlas is said to be direct. If M admits an orientation, it is said to
be orientable. A diffeomorphism f : M → N between manifolds is said to preserve the orientation if
it preserves a maximal oriented atlas. If M is discrete (i.e. dimM = 0), an orientation of M is a
map M → {±1}.

Remark 6.8.3. If M is an orientable manifold, then the set of orientations of M is in bijection with
the set of maps Π0(M)→ {±1}, where Π0(M) is the set of connected components of M .

Example 6.8.4. The Möbius band M and the real projective (2n)-space PR2n are not orientable.

Definition 6.8.5 (Volume form). Let M be a manifold of positive dimension n. A volume form on
M is an element ν ∈ Ωn(M) s.t. ∀x ∈M, νx 6= 0.

Remark 6.8.6. Let M be a manifold of positive dimension n. Then a volume form ν on M defines
an isomorphism: ∣∣∣∣∣M × R −→ ΛnT ∗M

(x, λ) 7−→ λνx
.

Conversely, such an isomorphism defines a volume form.

Proposition 6.8.7. Let M be a manifold of positive dimension n.

(i) A volume form ν on M defines an orientation, in which a chart (x1, . . . , xn) is direct iff there
exists λ > 0 s.t. ν = λ dx1 ∧ · · · ∧ dxn, i.e. iff ν

(
∂
∂x1
, . . . , ∂

∂xn

)
> 0.

(ii) Conversely, if M is orientable, then it admits a volume form (defined using partitions of unity
subordinated to an oriented atlas of M).

In particular, M is orientable iff it admits a volume form.

Example 6.8.8. Let M be a manifold of dimension n that is the boundary of a domain Ω in Rn+1.
Assume that M admits a Gauß map N : M → Sn i.e. s.t. for all x ∈ M , N (x) is a unit vector in
(TxM)⊥ s.t. x+ tN (x) 6∈ Ω for t > 0 small enough. Then we can define a volume form ν on M by:

νx (v1, . . . , vn) = ν0 (N (x), v1, . . . , vn) ,

where ν0 = dx0 ∧ · · · ∧ dxn is the canonical volume form on Rn+1.

7 Exterior differential calculus

7.1 Construction of the exterior differential
Lemma 7.1.1 (Localisation lemma). Let M be a manifold. If D is a derivation (resp. anti-
derivation) on Ω∗(M) and U ⊆ M is an open set, then D induces a unique derivation (resp. anti-
derivation) DU on Ω∗(U).

Theorem 7.1.2. There exists a unique operator d : Ω∗(M) → Ω∗(M) of degree 1 (i.e. sending
Ωp(M) to Ωp+1(M)), which extends d : Ω0(M)→ Ω1(M) and satisfying the following two properties:

(i) Leibniz’s property. If α, β ∈ Ω∗(M), then:

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ,

where p = degα.

(ii) d(df) = 0 for all f ∈ Ω0(M).
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Moreover, d also satisfies the two following properties:

(iii) d ◦ d = 0.

(iv) In a chart (x1, . . . , xn), for smooth functions (fI)I∈Jp,n
∈ Ω0(M)Jp,n, we have:

d
 ∑
I∈Jp,n

fI dxI

 =
∑

I∈Jp,n

dfI ∧ dxI .

Hence, d makes Ω∗(M) a differential graded algebra.

Proof. Uniqueness. Check that any operator d satisfying (i) and (ii) must also satisfy (iv). Existence.
Define d using (iv) and check the other properties.

Example 7.1.3. Let M be a manifold. Recall the definition of the tautological 1-form λM ∈
Ω1 (T ∗M) from Definition 6.7.1. In a chart (x1, . . . , xn, p1, . . . , pn), we have λM = ∑n

i=1 pi dxi, there-
fore:

dλM =
n∑
i=1

dpi ∧ dxi.

Thus, dλM is a nondegenerate 2-form, and (dλM)n is a volume form on T ∗M . In particular, T ∗M
is canonically oriented. The form dλM is called a symplectic form.

Proposition 7.1.4. If f : M → N is a smooth map between manifolds, then the map f ∗ : Ω∗(N)→
Ω∗(M) is a morphism of differential graded algebras, i.e.

f ∗ ◦ d = d ◦ f ∗.

7.2 Lie derivative of a differential form with respect to a vector field
Remark 7.2.1. If X is a vector field on a manifold M , we have already defined two notions of Lie
derivatives w.r.t. X:

(i) For f ∈ Ω0(M), LXf = X · f =
(

d
dt (X t)∗ f

)
t=0

.

(ii) For Y ∈ X (M), LXY = [X, Y ] =
(

d
dt (X t)∗ Y

)
t=0

.

Definition 7.2.2 (Lie derivative of a differential form with respect to a vector field). Let M be a
manifold and X ∈ X (M). For α ∈ Ω∗(M), the Lie derivative of α w.r.t. X is defined by:

LXα =
(

d
dt
(
X t
)∗
α

)
t=0

.

Definition 7.2.3 (Interior product on a manifold). Let M be a manifold. If X ∈ X (M) and
α ∈ Ωp(M), we define the interior product ιXα ∈ Ωp−1(M) by:

(ιXα)x (v1, . . . , vp−1) = αx (X(x), v1, . . . , vp−1) .

We extend the map ιX : Ωp(M) → Ωp−1(M) by linearity to a map ιX : Ω∗(M) → Ω∗(M) (with
Ω−1(M) = 0).

Lemma 7.2.4. Let M be a manifold. Two derivations of Ω∗(M) which coincide on functions and
commute with d are equal.

Proposition 7.2.5 (Lie-Cartan calculus). Let M be a manifold. If α ∈ Ωp(M), X,X0, . . . , Xp ∈
X (M), we have the following properties:
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(i) d ◦ LX = LX ◦ d.

(ii) Cartan’s formula.
LX = d ◦ ιX + ιX ◦ d.

(iii) Leibniz’s rule.

LX (α (X1, . . . , Xp)) = (LXα) (X1, . . . , Xp) +
p∑
i=1

α (X1, . . . , [X,Xi] , . . . , Xp) .

(iv) Expression of d in terms of LX .

dα (X0, . . . , Xp) =
p∑
i=0

(−1)iLXi

(
α
(
X0, . . . , X̂i, . . . , Xp

))
+

∑
0≤i<j≤p

(−1)i+jα
(
[Xi, Xj] , X0, . . . , X̂i, . . . , X̂j, . . . , Xp

)
.

Proof. (ii) Use Lemma 7.2.4.

8 De Rham cohomology

8.1 Definition and general properties
Definition 8.1.1 (Closed and exact forms). Let M be a manifold. Consider the differential operator
d : Ω∗(M) → Ω∗(M). An element of Ker d is called a closed form; an element of Im d is called an
exact form. Since d ◦ d = 0, we have Im d ⊆ Ker d.
Definition 8.1.2 (De Rham cohomology). Let M be a manifold. The de Rham cohomology of M
is defined by:

H∗(M) = Ker d/ Im d.
Since d sends Ωp(M) to Ωp+1(M), H∗(M) is a graded vector space:

H∗(M) =
⊕
p∈N

Hp(M),

where Hp(M) = Ker d|Ωp(M)/ Im d|Ωp−1(M) .
Proposition 8.1.3. Let M be a manifold. The exterior product ∧ on Ω∗(M) induces a product ∧
on H∗(M). More explicitly:
(i) If α, β ∈ Ω∗(M) are closed, then α ∧ β is also closed.

(ii) If α, α′, β, β′ ∈ Ω∗(M) are closed with (α− α′) and (β − β′) exact, then (α ∧ β − α′ ∧ β′) is
exact.

Thus, H∗(M) is a graded algebra over R.
Vocabulary 8.1.4. Let M be a manifold. If α, α′ ∈ Ω∗(M) are closed differential forms s.t. (α− α′)
is exact, we say that α and α′ are cohomologous. Moreover, the image of α in H∗(M) is called the
cohomology class of α and denoted by [α].
Proposition 8.1.5. Let f : M → N be a smooth map between manifolds. Then f ∗ : Ω∗(N)→ Ω∗(M)
is a morphism of differential graded algebras, inducing a morphism f ∗ : H∗(N)→ H∗(M) of graded
algebras. Hence, H∗ defines a functor from the category of smooth manifolds to the category of graded
algebras.
Remark 8.1.6. Let M be a smooth manifold. We have:

H0(M) = {f ∈ C∞ (M,R) , df = 0} = {f ∈ C∞ (M,R) , f is locally constant} = RΠ0(M),

where Π0(M) is the set of connected components of M .
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8.2 Invariance by homotopy
Definition 8.2.1 (Homotopy). Two maps f, g : M → N between topological spaces (resp. manifolds)
are said to be homotopic (resp. smoothly homotopic) if there exists a continuous (resp. smooth)
map h : [0, 1]×M → N , called a homotopy from f to g, s.t.

h(0, ·) = f and h(1, ·) = g.

Remark 8.2.2. Using the density of C∞(M,N) in C0(M,N), one can prove the following facts:

(i) If f, g ∈ C∞(M,N) are homotopic, then they are smoothly homotopic.

(ii) For all f ∈ C0(M,N), there exists f̃ ∈ C∞(M,N) s.t. f is homotopic to f̃ .

The set C∞(M,N) quotiented by the relation of smooth homotopy is denoted by [M,N ].

Theorem 8.2.3. Let f, g : M → N be smooth maps between manifolds. If f and g are homotopic,
then the morphisms f ∗, g∗ : H∗(N)→ H∗(M) are equal.

Proof. The idea of the proof is to construct a homotopy operator H : Ω∗(N) → Ω∗(M) of degree
(−1) and s.t.

H ◦ d + d ◦H = g∗ − f ∗, (∗)
where f ∗, g∗ : Ω∗(N)→ Ω∗(M). Using H, we easily show that f ∗ = g∗ (as maps H∗(N)→ H∗(M)).
To construct H, we set:

H : β ∈ Ω∗(N) 7−→
∫ 1

0
({t} × idM)∗ (ιTh∗β) dt ∈ Ω∗(M),

where T = ∂
∂t
∈ X ([0, 1]×M) and h is a smooth homotopy from f to g. We then show that H

satisfies (∗).

Corollary 8.2.4. H∗ defines a functor from the category of homotopy types of smooth manifolds to
the category of graded algebras.

Corollary 8.2.5 (Poincaré’s Lemma). LetM be a manifold. Then the differential d is locally exact in
positive degrees. More precisely, if U ⊆M is diffeomorphic to Rn, then every closed form β ∈ Ωp(U)
is exact for p ∈ N∗. Therefore, H∗(U) = H0(U) = R.

Proof. Show that we can assume U to be a star-shaped open set in Rn and deduce that there exists
a homotopy from a point to idU and show that β = d(Hβ) for every β ∈ Ωp(M) (p ∈ N∗), where H
is the homotopy operator of the proof of Theorem 8.2.3.

8.3 Elementary study of H1

Definition 8.3.1 (Integration along a piecewise C1 path). Let M be a manifold. Let γ : [a, b]→M
be a piecewise C1 path and let α ∈ Ω1(M). We define:∫

γ
α =

∫ b

a
αγ(t) (γ′(t)) dt.

This integral is invariant under direct reparametrisation and changes sign under indirect reparametri-
sation.

Proposition 8.3.2. LetM be a manifold. Let γ : [a, b]→M be a piecewise C1 path. For f ∈ Ω0(M),
we have: ∫

γ
df = f (γ(b))− f (γ(a)) .

In particular, if γ is a loop, then
∫
γ α = 0 for any exact form α ∈ Ω1(M).
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Example 8.3.3. On the manifold M = R2\{0}, the 1-form α = xdy−y dx
x2+y2 is closed but not exact. In

particular H∗ (R2\{0}) 6= 0.

Proposition 8.3.4. Let M be a connected manifold. If α ∈ Ω1(M), we define the integration
morphism I(α) on the set Λx0(M) of piecewise C1 loops [0, 1]→M based at x0 by:

I(α) : γ ∈ Λx0(M) 7−→
∫
γ
α ∈ R.

We obtain a map I : Ω1(M)→ RΛx0 (M). This map induces a map:

I : H1(M)→ Hom (Π1(M),R) ,

where Π1(M) is the fundamental group of M . The map I is an isomorphism of vector spaces.

Corollary 8.3.5. If M is a connected manifold, then:

H1(M) ' Hom (Π1(M),R) .

9 Integration on manifolds

9.1 Definitions
Notation 9.1.1. Let M be a manifold. For k ∈ N ∪ {∞}, we write CkΩp(M) for the set of Ck p-
forms M → ΛpT ∗M . Moreover, we write CkcΩp(M) for the set of elements of CkΩp(M) with compact
support.

Definition 9.1.2 (Integral of a n-form on Rn). Let α ∈ C0
cΩn (U), where U is an open subset of Rn.

Then there exists f ∈ C0
c (U,R) s.t. α = f dx1 ∧ · · · ∧ dxn; we define:∫

U
α =

∫
U
f (x1, . . . , xn) dx1 · · · dxn.

Proposition 9.1.3. Let ϕ : U → V be a C1 direct diffeomorphism (i.e. with jacϕ > 0) between open
subsets of Rn. Then, for β ∈ C0

cΩn (V ), we have:∫
V
β =

∫
U
ϕ∗β.

If ϕ is indirect, then
∫
V β = −

∫
U ϕ
∗β.

Definition 9.1.4 (Integral of a n-form on a n-manifold). LetM be an oriented manifold of dimension
n and α ∈ C0

cΩn(M). If (Ui, ϕi)1≤i≤k is a finite family of direct charts covering the support of α and
if (fi)1≤i≤k is a partition of unity subordinated to (Ui)1≤i≤k, we set:

∫
M
α =

k∑
i=1

∫
ϕi(Ui)

(
ϕ−1
i

)∗
(fiα) .

We check that
∫
M α is well-defined, i.e. it is independent of the choice of the charts and the partition

of unity.

Remark 9.1.5. Let M be an oriented manifold of dimension n and α ∈ C0
cΩn(M). Then Definition

9.1.4 induces a continuous linear form Iα : C0
c (M,R) → R defined by Iα(f) =

∫
M fα; hence, it

induces a Radon measure µα on M . This allows one to extend the definition of
∫
B α to any Borel set

B s.t. 1B is integrable w.r.t. |µα|.

23



9.2 Stokes’ formula
Definition 9.2.1 (Topological domain). In a topological space X, a domain is a set Ω s.t. Ω = Ω̊
(in particular, Ω is closed).

Definition 9.2.2 (Domain with Ck boundary). Let M be a Ck manifold of dimension n. A domain
with Ck boundary (or Ck domain) is a closed subset Ω ⊆ M s.t. the (topological) boundary ∂Ω is a
Ck submanifold of M . Equivalently, each point x ∈ ∂Ω admits a centred chart (of M) ϕ : (U, x) →
(ϕ(U), 0) s.t.

ϕ (U ∩ ∂Ω) = ϕ(U) ∩
(
{0} × Rn−1

)
.

If M is oriented, we always assume that ϕ is direct and that:

ϕ (U ∩Ω) = ϕ(U) ∩
(
]−∞, 0]× Rn−1

)
.

Remark 9.2.3. A Ck domain is a topological domain.

Proposition 9.2.4. If M is an oriented manifold and Ω is a C1 domain, then ∂Ω is oriented by the
outward normal.

Notation 9.2.5. Let M be an oriented manifold and Ω be a C1 domain. For β ∈ C0Ωn−1 (Ω) with
Supp β ∩Ω compact, we define: ∫

∂Ω
β =

∫
∂Ω
i∗β,

where i : ∂Ω → Ω is the natural inclusion.

Theorem 9.2.6 (Stokes’ formula). Let M be an oriented manifold and Ω be a C1 domain. Let
α ∈ C1Ωn−1(M) with Suppα ∩Ω compact. Then:∫

Ω
dα =

∫
∂Ω
α.

Proof. We cover Suppα ∩ Ω by a finite number of direct charts (Ui, ϕi)1≤i≤k, together with a
subordinated C1 partition of unity (fi)1≤i≤k. Thus, we can assume that M = Rn, α ∈ C1

cΩn (Rn) and
Ω is either Rn or ]−∞, 0]× Rn−1. If Ω = Rn, then we may write α = f (x1, . . . , xn) dx2 ∧ · · · ∧ dxn
in a well-chosen system of coordinates. Thus:

∫
Ω

dα =
∫
Rn

∂f

∂x1
(x1, . . . , xn) dx1 · · · dxn =

∫
Rn−1

(∫
R

∂f

∂x1
(x1, . . . , xn) dx1

)
dx2 · · · dxn = 0.

If Ω = ]−∞, 0]×Rn−1, then either α = f (x1, . . . , xn) dx2∧ · · · ∧dxn or α = f (x1, . . . , xn) dx1∧ · · · ∧
dxn−1. In the first case:
∫
Ω

dα =
∫

]−∞,0]×Rn−1

∂f

∂x1
(x1, . . . , xn) dx1 · · · dxn =

∫
Rn−1

(∫ 0

−∞

∂f

∂x1
(x1, . . . , xn) dx1

)
dx2 · · · dxn

=
∫
Rn−1

f (0, x2, . . . , xn) dx2 · · · dxn =
∫
∂Ω
α.

In the second case:∫
Ω

dα =
∫

]−∞,0]×Rn−1
(−1)n−1 ∂f

∂xn
(x1, . . . , xn) dx1 · · · dxn

=
∫

]−∞,0]×Rn−2
(−1)n−1

(∫
R

∂f

∂xn
(x1, . . . , xn) dxn

)
dx1 · · · dxn−1 = 0 =

∫
∂Ω
α.

Remark 9.2.7. Stokes’ formula is a generalisation of the fact that
∫ b
a f
′(x) dx = f(b)− f(a).
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9.3 Application: Brouwer’s Fixed Point Theorem
Notation 9.3.1. We denote by Dn the closed unit n-disk; it is a compact domain with ∂Dn = Sn−1.

Theorem 9.3.2 (Brouwer’s Fixed Point Theorem).

(i) If f : Dn → Dn is continuous, then f has a fixed point.

(ii) There is no continuous map g : Dn → Sn−1 s.t. g|Sn−1 = idSn−1.

Proof. Note that (ii) ⇒ (i): if f : Dn → Dn is a continuous map without a fixed point, define a
map g : Dn → Sn−1 by choosing g(x) to be the unique element of Sn−1 ∩ R+ (x− f(x)); hence, g
is continuous and g|Sn−1 = idSn−1 . Now, let us prove (ii). Assume for contradiction that there is a
continuous map g : Dn → Sn−1 with g|Sn−1 = idSn−1 . By approximation, we may assume g to be
smooth. We now let α = x1 dx2 ∧ · · · ∧ dxn ∈ Ωn−1 (Rn). Note that rk dgx < n for all x, therefore
g∗ (dα) = 0. But, using Stokes’ formula:

0 =
∫
Dn
g∗ (dα) =

∫
Dn

d(g∗α) =
∫
Sn−1

g∗α =
∫
Sn−1

α =
∫
Dn

dα = vol (Dn) > 0.

This is a contradiction.

10 Cohomolohy in maximal degree

10.1 De Rham cohomology with compact supports
Definition 10.1.1 (Compactly supported differential forms). Let M be a manifold. We let Ω∗c(M) =⋃
p∈N Ωp

c(M) be the set of compactly supported differential forms on M . It is a differential graded
nonunital subalgebra of Ω∗(M).

Definition 10.1.2 (De Rham cohomology with compact supports). LetM be a manifold. For p ∈ N,
we define:

H∗c (M) = Ker d|Ω∗
c(M)/ Im d|Ω∗

c(M) .

H∗c (M) is a graded vector space:
H∗c (M) =

⊕
p∈N

Hp
c (M),

where Hp
c (M) = Ker d|Ωp

c (M)/ Im d|Ωp−1
c (M) .

Definition 10.1.3 (Integration morphism). Let M be an oriented manifold of dimension n. Then
we define the integration morphism IM : α ∈ Ωn

c (M) 7−→
∫
M α ∈ R. By Stokes’ formula (Theorem

9.2.6), IM induces a surjective morphism IM : Hn
c (M)→ R.

10.2 Computation of Hn
c (Rn)

Proposition 10.2.1. For n ∈ N∗, I : Hn
c (Rn)→ R is an isomorphism.

Proof. It suffices to prove that I is injective, i.e. if α ∈ Ωn
c (Rn) is s.t.

∫
Rn α = 0, then there exists

β ∈ Ωn−1
c (Rn) s.t. α = dβ. By induction on n, we prove the following stronger statement: if k ∈ N∗

and (αt)t∈Rk is a smooth family of forms in Ωn
c (Rn) with Suppαt ⊆ [−R,+R]n and

∫
Rn αt = 0 for all

t, then there exists a smooth family (βt)t∈Rk in Ωn−1
c (Rn) s.t. Supp βt ⊆ [−R,+R]n and αt = dβt for

all t. For n = 1, write αt = ft dx and take βt(x) =
∫ x
−∞ ft(u) du. Assume we have proved the result

for (n− 1) and write:
αt = αt,xn ∧ dxn,

with αt,xn ∈ Ωn−1
c (Rn−1), Suppαt,xn ⊆ [−R,+R]n−1. Now, set It (xn) =

∫
Rn−1 αt,xn ; thus It ∈

C∞c (R,R) and Supp It ⊆ [−R,+R]. By Fubini, 0 =
∫
Rn αt =

∫
R It. Thus, the function gt (xn) =
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∫ xn
−∞ It(u) du has support in [−R,+R] and dgt = It (xn) dxn. Choose a form σ ∈ Ωn−1

c (Rn−1) with∫
Rn−1 σ = 1 and define:

α̃t,xn = αt,xn − It (xn)σ,
thus

∫
Rn−1 α̃t,xn = 0. By induction, there exists βt,xn ∈ Ωn−2

c (Rn−1) s.t. Supp (βt,xn) ⊆ [−R,+R]n−1

and dβt,xn = α̃t,xn . Now, we obtain αt = d(βt,xn ∧ dxn + (−1)n−1gt (xn)σ), which proves the result.

10.3 Computation of Hn
c (M)

Theorem 10.3.1. LetM be a connected oriented manifold of dimension n ∈ N∗. Then I : Hn
c (M)→

R is an isomorphism.

Proof. Let α ∈ Ωn
c (M) s.t.

∫
M α = 0. Let us show that there exists β ∈ Ωn−1

c (M) s.t. α = dβ. We
cover Suppα by relatively compact open sets (Ui)1≤i≤k diffeomorphic to Rn. We order these sets in
such a way that Ui ∩ Ui+1 6= ∅ for all i. Now, we construct β by induction on k. If k = 1, we just
apply Proposition 10.2.1. Assume we have proved the result for (n − 1). Set V = U1 ∪ · · · ∪ Uk−1,
so that M ⊆ V ∪ Uk. Let (ρ1, ρ2) be a partition of unity with Supp ρ1 ⊆ V , Supp ρ2 ⊆ Uk,
ρ1 +ρ2 = 1U1∪···∪Uk

. We have α = ρ1α+ρ2α, but
∫
M ρ1α = −

∫
M ρ2α 6= 0 a priori. Since V ∩Uk 6= ∅,

there exists σ ∈ Ωn
c (M) with Suppσ ⊆ V ∩ Uk and

∫
M σ =

∫
M ρ1α. Now, write:

α = (ρ1α− σ)︸ ︷︷ ︸
α̃1

+ (ρ2α + σ)︸ ︷︷ ︸
α̃2

.

Thus, α̃1 ∈ Ωn
c (V ),

∫
V α1 = 0, α̃2 ∈ Ωn

c (Uk) and
∫
Uk
α̃2 = 0. By induction, there exist β1 ∈ Ωn

c (V )
and β2 ∈ Ωn

c (Uk) s.t. α̃1 = dβ1 and α̃2 = dβ2. Hence, α = d(β1 + β2), which proves the result.

Corollary 10.3.2. If M is a compact, connected, oriented manifold of dimension n ∈ N∗, then
I : Hn(M)→ R is an isomorphism.

Remark 10.3.3. If M is a manifold that is not connected, let (Mi)i∈I be the connected components
of M . Then:

(i) Ω∗(M) = ∏
i∈I Ω∗ (Mi) and H∗(M) = ∏

i∈I Ω∗ (Mi).

(ii) Ω∗c(M) = ⊕
i∈I Ω∗c (Mi) and H∗c (M) = ⊕

i∈I H
∗
c (Mi).

Remark 10.3.4. Let M be a connected manifold of dimension n ∈ N∗.

(i) If M is not compact, then Hn(M) = 0.

(ii) If M is not orientable, then Hn
c (M) = 0.

10.4 Degree of a map
Definition 10.4.1 (Degree of a smooth (proper) map). Let f : M → N be a smooth proper map
between two connected oriented manifolds of the same dimension n ∈ N∗. Then f ∗ : Hn

c (N) →
Hn
c (M) induces a linear map R→ R; this map is the multiplication by a real number which we call

the degree of f and which we denote by deg f . In other words, deg f is the real number which makes
the following diagram commute:

N M
f

Hn
c (N) Hn

c (M)f ∗

R R
× deg f

IN IM
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The degree is invariant under proper homotopy.

Remark 10.4.2. IfM and N are two compact, connected, oriented manifolds of the same dimension,
then the degree is well-defined for any smooth map f : M → N . It is invariant under homotopy.

Remark 10.4.3. Let f : M → N be a smooth proper map between two connected oriented manifolds
of the same dimension n ∈ N∗. Then, for any β ∈ Ωn

c (N) s.t.
∫
N β = 1, we have:

deg f =
∫
M
f ∗β.

Remark 10.4.4. Let M be a compact, connected, oriented manifold. Then deg (idM) = 1, so idM is
not homotopic to a constant.

Definition 10.4.5 (Local degree). Let f : M → N be a smooth proper map between two connected
oriented manifolds of the same dimension n ∈ N∗. If x ∈ M is a regular point of f , we define the
local degree degx(f) ∈ {±1} of f at x by degx(f) = 1 iff dfx : TxM → TxN preseves the orientation.

Theorem 10.4.6. Let f : M → N be a smooth proper map between two connected oriented manifolds
of the same dimension n ∈ N∗. For any regular value y ∈ N of f , we have:

deg f =
∑

x∈f−1({y})
degx(f).

In particular, deg f ∈ Z (because Sard’s Theorem implies that f has at least one regular value).
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