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Notation 0.0.1. We shall write K = R or C.

1 Topological vector spaces

1.1 Generalities
Definition 1.1.1 (Topological vector space). A topological vector space is a Hausdorff space E that
is also a K-vector space such that the maps (x, y) ∈ E2 7−→ x+y ∈ E and (λ, x) ∈ K×E 7−→ λx ∈ E
are both continuous.

Example 1.1.2. Normed spaces are topological vector spaces.

Remark 1.1.3. Let E be a topological vector space.

(i) For x ∈ E, the translation τx : y ∈ E 7−→ x+ y ∈ E is a homeomorphism (with inverse τ−x).

(ii) For λ ∈ K∗, the dilatation hλ : y ∈ E 7−→ λy ∈ E is a homeomorphism (with inverse hλ−1).

Corollary 1.1.4. Let E be a topological vector space.

(i) The neighbourhoods of x ∈ E are exactly the translations of those of 0.

(ii) For λ ∈ K∗, a subset V ⊆ E is a neighbourhood of 0 iff λV is a neighbourhood of 0.

Proposition 1.1.5. Let E be a topological vector space. Then any neighbourhood V of 0 in E is
absorbing, i.e.

∀x ∈ E, ∃r > 0, ∀λ ∈ K, |λ| < r =⇒ λx ∈ V.

Proof. Choose x ∈ E and consider ψx : λ ∈ K 7−→ λx ∈ E. The map ψx is continuous, so ψ−1
x (V )

is a neighbourhood of 0 in K, i.e. there exists r > 0 s.t. 0 ∈ BK(r) ⊆ ψ−1
x (V ). In other words,

ψx (BK(r)) ⊆ V , which was to be proved.

Definition 1.1.6 (Bounded subsets). Let E be a topological vector space. A subset A ⊆ E is said
to be bounded if for every neighbourhood V of 0 in E, there exists r > 0 s.t. |λ| < r =⇒ λA ⊆ V .

Corollary 1.1.7. In topological vector spaces, singletons are bounded.

Proposition 1.1.8. Let E,F be two topological vector spaces and f : E → F be a linear map. Then
f is continuous iff f is continuous at 0.

Notation 1.1.9. If E,F are two topological spaces, we shall write L(E,F ) for the set of all con-
tinuous linear maps from E to F . This is a K-vector space, which we would like to equip with the
structure of a topological vector space.
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1.2 Completeness
Vocabulary 1.2.1. A complete normed space is called a Banach space.

Example 1.2.2.

(i) If K is a compact topological space, then the space C(K) of all continuous maps from K to K
is a Banach space, equipped with the supremum norm.

(ii) If X is a σ-finite measured space and p ∈ [1,+∞], then the space Lp(X) is a Banach space.

Theorem 1.2.3 (Baire Category Theorem). Let (X, d) be a complete metric space.

(i) If (On)n∈N is a countable family of dense open subsets of X, then ⋃n∈NOn is dense in X.

(ii) If (Fn)n∈N is a countable family of closed subsets of X with empty interior, then ⋂n∈N Fn has
an empty interior.

Definition 1.2.4 (Metric vector space). A metric vector space E is a topological vector space whose
topology is defined by a translation-invariant metric, i.e. a metric d s.t. there exists a map D : E →
R+ s.t. ∀(x, y) ∈ E, d(x, y) = D(x− y) (note that D is not necessarily homogeneous).

Theorem 1.2.5. Let E be a complete metric vector space, let F be a topological vector space. For
any set Φ ⊆ L(E,F ), the following assertions are equivalent:

(i) For all x ∈ E, {ϕ(x), ϕ ∈ Φ} is bounded in F .

(ii) Φ is equicontinuous, i.e. for any open subset W ⊆ F , there exists an open subset V ⊆ E s.t.
∀ϕ ∈ Φ, ϕ(V ) ⊆ W .

(iii) Φ is equicontinuous at 0, i.e. for any neighbourhood W of 0 in F , there exists a neighbourhood
V of 0 in E s.t. ∀ϕ ∈ Φ, ϕ(V ) ⊆ W .

Proof. (i)⇐ (ii)⇔ (iii) Clear. (i)⇒ (iii) Let W be a neighbourhood of 0 in F . As (x, y) 7→ x− y
is continuous, there exists C neighbourhood of 0 in F s.t. C − C = {c− c′, (c, c′) ∈ C2} ⊆ W .
Likewise, there exists U neighbourhood of 0 in F s.t. U + U ⊆ C. Let us show that U ⊆ C: for
x ∈ U , x − U is a neighbourhood of x, so it meets U , i.e. there exists y ∈ U ∩ (x − U); therefore,
there exists z ∈ U s.t. x = y + z ∈ U + U ⊆ C. Hence, we get U − U ⊆ W . Now, define:

X =
⋂
ϕ∈Φ

ϕ−1
(
U
)
.

The set X is closed in E. By assumption, for all x ∈ E, there exists n ∈ N∗ s.t. 1
n
{ϕ(x), ϕ ∈ Φ} ⊆ U ,

i.e. x ∈ nX. Therefore:
E =

⋃
n∈N∗

nX.

By the Baire Category Theorem, there exists n0 ∈ N∗ s.t. n0X has nonempty interior. But X =
1
n0

(n0X), so X has a nonempty interior. Thus, there exists x ∈ X and V neighbourhood of 0 in
E s.t. x + V ⊆ X. In other words: ∀ϕ ∈ Φ, ϕ(x + V ) ⊆ U , so ∀ϕ ∈ Φ, ϕ(V ) ⊆ ϕ(V − V ) =
ϕ(x+ V )− ϕ(x+ V ) ⊆ U − U ⊆ W .

Corollary 1.2.6 (Uniform Boundedness Principle / Banach-Steinhaus Theorem). Let E be a Banach
space and let F be a normed space. For any set Φ ⊆ L(E,F ), the following assertions are equivalent:

(i) For all x ∈ E, {ϕ(x), ϕ ∈ Φ} is bounded in F .

(ii) Φ is equicontinuous.

(iii) Φ is equicontinuous at 0.
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(iv) {‖ϕ‖ , ϕ ∈ Φ} is bounded in R.

Remark 1.2.7. There are two ways to apply the Banach-Steinhaus Theorem:

(i) If we have a sequence (ϕn)n∈N ∈ L(E,F )N and a ϕ ∈ L(E,F ) s.t. ∀x ∈ E, ϕn(x) → ϕ(x),
then the sequence (‖ϕn‖)n∈N is bounded, which leads to:

∀x ∈ E, ‖ϕ(x)‖ ≤
(

lim inf
n→+∞

‖ϕn‖
)
‖x‖ .

Hence, ϕ is linear continuous.

(ii) If we have a sequence (ϕn)n∈N ∈ L(E,F )N s.t. ‖ϕn‖ → +∞, then there exists x ∈ E s.t.
(ϕn(x))n∈N is unbounded. This is actually true for every x in a dense Gδ.

Theorem 1.2.8 (Open Mapping Theorem / Banach–Schauder Theorem). Let E,F be two complete
metric vector spaces and T : E → F be a linear continuous map.

(i) If T is onto, then for any V neighbourhood of 0 in E, T (V ) is a neighbourhood of 0 in F .

(ii) If T is bijective, then it is a homeomorphism.

Proof. It is enough to prove (i). Suppose that T is onto and choose r > 0. We need only prove that
∃s > 0, TBE(r) ⊇ BF (s), where BE(r) = {x ∈ E, D(x) < r}. First step. Since BE(r) is absorbing
(by Proposition 1.1.5), we have E = ⋃

n∈N∗ nBE(r). And T is onto, so:

F =
⋃
n∈N∗

T (nBE(r)) =
⋃
n∈N∗

T (nBE(r)) =
⋃
n∈N∗

nTBE(r).

By the Baire Category Theorem, there exists n0 ∈ N∗ s.t. n0TBE(r) has nonempty interior. There-

fore, TBE(r) has nonempty interior. Second step. Let a ∈
˚

TBE

(
r
2

)
and let U be a neighbourhood

of a in TBE

(
r
2

)
. Then V = U − U is a neighbourhood of 0 in F , and V ⊆ TBE(r). We have

proved that for all r > 0, there exists δ(r) > 0 s.t. BF (δ(r)) ⊆ TBE(r), and we may assume
that δ(r) ≤ r. Third step. Let r > 0 and y ∈ BF

(
δ
(
r
2

))
. Our aim is to find a x ∈ BE(r) s.t.

Tx = y. We construct an approximate solution of the equation. As y ∈ TBE

(
r
2

)
, there exists

x1 ∈ BE

(
r
2

)
s.t. y − Tx1 ∈ BF

(
δ
(
r
4

))
⊆ TBE

(
r
4

)
. Proceeding by induction, we construct a se-

quence (xn)n∈N∗ ∈ EN∗ s.t. xn ∈ BE (2−nr) and y − T (x1 + · · ·+ xn) ∈ BF

(
δ
(
2−(n+1)r

))
for all

n ∈ N∗. Write zn = x1 + · · ·+ xn for n ∈ N∗. Then the sequence (zn)n∈N∗ is Cauchy so it converges
to z ∈ E. We easily check that y = Tz and z ∈ BE(r). This proves that TBE(r) ⊇ BF

(
δ
(
r
2

))
.

Theorem 1.2.9 (Closed Graph Theorem). Let E,F be two complete metric vector spaces and T :
E → F be a linear map. Then T is continuous iff its graph G(T ) = {(x, Tx) , x ∈ E} is closed in
E × F .

Proof. (⇒) Clear. (⇐) By assumption, G(T ) is closed so it is a complete metric vector space. Let
π : E × F → E be the first projection. Then the restriction π|G(T ) is linear continuous and bijective.
By Theorem 1.2.8, it is a homeomorphism, i.e. the inverse map x 7→ (x, Tx) is continuous. In
particular, T is continuous.

2 Convexity
Definition 2.0.1 (Dual space). If E is a topological vector space, its dual space is E∗ = L(E,K).

Remark 2.0.2.
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(i) If H is a Hilbert space, then H∗ is isometric to H.

(ii) If X is a measured space, p ∈ [1,+∞[ and q ∈ ]1,+∞] is the conjugate exponent of p (i.e.
1 = 1

p
+ 1

q
), then Lp (X)∗ is isometric to Lq (X).

(iii) However, in general, E∗ may be very small.

2.1 Locally convex topological vector spaces
Definition 2.1.1 (Local convexity). A topological vector space E is said to be locally convex if it
admits a basis of convex neighbourhoods of 0.

Example 2.1.2. Normed spaces are locally convex.

Proposition 2.1.3. Let E be a topological vector space.

(i) Every neighbourhood of 0 contains a balanced neighbourhood, i.e. a neighbourhood V s.t. ∀x ∈
V, ∀λ ∈ K, |λ| ≤ 1 =⇒ λx ∈ V .

(ii) If E is locally convex, then every neighbourhood of 0 contains a balanced convex neighbourhood
of 0.

Proof. (i) Note that φ : (λ, x) ∈ K× E 7−→ λx ∈ E is continuous and φ(0, 0) = 0 ∈ W , so φ−1(W )
is a neighbourhood of (0, 0). Hence, there exists a neighbourhood U1 of 0 in K and a neighbourhood
V1 of 0 in E s.t. φ (U1 × V1) ⊆ W , i.e. U1V1 ⊆ W . We may assume that U1 is balanced in K; thus,
V = U1V1 is balanced in E. (ii) Let W be a neighbourhood of 0E. As E is locally convex, we may
assume that W is convex. Using point (i), W contains a balanced neighbourhood V1 of 0. Now,
we easily check that the convex hull V of V1 is a balanced convex neighbourhood of 0, contained in
W .

Definition 2.1.4 (Semi-norm). If E is a vector space, a semi-norm on E is a map p : E → R+
that is homogeneous and satisfies the triangle inequality, but not necessarily the separation property
of norms.

Remark 2.1.5. If p is a semi-norm on a vector space E, then balls Bp(r) = {x ∈ E, p(x) < r} are
balanced and convex.

Definition 2.1.6 (Topology defined by a separating family of semi-norms). Consider a vector space
E equipped with a family of semi-norms (pα)α∈A that is separating, i.e. s.t.

∀x ∈ E\{0}, ∃α ∈ A, pα(x) 6= 0.

Then the family (pα)α∈A defines a translation-invariant topology on E: this is the coarsest topology
s.t. pα is continuous (equivalently, continuous at 0) for every α ∈ A. A basis of neighbourhoods of 0
for this topology is the collection of all sets of the form ⋂

α∈J Bpα

(
1
n

)
, where J is a finite subset of A

and n ∈ N∗.

Proposition 2.1.7 (Minkowski’s Gauge). Let W be a balanced convex subset of a vector space E.
Assume that W is absorbing and define:

jW : x ∈ E 7−→ inf
{
t > 0, 1

t
x ∈ W

}
.

Then jW is a semi-norm. In addition, B = {x ∈ E, jW (x) < 1} and B′ = {x ∈ E, jW (x) ≤ 1}
satisfy:

B ⊆ W ⊆ B′.
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Proof. Note that W is absorbing, so the set
{
t > 0, 1

t
x ∈ W

}
is nonempty for all x ∈ E. Therefore,

jW : E → R+ is well-defined. It is clear from the definition that jW is positively homogeneous (i.e.
∀λ ∈ R+, ∀x ∈ E, jW (λx) = λjW (x)). Moreover, if µ ∈ K is s.t. |µ| = 1, then µW = W as W
is balanced, so jW (µx) = jW (x). Therefore, jW is homogeneous. For the triangle inequality, choose
x, y ∈ E. Let a > jW (x) and b > jW (y). By convexity of W , R∗+x∩W is convex, so it is of the form
Ix, where I is an interval of R∗+. Actually, R∗+x ∩W =

]
0, 1

jW (x)

)
x. Therefore, 1

a
x ∈ W ; likewise,

1
b
y ∈ W . By convexity:

1
a+ b

(x+ y) = a

a+ b
· 1
a
x+

(
1− a

a+ b

)
· 1
b
y ∈ W.

Therefore, jW (x+ y) ≤ a+ b. Taking infimums over a and b, we obtain jW (x+ y) ≤ jW (x) + jW (y).
The inclusions B ⊆ W ⊆ B′ are easy to prove.

Theorem 2.1.8. If E is a locally convex topological vector space, then there exists a separating family
of semi-norms inducing the topology of E.

Proof. Let B be the set of balanced convex neighbourhoods of 0. According to Proposition 2.1.3,
B is a basis of neighbourhoods of 0. For all W ∈ B, Minkowski’s Gauge jW is a semi-norm (c.f.
Proposition 2.1.7). Hence, we have a family (jW )W∈B of semi-norms; it is separating because of
the fact that ∀x ∈ E\{0}, ∃W ∈ B, x 6∈ W (because E is Hausdorff). Hence, (jW )W∈B defines a
locally convex vector space topology on E; let B′ be the set of balanced convexed neighbourhoods of
0 for this topology. Using Proposition 2.1.3 again, B′ is a basis of neighbourhoods of 0 for the new
topology on E. Therefore, it is enough to prove that B = B′. If W ∈ B, then W ⊇ BjW (1), so W
is a neighbourhood of 0 in the new topology, and W is still balanced and convex; therefore W ∈ B′.
Conversely, if W ′ ∈ B′, then W ′ contains a finite intersection of sets of the form BjW (ε), with ε > 0
and W ∈ B. Therefore, it is enough to prove that BjW (ε) ∈ B for all ε > 0 and W ∈ B. We may
actually assume that ε = 1. But according to the last part of Proposition 2.1.7:

BjW (1) ⊇
{
x ∈ E, jW (x) ≤ 1

2

}
= 1

2 {x ∈ E, jW (x) ≤ 1} ⊇ 1
2W.

And BjW (1) is balanced and convex, so BjW (1) ∈ B. Hence B = B′.

Proposition 2.1.9. Let E and F be locally convex topological vector spaces, equipped with separating
families of semi-norms (pα)α∈A and (qβ)β∈B respectively.

(i) A sequence (xn)n∈N ∈ EN converges towards x ∈ E iff

∀α ∈ A, pα (xn − x)→ 0.

(ii) Let T : E → F be a linear map. Then T is continuous iff for every β ∈ B, there exists Cβ ∈ R+
and a finite subset Jβ ⊆ A s.t.

qβ ◦ T ≤ Cβ max
j∈Jβ

pαj .

2.2 Fréchet spaces
Proposition 2.2.1. If E is a locally convex topological vector space whose topology is defined by a
countable family (pn)n∈N of semi-norms, then E is metrisable, with the distance d defined by:

d(x, y) =
∑
j∈N

2−j pn(y − x)
1 + pn(y − x) .

Definition 2.2.2 (Fréchet space). A Fréchet space is a locally convex topological vector space E s.t.
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(i) The topology of E is defined by a countable family of semi-norms (hence E is a metric vector
space).

(ii) E is complete.
Corollary 2.2.3. Fréchet spaces satisfy the Uniform Boundedness Principle (Corollary 1.2.6), the
Open Mapping Theorem (Theorem 1.2.8) and the Closed Graph Theorem (Theorem 1.2.9).
Example 2.2.4.
(i) If Ω is an open subset of Rn, then the space C0 (Ω) of continuous functions Ω → K, equipped

with the topology of uniform convergence on every compact set, is a Fréchet space.

(ii) If Ω is an open subset of Rn, then the space C∞ (Ω) of smooth functions Ω → K, equipped
with the topology of uniform convergence of every partial derivative on every compact set, is a
Fréchet space.

(iii) If Ω is an open subset of C, then the space H (Ω) of holomorphic functions Ω → C, equipped
with the topology of uniform convergence on every compact set, is a Fréchet space.

(iv) If K is a compact subset of Rn, then the space C∞(K) consisting of restrictions to K of functions
of C∞ (Rn) is a Fréchet space equipped with the family (pm)m∈N of semi-norms defined by:

pm(g) = inf

sup


∥∥∥∥∥ ∂mf

∂m1x1 · · · ∂mnxn

∥∥∥∥∥∞
Rn
, m1 + · · ·+mn = m

 , f ∈ C∞c (Rn) , f|K = g

 .
2.3 Hahn-Banach Theorem
Definition 2.3.1 (Inductive set). Let S be an ordered set. A chain of S is a subset S ′ ⊆ S that is
totally ordered. The set S is said to be inductive if every chain S ′ admits an upper-bound in S.
Theorem 2.3.2 (Zorn’s Lemma). If S is a nonempty inductive set, then S has a maximal element.
Theorem 2.3.3 (Hahn-Banach Theorem). Let E be a real vector space, equipped with a function
p : E → R that is subadditive (i.e. ∀(x, y) ∈ E2, p(x+ y) ≤ p(x) + p(y)) and positively homogeneous
(i.e. ∀λ ∈ R+, ∀x ∈ E, p(λx) = λp(x)). Let F be a subspace of E and f : F → R be a linear form.
Assume that f ≤ p over F . Then there exists a linear form ϕ : E → R s.t. ϕ|F = f and ϕ ≤ p over
E.
Proof. Consider the set S of pairs (G, g), where G is a subspace of E containing F , and g : G→ R is
a linear form s.t. g|F = f and g ≤ p over G. S is ordered by (G, g) ≤ (H, h) iff G ⊆ H and g = h|G .
We affirm that S is inductive; according to Zorn’s Lemma, it has a maximal element (M,ϕ). It
remains to prove that M = E. Suppose for contradiction that M ( E and choose x ∈ E\M . Put
M ′ = M ⊕ Rx and construct a linear form ϕ′ : M ′ → R defined by ϕ′|M = ϕ and ϕ(x) = λ, where λ
is to be chosen. We want to have ϕ′ ≤ p, i.e.

∀(y, t) ∈M × R, ϕ′(y + tx) = ϕ(y) + tλ ≤ p(y + tx).

Because of positive homogeneity, we may restrict to t ∈ {±1}. This leads to the following inequalities:

sup
y∈M

(ϕ(y)− p(y − x)) ≤ λ ≤ inf
z∈M

(p(z + x)− ϕ(z)) .

The choice of such a λ is possible because supy∈M (ϕ(y)− p(y − x)) ≤ infz∈M (p(z + x)− ϕ(z)), since
∀(y, z) ∈ M2, ϕ(y) − p(y − x) ≤ p(z + x) − ϕ(z). Hence, we have constructed (M ′, ϕ′) ∈ S, with
(M,ϕ) < (M ′, ϕ′). This contradicts the maximality of (M,ϕ); therefore, M = E.
Corollary 2.3.4. The dual space E∗ of a real locally convex topological vector space E separates the
points of E : if x, y ∈ E with x 6= y, then there exists f ∈ E∗ s.t. f(x) 6= f(y).
Corollary 2.3.5. Let E be a real normed space. If x ∈ E, there exists ϕ ∈ E∗ s.t. ϕ(x) = ‖x‖ and
‖ϕ‖ = 1.
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2.4 Geometrical form of the Hahn-Banach Theorem
Lemma 2.4.1. Let E be a real locally convex topological vector space and C be a nonempty convex
open subset of E and x ∈ E\C. Then there exists ϕ ∈ E∗\{0} s.t. supC ϕ ≤ ϕ(x). In other words,
C is contained in a half-space delimited by the closed affine hyperplane x+ Kerϕ.

Proof. As the lemma is translation-invariant, we may assume that 0 ∈ C. We consider j : y ∈
E 7−→ inf

{
t > 0, 1

t
y ∈ C

}
. As C is absorbing (because it is a neighbourhood of 0), j(y) < +∞ for

all y ∈ E. Moreover, C is convex, so j is convex. Finally, j is positively homogeneous (but j might
not be a semi-norm because C might not be balanced). Consider F = Rx and define a linear form
f : F → R by f(x) = j(x). We have f ≤ j on F . By the Hahn-Banach Theorem, there exists a
linear form ϕ : E → R s.t. ϕ(x) = j(x) and ϕ ≤ j on E. In particular, for y ∈ C, ϕ(y) ≤ j(y) ≤ 1,
so ϕ−1 (]−2,+2[) ⊇ C; by linearity, ϕ is continuous. Lastly, supC ϕ ≤ 1 ≤ ϕ(x).

Theorem 2.4.2. Let E be a real locally convex topological vector space. Consider two nonempty
convex disjoint subsets A,B of E.

(i) If A is open and B is closed, then ∃ϕ ∈ E∗\{0}, supA ϕ ≤ infB ϕ.

(ii) If A is compact and B is closed, then ∃ϕ ∈ E∗\{0}, supA ϕ < infB ϕ.

Proof. (i) Define C = A − B = {a− b, (a, b) ∈ A×B}. The set C is convex and open, and does
not contain 0. According to Lemma 2.4.1, there exists ϕ ∈ E∗\{0} s.t. supC ϕ ≤ ϕ(0) = 0. As
supC ϕ = supA ϕ−infB ϕ, this gives the desired result. (ii) For x ∈ A, E\B is an open neighbourhood
of x, so there exists a convex open neighbourhood Vx of 0 s.t. x + Vx + Vx ⊆ E\B. Now A ⊆⋃
x∈A (x+ Vx). Since A is compact, there are points x1, . . . , xN ∈ A s.t. A ⊆ ⋃Nj=1

(
xj + Vxj

)
. Define

V = ⋂N
j=1 Vxj . V is an open convex neighbourhood of 0, and we have A + V ⊆ E\B. Hence,

(A + V ) is open, convex and nonempty, and (A + V ) ∩ B = ∅. By (i), there exists ϕ ∈ E∗\{0}
s.t. supA+V ϕ ≤ infB ϕ. But supA+V ϕ = supA ϕ + supV ϕ. Since ϕ is linear and V is absorbing,
supV ϕ > 0, i.e. supA ϕ < infB ϕ.

Corollary 2.4.3. Let E be a real locally convex topological vector space, and let F ⊆ E be a subspace.
Then:

(i) F =
{
x ∈ E, ∀ϕ ∈ E∗,

(
ϕ|F = 0 =⇒ ϕ(x) = 0

)}
.

(ii) F is dense in E iff ∀ϕ ∈ E∗,
(
ϕ|F = 0 =⇒ ϕ = 0

)
.

Proof. Note that (ii) is a direct consequence of (i). For (i), apply Theorem 2.4.2 to the closed set F
and the compact set {x}, for x ∈ E\F .

2.5 Krein-Milman Theorem
Definition 2.5.1 (Extremal points). Let C be a nonempty convex subset of a vector space E. A
point x ∈ C is said to be an extremal point of C if:

∀(y, z) ∈ C2, ∀λ ∈]0, 1[, (x = (1− λ)y + λz) =⇒ y = z = x.

The set of extremal points of C is denoted by Extr(C).

Notation 2.5.2. If S ⊆ E is a subset of a vector space E, then the convex hull of S is denoted by
Conv(S).

Theorem 2.5.3 (Krein-Milman Theorem). Let K be a compact convex subset of a real locally convex
topological vector space E. Then:

K = Conv (Extr(K)).
In particular, K 6= ∅ =⇒ Extr(K) 6= ∅.
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Proof. We assume that K 6= ∅ (otherwise the statement is trivial). We say that a subset S ⊆ K is
extremal if:

∀(x, y) ∈ K2, ∀λ ∈]0, 1[, ((1− λ)x+ λy ∈ S) =⇒ {x, y} ⊆ S.

In particular, note that {x} is extremal iff x ∈ Extr(K). First step: Extr(K) 6= ∅. Consider the set
X of all nonempty closed convex extremal subsets of K, ordered by reverse inclusion. Since K ∈ X,
X 6= ∅. If C is a chain in X, then ⋂S∈C S ∈ X, so X is inductive. By Zorn’s Lemma, X has a
maximal element S. Let us prove that S is a singleton. Suppose for contradiction that there exist
x 6= y in S. According to Corollary 2.3.4, there exists f ∈ E∗ s.t. f(x) 6= f(y). Let m = supS f ;
m is attained because S is compact and f is continuous. Hence, define S ′ = S ∩ f−1 ({m}); this is
a nonempty compact convex subset of K, and S ′ ( S because f is not constant on S. It remains
to prove that S ′ is extremal in K: let (x, y) ∈ K2 and λ ∈]0, 1[ s.t. (1− λ)x + λy ∈ S ′. As
(1− λ)x+ λy ∈ S, we have {x, y} ⊆ S; therefore:

m = f ((1− λ)x+ λy) = (1− λ) f(x)︸ ︷︷ ︸
≤m

+λ f(y)︸ ︷︷ ︸
≤m

≤ m.

Hence, equality holds throughout and f(x) = f(y) = m, so {x, y} ⊆ S ′. This proves that S ′ is
extremal, i.e. S ′ ∈ X. Since S ′ ( S, this contradicts the maximality of S (for reverse inclusion),
so S was a singleton, and Extr(K) 6= ∅. Second step: K = Conv (Extr(K)). The inclusion (⊇) is
clear, so it is enough to prove (⊆). Define K ′ = Conv (Extr(K)). We have ∅ ( K ′ ⊆ K, and K ′

is compact and convex. Suppose for contradiction that K ′ ( K, i.e. there exists x ∈ K\K ′. By
Theorem 2.4.2, there exists ϕ ∈ E∗ s.t.

sup
K′

ϕ < ϕ(x).

Define M = supK ϕ. As above, define K1 = K ∩ ϕ−1 ({M}); this is a nonempty compact convex
extremal subset of K. By the first step, K1 has an extremal point z ∈ Extr (K1) ⊆ Extr (K) ⊆ K ′.
But ϕ(z) = M ≥ ϕ(x) > supK′ ϕ, so z 6∈ K ′. This is a contradiction, hence K = K ′.

3 Duality

3.1 Weak-∗ topology and weak topology
Remark 3.1.1. If E is a normed space, E∗ may be equipped with the dual norm. It makes E∗ a
Banach space (even if E is not Banach).

Definition 3.1.2 (Weak-∗ topology). Let E be a locally convex topological vector space. The weak-∗
topology of E∗ is the vector space topology defined by the separating family (qx)x∈E of semi-norms,
where:

∀x ∈ E, ∀f ∈ E∗, qx(f) = |f(x)| .
The weak-∗ topology is denoted by σ (E∗, E), it is the topology of simple convergence and makes E∗
a locally convex topological vector space.

Definition 3.1.3 (Weak topology). Let E be a locally convex topological vector space and write T
for the topology of E. The weak topology of E is the vector space topology defined by the separating
family (pf )f∈E∗ of semi-norms, where:

∀f ∈ E∗, ∀x ∈ E, pf (x) = |f(x)| .

The weak topology is denoted by σ (E,E∗), it is a new topology making E a locally convex topological
vector space. It is the coarsest topology on E s.t. every f ∈ E∗ is continuous; therefore, σ (E,E∗) is
coarser than T . We use the word “weak” to refer to the topology σ (E,E∗) and “strong” to refer to
T .
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Notation 3.1.4. Let E be a locally convex topological vector space.

(i) If a sequence (fn)n∈N ∈ (E∗)N converges to f ∈ E∗ for the topology σ (E∗, E), we write fn ∗
⇀ f ;

this is equivalent to ∀x ∈ E, fn(x)→ f(x).

(ii) If a sequence (xn)n∈N ∈ EN converges to x ∈ E for the topology σ (E,E∗), we write xn ⇀ x;
this is equivalent to ∀f ∈ E∗, f (xn)→ f(x).

Proposition 3.1.5. Let E be a locally convex topological vector space. Then:

(E, σ (E,E∗))∗ = E∗.

In other words, a linear form f : E → R is weakly continuous iff it is strongly continuous.

Proposition 3.1.6. Let E be a real locally convex topological vector space. A convex subset C ⊆ E
is weakly closed iff it is strongly closed.

Proof. (⇒) Since the weak topology is coarser than the strong topology, any weakly closed (not
necessarily convex) subset is also strongly closed. (⇐) Let C be a strongly closed convex subset of
E. Let us show that C is weakly closed, i.e. E\C is weakly open. Let x ∈ E\C. The sets {x}
and C are nonempty disjoint convex subsets of E, {x} is strongly compact and C is strongly closed.
According to Theorem 2.4.2, there exists a linear form ϕ ∈ E∗ s.t.

ϕ(x) < inf
C
ϕ.

Now choose α s.t. ϕ(x) < α < infC ϕ. The set H = {y ∈ E, ϕ(y) < α} is open for both topologies,
and x ∈ H ⊆ E\C, so E\C is a weak neighbourhood of x. Hence, E\C is weakly open.

Proposition 3.1.7. Let E be a locally convex topological vector space. Then any weak neighbourhood
of 0 in E contains a linear subspace of E of finite codimension. Likewise, any weak-∗ neighbourhood
of 0 in E∗ contains a linear subspace of E∗ of finite codimension.

3.2 Bidual
Proposition 3.2.1. Let E be a locally convex topological vector space. Then the map:

δ :

∣∣∣∣∣∣∣∣
E −→ (E∗, σ (E∗, E))∗

x 7−→ δx :
∣∣∣∣∣E
∗ −→ K
f 7−→ f(x)

is a linear isomorphism.

Proof. δ is a well-defined, injective, linear map. Let us prove the surjectivity of δ. Let ϕ ∈
(E∗, σ (E∗, E))∗. Since ϕ is weakly-∗ continuous, there exist x1, . . . , xN ∈ E and C ∈ R+ s.t.

∀f ∈ E, |ϕ(f)| ≤ C max
1≤j≤N

qxj(f).

In particular ⋂Nj=1 Ker δxj ⊆ Kerϕ, which implies that ϕ ∈ Vect (δx1 , . . . , δxN ) ⊆ Im δ.

Remark 3.2.2. If E is a normed space, its bidual is defined as E∗∗ = (E∗, ‖·‖∗)
∗; it is different

from (E∗, σ (E∗, E))∗.

Proposition 3.2.3. If E is a normed space, the map δ : E → E∗∗ defined as in Proposition 3.2.1 is
a linear isometric embedding (but δ may not be surjective), i.e. ∀x ∈ E, ‖δ(x)‖∗∗ = ‖x‖.
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3.3 Weak or weak-∗ convergence of sequences
Proposition 3.3.1. Let E be a normed space. Let (xn)n∈N ∈ EN, x ∈ E, (fn)n∈N ∈ (E∗)N, f ∈ E∗.

(i) If xn ⇀ x, then (‖xn‖)n∈N is bounded and:

‖x‖ ≤ lim inf
n→+∞

‖xn‖ .

(ii) If fn ∗
⇀ f , then (‖fn‖∗)n∈N is bounded and:

‖f‖∗ ≤ lim inf
n→+∞

‖fn‖∗ .

Proof. (ii) For every x ∈ E, (fn(x))n∈N is bounded. By the Uniform Boundedness Principle
(Corollary 1.2.6), (‖fn‖∗)n∈N is bounded (because (E∗, ‖·‖∗) is a Banach space). The inequality
can be obtained by taking the lim inf in ∀x ∈ E, ∀n ∈ N, |fn(x)| ≤ ‖x‖ ‖fn‖∗. (i) Apply (ii)
to the space F = (E∗, ‖·‖∗) (hence F ∗ = E∗∗) and to the sequence (δxn)n∈N ∈ (E∗∗)N. We have
∀f ∈ E∗, δxn(f) = f (xn) → f(x) = δx(f), so δxn

∗
⇀ δx. Therefore, (‖δxn‖∗∗)n∈N is bounded

and ‖δx‖∗∗ ≤ lim infn→+∞ ‖δxn‖∗∗. This provides the desired result since x 7→ δx is an isometric
embedding.

Proposition 3.3.2. Let E be a normed space. Let (xn)n∈N ∈ EN, x ∈ E, (fn)n∈N ∈ (E∗)N, f ∈ E∗.

(i) If xn → x and fn ∗
⇀ f , then fn (xn)→ f(x).

(ii) If xn ⇀ x and fn → f , then fn (xn)→ f(x).

Example 3.3.3. Consider the Hilbert space H = `2 (N). For n ∈ N, define en = (δnp)p∈N ∈ H and
fn = 〈en, ·〉. Then fn ∗

⇀ 0, en ⇀ 0 but fn (en) = 1 6→ 0.

3.4 Weak-∗ compactness
Theorem 3.4.1 (Banach-Alaoglu Theorem). Let E be a normed space. Then the unit ball of
(E∗, ‖·‖∗) is weakly-∗ compact.

Proof. View E∗ as a subspace of KE, endowed with the product topology, which is locally convex.
It induces the weak-∗ topology on E∗. Write B∗ = {f ∈ E∗, ‖f‖∗ ≤ 1}. It is enough to prove that
B∗ is compact in KE. If LinK (E,K) denotes the set of linear forms E → K, we have:

B∗ = LinK (E,K) ∩
⋂
x∈E

{
ϕ ∈ KE, |ϕ(x)| ≤ ‖x‖

}
︸ ︷︷ ︸

K

.

Since K = ∏
x∈E {y ∈ K, |y| ≤ ‖x‖}, K is compact according to Tychonoff’s Theorem. And the

space LinK (E,K) is closed in KE, so B∗ is compact in KE, i.e. weakly-∗ compact.

Remark 3.4.2. If E has infinite dimension, then Riesz’s Theorem states that the unit ball of
(E∗, ‖·‖∗) is never compact for the normed topology of E∗.

Remark 3.4.3. In order for the Banach-Alaoglu Theorem to be useful, we want to be able to extract
convergent sequences. For this to be possible, we need (B∗, σ (E∗, E)) to be metrisable.

Theorem 3.4.4. Let E be a Banach space. If B∗ = {f ∈ E∗, ‖f‖∗ ≤ 1}, then (B∗, σ (E∗, E)) is
metrisable iff E is separable.
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Proof. (⇐) Assume that E is separable and consider a dense sequence (xn)n∈N ∈ EN. For n ∈ N,
define:

x′n =

xn if ‖xn‖ ≤ 1
xn
‖xn‖ otherwise

.

Then (x′n)n∈N ∈ BN, and (x′n)n∈N is dense in B, where B = {x ∈ E, ‖x‖ ≤ 1}. Now define a distance
d on E∗ by:

∀(ϕ, ψ) ∈ (E∗)2 , d(ϕ, ψ) =
∑
n∈N

2−n |ϕ (xn)− ψ (xn)| ≤ 2 ‖ϕ− ψ‖∗ .

The topology Td defined by d on E∗ is the coarsest topology s.t. δxn : ϕ ∈ E∗ 7−→ ϕ (xn) ∈ R is
continuous for every n ∈ N. In particular, Td ⊆ σ (E∗, E) (because σ (E∗, E) makes δx continuous for
all x ∈ E). Now consider the topology induced by Td on B∗. It is coarser than σ (E∗, E). To show
that it is finer than σ (E∗, E), it is enough to prove that Td makes δx|B∗ continuous for all x ∈ E.
Let x ∈ B. For ε > 0, there exists n ∈ N s.t. ‖x′n − x‖ < ε. Hence, for every (ϕ, ψ) ∈ (B∗)2 s.t.
d (ϕ, ψ) ≤ 2−nε, we have:

|ϕ(x)− ψ(x)| ≤ ‖ϕ‖∗ ‖x− x
′
n‖+ ‖ψ‖∗ ‖x− x

′
n‖+ 2nd(ϕ, ψ) ≤ 3ε.

This proves that δx|B∗ is continuous (for all x ∈ B, hence for all x ∈ E) when B∗ is equipped with d.
(⇒) Suppose that (B∗, σ (E∗, E)) is metrisable; in particular, 0 admits a countable basis of weak-∗
neighbourhoods (Vn)n∈N. For n ∈ N, Vn contains a finite intersection of kernels of continuous linear
forms on (E∗, σ (E∗, E)). According to Proposition 3.2.1, these linear forms can be written as δx for
x ∈ E; hence there exists a finite set An ⊆ E s.t.

Vn ⊇
⋂
x∈An
{f ∈ B∗, f(x) = 0} .

Let A = ⋃
n∈NAn; A is a countable subset of E. Using Corollary 2.4.3, let us show that Vect(A) is

dense in E. Let ϕ ∈ E∗ (one may assume that ϕ ∈ B∗) s.t. ϕ|A = 0; then:

ϕ ∈
⋂
n∈N

⋂
x∈An
{f ∈ B∗, f(x) = 0} ⊆

⋂
n∈N
Vn = {0}.

Therefore, Vect(A) is dense in E, so VectQ(A) is countable and dense in E.
Remark 3.4.5. Even if E is a separable Banach space, (E∗, σ (E∗, E)) may not be metrisable.
Corollary 3.4.6. Let E be a separable Banach space. If (fn)n∈N is a bounded sequence in (E∗, ‖·‖∗),
then it admits a weakly-∗ converging subsequence.
Example 3.4.7.

(i) If Ω is an open subset of Rd and p ∈ [1,+∞[, then Lp(R) is a separable Banach space.

(ii) If p ∈ [1,+∞[, then `p(N) is a separable Banach space.

(iii) The space c0 =
{
a ∈ RN, lim+∞ a = 0

}
is a separable Banach space.

3.5 Reflexivity
Definition 3.5.1 (Reflexive space). Let E be a Banach space. The space E∗ has two topologies: the
weak-∗ topology and the normed topology. According to Proposition 3.2.1, we have an isomorphism
(E∗, σ (E∗, E))∗ ' E. Recall that E∗∗ = (E∗, ‖·‖∗)

∗ by definition. In general, the map:

δ :

∣∣∣∣∣∣∣∣
E −→ E∗∗

x 7−→ δx :
∣∣∣∣∣E
∗ −→ K
f 7−→ f(x)

is a linear isometric embedding, called the canonical injection. The space E is said to be reflexive if
δ is an isomorphism.
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Example 3.5.2.

(i) If Ω is an open subset of Rd and p ∈ ]1,+∞[, then Lp(R) is a reflexive space.

(ii) If p ∈ ]1,+∞[, then `p(N) is a reflexive.

(iii) For any nonempty open set Ω ⊆ Rd, L1(Ω) and L∞(Ω) are not reflexive. Likewise, `1 (N) and
`∞ (N) are not reflexive.

Lemma 3.5.3. Let E be a real locally convex topological vector space. Let C be a convex subset of
E.

(i) C is closed iff C is an (arbitrary) intersection of closed half-spaces.

(ii) C is the intersection of all closed half-spaces containing C.

Lemma 3.5.4 (Goldstine’s Lemma). Let E be a real Banach space. Then the σ (E∗∗, E∗)-closure of
δ (BE), where BE = {x ∈ E, ‖x‖ ≤ 1}, is BE∗∗ = {y ∈ E∗∗, ‖y‖∗∗ ≤ 1}.

Proof. Apply Lemma 3.5.3 to δ (BE) for σ (E∗∗, E∗). For f ∈ E∗ and α ∈ R, set Hf,α =
{ϕ ∈ E∗∗, ϕ(f) ≤ α}. Note that δ (BE) ⊆ Hf,α iff ‖f‖∗ ≤ α. Hence:

δ (BE)w∗ =
⋂

(f,α)∈E∗×R
δ(BE)⊆Hf,α

Hf,α =
⋂

f∈BE∗
Hf,1 = BE∗∗ .

Remark 3.5.5. Let E be a Banach space. Then δ (BE) is ‖·‖∗∗-closed.

Theorem 3.5.6. A real Banach space E is reflexive iff BE = {x ∈ E, ‖x‖ ≤ 1} is weakly compact.

Proof. (⇒) If E is reflexive, then E is isometric to (E∗, ‖·‖∗)
∗, so accoding to the Banach-Alaoglu

Theorem (Theorem 3.4.1), δ (BE) is σ (E∗∗, E∗)-compact. But σ (E∗∗, E∗) = δ (σ (E,E∗)), so BE

is σ (E,E∗)-compact. (⇐) Suppose that BE is weakly compact. Since the topology induced by
σ (E∗∗, E∗) on δ(E) is δ (σ (E,E∗)), δ (BE) is weakly-∗ compact, in particular weakly-∗ closed. By
Goldstine’s Lemma (Lemma 3.5.4), δ (BE) = BE∗∗ , so δ(E) = E∗∗ by linearity.

3.6 Uniform convexity
Definition 3.6.1 (Uniform convexity). A normed space E is said to be uniformly convex iff:

∀ε > 0, sup
x,y∈BE
‖x−y‖≥ε

∥∥∥∥x+ y

2

∥∥∥∥ < 1.

Example 3.6.2.

(i) Hilbert spaces are uniformly convex because of the Parallelogram Identity.

(ii) If Ω is an open subset of Rd and p ∈ ]1,+∞[, then Lp(Ω) is uniformly convex.

(iii) If p ∈ ]1,+∞[, then `p(N) is uniformly convex.

(iv) For any nonempty open set Ω ⊆ Rd, L1(Ω) and L∞(Ω) are not uniformly convex. Likewise,
`1 (N) and `∞ (N) are not uniformly convex.

Theorem 3.6.3 (Milman–Pettis Theorem). If E is a uniformly convex real Banach space, then E
is reflexive.
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Proof. Note that δ(E) is closed in (E∗∗, ‖·‖∗∗) because E is complete and δ is an isometric embedding.
Hence, we have to prove that δ(E) is ‖·‖∗∗-dense in E∗∗. By linearity, it suffices to prove that
δ (BE)‖·‖∗∗ contains the unit sphere of E∗∗. So let ξ ∈ E∗∗ with ‖ξ‖∗∗ = 1. Let ε > 0. Set
1− α = sup x,y∈BE

‖x−y‖≥ε

∥∥∥x+y
2

∥∥∥, with α > 0 (because E is uniformly convex). By definition of ‖·‖∗∗, there

exists η ∈ E∗ s.t.
1− α < ξ(η) ≤ 1 and ‖η‖∗ = 1.

Define V = {ϕ ∈ E∗∗, ϕ(η) > 1− α}; V is a σ (E∗∗, E∗)-open half-space of E∗∗ containing ξ. In
particular, V is a weak-∗ neighbourhood of ξ. By Goldstine’s Lemma (Lemma 3.5.4), V meets
δ (BE): there exists x ∈ BE s.t. δx ∈ V ∩ δ (BE). Now, note that if y ∈ BE is s.t. δy ∈ V ∩ δ (BE),
then η(x) > 1− α and η(y) > 1− α, so:

1− α < η
(
x+ y

2

)
≤ ‖η‖∗

∥∥∥∥x+ y

2

∥∥∥∥ =
∥∥∥∥x+ y

2

∥∥∥∥ .
By definition of α, we infer that ‖y − x‖ ≤ ε. In other words, V ∩ δ (BE) ⊆ δ

(
x+ εBE

)
. But

δ
(
x+ εBE

)
is convex, ‖·‖∗∗-closed, so it is σ (E∗∗, E∗)-closed according to Proposition 3.1.6. There-

fore, ξ ∈ V ∩ δ (BE)w∗ ⊆ δ
(
x+ εBE

)
, so ‖ξ − δx‖∗∗ ≤ ε. Hence, δ (BE)‖·‖∗∗ contains the unit sphere

of E∗∗.

3.7 Adjoint operators
Definition 3.7.1 (Adjoint operator). Let E and F be two locally convex topological vector spaces.
If T ∈ L(E,F ), define:

T ∗ :
∣∣∣∣∣F
∗ −→ E∗

` 7−→ ` ◦ T
.

We have T ∗ ∈ L (F ∗, E∗).

Proposition 3.7.2. Let E and F be two normed spaces. For any T ∈ L(E,F ), the linear map
T ∗ : F ∗ → E∗ is continuous when F ∗ and E∗ are equipped with their normed topologies (we already
know that it is continuous when F ∗ and E∗ are equipped with their weak-∗ topologies). Moreover,
‖T ∗‖∗ = ‖T‖.

Proposition 3.7.3. Let E and F be two locally convex topological vector spaces. Let T ∈ L(E,F ).
Consider T ∗∗ ∈ L (E∗∗, F ∗∗), where E∗∗ = (E∗, σ (E∗, E))∗ and F ∗∗ = (F ∗, σ (F ∗, F ))∗. Then the
following diagram is commutative:

E F
T

E∗∗ F ∗∗
T ∗∗

δ δ

In other words, for all x ∈ E, T ∗∗δx = δTx.

4 Theory of distributions
Notation 4.0.1. In what follows, Ω is a nonempty open subset of Rd.

Notation 4.0.2. If K is a compact subset of Ω, we write K b Ω.
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4.1 Test functions
Definition 4.1.1 (Support of a function). Let f : Ω → K be a function. We define the support of
f by:

Supp f = Ω\
⋃

O open in Ω
f|O=0

O.

Supp f is a closed subset of Ω.

Definition 4.1.2 (Compactly supported function). A function f : Ω → K is said to be compactly
supported if Supp f is compact.

Definition 4.1.3 (Test functions).

(i) If K b Ω, we define DK(Ω) = {f ∈ C∞(Ω), Supp f b K}. We equip DK (Ω) with the (count-
able) family

(
‖·‖N,K

)
N∈N

of semi-norms defined by:

‖f‖N,K = max
α∈Nd
|α|=N

‖∂αf‖L∞ .

DK (Ω) is a Fréchet space.

(ii) We define the space of test functions D(Ω) = {f ∈ C∞(Ω), Supp f b Ω} = ⋃
KbΩDK(Ω). We

equip D(Ω) with the finest topology s.t. for every K b Ω, the inclusion DK(Ω) ⊆ D(Ω) is
continuous. Hence, D(Ω) is a locally convex topological vector space (but not a Fréchet space).

Proposition 4.1.4. Let E be a locally convex topological vector space. If f : D(Ω)→ E is a linear
map, then the following assertions are equivalent:

(i) f : D(Ω)→ E is continuous.

(ii) For every K b Ω, f|DK(Ω) : DK(Ω)→ E is continuous.

Proposition 4.1.5. For every ω ∈ Ω and 0 < r < d (z, ∂Ω), there exists a function u ∈ D(Ω) s.t.
u ≥ 0 and u|B(z,r) = 1. In particular, D(Ω) is nontrivial.

Proof. Use the function ϕ : t ∈ R 7−→

exp
(
− 1
t(1−t)

)
if t ∈]0, 1[

0 otherwise
, which is C∞.

Proposition 4.1.6 (Partitions of unity). Let Γ ⊆ P
(
Rd
)
be a collection of open subsets of Rd. Set

Ω = ⋃
O∈ΓO ⊆ Rd. Then there exists a sequence (Ψn)n∈N ∈ D(Ω)N s.t.

(i) ∀n ∈ N, Ψn ≥ 0,

(ii) ∀n ∈ N, ∃On ∈ Γ, Supp Ψn b On,

(iii) ∑n∈N Ψn = 1 on Ω and the sum is locally finite.

We say that (Ψn)n∈N ∈ D(Ω)N is a partition of unity subordinated to Γ.

Proof. First step. For m ∈ N∗, let Km =
{
x ∈ Ω, d (x, ∂Ω) ≥ 1

m
and ‖x‖ ≤ m

}
. Hence Km b

Km+1 b Ω and Ω = ⋃
m∈N∗ Km. Given m ∈ N∗, for all x ∈ Km, there exists ωx ∈ Γ s.t. x ∈ ωx;

choose rx > 0 s.t. x ∈ B (x, 2rx) ⊆ ωx and set Vx = B (x, rx): thus x ∈ V x b ωx. Hence, the compact
set Km is covered by (Vx)x∈Km , so there exists a finite subset Fm ⊆ Km s.t. (Vx)x∈Fm covers Km.
Now set F = ⋃

m∈N∗ Fm; F is countable so we may write F = {xj, j ∈ N}. Thus Ω = ⋃
j∈N Vxj . Now

for any j ∈ N, using Proposition 4.1.5, there exists ϕj ∈ D(Ω) s.t. Suppϕj b B
(
xj,

3
2rxj

)
⊆ ωxj ,

0 ≤ ϕj ≤ 1 and ϕj|Vxj = 1. Second step. For j ∈ N, define Ψj = ϕj
∏j−1
k=0 (1− ϕk). We have

0 ≤ Ψj ≤ 1, Supp Ψj b ωxj and
∑
j∈N Ψj = 1 (with the sum locally finite).
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4.2 Distributions
Definition 4.2.1 (Distributions). We denote by D′(Ω) the dual space of D(Ω), equipped with the
weak-∗ topology. D′ (Ω) is called the space of distributions on Ω.

Remark 4.2.2. Let Λ : D(Ω)→ K be a linear form. Then Λ is continuous iff

∀K b Ω, ∃NK ∈ N, ∃CK < +∞, ∀ϕ ∈ D (Ω) , Suppϕ ⊆ K =⇒ |〈Λ, ϕ〉| ≤ CK max
α∈Nd
|α|≤NK

‖∂αϕ‖∞ .

If NK can be chosen independent of K, we say that Λ is of order less than or equal to N .

Proposition 4.2.3. Let (Λn)n∈N ∈ D′ (Ω)N; let Λ : D(Ω)→ K be a linear form s.t.

∀ϕ ∈ D (Ω) , 〈Λn, ϕ〉 → 〈Λ, ϕ〉 .

Then Λ ∈ D′ (Ω) (i.e. Λ is continuous) and Λn
∗
⇀ Λ.

Proof. Use the Uniform Boundedness Principle (Corollary 1.2.6).

Remark 4.2.4. Distributions of order 0 correspond to continuous linear forms on the space of
continuous functions with compact support, i.e. to locally finite measures on Ω.

Example 4.2.5.

(i) If µ is a locally finite measure on Ω, then Λµ : ϕ ∈ D (Ω) 7−→
∫

Ω ϕ dµ is a distribution.

(ii) In particular, if a ∈ Ω, then the Dirac mass δa : ϕ ∈ D (Ω) 7−→ ϕ(a) is a distribution.

(iii) If f ∈ L1
loc (Ω), then Λf : ϕ ∈ D (Ω) 7−→

∫
Ω fϕ is a distribution, sometimes simply denoted by

f .

4.3 Operations on distributions
Remark 4.3.1. Given an operator T ∈ L (D (Ω)), we have its adjoint T ∗ ∈ L (D′ (Ω)).

Definition 4.3.2 (Multiplication by a function). If θ ∈ C∞ (Ω), we consider:

Mθ : ϕ ∈ D (Ω) 7−→ θϕ ∈ D (Ω) .

We have: ∀f ∈ L1
loc (Ω) , M∗

θΛf = ΛMθf . Hence, M∗
θ will be called multiplication by θ, and we will

write θΛ instead of M∗
θΛ.

Definition 4.3.3 (Differentiation). If j ∈ {1, . . . , d}, we consider:

∂j : ϕ ∈ D (Ω) 7−→ ∂ϕ

∂xj
∈ D (Ω) .

We have: ∀f ∈ C1 (Ω) , ∂∗jΛf = −Λ∂jf . Hence, we will write −∂jΛ instead of ∂∗jΛ. More generally,
if α ∈ Nd is a multi-index, we write ∂αΛ = (−1)|α| (∂α)∗ Λ.

Proposition 4.3.4 (Leibniz’s Formula). Let Λ ∈ D′ (Ω) and θ ∈ C∞ (Ω). For any multi-index
α ∈ Nd, we have:

∂α (θΛ) =
∑

0≤β≤α

(
α

β

)(
∂βθ

) (
∂α−βΛ

)
.
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4.4 Support of a distribution
Definition 4.4.1 (Extension operator). If ω is an open subset of Ω, we consider:

Extω : θ ∈ D (ω) 7−→ θ1ω ∈ D (Ω) .

We have: ∀f ∈ L1
loc (Ω) , Ext∗ω Λf = Λf|ω . Hence, Ext∗ω will be called restriction to ω and we will

write Λ|ω instead of Ext∗ω Λ.

Vocabulary 4.4.2. A distribution Λ ∈ D (Ω) is said to vanish over an open subset ω ⊆ Ω if Λ|ω = 0,
i.e.

∀ϕ ∈ D (Ω) , Suppϕ b ω =⇒ 〈Λ, ϕ〉 = 0.

Lemma 4.4.3. Let Γ be a collection of open subsets of Ω; consider U = ⋃
ω∈Γ ω. Let Λ ∈ D′ (Ω) s.t.

∀ω ∈ Γ, Λ|ω = 0. Then Λ|U = 0.

Proof. Let ϕ ∈ D (Ω) s.t. Suppϕ b U . Since Suppϕ is compact, there exists a finite subset J ⊆ Γ
s.t. Suppϕ b

⋃
ω∈J ω. Now, consider a partition of unity (θn)n∈N subordinated to J (c.f. Proposition

4.1.6). For n ∈ N, there exists ωn ∈ J s.t. Supp θn b ωn. Therefore:

〈Λ, ϕ〉 =
〈

Λ,
∑
n∈N

θnϕ

〉
=
∑
n∈N
〈Λ, θnϕ〉 =

∑
n∈N

〈
Λ|ωn , θnϕ

〉
= 0.

Definition 4.4.4 (Support of a distribution). Let Λ ∈ D′ (Ω). We define the support of Λ by:

Supp Λ = Ω\
⋃

ω open in Ω
f|ω =0

ω.

Supp Λ is a closed subset of Ω. Moreover, by Lemma 4.4.3, Λ|Ω\ Supp Λ = 0.

Definition 4.4.5 (Compactly supported distribution). A distribution Λ ∈ D′ (Ω) is said to be com-
pactly supported if Supp Λ is compact. We write E ′ (Ω) for the space of compactly supported distri-
butions over Ω.

Theorem 4.4.6. If Λ ∈ E ′ (Ω) is a compactly supported distribution, then:

∃K b Ω, ∃N ∈ N, ∃C ∈ R+, ∀ϕ ∈ D (Ω) , |〈Λ, ϕ〉| ≤ C max
α∈Nd
|α|≤N

‖∂αϕ‖∞
K
.

In particular, Λ has finite order (because ‖·‖∞
K
≤ ‖·‖∞

Ω
).

Proof. Choose ε > 0 s.t. Supp Λ + B(0, ε) b Ω. There exists Ψ ∈ D (Ω) s.t. 0 ≤ Ψ ≤ 1 and
Ψ|Supp Λ+B(0,ε) = 1. Let K = Supp Ψ b Ω. Since Λ|DK(Ω) is continuous, there exist C ∈ R+ and
N ∈ N s.t.

∀θ ∈ D (Ω) , Supp θ ⊆ K =⇒ |〈Λ, θ〉| ≤ C max
α∈Nd
|α|≤N

‖∂αθ‖L∞ .

Now, if ϕ ∈ D (Ω), write ϕ = Ψϕ + (1−Ψ)ϕ. Note that Supp ((1−Ψ)ϕ) ⊆ Supp (1−Ψ) ⊆
Ω\ Supp Λ so 〈Λ, (1−Ψ)ϕ〉 = 0. Thus:

|〈Λ, ϕ〉| = |〈Λ,Ψϕ〉| ≤ C max
α∈Nd
|α|≤N

‖∂α (Ψϕ)‖L∞ ≤ C max
α∈Nd
|α|≤N

‖∂αϕ‖∞
K
.
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Corollary 4.4.7. A compactly supported distribution Λ ∈ E ′ (Ω) induces a unique continuous linear
form over C∞ (Ω) (where the topology of C∞ (Ω) is given by the family

(
‖·‖N,K

)
N∈N
KbΩ

of semi-norms

defined by ‖ϕ‖N,K = max α∈Nd
|α|≤N

‖∂αϕ‖∞
K
).

Proof. Note that D (Ω) is dense in C∞ (Ω), and that elements of E ′ (Ω) are C∞ (Ω)-continuous over
the dense subspace D (Ω).

Remark 4.4.8. Conversely, if Λ ∈ C∞ (Ω)∗, then Λ|D(Ω) ∈ D′ (Ω).

Notation 4.4.9. We shall write E (Ω) = C∞ (Ω). This notation is coherent with the fact that
E ′ (Ω) = E (Ω)∗.

Proposition 4.4.10. Fix a ∈ Ω and write δa ∈ E ′ (Ω) for the Dirac mass at a. If Λ ∈ D′ (Ω) is s.t.
Supp Λ ⊆ {a}, then Λ ∈ Vect

(
∂αδa, α ∈ Nd

)
.

Proof. By a standard algebraic argument, it is enough to prove the existence of N ∈ N s.t.

Ker Λ ⊇
⋂
α∈Nd
|α|≤N

Ker ∂αδa.

Let Ψ ∈ D
(
Rd
)
s.t. 0 ≤ Ψ ≤ 1 and ψ|B(0,1) = 1. Define Ψn : x ∈ Rd 7−→ Ψ (n(x− a)). Now consider

a closed ball B b Ω centred at a. We have Supp Ψn = a+ 1
n

Supp Ψ ⊆ B for n larger than or equal
to some n0 ∈ N∗. By continuity of Λ, there exist C ∈ R+, N ∈ N s.t.

∀θ ∈ D (Ω) , Supp θ ⊆ B =⇒ |〈Λ, θ〉| ≤ C max
α∈Nd
|α|≤N

‖∂αθ‖L∞ .

If ϕ ∈ D(Ω), then Supp (Ψnϕ) ⊆ Supp Ψn ⊆ B for n ≥ n0. Therefore:

∀ϕ ∈ D (Ω) , ∀n ≥ n0, |〈Λ,Ψnϕ〉| ≤ C max
α∈Nd
|α|≤N

‖∂α (Ψnϕ)‖L∞ .

Now, let ϕ ∈ ⋂
α∈Nd
|α|≤N

Ker ∂αδa, i.e. |α| ≤ N =⇒ ∂αϕ(a) = 0. By Taylor’s formula, ∂αϕ(x) =

Oa
(
|x− a|N+1−α

)
if |α| ≤ N . By Leibniz’s formula, we obtain |∂α (Ψnϕ) (x)| ≤ C ′n|α|−N−1 for some

C ′ ∈ R+. Therefore, there is a constant C ′′ ∈ R+ s.t. |〈Λ,Ψnϕ〉| ≤ C′′

n
for all n ≥ n0. Now, for

n ≥ n0, Supp (ϕ−Ψnϕ) ∩ Supp Λ = ∅, so |〈Λ, ϕ〉| = |〈Λ,Ψnϕ〉| ≤ C′′

n
. By making n → +∞, we

obtain 〈Λ, ϕ〉 = 0, i.e. ϕ ∈ Ker Λ as wanted.

4.5 Assembling distributions
Proposition 4.5.1. Let Ω1,Ω2 be two open subsets of Rd. Let Λ1 ∈ D′ (Ω1), Λ2 ∈ D′ (Ω2) and
assume that:

Λ1|Ω1∩Ω2 = Λ2|Ω1∩Ω2 .

Then there exists a unique distribution Λ ∈ D′ (Ω1 ∪ Ω2) s.t. Λ|Ω1 = Λ1 and Λ|Ω2 = Λ2.

Proof. Uniqueness. Assume that Λ exists. Let ϕ ∈ D (Ω1 ∪ Ω2). Note that there exist Ψ1,Ψ2 ∈
D (Ω1 ∪ Ω2) s.t. Supp Ψ1 b Ω1, Supp Ψ2 b Ω2 and Ψ1 + Ψ2 = 1 on Suppϕ. Therefore:

〈Λ, ϕ〉 = 〈Λ, (Ψ1 + Ψ2)ϕ〉 = 〈Λ1,Ψ1ϕ〉+ 〈Λ2,Ψ2ϕ〉 . (∗)

This proves the uniqueness. Existence. Let us prove that the right-hand side of (∗) does not depend
on the choice of (Ψ1,Ψ2). Let (Ψ′1,Ψ′2) be another pair satisfying the same conditions. Then:

(〈Λ1,Ψ′1ϕ〉+ 〈Λ2,Ψ′2ϕ〉)− (〈Λ1,Ψ1ϕ〉+ 〈Λ2,Ψ2ϕ〉) = 〈Λ1, (Ψ′1 −Ψ1)ϕ〉 − 〈Λ2, (Ψ2 −Ψ′2)ϕ〉 .
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Now, consider θ = (Ψ′1 −Ψ1)ϕ = (Ψ2 −Ψ′2)ϕ. We have Supp θ ⊆ Ω1 ∩ Ω2. Since Λ1|Ω1∩Ω2 =
Λ2|Ω1∩Ω2 , this gives 〈Λ1, θ〉 = 〈Λ2, θ〉, therefore 〈Λ1,Ψ′1ϕ〉 + 〈Λ2,Ψ′2ϕ〉 = 〈Λ1,Ψ1ϕ〉 + 〈Λ2,Ψ2ϕ〉 as
wanted. Hence, we can define a linear form Λ using (∗) as wanted. Let us check that Λ is continuous.
LetK b Ω1∪Ω2. There exist Ψ1,Ψ2 ∈ D (Ω1 ∪ Ω2) s.t. Supp Ψ1 b Ω1, Supp Ψ2 b Ω2 and Ψ1+Ψ2 = 1
on K. For any ϕ ∈ D (Ω1 ∪ Ω2) with Suppϕ ⊆ K, we have 〈Λ, ϕ〉 = 〈Λ1,Ψ1ϕ〉 + 〈Λ2,Ψ2ϕ〉. Hence,
we easily obtain the continuity of Λ from that of Λ1 and Λ2. Now, let us check that Λ|Ω1 = Λ1.
Let ϕ ∈ D (Ω1 ∪ Ω2) with Suppϕ ⊆ Ω1. If Ψ1,Ψ2 are chosen as in the construction of Λ, we have
Supp (Ψ2ϕ) ⊆ Ω1 ∩ Ω2, so 〈Λ, ϕ〉 = 〈Λ1,Ψ1ϕ〉 + 〈Λ2,Ψ2ϕ〉 = 〈Λ1, ϕ〉, which proves that Λ|Ω1 = Λ1.
Likewise, Λ|Ω2 = Λ2.

5 Convolution of distributions

5.1 Generalities
Lemma 5.1.1. If Γ ∈ E ′

(
Rd
)
and ϕ ∈ D

(
Rd
)
, then ψ : y ∈ Rd 7−→ 〈Γ, ϕ (·+ y)〉 is an element of

D
(
Rd
)
.

Proof. We easily prove that Suppψ ⊆ Suppϕ − Supp Γ, so ψ is compactly supported. For the
continuity of ψ, we prove that, for all y ∈ Rd, |ψ(y + h)− ψ(y)| = O0(h), so ψ is continuous.
Likewise, for j ∈ {1, . . . , d}, we have

∣∣∣ψ(y + h)− ψ(y)−
〈
Γ, ∂ϕ

∂xj
(·+ y)

〉∣∣∣ = O0 (h2). By induction, ψ
is C∞, and:

∀α ∈ Nd, ∀y ∈ Rd, ∂αψ(y) = 〈Γ, ∂αϕ (·+ y)〉 .

Remark 5.1.2. With the notations above, one can also show that if Γ is a (not necessarily compactly
supported) distribution, then ψ is an element of C∞

(
Rd
)
.

Definition 5.1.3 (Convolution). Let Λ,Γ ∈ D′
(
Rd
)
. Assume that Λ or Γ is compactly supported.

Then we can define a linear map Λ ∗ Γ : D
(
Rd
)
→ K as follows. For any test function ϕ ∈ D

(
Rd
)
,

set ψ : y ∈ Rd 7−→ 〈Γ, ϕ (·+ y)〉 and define:

〈Λ ∗ Γ, ϕ〉 = 〈Λ, ψ〉 .

Then Λ ∗ Γ is a distribution.

Proposition 5.1.4. If f, g ∈ L1
(
Rd
)
s.t. f or g is compactly supported, then Λf ∗ Λg = Λf∗g.

Proposition 5.1.5. Let δ0 ∈ E ′
(
Rd
)
be the Dirac mass at 0. Then:

∀Λ ∈ D
(
Rd
)
, δ0 ∗ Λ = Λ = Λ ∗ δ0.

δ0 is the unit of the convolution product.

Remark 5.1.6. If Λ,Γ ∈ E ′
(
Rd
)
, then Λ ∗ Γ ∈ E ′

(
Rd
)
and Supp (Λ ∗ Γ) ⊆ Supp Λ + Supp Γ.

Therefore, E ′
(
Rd
)
is an algebra for ∗, and D′

(
Rd
)
is an E ′

(
Rd
)
-module.

Proposition 5.1.7. If Λ,Γ ∈ D′
(
Rd
)
s.t. Λ or Γ is compactly supported, then:

∀α ∈ Nd, ∂α (Λ ∗ Γ) = (∂αΛ) ∗ Γ = Λ ∗ (∂αΓ) .

In particular, the maps ∂α : D′
(
Rd
)
→ D′

(
Rd
)
are E ′

(
Rd
)
-linear.

Proposition 5.1.8. If Γ1,Γ2 ∈ E ′
(
Rd
)
and Λ ∈ D′

(
Rd
)
, then (Λ ∗ Γ1) ∗ Γ2 = Λ ∗ (Γ1 ∗ Γ2).
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5.2 Applications to partial differential equations
Vocabulary 5.2.1 (Linear PDE with constant coefficient). A linear partial differential equation
(PDE) with constant coefficients is an equation of the form:

Lu = Γ,

where Γ ∈ D′ (Ω) is a given distribution and L is of the form L = ∑
|α|≤N cα∂

α, with N ∈ N and
(cα)α∈Nd ∈ RNd.

Definition 5.2.2 (Fundamental solution). A distribution v ∈ D′
(
Rd
)
is said to be a fundamental

solution for L if:
Lv = δ0,

where δ0 is the Dirac mass at 0.

Proposition 5.2.3. If v ∈ D′
(
Rd
)
is a fundamental solution for L, then for any Γ ∈ E ′

(
Rd
)
, the

distribution (v ∗ Γ) satisfies L (v ∗ Γ) = Γ.

Example 5.2.4.

(i) If d = 1 and L = d
dx , then Heaviside’s function 1R+ is a fundamental solution for L.

(ii) If d ≥ 2 and L = ∆ = ∑d
i=1

∂2

∂xi2
, we have a fundamental solution E ∈ L1

loc

(
Rd
)
for L given by:

E(x) =

−
1

2π ln |x| if d = 2
1

d(d−2)Vd
|x|2−d if d > 2

,

where Vd is the volume of the unit ball of Rd. Therefore, if f is a compactly supported C2

function, then (E ∗ f) is also C2, so (E ∗ f) is a solution of ∆u = f in the ordinary sense.

5.3 The Schwartz class
Definition 5.3.1 (Schwartz class). A function f ∈ C∞

(
Rd,K

)
is said to have rapid decay if one

the three following equivalent conditions is satisfied:

(i) ∀ (α, β) ∈
(
Nd
)2
, supx∈Rd

∣∣∣xα∂βf(x)
∣∣∣ < +∞.

(ii) ∀ (α, β) ∈
(
Nd
)2
, lim|x|→+∞ x

α∂βf(x) = 0.

(iii) ∀ (α, β) ∈
(
Nd
)2
,
∫
Rd
∣∣∣xα∂βf(x)

∣∣∣ dx < +∞.

The Schwartz class if the space S
(
Rd
)
of C∞ fucntions with rapid decay. S

(
Rd
)
is equipped with

the countable family (‖·‖N)N∈N of semi-norms defined by:

‖f‖N = sup
|α|≤N

sup
x∈Rd

(1 + |x|)N |∂αf(x)| .

Proposition 5.3.2. S
(
Rd
)
is a Fréchet space.

Proof. It suffices to prove that S
(
Rd
)
is complete, which comes from the fact that the space of

continuous functions which converge to 0 at ∞ is complete, equipped with ‖·‖L∞ , and from the fact
that if a sequence of functions is such that the derivatives of the functions all converge, then one can
compute the derivatives of the limit of the sequence.
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Vocabulary 5.3.3 (Slow growth). A function f ∈ C∞
(
Rd,K

)
is said to have slow growth if every

derivative of f grows at most polynomially.

Proposition 5.3.4. Let f ∈ S
(
Rd
)
.

(i) If α ∈ Nd, then ∂αf ∈ S
(
Rd
)
.

(ii) If g ∈ C∞
(
Rd,K

)
has slow growth, then gf ∈ S

(
Rd
)
.

Moreover, these operators f 7→ ∂αf and f 7→ gf are linear continuous.

Proposition 5.3.5. We have the (continuous) inclusions:

D
(
Rd
)
⊆ S

(
Rd
)
⊆ E

(
Rd
)
.

Moreover, D
(
Rd
)
is dense in S

(
Rd
)
.

Proof. Choose a function ψ ∈ D
(
Rd
)
s.t. 0 ≤ ψ ≤ 1 and ψ = 1 on B1 =

{
x ∈ Rd, |x| ≤ 1

}
. For

n ∈ N∗, define ψn(x) = ψ
(
x
n

)
; hence ψn = 1 on Bn. If ϕ ∈ S

(
Rd
)
, show that ψnϕ → ϕ in S

(
Rd
)
,

and ψnϕ ∈ D
(
Rd
)
.

5.4 The Fourier transform
Definition 5.4.1 (Fourier transform in L1). If f ∈ L1

(
Rd
)
, then the Fourier transform of f is

defined by:
Ff(ξ) = 1

(2π)d/2
∫
Rd
e−ixξf(x) dx.

F is a continuous linear operator from L1
(
Rd
)
to the space of continuous functions on Rd which

converge to 0 at ∞.

Proposition 5.4.2.

(i) Let f ∈ CN
(
Rd
)
s.t. ∀ |α| ≤ N, ∂αf ∈ L1

(
Rd
)
. Then, for |α| ≤ N :

F (∂αf) (ξ) = i|α|ξαFf(ξ).

(ii) Let f ∈ L1
(
Rd
)
s.t. ∀ |α| ≤ N, xαf ∈ L1

(
Rd
)
. Then Ff ∈ CN

(
Rd
)
and, for |α| ≤ N :

∂α (Ff) (ξ) = (−1)|α|F (xαf) (ξ).

(iii) If f, g ∈ L1
(
Rd
)
, then (f ∗ g) ∈ L1

(
Rd
)
and:

F (f ∗ g) = (2π)d/2 (Ff) (Fg) .

(iv) Let f ∈ L1
(
Rd
)
s.t. Ff ∈ L1

(
Rd
)
. Then:

f = FFf,

where F is defined by Fg(x) = Fg(x) = 1
(2π)d/2

∫
Rd e

ixξg(ξ) dξ.

(v) L1
(
Rd
)
∩ L2

(
Rd
)
is dense in L2

(
Rd
)
, and F|L1(Rd)∩L2(Rd) is a linear isometry, so F can be

extended uniquely to a linear isometry F : L2
(
Rd
)
→ L2

(
Rd
)
, which satisfies F−1 = F .

Proposition 5.4.3. The Schwartz class S
(
Rd
)
is stable under the Fourier transform, and the op-

erator F : S
(
Rd
)
→ S

(
Rd
)
is an isomorphism.
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5.5 Tempered distributions
Definition 5.5.1 (Tempered distributions). The dual space S ′

(
Rd
)

= S
(
Rd
)∗

is called the space of
tempered distributions.

Proposition 5.5.2. Since D
(
Rd
)
⊆ S

(
Rd
)
⊆ E

(
Rd
)
, we have:

E ′
(
Rd
)
⊆ S ′

(
Rd
)
⊆ D′

(
Rd
)
.

Proposition 5.5.3. Let Λ ∈ D′
(
Rd
)
. Then Λ is tempered (i.e. Λ can be extended to a continous

linear form S
(
Rd
)
→ K) iff:

∃N ∈ N, ∃C ∈ R+, ∀ϕ ∈ D
(
Rd
)
, |〈Λ, ϕ〉| ≤ C ‖ϕ‖N ,

where ‖·‖N was defined in Definition 5.3.1.

Definition 5.5.4 (Differentiation and multiplication by a function with slow growth). Let Λ ∈
S ′
(
Rd
)
and ϕ ∈ S

(
Rd
)
.

(i) If α ∈ Nd, then ∂αΛ is defined by:

〈∂αΛ, ϕ〉 = (−1)|α| 〈Λ, ∂αϕ〉 .

(ii) If g ∈ C∞
(
Rd,K

)
has slow growth, then gΛ is defined by:

〈gΛ, ϕ〉 = 〈Λ, gϕ〉 .

Hence, we define operators S ′
(
Rd
)
→ S ′

(
Rd
)
.

5.6 Fourier transform of tempered distributions
Definition 5.6.1 (Fourier transform of a tempered distribution). If Λ ∈ S ′

(
Rd
)
, then FΛ is the

tempered distribution defined by:
〈FΛ, ϕ〉 = 〈Λ,Fϕ〉 ,

for ϕ ∈ S
(
Rd
)
. In other words, F : S ′

(
Rd
)
→ S ′

(
Rd
)
is the adjoint operator of the isomorphism

F : S
(
Rd
)
→ S

(
Rd
)
; it is also an isomorphism and its inverse is F : S ′

(
Rd
)
→ S ′

(
Rd
)
.

Proposition 5.6.2. Let f ∈ L1
(
Rd
)
. Then Λf ∈ S ′

(
Rd
)
, and:

FΛf = ΛFf .

Proof. This comes from the fact that if f, g ∈ L1
(
Rd
)
, then:∫

Rd
(Ff) (ξ) · g(ξ) dx =

∫
Rd
f(x) · (Fg) (x) dx.

Example 5.6.3. Let ω ∈ Rd and consider fω : x ∈ R 7 −→ eiω·x. Since fω is C∞ and bounded, it
defines a tempered distribution (even though f is neither L1 nor L2). And we have:

Ffω = (2π)d/2 δω.

Proposition 5.6.4. Let α, β ∈ Nd. For any Λ ∈ S ′
(
Rd
)
, we have:

F
(
xβ∂αΛ

)
= i|α|+|β|∂β (xαFΛ) .
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5.7 Fourier transform of compactly supported distributions
Theorem 5.7.1. Let Λ ∈ S ′

(
Rd
)
and M ∈ E ′

(
Rd
)
⊆ S ′

(
Rd
)
.

(i) FM is a C∞ function with slow growth.

(ii) Λ ∗M ∈ S ′
(
Rd
)
.

(iii) F (Λ ∗M) = (2π)d/2FM · FΛ.

Proof. (i) For x ∈ Rd, define zx : ξ ∈ Rd 7−→ (2π)−d/2 exp (−ix · ξ), and set:

f : x ∈ Rd 7−→ 〈M, zx〉 ,

which is meaningful because zx ∈ E
(
Rd
)
and M ∈ E ′

(
Rd
)
. Show that f is C∞ with slow growth.

Now, for ϕ ∈ S
(
Rd
)
, write:

Fϕ(ξ) = 1
(2π)d/2

∫
Rd
eix·ξϕ(x) dx = 1

(2π)d/2 lim
ε→0

1
εd

∑
x∈εZd

e−ix·ξϕ(x),

and use this to prove that 〈FM,ϕ〉 = 〈f, ϕ〉. Therefore, FM = f . (ii) Use Proposition 5.5.3, as well
as Theorem 4.4.6. (iii) Let ϕ ∈ S

(
Rd
)
. We have:

〈F (Λ ∗M) , ϕ〉 = 〈Λ, ψ〉 ,

where ψ(y) = 〈M,Fϕ (·+ y)〉. Now, Fϕ(x + y) = Fθy(x), where θy(ξ) = e−iy·ξϕ(ξ). From this, we
show that:

ψ(y) = (2π)d/2F (fϕ) (y),
with f = FM . As a consequence, 〈F (Λ ∗M) , ϕ〉 = (2π)d/2 〈fFΛ, ϕ〉.

Corollary 5.7.2. If M1,M2 ∈ E ′
(
Rd
)
, then M1 ∗M2 = M2 ∗M1.

6 Sobolev spaces

6.1 Sobolev spaces of integral order
Remark 6.1.1. Let p ∈ [1,+∞]. If f ∈ Lp (Ω), then f ∈ L1

loc (Ω) ⊆ D′ (Ω).

Vocabulary 6.1.2. Let p ∈ [1,+∞]. A distribution Λ ∈ D′ (Ω) is said to be in Lp (Ω) if there exists
a f ∈ Lp (Ω) s.t. Λ = Λf .

Proposition 6.1.3. Assume that p ∈ ]1,+∞]. Then a distribution Λ ∈ D′ (Ω) is in Lp (Ω) iff:

∃CΛ ∈ R+, ∀ϕ ∈ D (Ω) , |〈Λ, ϕ〉| ≤ CΛ ‖ϕ‖Lq ,

with 1
p

+ 1
q

= 1.

Definition 6.1.4 (W k,p). Let k ∈ N, p ∈ [1,+∞]. We define:

W k,p (Ω) =
{
u ∈ D′ (Ω) , ∀α ∈ Nd, (|α| ≤ k =⇒ ∂αu ∈ Lp (Ω))

}
⊆ Lp (Ω) ⊆ D′ (Ω) .

W k,p (Ω) is a vector space which we equip with the norm ‖·‖Wk,p defined by:

‖u‖Wk,p =
 ∑
|α|≤k
‖∂αu‖pLp

1/p

.
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Corollary 6.1.5. Assume that p ∈ ]1,+∞]. Then a distribution Λ ∈ D′ (Ω) is in W k,p (Ω) iff:

∃CΛ ∈ R+, ∀ (ϕα)α∈Nd ∈ D (Ω)N
d

,

∣∣∣∣∣∣
〈

Λ,
∑
|α|≤k

∂αϕα

〉∣∣∣∣∣∣ ≤ CΛ
∑
|α|≤k
‖ϕα‖Lq ,

where 1
p

+ 1
q

= 1.

Proposition 6.1.6. Let k ∈ N, p ∈ [1,+∞].

(i) W k,p (Ω) is a Banach space.

(ii) If p < +∞, then W k,p (Ω) is separable.

(iii) If 1 < p < +∞, then W k,p (Ω) is reflexive.

(iv) If p = 2, then W k,p (Ω) is a Hilbert space.

Proof. Define Ik =
{
α ∈ Nd, |α| ≤ k

}
and consider:

J :
∣∣∣∣∣W

k,p (Ω) −→ Lp (Ik × Ω)
u 7−→ (∂αu)α∈Ik

.

J is a linear isometric embedding, and Lp (Ik × Ω) is a Banach space. Therefore,W k,p (Ω) is isometric
to ImJ . Hence, for (i), (ii) and (iii), it suffices to show that ImJ is closed in Lp (Ik × Ω). To prove
it, consider (un)n∈N ∈ W k,p (Ω)N s.t. J un → g = (gα)α∈Ik ∈ Lp (Ik × Ω). Set u = g0. We have
un

Lp→ u, so un D
′

⇀ u. By continuity of ∂α, we obtain ∂αun D
′

⇀ ∂αu for all α ∈ Ik. But since ∂αun Lp→ gα,
we also have ∂αun D

′
⇀ gα, which yields gα = ∂αu, and g = J u ∈ ImJ . For (iv), simply notice that

‖u‖W 2,p = (u, u)k, where:
(u, v)k =

∑
|α|≤k

∫
Ω
∂αu(x)∂αv(x) dx.

Proposition 6.1.7. Assume that u ∈ W k,p (Ω) is compactly supported in Ω. Define:

ũ : x ∈ Rd 7−→

u(x) if x ∈ Ω
0 otherwise

.

Then ũ ∈ W k,p
(
Rd
)
and ‖ũ‖Wk,p = ‖u‖Wk,p.

Remark 6.1.8. In Proposition 6.1.7, it is crucial to assume that u has compact support. For
instance, take u = 1 on Ω = ]0, 1[ ⊆ R. Then u ∈ W k,p (Ω) for all k, p. However, ũ = 1]0,1[, so
d

dx ũ = δ0 − δ1 6∈ Lp (R) for all p.

6.2 Approximation by smooth functions
Lemma 6.2.1. Assume that p ∈ [1,+∞[. Let ρ ∈ D

(
Rd
)
s.t.

∫
Rd ρ = 1 and ρ ≥ 0. Set ρn(x) =

ndρ(nx). Then, for every element u ∈ W k,p
(
Rd
)
, we have:

(i) ∀n ∈ N, ρn ∗ u ∈ C∞
(
Rd
)
∩W k,p

(
Rd
)
.

(ii) ∀n ∈ N, Supp (ρn ∗ u) ⊆ Suppu+ 1
n

Supp ρ.

(iii) ‖ρn ∗ u− u‖Wk,p → 0.

24



In particular, C∞
(
Rd
)
∩W k,p

(
Rd
)
is dense in W k,p

(
Rd
)
.

Proof. Note that D
(
Rd
)
∗Lp

(
Rd
)
⊆ C∞

(
Rd
)
∩Lp

(
Rd
)
. Using the fact that ∂α (ρn ∗ u) = ρn∗(∂αu)

for |α| ≤ k, we obtain ρn ∗ u ∈ C∞
(
Rd
)
∗W k,p

(
Rd
)
and ‖∂α (ρn ∗ u)‖Wk,p ≤ ‖∂αu‖Wk,p ; therefore

‖ρn ∗ u‖Wk,p ≤ ‖u‖Wk,p . Moreover, it is clear that Supp (ρn ∗ u) ⊆ Suppu+ 1
n

Supp ρ. Finally, write:

∂α (ρn ∗ u) (x)− ∂αu(x) =
∫
Rd
ρn(y) (∂αu(x− y)− ∂αu(x)) dy,

and use this to show that ‖∂α (ρn ∗ u)− ∂αu‖Lp → 0.

Theorem 6.2.2. Assume that p ∈ [1,+∞[. Then C∞ (Ω) ∩W k,p (Ω) is dense in W k,p (Ω).

Proof. Choose a locally finite covering of Ω : Ω = ⋃
j∈N ωj, with ωj b Ω. Now, choose a partition of

unity (Ψj)j∈N ∈ D (Ω)N s.t. Supp Ψj ⊆ ωj, Ψj ≥ 0 and ∑j∈N Ψj = 1. For u ∈ W k,p (Ω), set uj = Ψju

for all j ∈ N and extend uj by 0 to a function ũj ∈ W k,p
(
Rd
)
, as in Proposition 6.1.7. Use Lemma

6.2.1 to find vj ∈ C∞
(
Rd
)
∩W k,p

(
Rd
)
with:

‖vj − ũj‖Wk,p ≤ 2−jε,

and Supp vj ⊆ ωj. Now, set v = ∑
j∈N vj |Ω ∈ C

∞ (Ω); check that v ∈ W k,p (Ω) and ‖v − u‖Wk,p ≤
2ε.

Remark 6.2.3. Using Theorem 6.2.2, in the case where p ∈ [1,+∞[, we may define W k,p (Ω) as the
completion of the space Xk,p (Ω) = {u ∈ C∞ (Ω) , ‖u‖Wk,p < +∞} for ‖·‖Wk,p.

Proposition 6.2.4. If p ∈ [1,+∞[, then D
(
Rd
)
is dense in W k,p

(
Rd
)
.

Proof. Prove that W k,p
(
Rd
)
∩ E ′

(
Rd
)
is dense in W k,p

(
Rd
)
(by using a function ψ ∈ D

(
Rd
)
s.t.

ψ = 1 on B1 =
{
x ∈ Rd, ‖x‖ ≤ 1

}
and by considering ψn(x) = ψ

(
x
n

)
) and apply Lemma 6.2.1.

Definition 6.2.5 (W k,p
0 ). For k ∈ N and p ∈ [1,+∞], define W k,p

0 (Ω) to be the closure of D (Ω) in
W k,p (Ω).

Corollary 6.2.6. If p ∈ [1,+∞[ and Ω = Rd, then W k,p
0

(
Rd
)

= W k,p
(
Rd
)
.

6.3 Extension by zero
Notation 6.3.1. If u is a function defined (a.e.) on Ω, and Ω1 ⊇ Ω, we set:

ũ : x ∈ Ω1 7−→

u(x) if x ∈ Ω
0 otherwise

.

Proposition 6.3.2. Let Ω ⊆ Ω1 be open subsets of Rd. If u ∈ W k,p
0 (Ω), then ũ ∈ W k,p

0 (Ω1).

Proof. Note that there exists a sequence (ϕn)n∈N ∈ D (Ω)N s.t. ‖ϕn − u‖Wk,p → 0. Now, ϕ̃n ∈ D (Ω1)
and since ‖ϕ̃m − ϕ̃n‖Wk,p = ‖ϕm − ϕn‖Wk,p , (ϕ̃n)n∈N is Cauchy, so it converges to a limit v ∈ W k,p (Ω).
Show that v = ũ in D′ (Ω1) by computing 〈v, θ〉 for θ ∈ D (Ω1); hence ũ ∈ W k,p

0 (Ω1).

Notation 6.3.3. Write Rd
+ = Rd−1 × ]0,+∞[ and Rd

− = Rd−1 × ]−∞, 0[.

Proposition 6.3.4. Assume that p ∈ [1,+∞[. Let u ∈ W k,p
(
Rd

+

)
. Then:

ũ ∈ W k,p
(
Rd
)
⇐⇒ u ∈ W k,p

0

(
Rd

+

)
.

25



Proof. It suffices to prove (⇒). Therefore, suppose that ũ ∈ W k,p
(
Rd
)
. For ε > 0, define uε(x) =

ũ (x− εed), where ed is the d-th vector in the canonical basis of Rd. We have Suppuε ⊆ Rd−1×[ε,+∞[
and ‖uε − ũ‖Wk,p → 0. Because the subspace W k,p

0

(
Rd

+

)
is closed, it suffices to prove that uε|Rd+ ∈

W k,p
0

(
Rd

+

)
. From now on, ε is fixed. Approximate uε by functions in ϕn ∈ D

(
Rd
)
, choose a function

θ ∈ C∞ (R) s.t. θ|R− = 0 and θ|[ε,+∞[ = 1 and consider ψn (x1, . . . , xd) = θ (xd)ϕn (x1, . . . , xd); show
that

∥∥∥∥(ψn − uε)|Rd+
∥∥∥∥
Wk,p
→ 0.

6.4 Existence of a right inverse of the restriction operator
Remark 6.4.1. A natural question is to find an operator P : W k,p (Ω) → W k,p

(
Rd
)
that is linear

and continuous and s.t. R ◦ P = idWk,p(Ω), where R : u ∈ W k,p
(
Rd
)
7−→ u|Ω ∈ W k,p (Ω). If k = 0, it

suffices to take the extension by 0.

Theorem 6.4.2. Assume that p ∈ [1,+∞[ and Ω = Rd
+. Then there exists an extension operator

P : W k,p
(
Rd

+

)
→ W k,p

(
Rd
)
that is a right inverse of the restriction operator.

Proof. For u ∈ W k,p
(
R+
d

)
, define:

Pu (x1, . . . , xd) =

u (x1, . . . , xd) if xd > 0∑k+1
j=1 aju (x1, . . . , xd−1,−jxd) if xd ≤ 0

,

where a1, . . . , ak+1 are determined by the following Vandermonde linear system:

∀m ∈ {0, . . . , k} ,
k+1∑
j=1

(−j)maj = 1.

It is clear that P is a linear map satisfying R ◦ P = idWk,p(Rd+); it remains to show that ImP ⊆

W k,p
(
Rd

+

)
and that P is continuous.

Theorem 6.4.3. Assume that p ∈ [1,+∞[ and let Ω be a bounded domain with a Ck boundary. Then
there exists an extension operator P : W k,p (Ω)→ W k,p

(
Rd
)
that is a right inverse of the restriction

operator.

6.5 Embeddings of distribution spaces
Definition 6.5.1 (Distribution space). A distribution space is a Banach space E that is included in
D′ (Ω) s.t. for all ϕ ∈ D (Ω), the map u ∈ E 7−→ 〈u, ϕ〉 ∈ K is continuous.

Remark 6.5.2. If F is a distribution space and E is a closed subspace of F s.t. the inclusion E ⊆ F
is continuous, then E is also a distribution space.

Example 6.5.3.

(i) Lp (Ω) is a distribution space for p ∈ [1,+∞].

(ii) W k,p (Ω) is a distribution space for p ∈ [1,+∞].

(iii) C0
(
Ω
)
∩ L∞

(
Ω
)
is a distribution space, equipped with ‖·‖L∞.

(iv) Cα
(
Ω
)

=
{
u ∈ C0

(
Ω
)
∩ L∞

(
Ω
)
, supx 6=y

|u(x)−u(y)|
|x−y|α < +∞

}
is a distribution space for α ∈

]0, 1[, equipped with ‖·‖Cα defined by:

‖f‖Cα = ‖f‖L∞ + sup
x6=y

|f(x)− f(y)|
|x− y|α

.
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Lemma 6.5.4. Let E and F be two distribution spaces over Ω and assume that E ⊆ F . Then the
inclusion E ⊆ F is continuous.

Proof. Consider X = {(u, u), u ∈ E} ⊆ E×F ; X is the graph of the inclusion map E ⊆ F . By the
Closed Graph Theorem (Theorem 1.2.9), it suffices to prove that X is a closed subspace of E × F .
Hence, let (un)n∈N ∈ EN s.t. (un, un) → (u, v) in E × F . Then un → u in E, so un ∗

⇀ u in D′.
Likewise, un ∗

⇀ v in D′, so u = v and (u, v) ∈ X.

Lemma 6.5.5. Let E and F be two distribution spaces over Ω and let D be a dense subspace of E
s.t. D ⊆ F . Assume that there exists C ∈ R+ s.t.

∀u ∈ D, ‖u‖F ≤ C ‖u‖E .

Then E ⊆ F , with a continuous inclusion.

Proof. Let u ∈ E. Then there exists (un)n∈N ∈ DN s.t. un → u in E. The sequence (un)n∈N is
Cauchy in E, and therefore in F because ‖up − uq‖F ≤ C ‖up − uq‖E for all p, q ∈ N. Since F is
a Banach space, there exists v ∈ F s.t. un → v in F . Now, un ∗

⇀ u in D′ and un
∗
⇀ v in D′ so

u = v ∈ F . Moreover, ‖u‖F = limn→+∞ ‖un‖F ≤ C limn→+∞ ‖un‖E = ‖u‖E.

6.6 Sobolev embeddings
Theorem 6.6.1 (Morrey’s Theorem). Let Ω be either Rd, Rd

+ or a bounded domain with a C1

boundary. Assume that d < p < +∞. Then:

W 1,p (Ω) ⊆ Cα
(
Ω
)
,

with α = 1− d
p
∈ ]0, 1[.

Proof. We only prove the case where Ω = Rd (for the other cases, use the extension operators
given by Theorems 6.4.2 and 6.4.3). Let E = W 1,p

(
Rd
)
, F = Cα

(
Rd
)
and D = D

(
Rd
)
⊆ E ∩ F .

According to Proposition 6.2.4, D is dense in E. Therefore, by Lemma 6.5.5, it suffices to prove the
existence of a constant C ∈ R+ s.t. ∀u ∈ D, ‖u‖Cα ≤ C ‖u‖W 1,p . To do this, show firstly that if Br

is any (closed) ball of radius r containing a point x ∈ Rd, then:∣∣∣∣∣u(x)− 1
λ (Br)

∫
Br
u(y) dy

∣∣∣∣∣ ≤ 2
λ (B1)1/p

(∫ 1

0
t−d/p dt

)
︸ ︷︷ ︸

C1

‖∇u‖Lp r
α.

Hence, if x, y ∈ Rd and if r = 1
2 |x− z|, by choosing Br to be the ball with centre x+y

2 and with
radius r, we obtain:

|u(x)− u(z)| ≤ 21−αC1 ‖∇u‖Lp |x− z|
α .

Next, we need to show that u is bounded. To do this, note that, if B1 is any (closed) ball of radius
1, then: ∣∣∣∣∣ 1

λ (B1)

∫
B1
u(y) dy

∣∣∣∣∣ ≤ 1
λ (B1)1/p ‖u‖Lp .

Using this and the previous inequalities, we obtain an upper bound for ‖u‖L∞ , and then for ‖u‖Cα .

Theorem 6.6.2 (Gagliardo–Nirenberg Theorem). Let Ω be either Rd, Rd
+ or a bounded domain with

a C1 boundary. Assume that 1 ≤ p < d. Then:

W 1,p (Ω) ⊆ Lp
∗ (Ω) ,

where 1
p∗

= 1
p
− 1

d
.
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Proof. The strategy is exactly the same as for Morrey’s Theorem (Theorem 6.6.1): we assume that
Ω = Rd and we work with functions in D

(
Rd
)
. Firstly, assume that p = 1. In this case, prove that,

for any compactly supported C1 function u, we have ‖u‖Ld/(d−1) ≤ ‖u‖W 1,1 . For the general case, fix
s = p(d−1)

d−p > 1, so that p∗ = sd
d−1 . Note that t 7→ |t|s is a C1 function. Thus, |u|s is a compactly

supported C1 function. Apply the previous case and obtain the desired inequality.

Corollary 6.6.3. Let Ω be either Rd, Rd
+ or a bounded domain with a C1 boundary. Assume that

1 ≤ p < d. Then:
∀r ∈ [p, p∗] , W 1,p (Ω) ⊆ Lr (Ω) ,

where 1
p∗

= 1
p
− 1

d
.

6.7 Compact embeddings
Definition 6.7.1 (Compact embedding). Let E and F be two distribution spaces s.t. E ⊆ F .
We say the the embedding E ⊆ F is compact if the unit ball BE of E is relatively compact in F .
Equivalently, from every sequence (un)n∈N ∈ EN that is bounded in E, we can extract a subsequence
which converges in F .

Remark 6.7.2. If E is of infinite dimension, then the embedding E ⊆ E is never compact.

Theorem 6.7.3. Let Ω be a bounded domain in Rd with a C1 boundary.

(i) If p > d and 0 ≤ β < 1 − d
p
, then the embedding W 1,p (Ω) ⊆ Cβ

(
Ω
)
(given by Theorem 6.6.1)

is compact.

(ii) If p < d and 1 ≤ r < p∗, then the embedding W 1,p (Ω) ⊆ Lr (Ω) (given by Corollary 6.6.3) is
compact.

6.8 Sobolev spaces of fractional order
Lemma 6.8.1. Let k ∈ N. Then:

W k,2
(
Rd
)

=
{
u ∈ S ′

(
Rd
)
,
((

1 + |ξ|2
)k/2
Fu

)
∈ L2

(
Rd
)}

.

In addition, ‖·‖Wk,2 is equivalent to the norm ‖·‖ defined by:

‖u‖ =
∥∥∥∥(1 + |ξ|2

)k/2
Fu

∥∥∥∥
L2
.

Definition 6.8.2 (Hs
(
Rd
)
). For s ∈ R, define:

Hs
(
Rd
)

=
{
u ∈ S ′

(
Rd
)
,
((

1 + |ξ|2
)s/2
Fu

)
∈ L2

(
Rd
)}

.

Hs
(
Rd
)
can also be denoted by W s,2

(
Rd
)
. We equip it with the scalar product ((·, ·))Hs defined by:

((u, v))Hs =
∫
Rd

(
1 + |ξ|2

)s
Fu(ξ)Fv(ξ) dξ,

(in the case where K = R, we have to take the real part because the Fourier transform is not necessarily
real-valued). Thus, Hs

(
Rd
)
is a Hilbert space.

Proposition 6.8.3.

(i) For k ∈ N, the new definition of Hk
(
Rd
)

= W k,2
(
Rd
)
agrees with the original one.
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(ii) If s ≤ σ, then Hs
(
Rd
)
⊇ Hσ

(
Rd
)
.

(iii) H0
(
Rd
)

= L2
(
Rd
)
.

(iv) If s ≥ 0, Hs
(
Rd
)
⊆ L2

(
Rd
)
. In particular, the elements of Hs

(
Rd
)
are functions.

(v) For s ∈ R, D
(
Rd
)
is dense in Hs

(
Rd
)
.

Definition 6.8.4 (Hs (Ω)). If Ω is a domain of Rd with a C1 boundary, we define:

Hs (Ω) =
{
u|Ω , u ∈ Hs

(
Rd
)}
,

and we equip this space with the norm ‖·‖Hs defined by:

‖v‖Hs = inf
u∈Hs(Rd)
u|Ω =v

‖u‖Hs .

Hence, Hs (Ω) is a Hilbert space.

6.9 Trace theorems
Theorem 6.9.1. Let s ∈

]
1
2 ,+∞

[
. Then the linear map u ∈ D

(
Rd
)
7−→ u|{xd=0} ∈ D

(
Rd−1

)
extends uniquely to a continuous linear operator γ : Hs

(
Rd
)
→ Hs− 1

2
(
Rd−1

)
. In addition, there

exists a continuous linear operator R : Hs− 1
2
(
Rd−1

)
→ Hs

(
Rd
)
s.t. γ ◦ R = id. In particular, γ is

surjective (and open).

Proof. For the existence and uniqueness of γ, by density of D
(
Rd
)
in Hs

(
Rd
)
, it suffices to prove

the existence of C ∈ R+ s.t.

∀u ∈ D
(
Rd
)
,
∥∥∥u|{xd=0}

∥∥∥
Hs− 1

2
≤ C ‖u‖Hs .

For the existence of R, choose θ ∈ D (R) s.t.
∫
R θ = 1. Now, for g ∈ Hs− 1

2
(
Rd−1

)
, define:

h : ξ ∈ Rd 7−→
√

2π · θ
 ξd√

1 + |ξ′|2

 · 1√
1 + |ξ′|2

· Fg (ξ′) ,

with ξ = (ξ′, ξd) ∈ Rd−1 ×R, and let Rg = F−1h ∈ S ′
(
Rd
)
. Check that Rg ∈ Hs

(
Rd
)
and that the

linear map R : Hs− 1
2
(
Rd−1

)
→ Hs

(
Rd
)
thus defined is continuous, then show that γ ◦R = id.

Remark 6.9.2. In Theorem 6.9.1, the lifting R is not unique.

Corollary 6.9.3. Let s ∈
]

1
2 ,+∞

[
. Then there exists a continuous linear operator γ0 : Hs

(
Rd

+

)
→

Hs− 1
2
(
Rd−1

)
s.t. the following diagram commutes:

Hs
(
Rd
)

Hs− 1
2
(
Rd−1

)

Hs
(
Rd

+

)

γ

γ0

where γ is as in Theorem 6.9.1 and Hs
(
Rd
)
→ Hs

(
Rd

+

)
is the restriction. Moreover, there exists

a continuous linear operator R : Hs− 1
2
(
Rd−1

)
→ Hs

(
Rd

+

)
s.t. γ0 ◦ R = id. In particular, γ0 is

surjective (and open).
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