Advanced Analysis

Lectures by Denis Serre Notes by Alexis Marchand

ENS de Lyon S1 2018-2019 M1 course

Contents

1	Top	ological vector spaces 2				
	1.1	Generalities				
	1.2	Completeness				
2	Cor	avexity 4				
	2.1	Locally convex topological vector spaces				
	2.2	Fréchet spaces				
	2.3	Hahn-Banach Theorem				
	2.4	Geometrical form of the Hahn-Banach Theorem				
	2.5	Krein-Milman Theorem				
3	Dua	dity 9				
	3.1	Weak-* topology and weak topology				
	3.2	Bidual				
	3.3	Weak or weak-* convergence of sequences				
	3.4	Weak-* compactness				
	3.5	Reflexivity				
	3.6	Uniform convexity				
	3.7	Adjoint operators				
4	Theory of distributions 14					
	4.1	Test functions				
	4.2	Distributions				
	4.3	Operations on distributions				
	4.4	Support of a distribution				
	4.5	Assembling distributions				
5	Cor	volution of distributions 19				
	5.1	Generalities				
	5.2	Applications to partial differential equations				
	5.3	The Schwartz class				
	5.4	The Fourier transform				
	5.5	Tempered distributions				
	5.6	Fourier transform of tempered distributions				
	5.7	Fourier transform of compactly supported distributions				

6	Sobolev spaces			
	6.1	Sobolev spaces of integral order	23	
	6.2	Approximation by smooth functions	24	
	6.3	Extension by zero	25	
	6.4	Existence of a right inverse of the restriction operator	26	
	6.5	Embeddings of distribution spaces	26	
	6.6	Sobolev embeddings	27	
	6.7	Compact embeddings	28	
	6.8	Sobolev spaces of fractional order	28	
	6.9	Trace theorems	29	
Re	efere	nces	30	

Notation 0.0.1. We shall write $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

1 Topological vector spaces

1.1 Generalities

Definition 1.1.1 (Topological vector space). A topological vector space is a Hausdorff space E that is also a K-vector space such that the maps $(x, y) \in E^2 \mapsto x + y \in E$ and $(\lambda, x) \in \mathbb{K} \times E \mapsto \lambda x \in E$ are both continuous.

Example 1.1.2. Normed spaces are topological vector spaces.

Remark 1.1.3. Let E be a topological vector space.

- (i) For $x \in E$, the translation $\tau_x : y \in E \longrightarrow x + y \in E$ is a homeomorphism (with inverse τ_{-x}).
- (ii) For $\lambda \in \mathbb{K}^*$, the dilatation $h_{\lambda} : y \in E \longrightarrow \lambda y \in E$ is a homeomorphism (with inverse $h_{\lambda^{-1}}$).

Corollary 1.1.4. Let E be a topological vector space.

- (i) The neighbourhoods of $x \in E$ are exactly the translations of those of 0.
- (ii) For $\lambda \in \mathbb{K}^*$, a subset $V \subseteq E$ is a neighbourhood of 0 iff λV is a neighbourhood of 0.

Proposition 1.1.5. Let E be a topological vector space. Then any neighbourhood V of 0 in E is absorbing, *i.e.*

$$\forall x \in E, \ \exists r > 0, \ \forall \lambda \in \mathbb{K}, \ |\lambda| < r \Longrightarrow \lambda x \in V.$$

Proof. Choose $x \in E$ and consider $\psi_x : \lambda \in \mathbb{K} \longrightarrow \lambda x \in E$. The map ψ_x is continuous, so $\psi_x^{-1}(V)$ is a neighbourhood of 0 in \mathbb{K} , i.e. there exists r > 0 s.t. $0 \in B_{\mathbb{K}}(r) \subseteq \psi_x^{-1}(V)$. In other words, $\psi_x(B_{\mathbb{K}}(r)) \subseteq V$, which was to be proved.

Definition 1.1.6 (Bounded subsets). Let *E* be a topological vector space. A subset $A \subseteq E$ is said to be bounded if for every neighbourhood *V* of 0 in *E*, there exists r > 0 s.t. $|\lambda| < r \Longrightarrow \lambda A \subseteq V$.

Corollary 1.1.7. In topological vector spaces, singletons are bounded.

Proposition 1.1.8. Let E, F be two topological vector spaces and $f : E \to F$ be a linear map. Then f is continuous iff f is continuous at 0.

Notation 1.1.9. If E, F are two topological spaces, we shall write $\mathcal{L}(E, F)$ for the set of all continuous linear maps from E to F. This is a \mathbb{K} -vector space, which we would like to equip with the structure of a topological vector space.

1.2 Completeness

Vocabulary 1.2.1. A complete normed space is called a Banach space.

Example 1.2.2.

- (i) If K is a compact topological space, then the space $\mathcal{C}(K)$ of all continuous maps from K to \mathbb{K} is a Banach space, equipped with the supremum norm.
- (ii) If X is a σ -finite measured space and $p \in [1, +\infty]$, then the space $L^p(X)$ is a Banach space.

Theorem 1.2.3 (Baire Category Theorem). Let (X, d) be a complete metric space.

- (i) If $(\mathcal{O}_n)_{n\in\mathbb{N}}$ is a countable family of dense open subsets of X, then $\bigcup_{n\in\mathbb{N}}\mathcal{O}_n$ is dense in X.
- (ii) If $(F_n)_{n \in \mathbb{N}}$ is a countable family of closed subsets of X with empty interior, then $\bigcap_{n \in \mathbb{N}} F_n$ has an empty interior.

Definition 1.2.4 (Metric vector space). A metric vector space E is a topological vector space whose topology is defined by a translation-invariant metric, i.e. a metric d s.t. there exists a map $D: E \to \mathbb{R}_+$ s.t. $\forall (x,y) \in E, d(x,y) = D(x-y)$ (note that D is not necessarily homogeneous).

Theorem 1.2.5. Let *E* be a complete metric vector space, let *F* be a topological vector space. For any set $\Phi \subseteq \mathcal{L}(E, F)$, the following assertions are equivalent:

- (i) For all $x \in E$, $\{\varphi(x), \varphi \in \Phi\}$ is bounded in F.
- (ii) Φ is equicontinuous, i.e. for any open subset $W \subseteq F$, there exists an open subset $V \subseteq E$ s.t. $\forall \varphi \in \Phi, \varphi(V) \subseteq W$.
- (iii) Φ is equicontinuous at 0, i.e. for any neighbourhood W of 0 in F, there exists a neighbourhood V of 0 in E s.t. $\forall \varphi \in \Phi, \varphi(V) \subseteq W$.

Proof. (i) \Leftrightarrow (iii) Clear. (i) \Rightarrow (iii) Let W be a neighbourhood of 0 in F. As $(x, y) \mapsto x - y$ is continuous, there exists C neighbourhood of 0 in F s.t. $C - C = \{c - c', (c, c') \in C^2\} \subseteq W$. Likewise, there exists U neighbourhood of 0 in F s.t. $U + U \subseteq C$. Let us show that $\overline{U} \subseteq C$: for $x \in \overline{U}, x - U$ is a neighbourhood of x, so it meets U, i.e. there exists $y \in U \cap (x - U)$; therefore, there exists $z \in U$ s.t. $x = y + z \in U + U \subseteq C$. Hence, we get $\overline{U} - \overline{U} \subseteq W$. Now, define:

$$X = \bigcap_{\varphi \in \Phi} \varphi^{-1} \left(\overline{U} \right).$$

The set X is closed in E. By assumption, for all $x \in E$, there exists $n \in \mathbb{N}^*$ s.t. $\frac{1}{n} \{\varphi(x), \varphi \in \Phi\} \subseteq \overline{U}$, i.e. $x \in nX$. Therefore:

$$E = \bigcup_{n \in \mathbb{N}^*} nX.$$

By the Baire Category Theorem, there exists $n_0 \in \mathbb{N}^*$ s.t. $n_0 X$ has nonempty interior. But $X = \frac{1}{n_0}(n_0 X)$, so X has a nonempty interior. Thus, there exists $x \in X$ and V neighbourhood of 0 in E s.t. $x + V \subseteq X$. In other words: $\forall \varphi \in \Phi, \ \varphi(x + V) \subseteq \overline{U}$, so $\forall \varphi \in \Phi, \ \varphi(V) \subseteq \varphi(V - V) = \varphi(x + V) - \varphi(x + V) \subseteq \overline{U} - \overline{U} \subseteq W$.

Corollary 1.2.6 (Uniform Boundedness Principle / Banach-Steinhaus Theorem). Let E be a Banach space and let F be a normed space. For any set $\Phi \subseteq \mathcal{L}(E, F)$, the following assertions are equivalent:

- (i) For all $x \in E$, $\{\varphi(x), \varphi \in \Phi\}$ is bounded in F.
- (ii) Φ is equicontinuous.
- (iii) Φ is equicontinuous at 0.

(iv) $\{ \|\varphi\|, \varphi \in \Phi \}$ is bounded in \mathbb{R} .

Remark 1.2.7. There are two ways to apply the Banach-Steinhaus Theorem:

(i) If we have a sequence $(\varphi_n)_{n\in\mathbb{N}} \in \mathcal{L}(E,F)^{\mathbb{N}}$ and a $\varphi \in \mathcal{L}(E,F)$ s.t. $\forall x \in E, \varphi_n(x) \to \varphi(x)$, then the sequence $(\|\varphi_n\|)_{n\in\mathbb{N}}$ is bounded, which leads to:

$$\forall x \in E, \|\varphi(x)\| \le \left(\liminf_{n \to +\infty} \|\varphi_n\|\right) \|x\|.$$

Hence, φ is linear continuous.

(ii) If we have a sequence $(\varphi_n)_{n \in \mathbb{N}} \in \mathcal{L}(E, F)^{\mathbb{N}}$ s.t. $\|\varphi_n\| \to +\infty$, then there exists $x \in E$ s.t. $(\varphi_n(x))_{n \in \mathbb{N}}$ is unbounded. This is actually true for every x in a dense G_{δ} .

Theorem 1.2.8 (Open Mapping Theorem / Banach–Schauder Theorem). Let E, F be two complete metric vector spaces and $T: E \to F$ be a linear continuous map.

- (i) If T is onto, then for any V neighbourhood of 0 in E, T(V) is a neighbourhood of 0 in F.
- (ii) If T is bijective, then it is a homeomorphism.

Proof. It is enough to prove (i). Suppose that T is onto and choose r > 0. We need only prove that $\exists s > 0, TB_E(r) \supseteq B_F(s)$, where $B_E(r) = \{x \in E, D(x) < r\}$. First step. Since $B_E(r)$ is absorbing (by Proposition 1.1.5), we have $E = \bigcup_{n \in \mathbb{N}^*} nB_E(r)$. And T is onto, so:

$$F = \bigcup_{n \in \mathbb{N}^*} T(nB_E(r)) = \bigcup_{n \in \mathbb{N}^*} \overline{T(nB_E(r))} = \bigcup_{n \in \mathbb{N}^*} n\overline{TB_E(r)}.$$

By the Baire Category Theorem, there exists $n_0 \in \mathbb{N}^*$ s.t. $n_0 \overline{TB_E(r)}$ has nonempty interior. Therefore, $\overline{TB_E(r)}$ has nonempty interior. Second step. Let $a \in \overline{TB_E(\frac{r}{2})}$ and let U be a neighbourhood of a in $\overline{TB_E(\frac{r}{2})}$. Then V = U - U is a neighbourhood of 0 in F, and $V \subseteq \overline{TB_E(r)}$. We have proved that for all r > 0, there exists $\delta(r) > 0$ s.t. $B_F(\delta(r)) \subseteq \overline{TB_E(r)}$, and we may assume that $\delta(r) \leq r$. Third step. Let r > 0 and $y \in B_F(\delta(\frac{r}{2}))$. Our aim is to find a $x \in B_E(r)$ s.t. Tx = y. We construct an approximate solution of the equation. As $y \in \overline{TB_E(\frac{r}{2})}$, there exists $x_1 \in B_E(\frac{r}{2})$ s.t. $y - Tx_1 \in B_F(\delta(\frac{r}{4})) \subseteq \overline{TB_E(\frac{r}{4})}$. Proceeding by induction, we construct a sequence $(x_n)_{n \in \mathbb{N}^*} \in E^{\mathbb{N}^*}$ s.t. $x_n \in B_E(2^{-n}r)$ and $y - T(x_1 + \cdots + x_n) \in B_F(\delta(2^{-(n+1)}r))$ for all $n \in \mathbb{N}^*$. Write $z_n = x_1 + \cdots + x_n$ for $n \in \mathbb{N}^*$. Then the sequence $(z_n)_{n \in \mathbb{N}^*}$ is Cauchy so it converges to $z \in E$. We easily check that y = Tz and $z \in B_E(r)$. This proves that $TB_E(r) \supseteq B_F(\delta(\frac{r}{2}))$.

Theorem 1.2.9 (Closed Graph Theorem). Let E, F be two complete metric vector spaces and $T : E \to F$ be a linear map. Then T is continuous iff its graph $\mathcal{G}(T) = \{(x, Tx), x \in E\}$ is closed in $E \times F$.

Proof. (\Rightarrow) Clear. (\Leftarrow) By assumption, $\mathcal{G}(T)$ is closed so it is a complete metric vector space. Let $\pi: E \times F \to E$ be the first projection. Then the restriction $\pi_{|\mathcal{G}(T)}$ is linear continuous and bijective. By Theorem 1.2.8, it is a homeomorphism, i.e. the inverse map $x \mapsto (x, Tx)$ is continuous. In particular, T is continuous.

2 Convexity

Definition 2.0.1 (Dual space). If E is a topological vector space, its dual space is $E^* = \mathcal{L}(E, \mathbb{K})$.

Remark 2.0.2.

- (i) If H is a Hilbert space, then H^* is isometric to H.
- (ii) If X is a measured space, $p \in [1, +\infty[$ and $q \in]1, +\infty]$ is the conjugate exponent of p (i.e. $1 = \frac{1}{p} + \frac{1}{q}$), then $L^p(X)^*$ is isometric to $L^q(X)$.
- (iii) However, in general, E^* may be very small.

2.1 Locally convex topological vector spaces

Definition 2.1.1 (Local convexity). A topological vector space E is said to be locally convex if it admits a basis of convex neighbourhoods of 0.

Example 2.1.2. Normed spaces are locally convex.

Proposition 2.1.3. Let E be a topological vector space.

- (i) Every neighbourhood of 0 contains a balanced neighbourhood, i.e. a neighbourhood V s.t. $\forall x \in V, \forall \lambda \in \mathbb{K}, |\lambda| \leq 1 \Longrightarrow \lambda x \in V.$
- (ii) If E is locally convex, then every neighbourhood of 0 contains a balanced convex neighbourhood of 0.

Proof. (i) Note that $\phi : (\lambda, x) \in \mathbb{K} \times E \longmapsto \lambda x \in E$ is continuous and $\phi(0, 0) = 0 \in W$, so $\phi^{-1}(W)$ is a neighbourhood of (0, 0). Hence, there exists a neighbourhood U_1 of 0 in \mathbb{K} and a neighbourhood V_1 of 0 in E s.t. $\phi(U_1 \times V_1) \subseteq W$, i.e. $U_1V_1 \subseteq W$. We may assume that U_1 is balanced in \mathbb{K} ; thus, $V = U_1V_1$ is balanced in E. (ii) Let W be a neighbourhood of 0_E . As E is locally convex, we may assume that W is convex. Using point (i), W contains a balanced neighbourhood V_1 of 0. Now, we easily check that the convex hull V of V_1 is a balanced convex neighbourhood of 0, contained in W.

Definition 2.1.4 (Semi-norm). If E is a vector space, a semi-norm on E is a map $p : E \to \mathbb{R}_+$ that is homogeneous and satisfies the triangle inequality, but not necessarily the separation property of norms.

Remark 2.1.5. If p is a semi-norm on a vector space E, then balls $B_p(r) = \{x \in E, p(x) < r\}$ are balanced and convex.

Definition 2.1.6 (Topology defined by a separating family of semi-norms). Consider a vector space E equipped with a family of semi-norms $(p_{\alpha})_{\alpha \in A}$ that is separating, i.e. s.t.

$$\forall x \in E \setminus \{0\}, \ \exists \alpha \in A, \ p_{\alpha}(x) \neq 0.$$

Then the family $(p_{\alpha})_{\alpha \in A}$ defines a translation-invariant topology on E: this is the coarsest topology s.t. p_{α} is continuous (equivalently, continuous at 0) for every $\alpha \in A$. A basis of neighbourhoods of 0 for this topology is the collection of all sets of the form $\bigcap_{\alpha \in J} B_{p_{\alpha}}\left(\frac{1}{n}\right)$, where J is a finite subset of A and $n \in \mathbb{N}^*$.

Proposition 2.1.7 (Minkowski's Gauge). Let W be a balanced convex subset of a vector space E. Assume that W is absorbing and define:

$$j_W: x \in E \longmapsto \inf\left\{t > 0, \ \frac{1}{t}x \in W\right\}.$$

Then j_W is a semi-norm. In addition, $B = \{x \in E, j_W(x) < 1\}$ and $B' = \{x \in E, j_W(x) \le 1\}$ satisfy:

$$B \subseteq W \subseteq B'.$$

Proof. Note that W is absorbing, so the set $\{t > 0, \frac{1}{t}x \in W\}$ is nonempty for all $x \in E$. Therefore, $j_W : E \to \mathbb{R}_+$ is well-defined. It is clear from the definition that j_W is positively homogeneous (i.e. $\forall \lambda \in \mathbb{R}_+, \forall x \in E, j_W(\lambda x) = \lambda j_W(x)$). Moreover, if $\mu \in \mathbb{K}$ is s.t. $|\mu| = 1$, then $\mu W = W$ as W is balanced, so $j_W(\mu x) = j_W(x)$. Therefore, j_W is homogeneous. For the triangle inequality, choose $x, y \in E$. Let $a > j_W(x)$ and $b > j_W(y)$. By convexity of $W, \mathbb{R}^*_+ x \cap W$ is convex, so it is of the form Ix, where I is an interval of \mathbb{R}^*_+ . Actually, $\mathbb{R}^*_+ x \cap W = \left[0, \frac{1}{j_W(x)}\right) x$. Therefore, $\frac{1}{a}x \in W$; likewise, $\frac{1}{b}y \in W$. By convexity:

$$\frac{1}{a+b}(x+y) = \frac{a}{a+b} \cdot \frac{1}{a}x + \left(1 - \frac{a}{a+b}\right) \cdot \frac{1}{b}y \in W.$$

Therefore, $j_W(x+y) \le a+b$. Taking infimums over a and b, we obtain $j_W(x+y) \le j_W(x) + j_W(y)$. The inclusions $B \subseteq W \subseteq B'$ are easy to prove.

Theorem 2.1.8. If E is a locally convex topological vector space, then there exists a separating family of semi-norms inducing the topology of E.

Proof. Let \mathcal{B} be the set of balanced convex neighbourhoods of 0. According to Proposition 2.1.3, \mathcal{B} is a basis of neighbourhoods of 0. For all $W \in \mathcal{B}$, Minkowski's Gauge j_W is a semi-norm (c.f. Proposition 2.1.7). Hence, we have a family $(j_W)_{W \in \mathcal{B}}$ of semi-norms; it is separating because of the fact that $\forall x \in E \setminus \{0\}, \exists W \in \mathcal{B}, x \notin W$ (because E is Hausdorff). Hence, $(j_W)_{W \in \mathcal{B}}$ defines a locally convex vector space topology on E; let \mathcal{B}' be the set of balanced convexed neighbourhoods of 0 for the new topology. Using Proposition 2.1.3 again, \mathcal{B}' is a basis of neighbourhoods of 0 for the new topology on E. Therefore, it is enough to prove that $\mathcal{B} = \mathcal{B}'$. If $W \in \mathcal{B}$, then $W \supseteq B_{j_W}(1)$, so W is a neighbourhood of 0 in the new topology, and W is still balanced and convex; therefore $W \in \mathcal{B}'$. Conversely, if $W' \in \mathcal{B}'$, then W' contains a finite intersection of sets of the form $B_{j_W}(\varepsilon)$, with $\varepsilon > 0$ and $W \in \mathcal{B}$. Therefore, it is enough to prove that $B_{j_W}(\varepsilon) \in \mathcal{B}$ for all $\varepsilon > 0$ and $W \in \mathcal{B}$. We may actually assume that $\varepsilon = 1$. But according to the last part of Proposition 2.1.7:

$$B_{j_W}(1) \supseteq \left\{ x \in E, \ j_W(x) \le \frac{1}{2} \right\} = \frac{1}{2} \left\{ x \in E, \ j_W(x) \le 1 \right\} \supseteq \frac{1}{2} W.$$

And $B_{iw}(1)$ is balanced and convex, so $B_{iw}(1) \in \mathcal{B}$. Hence $\mathcal{B} = \mathcal{B}'$.

Proposition 2.1.9. Let E and F be locally convex topological vector spaces, equipped with separating families of semi-norms $(p_{\alpha})_{\alpha \in A}$ and $(q_{\beta})_{\beta \in B}$ respectively.

(i) A sequence $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ converges towards $x\in E$ iff

$$\forall \alpha \in A, \ p_{\alpha} \left(x_n - x \right) \to 0.$$

(ii) Let $T : E \to F$ be a linear map. Then T is continuous iff for every $\beta \in B$, there exists $C_{\beta} \in \mathbb{R}_+$ and a finite subset $J_{\beta} \subseteq A$ s.t.

$$q_{\beta} \circ T \le C_{\beta} \max_{j \in J_{\beta}} p_{\alpha_j}.$$

2.2 Fréchet spaces

Proposition 2.2.1. If E is a locally convex topological vector space whose topology is defined by a countable family $(p_n)_{n \in \mathbb{N}}$ of semi-norms, then E is metrisable, with the distance d defined by:

$$d(x,y) = \sum_{j \in \mathbb{N}} 2^{-j} \frac{p_n(y-x)}{1 + p_n(y-x)}$$

Definition 2.2.2 (Fréchet space). A Fréchet space is a locally convex topological vector space E s.t.

- (i) The topology of E is defined by a countable family of semi-norms (hence E is a metric vector space).
- (ii) E is complete.

Corollary 2.2.3. Fréchet spaces satisfy the Uniform Boundedness Principle (Corollary 1.2.6), the Open Mapping Theorem (Theorem 1.2.8) and the Closed Graph Theorem (Theorem 1.2.9).

Example 2.2.4.

- (i) If Ω is an open subset of \mathbb{R}^n , then the space $\mathcal{C}^0(\Omega)$ of continuous functions $\Omega \to \mathbb{K}$, equipped with the topology of uniform convergence on every compact set, is a Fréchet space.
- (ii) If Ω is an open subset of \mathbb{R}^n , then the space $\mathcal{C}^{\infty}(\Omega)$ of smooth functions $\Omega \to \mathbb{K}$, equipped with the topology of uniform convergence of every partial derivative on every compact set, is a Fréchet space.
- (iii) If Ω is an open subset of \mathbb{C} , then the space $\mathcal{H}(\Omega)$ of holomorphic functions $\Omega \to \mathbb{C}$, equipped with the topology of uniform convergence on every compact set, is a Fréchet space.
- (iv) If K is a compact subset of \mathbb{R}^n , then the space $\mathcal{C}^{\infty}(K)$ consisting of restrictions to K of functions of $\mathcal{C}^{\infty}(\mathbb{R}^n)$ is a Fréchet space equipped with the family $(p_m)_{m\in\mathbb{N}}$ of semi-norms defined by:

$$p_m(g) = \inf\left\{\sup\left\{\left\|\frac{\partial^m f}{\partial^{m_1} x_1 \cdots \partial^{m_n} x_n}\right\|_{\mathbb{R}^n}, \ m_1 + \cdots + m_n = m\right\}, \ f \in \mathcal{C}_c^\infty\left(\mathbb{R}^n\right), \ f_{|K} = g\right\}.$$

2.3 Hahn-Banach Theorem

Definition 2.3.1 (Inductive set). Let S be an ordered set. A chain of S is a subset $S' \subseteq S$ that is totally ordered. The set S is said to be inductive if every chain S' admits an upper-bound in S.

Theorem 2.3.2 (Zorn's Lemma). If S is a nonempty inductive set, then S has a maximal element.

Theorem 2.3.3 (Hahn-Banach Theorem). Let E be a real vector space, equipped with a function $p: E \to \mathbb{R}$ that is subadditive (i.e. $\forall (x, y) \in E^2$, $p(x + y) \leq p(x) + p(y)$) and positively homogeneous (i.e. $\forall \lambda \in \mathbb{R}_+$, $\forall x \in E$, $p(\lambda x) = \lambda p(x)$). Let F be a subspace of E and $f: F \to \mathbb{R}$ be a linear form. Assume that $f \leq p$ over F. Then there exists a linear form $\varphi: E \to \mathbb{R}$ s.t. $\varphi_{|F} = f$ and $\varphi \leq p$ over E.

Proof. Consider the set S of pairs (G, g), where G is a subspace of E containing F, and $g : G \to \mathbb{R}$ is a linear form s.t. $g_{|F} = f$ and $g \leq p$ over G. S is ordered by $(G, g) \leq (H, h)$ iff $G \subseteq H$ and $g = h_{|G}$. We affirm that S is inductive; according to Zorn's Lemma, it has a maximal element (M, φ) . It remains to prove that M = E. Suppose for contradiction that $M \subsetneq E$ and choose $x \in E \setminus M$. Put $M' = M \oplus \mathbb{R}x$ and construct a linear form $\varphi' : M' \to \mathbb{R}$ defined by $\varphi'_{|M} = \varphi$ and $\varphi(x) = \lambda$, where λ is to be chosen. We want to have $\varphi' \leq p$, i.e.

$$\forall (y,t) \in M \times \mathbb{R}, \ \varphi'(y+tx) = \varphi(y) + t\lambda \le p(y+tx).$$

Because of positive homogeneity, we may restrict to $t \in \{\pm 1\}$. This leads to the following inequalities:

$$\sup_{y \in M} \left(\varphi(y) - p(y - x)\right) \le \lambda \le \inf_{z \in M} \left(p(z + x) - \varphi(z)\right).$$

The choice of such a λ is possible because $\sup_{y \in M} (\varphi(y) - p(y - x)) \leq \inf_{z \in M} (p(z + x) - \varphi(z))$, since $\forall (y, z) \in M^2, \ \varphi(y) - p(y - x) \leq p(z + x) - \varphi(z)$. Hence, we have constructed $(M', \varphi') \in S$, with $(M, \varphi) < (M', \varphi')$. This contradicts the maximality of (M, φ) ; therefore, M = E.

Corollary 2.3.4. The dual space E^* of a real locally convex topological vector space E separates the points of E: if $x, y \in E$ with $x \neq y$, then there exists $f \in E^*$ s.t. $f(x) \neq f(y)$.

Corollary 2.3.5. Let E be a real normed space. If $x \in E$, there exists $\varphi \in E^*$ s.t. $\varphi(x) = ||x||$ and $||\varphi|| = 1$.

2.4 Geometrical form of the Hahn-Banach Theorem

Lemma 2.4.1. Let E be a real locally convex topological vector space and C be a nonempty convex open subset of E and $x \in E \setminus C$. Then there exists $\varphi \in E^* \setminus \{0\}$ s.t. $\sup_C \varphi \leq \varphi(x)$. In other words, C is contained in a half-space delimited by the closed affine hyperplane $x + \operatorname{Ker} \varphi$.

Proof. As the lemma is translation-invariant, we may assume that $0 \in C$. We consider $j : y \in E \longrightarrow \inf \{t > 0, \frac{1}{t}y \in C\}$. As C is absorbing (because it is a neighbourhood of 0), $j(y) < +\infty$ for all $y \in E$. Moreover, C is convex, so j is convex. Finally, j is positively homogeneous (but j might not be a semi-norm because C might not be balanced). Consider $F = \mathbb{R}x$ and define a linear form $f : F \to \mathbb{R}$ by f(x) = j(x). We have $f \leq j$ on F. By the Hahn-Banach Theorem, there exists a linear form $\varphi : E \to \mathbb{R}$ s.t. $\varphi(x) = j(x)$ and $\varphi \leq j$ on E. In particular, for $y \in C$, $\varphi(y) \leq j(y) \leq 1$, so $\varphi^{-1}(]-2,+2[) \supseteq C$; by linearity, φ is continuous. Lastly, $\sup_C \varphi \leq 1 \leq \varphi(x)$.

Theorem 2.4.2. Let E be a real locally convex topological vector space. Consider two nonempty convex disjoint subsets A, B of E.

- (i) If A is open and B is closed, then $\exists \varphi \in E^* \setminus \{0\}$, $\sup_A \varphi \leq \inf_B \varphi$.
- (ii) If A is compact and B is closed, then $\exists \varphi \in E^* \setminus \{0\}$, $\sup_A \varphi < \inf_B \varphi$.

Proof. (i) Define $C = A - B = \{a - b, (a, b) \in A \times B\}$. The set C is convex and open, and does not contain 0. According to Lemma 2.4.1, there exists $\varphi \in E^* \setminus \{0\}$ s.t. $\sup_C \varphi \leq \varphi(0) = 0$. As $\sup_C \varphi = \sup_A \varphi - \inf_B \varphi$, this gives the desired result. (ii) For $x \in A$, $E \setminus B$ is an open neighbourhood of x, so there exists a convex open neighbourhood V_x of 0 s.t. $x + V_x + V_x \subseteq E \setminus B$. Now $A \subseteq \bigcup_{x \in A} (x + V_x)$. Since A is compact, there are points $x_1, \ldots, x_N \in A$ s.t. $A \subseteq \bigcup_{j=1}^N (x_j + V_{x_j})$. Define $V = \bigcap_{j=1}^N V_{x_j}$. V is an open convex neighbourhood of 0, and we have $A + V \subseteq E \setminus B$. Hence, (A + V) is open, convex and nonempty, and $(A + V) \cap B = \emptyset$. By (i), there exists $\varphi \in E^* \setminus \{0\}$ s.t. $\sup_{A+V} \varphi \leq \inf_B \varphi$. But $\sup_{A+V} \varphi = \sup_A \varphi + \sup_V \varphi$. Since φ is linear and V is absorbing, $\sup_V \varphi > 0$, i.e. $\sup_A \varphi < \inf_B \varphi$. \Box

Corollary 2.4.3. Let *E* be a real locally convex topological vector space, and let $F \subseteq E$ be a subspace. Then:

- $({\rm i}) \ \overline{F} = \Big\{ x \in E, \, \forall \varphi \in E^*, \; \Big(\varphi_{|F} = 0 \Longrightarrow \varphi(x) = 0 \Big) \Big\}.$
- (ii) *F* is dense in *E* iff $\forall \varphi \in E^*$, $(\varphi_{|F} = 0 \Longrightarrow \varphi = 0)$.

Proof. Note that (ii) is a direct consequence of (i). For (i), apply Theorem 2.4.2 to the closed set \overline{F} and the compact set $\{x\}$, for $x \in E \setminus \overline{F}$.

2.5 Krein-Milman Theorem

Definition 2.5.1 (Extremal points). Let C be a nonempty convex subset of a vector space E. A point $x \in C$ is said to be an extremal point of C if:

$$\forall (y,z) \in C^2, \ \forall \lambda \in]0,1[, \ (x = (1-\lambda)y + \lambda z) \Longrightarrow y = z = x.$$

The set of extremal points of C is denoted by Extr(C).

Notation 2.5.2. If $S \subseteq E$ is a subset of a vector space E, then the convex hull of S is denoted by Conv(S).

Theorem 2.5.3 (Krein-Milman Theorem). Let K be a compact convex subset of a real locally convex topological vector space E. Then:

$$K = \overline{\operatorname{Conv}\left(\operatorname{Extr}(K)\right)}.$$

In particular, $K \neq \emptyset \Longrightarrow \operatorname{Extr}(K) \neq \emptyset$.

Proof. We assume that $K \neq \emptyset$ (otherwise the statement is trivial). We say that a subset $S \subseteq K$ is extremal if:

 $\forall (x,y) \in K^2, \, \forall \lambda \in]0,1[, \, ((1-\lambda)x + \lambda y \in S) \Longrightarrow \{x,y\} \subseteq S.$

In particular, note that $\{x\}$ is extremal iff $x \in \operatorname{Extr}(K)$. First step: $\operatorname{Extr}(K) \neq \emptyset$. Consider the set X of all nonempty closed convex extremal subsets of K, ordered by reverse inclusion. Since $K \in X$, $X \neq \emptyset$. If C is a chain in X, then $\bigcap_{S \in C} S \in X$, so X is inductive. By Zorn's Lemma, X has a maximal element S. Let us prove that S is a singleton. Suppose for contradiction that there exist $x \neq y$ in S. According to Corollary 2.3.4, there exists $f \in E^*$ s.t. $f(x) \neq f(y)$. Let $m = \sup_S f$; m is attained because S is compact and f is continuous. Hence, define $S' = S \cap f^{-1}(\{m\})$; this is a nonempty compact convex subset of K, and $S' \subsetneq S$ because f is not constant on S. It remains to prove that S' is extremal in K: let $(x, y) \in K^2$ and $\lambda \in]0, 1[$ s.t. $(1 - \lambda)x + \lambda y \in S'$. As $(1 - \lambda)x + \lambda y \in S$, we have $\{x, y\} \subseteq S$; therefore:

$$m = f\left((1-\lambda)x + \lambda y\right) = (1-\lambda)\underbrace{f(x)}_{\leq m} + \lambda\underbrace{f(y)}_{\leq m} \leq m.$$

Hence, equality holds throughout and f(x) = f(y) = m, so $\{x, y\} \subseteq S'$. This proves that S' is extremal, i.e. $S' \in X$. Since $S' \subsetneq S$, this contradicts the maximality of S (for reverse inclusion), so S was a singleton, and $\operatorname{Extr}(K) \neq \emptyset$. Second step: $K = \overline{\operatorname{Conv}(\operatorname{Extr}(K))}$. The inclusion (\supseteq) is clear, so it is enough to prove (\subseteq) . Define $K' = \overline{\operatorname{Conv}(\operatorname{Extr}(K))}$. We have $\emptyset \subsetneq K' \subseteq K$, and K' is compact and convex. Suppose for contradiction that $K' \subsetneq K$, i.e. there exists $x \in K \setminus K'$. By Theorem 2.4.2, there exists $\varphi \in E^*$ s.t.

$$\sup_{K'}\varphi<\varphi(x).$$

Define $M = \sup_K \varphi$. As above, define $K_1 = K \cap \varphi^{-1}(\{M\})$; this is a nonempty compact convex extremal subset of K. By the first step, K_1 has an extremal point $z \in \text{Extr}(K_1) \subseteq \text{Extr}(K) \subseteq K'$. But $\varphi(z) = M \ge \varphi(x) > \sup_{K'} \varphi$, so $z \notin K'$. This is a contradiction, hence K = K'.

3 Duality

3.1 Weak-* topology and weak topology

Remark 3.1.1. If E is a normed space, E^* may be equipped with the dual norm. It makes E^* a Banach space (even if E is not Banach).

Definition 3.1.2 (Weak-* topology). Let E be a locally convex topological vector space. The weak-* topology of E^* is the vector space topology defined by the separating family $(q_x)_{x\in E}$ of semi-norms, where:

$$\forall x \in E, \forall f \in E^*, q_x(f) = |f(x)|.$$

The weak-* topology is denoted by $\sigma(E^*, E)$, it is the topology of simple convergence and makes E^* a locally convex topological vector space.

Definition 3.1.3 (Weak topology). Let E be a locally convex topological vector space and write \mathcal{T} for the topology of E. The weak topology of E is the vector space topology defined by the separating family $(p_f)_{f \in E^*}$ of semi-norms, where:

$$\forall f \in E^*, \ \forall x \in E, \ p_f(x) = |f(x)|.$$

The weak topology is denoted by $\sigma(E, E^*)$, it is a new topology making E a locally convex topological vector space. It is the coarsest topology on E s.t. every $f \in E^*$ is continuous; therefore, $\sigma(E, E^*)$ is coarser than \mathcal{T} . We use the word "weak" to refer to the topology $\sigma(E, E^*)$ and "strong" to refer to \mathcal{T} .

Notation 3.1.4. Let E be a locally convex topological vector space.

- (i) If a sequence $(f_n)_{n \in \mathbb{N}} \in (E^*)^{\mathbb{N}}$ converges to $f \in E^*$ for the topology $\sigma(E^*, E)$, we write $f_n \stackrel{*}{\rightharpoonup} f$; this is equivalent to $\forall x \in E, f_n(x) \to f(x)$.
- (ii) If a sequence $(x_n)_{n\in\mathbb{N}} \in E^{\mathbb{N}}$ converges to $x \in E$ for the topology $\sigma(E, E^*)$, we write $x_n \rightharpoonup x$; this is equivalent to $\forall f \in E^*$, $f(x_n) \rightarrow f(x)$.

Proposition 3.1.5. Let E be a locally convex topological vector space. Then:

$$(E, \sigma (E, E^*))^* = E^*.$$

In other words, a linear form $f: E \to \mathbb{R}$ is weakly continuous iff it is strongly continuous.

Proposition 3.1.6. Let E be a real locally convex topological vector space. A convex subset $C \subseteq E$ is weakly closed iff it is strongly closed.

Proof. (\Rightarrow) Since the weak topology is coarser than the strong topology, any weakly closed (not necessarily convex) subset is also strongly closed. (\Leftarrow) Let C be a strongly closed convex subset of E. Let us show that C is weakly closed, i.e. $E \setminus C$ is weakly open. Let $x \in E \setminus C$. The sets $\{x\}$ and C are nonempty disjoint convex subsets of E, $\{x\}$ is strongly compact and C is strongly closed. According to Theorem 2.4.2, there exists a linear form $\varphi \in E^*$ s.t.

$$\varphi(x) < \inf_C \varphi.$$

Now choose α s.t. $\varphi(x) < \alpha < \inf_C \varphi$. The set $H = \{y \in E, \varphi(y) < \alpha\}$ is open for both topologies, and $x \in H \subseteq E \setminus C$, so $E \setminus C$ is a weak neighbourhood of x. Hence, $E \setminus C$ is weakly open. \Box

Proposition 3.1.7. Let E be a locally convex topological vector space. Then any weak neighbourhood of 0 in E contains a linear subspace of E of finite codimension. Likewise, any weak-* neighbourhood of 0 in E^* contains a linear subspace of E^* of finite codimension.

3.2 Bidual

Proposition 3.2.1. Let E be a locally convex topological vector space. Then the map:

$$\delta: \begin{vmatrix} E \longrightarrow (E^*, \sigma (E^*, E))^* \\ x \longmapsto \delta_x: \begin{vmatrix} E^* \longrightarrow \mathbb{K} \\ f \longmapsto f(x) \end{vmatrix}$$

is a linear isomorphism.

Proof. δ is a well-defined, injective, linear map. Let us prove the surjectivity of δ . Let $\varphi \in (E^*, \sigma(E^*, E))^*$. Since φ is weakly-* continuous, there exist $x_1, \ldots, x_N \in E$ and $C \in \mathbb{R}_+$ s.t.

$$\forall f \in E, |\varphi(f)| \le C \max_{1 \le j \le N} q_{x_j}(f).$$

In particular $\bigcap_{j=1}^{N} \operatorname{Ker} \delta_{x_j} \subseteq \operatorname{Ker} \varphi$, which implies that $\varphi \in \operatorname{Vect} (\delta_{x_1}, \ldots, \delta_{x_N}) \subseteq \operatorname{Im} \delta$.

Remark 3.2.2. If *E* is a normed space, its bidual is defined as $E^{**} = (E^*, \|\cdot\|_*)^*$; it is different from $(E^*, \sigma(E^*, E))^*$.

Proposition 3.2.3. If E is a normed space, the map $\delta : E \to E^{**}$ defined as in Proposition 3.2.1 is a linear isometric embedding (but δ may not be surjective), i.e. $\forall x \in E$, $\|\delta(x)\|_{**} = \|x\|$.

3.3 Weak or weak-* convergence of sequences

Proposition 3.3.1. Let E be a normed space. Let $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$, $x\in E$, $(f_n)_{n\in\mathbb{N}}\in (E^*)^{\mathbb{N}}$, $f\in E^*$.

(i) If $x_n \rightharpoonup x$, then $(||x_n||)_{n \in \mathbb{N}}$ is bounded and:

$$\|x\| \le \liminf_{n \to +\infty} \|x_n\|.$$

(ii) If $f_n \stackrel{*}{\rightharpoonup} f$, then $(||f_n||_*)_{n \in \mathbb{N}}$ is bounded and:

$$\|f\|_* \leq \liminf_{n \to +\infty} \|f_n\|_*.$$

Proof. (ii) For every $x \in E$, $(f_n(x))_{n \in \mathbb{N}}$ is bounded. By the Uniform Boundedness Principle (Corollary 1.2.6), $(||f_n||_*)_{n \in \mathbb{N}}$ is bounded (because $(E^*, ||\cdot||_*)$ is a Banach space). The inequality can be obtained by taking the lim inf in $\forall x \in E$, $\forall n \in \mathbb{N}$, $|f_n(x)| \leq ||x|| ||f_n||_*$. (i) Apply (ii) to the space $F = (E^*, ||\cdot||_*)$ (hence $F^* = E^{**}$) and to the sequence $(\delta_{x_n})_{n \in \mathbb{N}} \in (E^{**})^{\mathbb{N}}$. We have $\forall f \in E^*, \delta_{x_n}(f) = f(x_n) \to f(x) = \delta_x(f)$, so $\delta_{x_n} \stackrel{*}{\rightharpoonup} \delta_x$. Therefore, $(||\delta_{x_n}||_{**})_{n \in \mathbb{N}}$ is bounded and $||\delta_x||_{**} \leq \liminf_{n \to +\infty} ||\delta_{x_n}||_{**}$. This provides the desired result since $x \mapsto \delta_x$ is an isometric embedding.

Proposition 3.3.2. Let E be a normed space. Let $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$, $x\in E$, $(f_n)_{n\in\mathbb{N}}\in (E^*)^{\mathbb{N}}$, $f\in E^*$.

- (i) If $x_n \to x$ and $f_n \stackrel{*}{\rightharpoonup} f$, then $f_n(x_n) \to f(x)$.
- (ii) If $x_n \rightarrow x$ and $f_n \rightarrow f$, then $f_n(x_n) \rightarrow f(x)$.

Example 3.3.3. Consider the Hilbert space $H = \ell^2(\mathbb{N})$. For $n \in \mathbb{N}$, define $e_n = (\delta_{np})_{p \in \mathbb{N}} \in H$ and $f_n = \langle e_n, \cdot \rangle$. Then $f_n \stackrel{*}{\rightharpoonup} 0$, $e_n \rightharpoonup 0$ but $f_n(e_n) = 1 \not \rightarrow 0$.

3.4 Weak-* compactness

Theorem 3.4.1 (Banach-Alaoglu Theorem). Let *E* be a normed space. Then the unit ball of $(E^*, \|\cdot\|_*)$ is weakly-* compact.

Proof. View E^* as a subspace of \mathbb{K}^E , endowed with the product topology, which is locally convex. It induces the weak-* topology on E^* . Write $B_* = \{f \in E^*, \|f\|_* \leq 1\}$. It is enough to prove that B_* is compact in \mathbb{K}^E . If $\operatorname{Lin}_{\mathbb{K}}(E, \mathbb{K})$ denotes the set of linear forms $E \to \mathbb{K}$, we have:

$$B_* = \operatorname{Lin}_{\mathbb{K}} (E, \mathbb{K}) \cap \underbrace{\bigcap_{x \in E} \left\{ \varphi \in \mathbb{K}^E, \, |\varphi(x)| \le ||x|| \right\}}_{K}.$$

Since $K = \prod_{x \in E} \{y \in \mathbb{K}, |y| \leq ||x||\}$, K is compact according to Tychonoff's Theorem. And the space $\operatorname{Lin}_{\mathbb{K}}(E,\mathbb{K})$ is closed in \mathbb{K}^{E} , so B_{*} is compact in \mathbb{K}^{E} , i.e. weakly-* compact.

Remark 3.4.2. If *E* has infinite dimension, then Riesz's Theorem states that the unit ball of $(E^*, \|\cdot\|_*)$ is never compact for the normed topology of E^* .

Remark 3.4.3. In order for the Banach-Alaoglu Theorem to be useful, we want to be able to extract convergent sequences. For this to be possible, we need $(B_*, \sigma(E^*, E))$ to be metrisable.

Theorem 3.4.4. Let E be a Banach space. If $B_* = \{f \in E^*, \|f\|_* \leq 1\}$, then $(B_*, \sigma(E^*, E))$ is metrisable iff E is separable.

Proof. (\Leftarrow) Assume that *E* is separable and consider a dense sequence $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$. For $n\in\mathbb{N}$, define:

$$x'_n = \begin{cases} x_n & \text{if } \|x_n\| \le 1\\ \frac{x_n}{\|x_n\|} & \text{otherwise} \end{cases}$$

Then $(x'_n)_{n\in\mathbb{N}} \in B^{\mathbb{N}}$, and $(x'_n)_{n\in\mathbb{N}}$ is dense in B, where $B = \{x \in E, \|x\| \le 1\}$. Now define a distance d on E^* by:

$$\forall (\varphi, \psi) \in (E^*)^2, \ d(\varphi, \psi) = \sum_{n \in \mathbb{N}} 2^{-n} \left| \varphi(x_n) - \psi(x_n) \right| \le 2 \left\| \varphi - \psi \right\|_*.$$

The topology \mathcal{T}_d defined by d on E^* is the coarsest topology s.t. $\delta_{x_n} : \varphi \in E^* \mapsto \varphi(x_n) \in \mathbb{R}$ is continuous for every $n \in \mathbb{N}$. In particular, $\mathcal{T}_d \subseteq \sigma(E^*, E)$ (because $\sigma(E^*, E)$ makes δ_x continuous for all $x \in E$). Now consider the topology induced by \mathcal{T}_d on B_* . It is coarser than $\sigma(E^*, E)$. To show that it is finer than $\sigma(E^*, E)$, it is enough to prove that \mathcal{T}_d makes $\delta_{x|B_*}$ continuous for all $x \in E$. Let $x \in B$. For $\varepsilon > 0$, there exists $n \in \mathbb{N}$ s.t. $||x'_n - x|| < \varepsilon$. Hence, for every $(\varphi, \psi) \in (B_*)^2$ s.t. $d(\varphi, \psi) \leq 2^{-n}\varepsilon$, we have:

$$|\varphi(x) - \psi(x)| \le \|\varphi\|_* \|x - x'_n\| + \|\psi\|_* \|x - x'_n\| + 2^n d(\varphi, \psi) \le 3\varepsilon.$$

This proves that $\delta_{x|B_*}$ is continuous (for all $x \in B$, hence for all $x \in E$) when B_* is equipped with d. (\Rightarrow) Suppose that $(B_*, \sigma(E^*, E))$ is metrisable; in particular, 0 admits a countable basis of weak-* neighbourhoods $(\mathcal{V}_n)_{n\in\mathbb{N}}$. For $n \in \mathbb{N}$, \mathcal{V}_n contains a finite intersection of kernels of continuous linear forms on $(E^*, \sigma(E^*, E))$. According to Proposition 3.2.1, these linear forms can be written as δ_x for $x \in E$; hence there exists a finite set $A_n \subseteq E$ s.t.

$$\mathcal{V}_n \supseteq \bigcap_{x \in A_n} \left\{ f \in B^*, \ f(x) = 0 \right\}.$$

Let $A = \bigcup_{n \in \mathbb{N}} A_n$; A is a countable subset of E. Using Corollary 2.4.3, let us show that $\operatorname{Vect}(A)$ is dense in E. Let $\varphi \in E^*$ (one may assume that $\varphi \in B_*$) s.t. $\varphi_{|A|} = 0$; then:

$$\varphi \in \bigcap_{n \in \mathbb{N}} \bigcap_{x \in A_n} \{ f \in B^*, \ f(x) = 0 \} \subseteq \bigcap_{n \in \mathbb{N}} \mathcal{V}_n = \{ 0 \}$$

Therefore, $\operatorname{Vect}(A)$ is dense in E, so $\operatorname{Vect}_{\mathbb{Q}}(A)$ is countable and dense in E.

Remark 3.4.5. Even if E is a separable Banach space, $(E^*, \sigma(E^*, E))$ may not be metrisable.

Corollary 3.4.6. Let *E* be a separable Banach space. If $(f_n)_{n \in \mathbb{N}}$ is a bounded sequence in $(E^*, \|\cdot\|_*)$, then it admits a weakly-* converging subsequence.

Example 3.4.7.

- (i) If Ω is an open subset of \mathbb{R}^d and $p \in [1, +\infty[$, then $L^p(\mathbb{R})$ is a separable Banach space.
- (ii) If $p \in [1, +\infty]$, then $\ell^p(\mathbb{N})$ is a separable Banach space.
- (iii) The space $c_0 = \{a \in \mathbb{R}^{\mathbb{N}}, \lim_{+\infty} a = 0\}$ is a separable Banach space.

3.5 Reflexivity

Definition 3.5.1 (Reflexive space). Let *E* be a Banach space. The space E^* has two topologies: the weak-* topology and the normed topology. According to Proposition 3.2.1, we have an isomorphism $(E^*, \sigma(E^*, E))^* \simeq E$. Recall that $E^{**} = (E^*, \|\cdot\|_*)^*$ by definition. In general, the map:

$$\delta: \begin{vmatrix} E \longrightarrow E^{**} \\ x \longmapsto \delta_x : \begin{vmatrix} E^* \longrightarrow \mathbb{K} \\ f \longmapsto f(x) \end{vmatrix}$$

is a linear isometric embedding, called the canonical injection. The space E is said to be reflexive if δ is an isomorphism.

Example 3.5.2.

- (i) If Ω is an open subset of \mathbb{R}^d and $p \in [1, +\infty[$, then $L^p(\mathbb{R})$ is a reflexive space.
- (ii) If $p \in [1, +\infty)$, then $\ell^p(\mathbb{N})$ is a reflexive.
- (iii) For any nonempty open set $\Omega \subseteq \mathbb{R}^d$, $L^1(\Omega)$ and $L^{\infty}(\Omega)$ are not reflexive. Likewise, $\ell^1(\mathbb{N})$ and $\ell^{\infty}(\mathbb{N})$ are not reflexive.

Lemma 3.5.3. Let E be a real locally convex topological vector space. Let C be a convex subset of E.

- (i) C is closed iff C is an (arbitrary) intersection of closed half-spaces.
- (ii) \overline{C} is the intersection of all closed half-spaces containing C.

Lemma 3.5.4 (Goldstine's Lemma). Let E be a real Banach space. Then the $\sigma(E^{**}, E^*)$ -closure of $\delta(B_E)$, where $B_E = \{x \in E, \|x\| \le 1\}$, is $B_{E^{**}} = \{y \in E^{**}, \|y\|_{**} \le 1\}$.

Proof. Apply Lemma 3.5.3 to $\delta(B_E)$ for $\sigma(E^{**}, E^*)$. For $f \in E^*$ and $\alpha \in \mathbb{R}$, set $H_{f,\alpha} = \{\varphi \in E^{**}, \varphi(f) \leq \alpha\}$. Note that $\delta(B_E) \subseteq H_{f,\alpha}$ iff $||f||_* \leq \alpha$. Hence:

$$\overline{\delta(B_E)}^{w*} = \bigcap_{\substack{(f,\alpha) \in E^* \times \mathbb{R} \\ \delta(B_E) \subseteq H_{f,\alpha}}} H_{f,\alpha} = \bigcap_{f \in B_{E^*}} H_{f,1} = B_{E^{**}}.$$

Remark 3.5.5. Let E be a Banach space. Then $\delta(B_E)$ is $\|\cdot\|_{**}$ -closed.

Theorem 3.5.6. A real Banach space E is reflexive iff $B_E = \{x \in E, \|x\| \le 1\}$ is weakly compact.

Proof. (\Rightarrow) If *E* is reflexive, then *E* is isometric to $(E^*, \|\cdot\|_*)^*$, so accoding to the Banach-Alaoglu Theorem (Theorem 3.4.1), $\delta(B_E)$ is $\sigma(E^{**}, E^*)$ -compact. But $\sigma(E^{**}, E^*) = \delta(\sigma(E, E^*))$, so B_E is $\sigma(E, E^*)$ -compact. (\Leftarrow) Suppose that B_E is weakly compact. Since the topology induced by $\sigma(E^{**}, E^*)$ on $\delta(E)$ is $\delta(\sigma(E, E^*))$, $\delta(B_E)$ is weakly-* compact, in particular weakly-* closed. By Goldstine's Lemma (Lemma 3.5.4), $\delta(B_E) = B_{E^{**}}$, so $\delta(E) = E^{**}$ by linearity.

3.6 Uniform convexity

Definition 3.6.1 (Uniform convexity). A normed space E is said to be uniformly convex iff:

$$\forall \varepsilon > 0, \sup_{\substack{x,y \in B_E \\ \|x-y\| \ge \varepsilon}} \left\| \frac{x+y}{2} \right\| < 1.$$

Example 3.6.2.

- (i) Hilbert spaces are uniformly convex because of the Parallelogram Identity.
- (ii) If Ω is an open subset of \mathbb{R}^d and $p \in [1, +\infty[$, then $L^p(\Omega)$ is uniformly convex.
- (iii) If $p \in [1, +\infty)$, then $\ell^p(\mathbb{N})$ is uniformly convex.
- (iv) For any nonempty open set $\Omega \subseteq \mathbb{R}^d$, $L^1(\Omega)$ and $L^{\infty}(\Omega)$ are not uniformly convex. Likewise, $\ell^1(\mathbb{N})$ and $\ell^{\infty}(\mathbb{N})$ are not uniformly convex.

Theorem 3.6.3 (Milman–Pettis Theorem). If E is a uniformly convex real Banach space, then E is reflexive.

Proof. Note that $\delta(E)$ is closed in $(E^{**}, \|\cdot\|_{**})$ because E is complete and δ is an isometric embedding. Hence, we have to prove that $\delta(E)$ is $\|\cdot\|_{**}$ -dense in E^{**} . By linearity, it suffices to prove that $\overline{\delta(B_E)}^{\|\cdot\|_{**}}$ contains the unit sphere of E^{**} . So let $\xi \in E^{**}$ with $\|\xi\|_{**} = 1$. Let $\varepsilon > 0$. Set $1 - \alpha = \sup_{\substack{x,y \in B_E \\ \|x-y\| \ge \varepsilon}} \left\| \frac{x+y}{2} \right\|$, with $\alpha > 0$ (because E is uniformly convex). By definition of $\|\cdot\|_{**}$, there exists $\eta \in E^{**}$ s.t.

 $1 - \alpha < \xi(\eta) \le 1$ and $\|\eta\|_* = 1$.

Define $V = \{\varphi \in E^{**}, \varphi(\eta) > 1 - \alpha\}$; V is a $\sigma(E^{**}, E^*)$ -open half-space of E^{**} containing ξ . In particular, V is a weak-* neighbourhood of ξ . By Goldstine's Lemma (Lemma 3.5.4), V meets $\delta(B_E)$: there exists $x \in B_E$ s.t. $\delta_x \in V \cap \delta(B_E)$. Now, note that if $y \in B_E$ is s.t. $\delta_y \in V \cap \delta(B_E)$, then $\eta(x) > 1 - \alpha$ and $\eta(y) > 1 - \alpha$, so:

$$1 - \alpha < \eta\left(\frac{x+y}{2}\right) \le \left\|\eta\right\|_* \left\|\frac{x+y}{2}\right\| = \left\|\frac{x+y}{2}\right\|.$$

By definition of α , we infer that $||y - x|| \leq \varepsilon$. In other words, $V \cap \delta(B_E) \subseteq \delta(x + \varepsilon \overline{B}_E)$. But $\delta(x + \varepsilon \overline{B}_E)$ is convex, $||\cdot||_{**}$ -closed, so it is $\sigma(E^{**}, E^*)$ -closed according to Proposition 3.1.6. Therefore, $\xi \in \overline{V \cap \delta(B_E)}^{w*} \subseteq \delta(x + \varepsilon \overline{B}_E)$, so $||\xi - \delta_x||_{**} \leq \varepsilon$. Hence, $\overline{\delta(B_E)}^{||\cdot||_{**}}$ contains the unit sphere of E^{**} .

3.7 Adjoint operators

Definition 3.7.1 (Adjoint operator). Let E and F be two locally convex topological vector spaces. If $T \in \mathcal{L}(E, F)$, define:

$$T^*: \begin{vmatrix} F^* \longrightarrow E^* \\ \ell \longmapsto \ell \circ T \end{vmatrix}$$

We have $T^* \in \mathcal{L}(F^*, E^*)$.

Proposition 3.7.2. Let E and F be two normed spaces. For any $T \in \mathcal{L}(E, F)$, the linear map $T^*: F^* \to E^*$ is continuous when F^* and E^* are equipped with their normed topologies (we already know that it is continuous when F^* and E^* are equipped with their weak-* topologies). Moreover, $||T^*||_* = ||T||$.

Proposition 3.7.3. Let E and F be two locally convex topological vector spaces. Let $T \in \mathcal{L}(E, F)$. Consider $T^{**} \in \mathcal{L}(E^{**}, F^{**})$, where $E^{**} = (E^*, \sigma(E^*, E))^*$ and $F^{**} = (F^*, \sigma(F^*, F))^*$. Then the following diagram is commutative:

In other words, for all $x \in E$, $T^{**}\delta_x = \delta_{Tx}$.

4 Theory of distributions

Notation 4.0.1. In what follows, Ω is a nonempty open subset of \mathbb{R}^d .

Notation 4.0.2. If K is a compact subset of Ω , we write $K \subseteq \Omega$.

4.1 Test functions

Definition 4.1.1 (Support of a function). Let $f : \Omega \to \mathbb{K}$ be a function. We define the support of f by:

$$\operatorname{Supp} f = \Omega \setminus \bigcup_{\substack{\mathcal{O} \text{ open in } \Omega \\ f_{|\mathcal{O}} = 0}} \mathcal{O}.$$

Supp f is a closed subset of Ω .

Definition 4.1.2 (Compactly supported function). A function $f : \Omega \to \mathbb{K}$ is said to be compactly supported if Supp f is compact.

Definition 4.1.3 (Test functions).

(i) If $K \Subset \Omega$, we define $\mathcal{D}_K(\Omega) = \{f \in \mathcal{C}^{\infty}(\Omega), \text{Supp } f \Subset K\}$. We equip $\mathcal{D}_K(\Omega)$ with the (countable) family $\left(\|\cdot\|_{N,K}\right)_{N \in \mathbb{N}}$ of semi-norms defined by:

$$\|f\|_{N,K} = \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| = N}} \|\partial^{\alpha} f\|_{L^{\infty}}.$$

 $\mathcal{D}_K(\Omega)$ is a Fréchet space.

(ii) We define the space of test functions $\mathcal{D}(\Omega) = \{f \in \mathcal{C}^{\infty}(\Omega), \text{ Supp } f \Subset \Omega\} = \bigcup_{K \Subset \Omega} \mathcal{D}_{K}(\Omega)$. We equip $\mathcal{D}(\Omega)$ with the finest topology s.t. for every $K \Subset \Omega$, the inclusion $\mathcal{D}_{K}(\Omega) \subseteq \mathcal{D}(\Omega)$ is continuous. Hence, $\mathcal{D}(\Omega)$ is a locally convex topological vector space (but not a Fréchet space).

Proposition 4.1.4. Let E be a locally convex topological vector space. If $f : \mathcal{D}(\Omega) \to E$ is a linear map, then the following assertions are equivalent:

- (i) $f: \mathcal{D}(\Omega) \to E$ is continuous.
- (ii) For every $K \Subset \Omega$, $f_{|\mathcal{D}_K(\Omega)} : \mathcal{D}_K(\Omega) \to E$ is continuous.

Proposition 4.1.5. For every $\omega \in \Omega$ and $0 < r < d(z, \partial \Omega)$, there exists a function $u \in \mathcal{D}(\Omega)$ s.t. $u \ge 0$ and $u_{|B(z,r)} = 1$. In particular, $\mathcal{D}(\Omega)$ is nontrivial.

Proof. Use the function
$$\varphi : t \in \mathbb{R} \mapsto \begin{cases} \exp\left(-\frac{1}{t(1-t)}\right) & \text{if } t \in]0,1[\\ 0 & \text{otherwise} \end{cases}$$
, which is \mathcal{C}^{∞} .

Proposition 4.1.6 (Partitions of unity). Let $\Gamma \subseteq \mathcal{P}(\mathbb{R}^d)$ be a collection of open subsets of \mathbb{R}^d . Set $\Omega = \bigcup_{\mathcal{O} \in \Gamma} \mathcal{O} \subseteq \mathbb{R}^d$. Then there exists a sequence $(\Psi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\Omega)^{\mathbb{N}}$ s.t.

- (i) $\forall n \in \mathbb{N}, \Psi_n \ge 0$,
- (ii) $\forall n \in \mathbb{N}, \exists \mathcal{O}_n \in \Gamma, \operatorname{Supp} \Psi_n \Subset \mathcal{O}_n$,
- (iii) $\sum_{n \in \mathbb{N}} \Psi_n = 1$ on Ω and the sum is locally finite.

We say that $(\Psi_n)_{n\in\mathbb{N}} \in \mathcal{D}(\Omega)^{\mathbb{N}}$ is a partition of unity subordinated to Γ .

Proof. First step. For $m \in \mathbb{N}^*$, let $K_m = \left\{x \in \Omega, d(x, \partial\Omega) \geq \frac{1}{m} \text{ and } \|x\| \leq m\right\}$. Hence $K_m \Subset K_{m+1} \Subset \Omega$ and $\Omega = \bigcup_{m \in \mathbb{N}^*} K_m$. Given $m \in \mathbb{N}^*$, for all $x \in K_m$, there exists $\omega_x \in \Gamma$ s.t. $x \in \omega_x$; choose $r_x > 0$ s.t. $x \in B(x, 2r_x) \subseteq \omega_x$ and set $V_x = B(x, r_x)$: thus $x \in \overline{V}_x \Subset \omega_x$. Hence, the compact set K_m is covered by $(V_x)_{x \in K_m}$, so there exists a finite subset $F_m \subseteq K_m$ s.t. $(V_x)_{x \in F_m}$ covers K_m . Now set $F = \bigcup_{m \in \mathbb{N}^*} F_m$; F is countable so we may write $F = \{x_j, j \in \mathbb{N}\}$. Thus $\Omega = \bigcup_{j \in \mathbb{N}} V_{x_j}$. Now for any $j \in \mathbb{N}$, using Proposition 4.1.5, there exists $\varphi_j \in \mathcal{D}(\Omega)$ s.t. $\operatorname{Supp} \varphi_j \Subset B\left(x_j, \frac{3}{2}r_{x_j}\right) \subseteq \omega_{x_j}$, $0 \leq \varphi_j \leq 1$ and $\varphi_j|_{V_{x_j}} = 1$. Second step. For $j \in \mathbb{N}$, define $\Psi_j = \varphi_j \prod_{k=0}^{j-1} (1 - \varphi_k)$. We have $0 \leq \Psi_j \leq 1$, $\operatorname{Supp} \Psi_j \Subset \omega_{x_j}$ and $\sum_{j \in \mathbb{N}} \Psi_j = 1$ (with the sum locally finite).

4.2 Distributions

Definition 4.2.1 (Distributions). We denote by $\mathcal{D}'(\Omega)$ the dual space of $\mathcal{D}(\Omega)$, equipped with the weak-* topology. $\mathcal{D}'(\Omega)$ is called the space of distributions on Ω .

Remark 4.2.2. Let $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ be a linear form. Then Λ is continuous iff

 $\forall K \Subset \Omega, \ \exists N_K \in \mathbb{N}, \ \exists C_K < +\infty, \ \forall \varphi \in \mathcal{D}(\Omega), \ \operatorname{Supp} \varphi \subseteq K \Longrightarrow |\langle \Lambda, \varphi \rangle| \leq C_K \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N_K}} \|\partial^{\alpha} \varphi\|_{\infty}.$

If N_K can be chosen independent of K, we say that Λ is of order less than or equal to N.

Proposition 4.2.3. Let $(\Lambda_n)_{n \in \mathbb{N}} \in \mathcal{D}'(\Omega)^{\mathbb{N}}$; let $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ be a linear form s.t.

$$\forall \varphi \in \mathcal{D}(\Omega), \ \langle \Lambda_n, \varphi \rangle \to \langle \Lambda, \varphi \rangle.$$

Then $\Lambda \in \mathcal{D}'(\Omega)$ (i.e. Λ is continuous) and $\Lambda_n \stackrel{*}{\rightharpoonup} \Lambda$.

Proof. Use the Uniform Boundedness Principle (Corollary 1.2.6).

Remark 4.2.4. Distributions of order 0 correspond to continuous linear forms on the space of continuous functions with compact support, i.e. to locally finite measures on Ω .

Example 4.2.5.

- (i) If μ is a locally finite measure on Ω , then $\Lambda_{\mu} : \varphi \in \mathcal{D}(\Omega) \longmapsto \int_{\Omega} \varphi \, d\mu$ is a distribution.
- (ii) In particular, if $a \in \Omega$, then the Dirac mass $\delta_a : \varphi \in \mathcal{D}(\Omega) \mapsto \varphi(a)$ is a distribution.
- (iii) If $f \in L^1_{\text{loc}}(\Omega)$, then $\Lambda_f : \varphi \in \mathcal{D}(\Omega) \longrightarrow \int_{\Omega} f\varphi$ is a distribution, sometimes simply denoted by f.

4.3 Operations on distributions

Remark 4.3.1. Given an operator $T \in \mathcal{L}(\mathcal{D}(\Omega))$, we have its adjoint $T^* \in \mathcal{L}(\mathcal{D}'(\Omega))$.

Definition 4.3.2 (Multiplication by a function). If $\theta \in C^{\infty}(\Omega)$, we consider:

 $M_{\theta}:\varphi\in\mathcal{D}\left(\Omega\right)\longmapsto\theta\varphi\in\mathcal{D}\left(\Omega\right).$

We have: $\forall f \in L^1_{loc}(\Omega)$, $M^*_{\theta}\Lambda_f = \Lambda_{M_{\theta}f}$. Hence, M^*_{θ} will be called multiplication by θ , and we will write $\theta\Lambda$ instead of $M^*_{\theta}\Lambda$.

Definition 4.3.3 (Differentiation). If $j \in \{1, \ldots, d\}$, we consider:

$$\partial_{j}: \varphi \in \mathcal{D}(\Omega) \longmapsto \frac{\partial \varphi}{\partial x_{j}} \in \mathcal{D}(\Omega).$$

We have: $\forall f \in \mathcal{C}^1(\Omega)$, $\partial_j^* \Lambda_f = -\Lambda_{\partial_j f}$. Hence, we will write $-\partial_j \Lambda$ instead of $\partial_j^* \Lambda$. More generally, if $\alpha \in \mathbb{N}^d$ is a multi-index, we write $\partial^{\alpha} \Lambda = (-1)^{|\alpha|} (\partial^{\alpha})^* \Lambda$.

Proposition 4.3.4 (Leibniz's Formula). Let $\Lambda \in \mathcal{D}'(\Omega)$ and $\theta \in \mathcal{C}^{\infty}(\Omega)$. For any multi-index $\alpha \in \mathbb{N}^d$, we have:

$$\partial^{\alpha}\left(\theta\Lambda\right) = \sum_{0 \leq \beta \leq \alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \left(\partial^{\beta}\theta\right) \left(\partial^{\alpha-\beta}\Lambda\right).$$

4.4 Support of a distribution

Definition 4.4.1 (Extension operator). If ω is an open subset of Ω , we consider:

$$\operatorname{Ext}_{\omega}: \theta \in \mathcal{D}(\omega) \longmapsto \theta \mathbb{1}_{\omega} \in \mathcal{D}(\Omega).$$

We have: $\forall f \in L^1_{\text{loc}}(\Omega)$, $\text{Ext}^*_{\omega} \Lambda_f = \Lambda_{f_{|\omega}}$. Hence, Ext^*_{ω} will be called restriction to ω and we will write $\Lambda_{|\omega}$ instead of $\text{Ext}^*_{\omega} \Lambda$.

Vocabulary 4.4.2. A distribution $\Lambda \in \mathcal{D}(\Omega)$ is said to vanish over an open subset $\omega \subseteq \Omega$ if $\Lambda_{|\omega} = 0$, *i.e.*

$$\forall \varphi \in \mathcal{D}(\Omega), \operatorname{Supp} \varphi \Subset \omega \Longrightarrow \langle \Lambda, \varphi \rangle = 0.$$

Lemma 4.4.3. Let Γ be a collection of open subsets of Ω ; consider $U = \bigcup_{\omega \in \Gamma} \omega$. Let $\Lambda \in \mathcal{D}'(\Omega)$ s.t. $\forall \omega \in \Gamma, \Lambda_{|\omega} = 0$. Then $\Lambda_{|U} = 0$.

Proof. Let $\varphi \in \mathcal{D}(\Omega)$ s.t. Supp $\varphi \Subset U$. Since Supp φ is compact, there exists a finite subset $J \subseteq \Gamma$ s.t. Supp $\varphi \Subset \bigcup_{\omega \in J} \omega$. Now, consider a partition of unity $(\theta_n)_{n \in \mathbb{N}}$ subordinated to J (c.f. Proposition 4.1.6). For $n \in \mathbb{N}$, there exists $\omega_n \in J$ s.t. Supp $\theta_n \Subset \omega_n$. Therefore:

$$\langle \Lambda, \varphi \rangle = \left\langle \Lambda, \sum_{n \in \mathbb{N}} \theta_n \varphi \right\rangle = \sum_{n \in \mathbb{N}} \langle \Lambda, \theta_n \varphi \rangle = \sum_{n \in \mathbb{N}} \left\langle \Lambda_{|\omega_n}, \theta_n \varphi \right\rangle = 0.$$

Definition 4.4.4 (Support of a distribution). Let $\Lambda \in \mathcal{D}'(\Omega)$. We define the support of Λ by:

$$\operatorname{Supp} \Lambda = \Omega \setminus \bigcup_{\substack{\omega \text{ open in } \Omega \\ f_{|\omega} = 0}} \omega.$$

Supp Λ is a closed subset of Ω . Moreover, by Lemma 4.4.3, $\Lambda_{|\Omega \setminus \text{Supp }\Lambda} = 0$.

Definition 4.4.5 (Compactly supported distribution). A distribution $\Lambda \in \mathcal{D}'(\Omega)$ is said to be compactly supported if Supp Λ is compact. We write $\mathcal{E}'(\Omega)$ for the space of compactly supported distributions over Ω .

Theorem 4.4.6. If $\Lambda \in \mathcal{E}'(\Omega)$ is a compactly supported distribution, then:

$$\exists K \Subset \Omega, \ \exists N \in \mathbb{N}, \ \exists C \in \mathbb{R}_+, \ \forall \varphi \in \mathcal{D}\left(\Omega\right), \ |\langle \Lambda, \varphi \rangle| \leq C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N}} \|\partial^{\alpha} \varphi\|_{\overset{\infty}{K}}.$$

In particular, Λ has finite order (because $\|\cdot\|_{\mathcal{K}} \leq \|\cdot\|_{\Omega}$).

Proof. Choose $\varepsilon > 0$ s.t. Supp $\Lambda + \overline{B}(0, \varepsilon) \in \Omega$. There exists $\Psi \in \mathcal{D}(\Omega)$ s.t. $0 \leq \Psi \leq 1$ and $\Psi_{|\text{Supp }\Lambda + \overline{B}(0,\varepsilon)} = 1$. Let $K = \text{Supp }\Psi \in \Omega$. Since $\Lambda_{|\mathcal{D}_K(\Omega)}$ is continuous, there exist $C \in \mathbb{R}_+$ and $N \in \mathbb{N}$ s.t.

$$\forall \theta \in \mathcal{D}(\Omega), \, \operatorname{Supp} \theta \subseteq K \Longrightarrow |\langle \Lambda, \theta \rangle| \leq C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N}} \|\partial^{\alpha} \theta\|_{L^{\infty}}.$$

Now, if $\varphi \in \mathcal{D}(\Omega)$, write $\varphi = \Psi \varphi + (1 - \Psi) \varphi$. Note that $\operatorname{Supp}((1 - \Psi) \varphi) \subseteq \operatorname{Supp}(1 - \Psi) \subseteq \Omega \setminus \operatorname{Supp} \Lambda$ so $\langle \Lambda, (1 - \Psi) \varphi \rangle = 0$. Thus:

$$|\langle \Lambda, \varphi \rangle| = |\langle \Lambda, \Psi \varphi \rangle| \le C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \le N}} \|\partial^{\alpha} (\Psi \varphi)\|_{L^{\infty}} \le C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \le N}} \|\partial^{\alpha} \varphi\|_{K}^{\infty}.$$

Corollary 4.4.7. A compactly supported distribution $\Lambda \in \mathcal{E}'(\Omega)$ induces a unique continuous linear form over $\mathcal{C}^{\infty}(\Omega)$ (where the topology of $\mathcal{C}^{\infty}(\Omega)$ is given by the family $\left(\|\cdot\|_{N,K}\right)_{\substack{N \in \mathbb{N} \\ K \in \Omega}}$ of semi-norms defined by $\|\varphi\|_{N,K} = \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N}} \|\partial^{\alpha}\varphi\|_{\widetilde{K}}^{\infty}$).

Proof. Note that $\mathcal{D}(\Omega)$ is dense in $\mathcal{C}^{\infty}(\Omega)$, and that elements of $\mathcal{E}'(\Omega)$ are $\mathcal{C}^{\infty}(\Omega)$ -continuous over the dense subspace $\mathcal{D}(\Omega)$.

Remark 4.4.8. Conversely, if $\Lambda \in \mathcal{C}^{\infty}(\Omega)^*$, then $\Lambda_{|\mathcal{D}(\Omega)} \in \mathcal{D}'(\Omega)$.

Notation 4.4.9. We shall write $\mathcal{E}(\Omega) = \mathcal{C}^{\infty}(\Omega)$. This notation is coherent with the fact that $\mathcal{E}'(\Omega) = \mathcal{E}(\Omega)^*$.

Proposition 4.4.10. Fix $a \in \Omega$ and write $\delta_a \in \mathcal{E}'(\Omega)$ for the Dirac mass at a. If $\Lambda \in \mathcal{D}'(\Omega)$ is s.t. Supp $\Lambda \subseteq \{a\}$, then $\Lambda \in \text{Vect}(\partial^{\alpha} \delta_a, \alpha \in \mathbb{N}^d)$.

Proof. By a standard algebraic argument, it is enough to prove the existence of $N \in \mathbb{N}$ s.t.

$$\operatorname{Ker} \Lambda \supseteq \bigcap_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \le N}} \operatorname{Ker} \partial^{\alpha} \delta_a.$$

Let $\Psi \in \mathcal{D}(\mathbb{R}^d)$ s.t. $0 \leq \Psi \leq 1$ and $\psi_{|B(0,1)} = 1$. Define $\Psi_n : x \in \mathbb{R}^d \mapsto \Psi(n(x-a))$. Now consider a closed ball $\overline{B} \in \Omega$ centred at a. We have $\operatorname{Supp} \Psi_n = a + \frac{1}{n} \operatorname{Supp} \Psi \subseteq \overline{B}$ for n larger than or equal to some $n_0 \in \mathbb{N}^*$. By continuity of Λ , there exist $C \in \mathbb{R}_+$, $N \in \mathbb{N}$ s.t.

$$\forall \theta \in \mathcal{D}(\Omega) , \operatorname{Supp} \theta \subseteq \overline{B} \Longrightarrow |\langle \Lambda, \theta \rangle| \leq C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N}} \|\partial^{\alpha} \theta\|_{L^{\infty}}.$$

If $\varphi \in \mathcal{D}(\Omega)$, then $\operatorname{Supp}(\Psi_n \varphi) \subseteq \operatorname{Supp} \Psi_n \subseteq \overline{B}$ for $n \ge n_0$. Therefore:

$$\forall \varphi \in \mathcal{D}(\Omega), \ \forall n \ge n_0, \ |\langle \Lambda, \Psi_n \varphi \rangle| \le C \max_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \le N}} \|\partial^{\alpha} (\Psi_n \varphi)\|_{L^{\infty}}.$$

Now, let $\varphi \in \bigcap_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| \leq N}} \operatorname{Ker} \partial^{\alpha} \delta_a$, i.e. $|\alpha| \leq N \Longrightarrow \partial^{\alpha} \varphi(a) = 0$. By Taylor's formula, $\partial^{\alpha} \varphi(x) = \mathcal{O}_a\left(|x-a|^{N+1-\alpha}\right)$ if $|\alpha| \leq N$. By Leibniz's formula, we obtain $|\partial^{\alpha}(\Psi_n \varphi)(x)| \leq C' n^{|\alpha|-N-1}$ for some $C' \in \mathbb{R}_+$. Therefore, there is a constant $C'' \in \mathbb{R}_+$ s.t. $|\langle \Lambda, \Psi_n \varphi \rangle| \leq \frac{C''}{n}$ for all $n \geq n_0$. Now, for $n \geq n_0$, Supp $(\varphi - \Psi_n \varphi) \cap \operatorname{Supp} \Lambda = \emptyset$, so $|\langle \Lambda, \varphi \rangle| = |\langle \Lambda, \Psi_n \varphi \rangle| \leq \frac{C''}{n}$. By making $n \to +\infty$, we obtain $\langle \Lambda, \varphi \rangle = 0$, i.e. $\varphi \in \operatorname{Ker} \Lambda$ as wanted. \Box

4.5 Assembling distributions

Proposition 4.5.1. Let Ω_1, Ω_2 be two open subsets of \mathbb{R}^d . Let $\Lambda_1 \in \mathcal{D}'(\Omega_1), \Lambda_2 \in \mathcal{D}'(\Omega_2)$ and assume that:

 $\Lambda_{1|\Omega_1\cap\Omega_2} = \Lambda_{2|\Omega_1\cap\Omega_2}.$

Then there exists a unique distribution $\Lambda \in \mathcal{D}'(\Omega_1 \cup \Omega_2)$ s.t. $\Lambda_{|\Omega_1|} = \Lambda_1$ and $\Lambda_{|\Omega_2|} = \Lambda_2$.

Proof. Uniqueness. Assume that Λ exists. Let $\varphi \in \mathcal{D}(\Omega_1 \cup \Omega_2)$. Note that there exist $\Psi_1, \Psi_2 \in \mathcal{D}(\Omega_1 \cup \Omega_2)$ s.t. Supp $\Psi_1 \Subset \Omega_1$, Supp $\Psi_2 \Subset \Omega_2$ and $\Psi_1 + \Psi_2 = 1$ on Supp φ . Therefore:

$$\langle \Lambda, \varphi \rangle = \langle \Lambda, (\Psi_1 + \Psi_2) \varphi \rangle = \langle \Lambda_1, \Psi_1 \varphi \rangle + \langle \Lambda_2, \Psi_2 \varphi \rangle.$$
(*)

This proves the uniqueness. *Existence*. Let us prove that the right-hand side of (*) does not depend on the choice of (Ψ_1, Ψ_2) . Let (Ψ'_1, Ψ'_2) be another pair satisfying the same conditions. Then:

$$\left(\langle \Lambda_1, \Psi_1'\varphi \rangle + \langle \Lambda_2, \Psi_2'\varphi \rangle\right) - \left(\langle \Lambda_1, \Psi_1\varphi \rangle + \langle \Lambda_2, \Psi_2\varphi \rangle\right) = \langle \Lambda_1, \left(\Psi_1' - \Psi_1\right)\varphi \rangle - \langle \Lambda_2, \left(\Psi_2 - \Psi_2'\right)\varphi \rangle.$$

Now, consider $\theta = (\Psi'_1 - \Psi_1) \varphi = (\Psi_2 - \Psi'_2) \varphi$. We have $\operatorname{Supp} \theta \subseteq \Omega_1 \cap \Omega_2$. Since $\Lambda_{1|\Omega_1 \cap \Omega_2} = \Lambda_{2|\Omega_1 \cap \Omega_2}$, this gives $\langle \Lambda_1, \theta \rangle = \langle \Lambda_2, \theta \rangle$, therefore $\langle \Lambda_1, \Psi'_1 \varphi \rangle + \langle \Lambda_2, \Psi'_2 \varphi \rangle = \langle \Lambda_1, \Psi_1 \varphi \rangle + \langle \Lambda_2, \Psi_2 \varphi \rangle$ as wanted. Hence, we can define a linear form Λ using (*) as wanted. Let us check that Λ is continuous. Let $K \Subset \Omega_1 \cup \Omega_2$. There exist $\Psi_1, \Psi_2 \in \mathcal{D} (\Omega_1 \cup \Omega_2)$ s.t. $\operatorname{Supp} \Psi_1 \Subset \Omega_1$, $\operatorname{Supp} \Psi_2 \Subset \Omega_2$ and $\Psi_1 + \Psi_2 = 1$ on K. For any $\varphi \in \mathcal{D} (\Omega_1 \cup \Omega_2)$ with $\operatorname{Supp} \varphi \subseteq K$, we have $\langle \Lambda, \varphi \rangle = \langle \Lambda_1, \Psi_1 \varphi \rangle + \langle \Lambda_2, \Psi_2 \varphi \rangle$. Hence, we easily obtain the continuity of Λ from that of Λ_1 and Λ_2 . Now, let us check that $\Lambda_{|\Omega_1} = \Lambda_1$. Let $\varphi \in \mathcal{D} (\Omega_1 \cup \Omega_2)$ with $\operatorname{Supp} \varphi \subseteq \Omega_1$. If Ψ_1, Ψ_2 are chosen as in the construction of Λ , we have $\operatorname{Supp} (\Psi_2 \varphi) \subseteq \Omega_1 \cap \Omega_2$, so $\langle \Lambda, \varphi \rangle = \langle \Lambda_1, \Psi_1 \varphi \rangle + \langle \Lambda_2, \Psi_2 \varphi \rangle = \langle \Lambda_1, \varphi \rangle$, which proves that $\Lambda_{|\Omega_1} = \Lambda_1$. Likewise, $\Lambda_{|\Omega_2} = \Lambda_2$.

5 Convolution of distributions

5.1 Generalities

Lemma 5.1.1. If $\Gamma \in \mathcal{E}'(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$, then $\psi : y \in \mathbb{R}^d \longmapsto \langle \Gamma, \varphi(\cdot + y) \rangle$ is an element of $\mathcal{D}(\mathbb{R}^d)$.

Proof. We easily prove that $\operatorname{Supp} \psi \subseteq \operatorname{Supp} \varphi - \operatorname{Supp} \Gamma$, so ψ is compactly supported. For the continuity of ψ , we prove that, for all $y \in \mathbb{R}^d$, $|\psi(y+h) - \psi(y)| = \mathcal{O}_0(h)$, so ψ is continuous. Likewise, for $j \in \{1, \ldots, d\}$, we have $|\psi(y+h) - \psi(y) - \langle \Gamma, \frac{\partial \varphi}{\partial x_j} (\cdot + y) \rangle| = \mathcal{O}_0(h^2)$. By induction, ψ is \mathcal{C}^{∞} , and:

$$\forall \alpha \in \mathbb{N}^d, \, \forall y \in \mathbb{R}^d, \, \partial^{\alpha} \psi(y) = \langle \Gamma, \partial^{\alpha} \varphi \, (\cdot + y) \rangle \,.$$

Remark 5.1.2. With the notations above, one can also show that if Γ is a (not necessarily compactly supported) distribution, then ψ is an element of $\mathcal{C}^{\infty}(\mathbb{R}^d)$.

Definition 5.1.3 (Convolution). Let $\Lambda, \Gamma \in \mathcal{D}'(\mathbb{R}^d)$. Assume that Λ or Γ is compactly supported. Then we can define a linear map $\Lambda * \Gamma : \mathcal{D}(\mathbb{R}^d) \to \mathbb{K}$ as follows. For any test function $\varphi \in \mathcal{D}(\mathbb{R}^d)$, set $\psi : y \in \mathbb{R}^d \mapsto \langle \Gamma, \varphi(\cdot + y) \rangle$ and define:

$$\langle \Lambda * \Gamma, \varphi \rangle = \langle \Lambda, \psi \rangle$$

Then $\Lambda * \Gamma$ is a distribution.

Proposition 5.1.4. If $f, g \in L^1(\mathbb{R}^d)$ s.t. f or g is compactly supported, then $\Lambda_f * \Lambda_g = \Lambda_{f*g}$.

Proposition 5.1.5. Let $\delta_0 \in \mathcal{E}'(\mathbb{R}^d)$ be the Dirac mass at 0. Then:

$$\forall \Lambda \in \mathcal{D}\left(\mathbb{R}^d\right), \ \delta_0 * \Lambda = \Lambda = \Lambda * \delta_0.$$

 δ_0 is the unit of the convolution product.

Remark 5.1.6. If $\Lambda, \Gamma \in \mathcal{E}'(\mathbb{R}^d)$, then $\Lambda * \Gamma \in \mathcal{E}'(\mathbb{R}^d)$ and $\operatorname{Supp}(\Lambda * \Gamma) \subseteq \operatorname{Supp} \Lambda + \operatorname{Supp} \Gamma$. Therefore, $\mathcal{E}'(\mathbb{R}^d)$ is an algebra for *, and $\mathcal{D}'(\mathbb{R}^d)$ is an $\mathcal{E}'(\mathbb{R}^d)$ -module.

Proposition 5.1.7. If $\Lambda, \Gamma \in \mathcal{D}'(\mathbb{R}^d)$ s.t. Λ or Γ is compactly supported, then:

 $\forall \alpha \in \mathbb{N}^d, \ \partial^\alpha \left(\Lambda * \Gamma \right) = \left(\partial^\alpha \Lambda \right) * \Gamma = \Lambda * \left(\partial^\alpha \Gamma \right).$

In particular, the maps $\partial^{\alpha} : \mathcal{D}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ are $\mathcal{E}'(\mathbb{R}^d)$ -linear.

Proposition 5.1.8. If $\Gamma_1, \Gamma_2 \in \mathcal{E}'(\mathbb{R}^d)$ and $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$, then $(\Lambda * \Gamma_1) * \Gamma_2 = \Lambda * (\Gamma_1 * \Gamma_2)$.

5.2 Applications to partial differential equations

Vocabulary 5.2.1 (Linear PDE with constant coefficient). A linear partial differential equation (PDE) with constant coefficients is an equation of the form:

 $Lu = \Gamma$,

where $\Gamma \in \mathcal{D}'(\Omega)$ is a given distribution and L is of the form $L = \sum_{|\alpha| \leq N} c_{\alpha} \partial^{\alpha}$, with $N \in \mathbb{N}$ and $(c_{\alpha})_{\alpha \in \mathbb{N}^d} \in \mathbb{R}^{\mathbb{N}^d}$.

Definition 5.2.2 (Fundamental solution). A distribution $v \in \mathcal{D}'(\mathbb{R}^d)$ is said to be a fundamental solution for L if:

$$Lv = \delta_0,$$

where δ_0 is the Dirac mass at 0.

Proposition 5.2.3. If $v \in \mathcal{D}'(\mathbb{R}^d)$ is a fundamental solution for L, then for any $\Gamma \in \mathcal{E}'(\mathbb{R}^d)$, the distribution $(v * \Gamma)$ satisfies $L(v * \Gamma) = \Gamma$.

Example 5.2.4.

- (i) If d = 1 and $L = \frac{d}{dx}$, then Heaviside's function $\mathbb{1}_{\mathbb{R}_+}$ is a fundamental solution for L.
- (ii) If $d \ge 2$ and $L = \Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}$, we have a fundamental solution $E \in L^1_{\text{loc}}(\mathbb{R}^d)$ for L given by:

$$E(x) = \begin{cases} -\frac{1}{2\pi} \ln |x| & \text{if } d = 2\\ \frac{1}{d(d-2)V_d} |x|^{2-d} & \text{if } d > 2 \end{cases},$$

where V_d is the volume of the unit ball of \mathbb{R}^d . Therefore, if f is a compactly supported C^2 function, then (E * f) is also C^2 , so (E * f) is a solution of $\Delta u = f$ in the ordinary sense.

5.3 The Schwartz class

Definition 5.3.1 (Schwartz class). A function $f \in C^{\infty}(\mathbb{R}^d, \mathbb{K})$ is said to have rapid decay if one the three following equivalent conditions is satisfied:

(i) $\forall (\alpha, \beta) \in \left(\mathbb{N}^d\right)^2$, $\sup_{x \in \mathbb{R}^d} \left| x^{\alpha} \partial^{\beta} f(x) \right| < +\infty$.

(ii)
$$\forall (\alpha, \beta) \in \left(\mathbb{N}^d\right)^2$$
, $\lim_{|x| \to +\infty} x^{\alpha} \partial^{\beta} f(x) = 0$.

(iii)
$$\forall (\alpha, \beta) \in \left(\mathbb{N}^d\right)^2, \ \int_{\mathbb{R}^d} \left| x^\alpha \partial^\beta f(x) \right| \, \mathrm{d}x < +\infty$$

The Schwartz class if the space $\mathcal{S}(\mathbb{R}^d)$ of \mathcal{C}^{∞} functions with rapid decay. $\mathcal{S}(\mathbb{R}^d)$ is equipped with the countable family $(\|\cdot\|_N)_{N\in\mathbb{N}}$ of semi-norms defined by:

$$\left\|f\right\|_{N} = \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^{d}} \left(1 + |x|\right)^{N} \left|\partial^{\alpha} f(x)\right|.$$

Proposition 5.3.2. $\mathcal{S}(\mathbb{R}^d)$ is a Fréchet space.

Proof. It suffices to prove that $\mathcal{S}(\mathbb{R}^d)$ is complete, which comes from the fact that the space of continuous functions which converge to 0 at ∞ is complete, equipped with $\|\cdot\|_{L^{\infty}}$, and from the fact that if a sequence of functions is such that the derivatives of the functions all converge, then one can compute the derivatives of the limit of the sequence.

Vocabulary 5.3.3 (Slow growth). A function $f \in C^{\infty}(\mathbb{R}^d, \mathbb{K})$ is said to have slow growth if every derivative of f grows at most polynomially.

Proposition 5.3.4. Let $f \in \mathcal{S}(\mathbb{R}^d)$.

- (i) If $\alpha \in \mathbb{N}^d$, then $\partial^{\alpha} f \in \mathcal{S}(\mathbb{R}^d)$.
- (ii) If $g \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{K})$ has slow growth, then $gf \in \mathcal{S}(\mathbb{R}^d)$.

Moreover, these operators $f \mapsto \partial^{\alpha} f$ and $f \mapsto gf$ are linear continuous.

Proposition 5.3.5. We have the (continuous) inclusions:

$$\mathcal{D}\left(\mathbb{R}^{d}
ight)\subseteq\mathcal{S}\left(\mathbb{R}^{d}
ight)\subseteq\mathcal{E}\left(\mathbb{R}^{d}
ight).$$

Moreover, $\mathcal{D}\left(\mathbb{R}^{d}\right)$ is dense in $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

Proof. Choose a function $\psi \in \mathcal{D}(\mathbb{R}^d)$ s.t. $0 \leq \psi \leq 1$ and $\psi = 1$ on $B_1 = \{x \in \mathbb{R}^d, |x| \leq 1\}$. For $n \in \mathbb{N}^*$, define $\psi_n(x) = \psi\left(\frac{x}{n}\right)$; hence $\psi_n = 1$ on B_n . If $\varphi \in \mathcal{S}(\mathbb{R}^d)$, show that $\psi_n \varphi \to \varphi$ in $\mathcal{S}(\mathbb{R}^d)$, and $\psi_n \varphi \in \mathcal{D}(\mathbb{R}^d)$.

5.4 The Fourier transform

Definition 5.4.1 (Fourier transform in L^1). If $f \in L^1(\mathbb{R}^d)$, then the Fourier transform of f is defined by:

$$\mathcal{F}f(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-ix\xi} f(x) \, \mathrm{d}x$$

 \mathcal{F} is a continuous linear operator from $L^1(\mathbb{R}^d)$ to the space of continuous functions on \mathbb{R}^d which converge to 0 at ∞ .

Proposition 5.4.2.

(i) Let $f \in \mathcal{C}^N(\mathbb{R}^d)$ s.t. $\forall |\alpha| \le N$, $\partial^{\alpha} f \in L^1(\mathbb{R}^d)$. Then, for $|\alpha| \le N$: $\mathcal{F}(\partial^{\alpha} f)(\xi) = i^{|\alpha|} \xi^{\alpha} \mathcal{F} f(\xi)$.

(ii) Let
$$f \in L^1(\mathbb{R}^d)$$
 s.t. $\forall |\alpha| \le N$, $x^{\alpha} f \in L^1(\mathbb{R}^d)$. Then $\mathcal{F} f \in \mathcal{C}^N(\mathbb{R}^d)$ and, for $|\alpha| \le N$:
 $\partial^{\alpha} (\mathcal{F} f) (\xi) = (-1)^{|\alpha|} \mathcal{F} (x^{\alpha} f) (\xi)$.

(iii) If $f, g \in L^1(\mathbb{R}^d)$, then $(f * g) \in L^1(\mathbb{R}^d)$ and:

$$\mathcal{F}(f * g) = (2\pi)^{d/2} \left(\mathcal{F}f\right) \left(\mathcal{F}g\right).$$

(iv) Let $f \in L^1(\mathbb{R}^d)$ s.t. $\mathcal{F}f \in L^1(\mathbb{R}^d)$. Then:

 $f = \overline{\mathcal{F}}\mathcal{F}f,$

where $\overline{\mathcal{F}}$ is defined by $\overline{\mathcal{F}}g(x) = \overline{\mathcal{F}\overline{g}}(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{ix\xi} g(\xi) \, \mathrm{d}\xi.$

(v) $L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$, and $\mathcal{F}_{|L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)}$ is a linear isometry, so \mathcal{F} can be extended uniquely to a linear isometry $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, which satisfies $\mathcal{F}^{-1} = \overline{\mathcal{F}}$.

Proposition 5.4.3. The Schwartz class $\mathcal{S}(\mathbb{R}^d)$ is stable under the Fourier transform, and the operator $\mathcal{F} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ is an isomorphism.

5.5 Tempered distributions

Definition 5.5.1 (Tempered distributions). The dual space $\mathcal{S}'(\mathbb{R}^d) = \mathcal{S}(\mathbb{R}^d)^*$ is called the space of tempered distributions.

Proposition 5.5.2. Since $\mathcal{D}(\mathbb{R}^d) \subseteq \mathcal{S}(\mathbb{R}^d) \subseteq \mathcal{E}(\mathbb{R}^d)$, we have:

 $\mathcal{E}'\left(\mathbb{R}^d\right)\subseteq\mathcal{S}'\left(\mathbb{R}^d\right)\subseteq\mathcal{D}'\left(\mathbb{R}^d\right).$

Proposition 5.5.3. Let $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$. Then Λ is tempered (i.e. Λ can be extended to a continuus linear form $\mathcal{S}(\mathbb{R}^d) \to \mathbb{K}$) iff:

$$\exists N \in \mathbb{N}, \ \exists C \in \mathbb{R}_+, \ \forall \varphi \in \mathcal{D}\left(\mathbb{R}^d\right), \ |\langle \Lambda, \varphi \rangle| \leq C \, \|\varphi\|_N,$$

where $\|\cdot\|_N$ was defined in Definition 5.3.1.

Definition 5.5.4 (Differentiation and multiplication by a function with slow growth). Let $\Lambda \in \mathcal{S}'(\mathbb{R}^d)$ and $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

(i) If $\alpha \in \mathbb{N}^d$, then $\partial^{\alpha} \Lambda$ is defined by:

$$\langle \partial^{\alpha} \Lambda, \varphi \rangle = (-1)^{|\alpha|} \langle \Lambda, \partial^{\alpha} \varphi \rangle.$$

(ii) If $g \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{K})$ has slow growth, then $g\Lambda$ is defined by:

$$\langle g\Lambda,\varphi\rangle = \langle\Lambda,g\varphi\rangle$$
.

Hence, we define operators $\mathcal{S}'\left(\mathbb{R}^d\right) \to \mathcal{S}'\left(\mathbb{R}^d\right)$.

5.6 Fourier transform of tempered distributions

Definition 5.6.1 (Fourier transform of a tempered distribution). If $\Lambda \in \mathcal{S}'(\mathbb{R}^d)$, then $\mathcal{F}\Lambda$ is the tempered distribution defined by:

 $\langle \mathcal{F}\Lambda, \varphi \rangle = \langle \Lambda, \mathcal{F}\varphi \rangle,$

for $\varphi \in \mathcal{S}(\mathbb{R}^d)$. In other words, $\mathcal{F} : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ is the adjoint operator of the isomorphism $\mathcal{F} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$; it is also an isomorphism and its inverse is $\overline{\mathcal{F}} : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$.

Proposition 5.6.2. Let $f \in L^1(\mathbb{R}^d)$. Then $\Lambda_f \in \mathcal{S}'(\mathbb{R}^d)$, and:

$$\mathcal{F}\Lambda_f = \Lambda_{\mathcal{F}f}$$

Proof. This comes from the fact that if $f, g \in L^1(\mathbb{R}^d)$, then:

$$\int_{\mathbb{R}^d} \left(\mathcal{F}f \right)(\xi) \cdot g(\xi) \, \mathrm{d}x = \int_{\mathbb{R}^d} f(x) \cdot \left(\mathcal{F}g \right)(x) \, \mathrm{d}x.$$

Example 5.6.3. Let $\omega \in \mathbb{R}^d$ and consider $f_{\omega} : x \in \mathbb{R} \to e^{i\omega \cdot x}$. Since f_{ω} is \mathcal{C}^{∞} and bounded, it defines a tempered distribution (even though f is neither L^1 nor L^2). And we have:

$$\mathcal{F}f_{\omega} = \left(2\pi\right)^{d/2} \delta_{\omega}.$$

Proposition 5.6.4. Let $\alpha, \beta \in \mathbb{N}^d$. For any $\Lambda \in \mathcal{S}'(\mathbb{R}^d)$, we have:

$$\mathcal{F}\left(x^{\beta}\partial^{\alpha}\Lambda\right) = i^{|\alpha| + |\beta|}\partial^{\beta}\left(x^{\alpha}\mathcal{F}\Lambda\right).$$

5.7 Fourier transform of compactly supported distributions

Theorem 5.7.1. Let $\Lambda \in \mathcal{S}'(\mathbb{R}^d)$ and $M \in \mathcal{E}'(\mathbb{R}^d) \subseteq \mathcal{S}'(\mathbb{R}^d)$.

- (i) $\mathcal{F}M$ is a \mathcal{C}^{∞} function with slow growth.
- (ii) $\Lambda * M \in \mathcal{S}'(\mathbb{R}^d).$
- (iii) $\mathcal{F}(\Lambda * M) = (2\pi)^{d/2} \mathcal{F} M \cdot \mathcal{F} \Lambda.$

Proof. (i) For $x \in \mathbb{R}^d$, define $z_x : \xi \in \mathbb{R}^d \longmapsto (2\pi)^{-d/2} \exp(-ix \cdot \xi)$, and set:

$$f: x \in \mathbb{R}^d \longmapsto \langle M, z_x \rangle,$$

which is meaningful because $z_x \in \mathcal{E}(\mathbb{R}^d)$ and $M \in \mathcal{E}'(\mathbb{R}^d)$. Show that f is \mathcal{C}^{∞} with slow growth. Now, for $\varphi \in \mathcal{S}(\mathbb{R}^d)$, write:

$$\mathcal{F}\varphi(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{ix\cdot\xi}\varphi(x) \, \mathrm{d}x = \frac{1}{(2\pi)^{d/2}} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^d} \sum_{x \in \varepsilon \mathbb{Z}^d} e^{-ix\cdot\xi}\varphi(x)$$

and use this to prove that $\langle \mathcal{F}M, \varphi \rangle = \langle f, \varphi \rangle$. Therefore, $\mathcal{F}M = f$. (ii) Use Proposition 5.5.3, as well as Theorem 4.4.6. (iii) Let $\varphi \in \mathcal{S}(\mathbb{R}^d)$. We have:

$$\left\langle \mathcal{F}\left(\Lambda \ast M
ight),arphi
ight
angle =\left\langle \Lambda,\psi
ight
angle ,$$

where $\psi(y) = \langle M, \mathcal{F}\varphi(\cdot + y) \rangle$. Now, $\mathcal{F}\varphi(x + y) = \mathcal{F}\theta_y(x)$, where $\theta_y(\xi) = e^{-iy\cdot\xi}\varphi(\xi)$. From this, we show that:

$$\psi(y) = (2\pi)^{d/2} \langle f \varphi(y),$$

with $f = \mathcal{F}M$. As a consequence, $\langle \mathcal{F}(\Lambda * M), \varphi \rangle = (2\pi)^{d/2} \langle f \mathcal{F}\Lambda, \varphi \rangle$.
Corollary 5.7.2. If $M_1, M_2 \in \mathcal{E}'(\mathbb{R}^d)$, then $M_1 * M_2 = M_2 * M_1$.

6 Sobolev spaces

6.1 Sobolev spaces of integral order

Remark 6.1.1. Let $p \in [1, +\infty]$. If $f \in L^p(\Omega)$, then $f \in L^1_{loc}(\Omega) \subseteq \mathcal{D}'(\Omega)$.

Vocabulary 6.1.2. Let $p \in [1, +\infty]$. A distribution $\Lambda \in \mathcal{D}'(\Omega)$ is said to be in $L^p(\Omega)$ if there exists $a \ f \in L^p(\Omega)$ s.t. $\Lambda = \Lambda_f$.

Proposition 6.1.3. Assume that $p \in [1, +\infty]$. Then a distribution $\Lambda \in \mathcal{D}'(\Omega)$ is in $L^p(\Omega)$ iff:

$$\exists C_{\Lambda} \in \mathbb{R}_{+}, \, \forall \varphi \in \mathcal{D}\left(\Omega\right), \, \left|\left\langle\Lambda,\varphi\right\rangle\right| \leq C_{\Lambda} \left\|\varphi\right\|_{L^{q}},$$

with $\frac{1}{p} + \frac{1}{q} = 1$.

Definition 6.1.4 $(W^{k,p})$. Let $k \in \mathbb{N}$, $p \in [1, +\infty]$. We define:

$$W^{k,p}(\Omega) = \left\{ u \in \mathcal{D}'(\Omega), \, \forall \alpha \in \mathbb{N}^d, \, (|\alpha| \le k \Longrightarrow \partial^{\alpha} u \in L^p(\Omega)) \right\} \subseteq L^p(\Omega) \subseteq \mathcal{D}'(\Omega).$$

 $W^{k,p}\left(\Omega\right)$ is a vector space which we equip with the norm $\|\cdot\|_{W^{k,p}}$ defined by:

$$||u||_{W^{k,p}} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{p}}^{p}\right)^{1/p}.$$

Corollary 6.1.5. Assume that $p \in [1, +\infty]$. Then a distribution $\Lambda \in \mathcal{D}'(\Omega)$ is in $W^{k,p}(\Omega)$ iff:

$$\exists C_{\Lambda} \in \mathbb{R}_{+}, \, \forall \left(\varphi_{\alpha}\right)_{\alpha \in \mathbb{N}^{d}} \in \mathcal{D}\left(\Omega\right)^{\mathbb{N}^{d}}, \, \left| \left\langle \Lambda, \sum_{|\alpha| \leq k} \partial^{\alpha} \varphi_{\alpha} \right\rangle \right| \leq C_{\Lambda} \sum_{|\alpha| \leq k} \left\|\varphi_{\alpha}\right\|_{L^{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proposition 6.1.6. Let $k \in \mathbb{N}$, $p \in [1, +\infty]$.

- (i) $W^{k,p}(\Omega)$ is a Banach space.
- (ii) If $p < +\infty$, then $W^{k,p}(\Omega)$ is separable.
- (iii) If $1 , then <math>W^{k,p}(\Omega)$ is reflexive.
- (iv) If p = 2, then $W^{k,p}(\Omega)$ is a Hilbert space.

Proof. Define $I_k = \left\{ \alpha \in \mathbb{N}^d, |\alpha| \leq k \right\}$ and consider:

$$\mathcal{J}: \begin{vmatrix} W^{k,p}(\Omega) \longrightarrow L^p(I_k \times \Omega) \\ u \longmapsto (\partial^{\alpha} u)_{\alpha \in I_k} \end{vmatrix}$$

 \mathcal{J} is a linear isometric embedding, and $L^p(I_k \times \Omega)$ is a Banach space. Therefore, $W^{k,p}(\Omega)$ is isometric to Im \mathcal{J} . Hence, for (i), (ii) and (iii), it suffices to show that Im \mathcal{J} is closed in $L^p(I_k \times \Omega)$. To prove it, consider $(u_n)_{n \in \mathbb{N}} \in W^{k,p}(\Omega)^{\mathbb{N}}$ s.t. $\mathcal{J}u_n \to g = (g_\alpha)_{\alpha \in I_k} \in L^p(I_k \times \Omega)$. Set $u = g_0$. We have $u_n \stackrel{L^p}{\to} u$, so $u_n \stackrel{\mathcal{D}'}{\to} u$. By continuity of ∂^{α} , we obtain $\partial^{\alpha}u_n \stackrel{\mathcal{D}'}{\to} \partial^{\alpha}u$ for all $\alpha \in I_k$. But since $\partial^{\alpha}u_n \stackrel{L^p}{\to} g_{\alpha}$, we also have $\partial^{\alpha}u_n \stackrel{\mathcal{D}'}{\to} g_{\alpha}$, which yields $g_{\alpha} = \partial^{\alpha}u$, and $g = \mathcal{J}u \in \text{Im }\mathcal{J}$. For (iv), simply notice that $\|u\|_{W^{2,p}} = (u, u)_k$, where:

$$(u,v)_k = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u(x) \partial^{\alpha} \overline{v}(x) \, \mathrm{d}x.$$

Proposition 6.1.7. Assume that $u \in W^{k,p}(\Omega)$ is compactly supported in Ω . Define:

$$\widetilde{u}: x \in \mathbb{R}^d \longmapsto \begin{cases} u(x) & \text{if } x \in \Omega\\ 0 & \text{otherwise} \end{cases}$$

Then $\widetilde{u} \in W^{k,p}\left(\mathbb{R}^d\right)$ and $\|\widetilde{u}\|_{W^{k,p}} = \|u\|_{W^{k,p}}$.

Remark 6.1.8. In Proposition 6.1.7, it is crucial to assume that u has compact support. For instance, take u = 1 on $\Omega =]0, 1[\subseteq \mathbb{R}$. Then $u \in W^{k,p}(\Omega)$ for all k, p. However, $\tilde{u} = \mathbb{1}_{]0,1[}$, so $\frac{d}{dx}\tilde{u} = \delta_0 - \delta_1 \notin L^p(\mathbb{R})$ for all p.

6.2 Approximation by smooth functions

Lemma 6.2.1. Assume that $p \in [1, +\infty[$. Let $\rho \in \mathcal{D}(\mathbb{R}^d)$ s.t. $\int_{\mathbb{R}^d} \rho = 1$ and $\rho \ge 0$. Set $\rho_n(x) = n^d \rho(nx)$. Then, for every element $u \in W^{k,p}(\mathbb{R}^d)$, we have:

- (i) $\forall n \in \mathbb{N}, \ \rho_n * u \in \mathcal{C}^{\infty}\left(\mathbb{R}^d\right) \cap W^{k,p}\left(\mathbb{R}^d\right).$
- (ii) $\forall n \in \mathbb{N}$, $\operatorname{Supp}(\rho_n * u) \subseteq \operatorname{Supp} u + \frac{1}{n} \operatorname{Supp} \rho$.
- (iii) $\|\rho_n * u u\|_{W^{k,p}} \to 0.$

	_

In particular, $\mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right) \cap W^{k,p}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k,p}\left(\mathbb{R}^{d}\right)$.

Proof. Note that $\mathcal{D}(\mathbb{R}^d) * L^p(\mathbb{R}^d) \subseteq \mathcal{C}^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$. Using the fact that $\partial^{\alpha}(\rho_n * u) = \rho_n * (\partial^{\alpha} u)$ for $|\alpha| \leq k$, we obtain $\rho_n * u \in \mathcal{C}^{\infty}(\mathbb{R}^d) * W^{k,p}(\mathbb{R}^d)$ and $\|\partial^{\alpha}(\rho_n * u)\|_{W^{k,p}} \leq \|\partial^{\alpha} u\|_{W^{k,p}}$; therefore $\|\rho_n * u\|_{W^{k,p}} \leq \|u\|_{W^{k,p}}$. Moreover, it is clear that $\operatorname{Supp}(\rho_n * u) \subseteq \operatorname{Supp} u + \frac{1}{n} \operatorname{Supp} \rho$. Finally, write:

$$\partial^{\alpha} (\rho_n * u) (x) - \partial^{\alpha} u(x) = \int_{\mathbb{R}^d} \rho_n(y) (\partial^{\alpha} u(x-y) - \partial^{\alpha} u(x)) \, \mathrm{d}y,$$

and use this to show that $\|\partial^{\alpha}(\rho_n * u) - \partial^{\alpha}u\|_{L^p} \to 0.$

Theorem 6.2.2. Assume that $p \in [1, +\infty[$. Then $\mathcal{C}^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Proof. Choose a locally finite covering of Ω : $\Omega = \bigcup_{j \in \mathbb{N}} \omega_j$, with $\overline{\omega}_j \Subset \Omega$. Now, choose a partition of unity $(\Psi_j)_{j \in \mathbb{N}} \in \mathcal{D}(\Omega)^{\mathbb{N}}$ s.t. Supp $\Psi_j \subseteq \omega_j$, $\Psi_j \ge 0$ and $\sum_{j \in \mathbb{N}} \Psi_j = 1$. For $u \in W^{k,p}(\Omega)$, set $u_j = \Psi_j u$ for all $j \in \mathbb{N}$ and extend u_j by 0 to a function $\widetilde{u}_j \in W^{k,p}(\mathbb{R}^d)$, as in Proposition 6.1.7. Use Lemma 6.2.1 to find $v_j \in \mathcal{C}^{\infty}(\mathbb{R}^d) \cap W^{k,p}(\mathbb{R}^d)$ with:

$$\|v_j - \widetilde{u}_j\|_{W^{k,p}} \le 2^{-j}\varepsilon,$$

and Supp $v_j \subseteq \omega_j$. Now, set $v = \sum_{j \in \mathbb{N}} v_{j|\Omega} \in \mathcal{C}^{\infty}(\Omega)$; check that $v \in W^{k,p}(\Omega)$ and $||v - u||_{W^{k,p}} \leq 2\varepsilon$.

Remark 6.2.3. Using Theorem 6.2.2, in the case where $p \in [1, +\infty[$, we may define $W^{k,p}(\Omega)$ as the completion of the space $X^{k,p}(\Omega) = \{u \in \mathcal{C}^{\infty}(\Omega), \|u\|_{W^{k,p}} < +\infty\}$ for $\|\cdot\|_{W^{k,p}}$.

Proposition 6.2.4. If $p \in [1, +\infty[$, then $\mathcal{D}(\mathbb{R}^d)$ is dense in $W^{k,p}(\mathbb{R}^d)$.

Proof. Prove that $W^{k,p}\left(\mathbb{R}^d\right) \cap \mathcal{E}'\left(\mathbb{R}^d\right)$ is dense in $W^{k,p}\left(\mathbb{R}^d\right)$ (by using a function $\psi \in \mathcal{D}\left(\mathbb{R}^d\right)$ s.t. $\psi = 1$ on $B_1 = \left\{x \in \mathbb{R}^d, \|x\| \le 1\right\}$ and by considering $\psi_n(x) = \psi\left(\frac{x}{n}\right)$ and apply Lemma 6.2.1. \Box

Definition 6.2.5 $(W_0^{k,p})$. For $k \in \mathbb{N}$ and $p \in [1, +\infty]$, define $W_0^{k,p}(\Omega)$ to be the closure of $\mathcal{D}(\Omega)$ in $W^{k,p}(\Omega)$.

Corollary 6.2.6. If $p \in [1, +\infty[$ and $\Omega = \mathbb{R}^d$, then $W_0^{k,p}(\mathbb{R}^d) = W^{k,p}(\mathbb{R}^d)$.

6.3 Extension by zero

Notation 6.3.1. If u is a function defined (a.e.) on Ω , and $\Omega_1 \supseteq \Omega$, we set:

$$\widetilde{u}: x \in \Omega_1 \longmapsto \begin{cases} u(x) & \text{if } x \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

Proposition 6.3.2. Let $\Omega \subseteq \Omega_1$ be open subsets of \mathbb{R}^d . If $u \in W_0^{k,p}(\Omega)$, then $\tilde{u} \in W_0^{k,p}(\Omega_1)$.

Proof. Note that there exists a sequence $(\varphi_n)_{n\in\mathbb{N}} \in \mathcal{D}(\Omega)^{\mathbb{N}}$ s.t. $\|\varphi_n - u\|_{W^{k,p}} \to 0$. Now, $\tilde{\varphi}_n \in \mathcal{D}(\Omega_1)$ and since $\|\tilde{\varphi}_m - \tilde{\varphi}_n\|_{W^{k,p}} = \|\varphi_m - \varphi_n\|_{W^{k,p}}, (\tilde{\varphi}_n)_{n\in\mathbb{N}}$ is Cauchy, so it converges to a limit $v \in W^{k,p}(\Omega)$. Show that $v = \tilde{u}$ in $\mathcal{D}'(\Omega_1)$ by computing $\langle v, \theta \rangle$ for $\theta \in \mathcal{D}(\Omega_1)$; hence $\tilde{u} \in W_0^{k,p}(\Omega_1)$.

Notation 6.3.3. Write $\mathbb{R}^d_+ = \mathbb{R}^{d-1} \times]0, +\infty[$ and $\mathbb{R}^d_- = \mathbb{R}^{d-1} \times]-\infty, 0[$.

Proposition 6.3.4. Assume that $p \in [1, +\infty[$. Let $u \in W^{k,p}(\mathbb{R}^d_+)$. Then:

$$\widetilde{u} \in W^{k,p}\left(\mathbb{R}^d\right) \iff u \in W_0^{k,p}\left(\mathbb{R}^d_+\right).$$

Proof. It suffices to prove (\Rightarrow) . Therefore, suppose that $\tilde{u} \in W^{k,p}(\mathbb{R}^d)$. For $\varepsilon > 0$, define $u_{\varepsilon}(x) = \tilde{u}(x - \varepsilon e_d)$, where e_d is the *d*-th vector in the canonical basis of \mathbb{R}^d . We have $\operatorname{Supp} u_{\varepsilon} \subseteq \mathbb{R}^{d-1} \times [\varepsilon, +\infty[$ and $||u_{\varepsilon} - \tilde{u}||_{W^{k,p}} \to 0$. Because the subspace $W_0^{k,p}(\mathbb{R}^d_+)$ is closed, it suffices to prove that $u_{\varepsilon|\mathbb{R}^d_+} \in W_0^{k,p}(\mathbb{R}^d_+)$. From now on, ε is fixed. Approximate u_{ε} by functions in $\varphi_n \in \mathcal{D}(\mathbb{R}^d)$, choose a function $\theta \in \mathcal{C}^{\infty}(\mathbb{R})$ s.t. $\theta_{|\mathbb{R}_-} = 0$ and $\theta_{|[\varepsilon, +\infty[} = 1$ and consider $\psi_n(x_1, \ldots, x_d) = \theta(x_d) \varphi_n(x_1, \ldots, x_d)$; show that $\left\| (\psi_n - u_{\varepsilon})_{|\mathbb{R}^d_+} \right\|_{W^{k,p}} \to 0$.

6.4 Existence of a right inverse of the restriction operator

Remark 6.4.1. A natural question is to find an operator $P: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ that is linear and continuous and s.t. $R \circ P = \mathrm{id}_{W^{k,p}(\Omega)}$, where $R: u \in W^{k,p}(\mathbb{R}^d) \mapsto u_{|\Omega|} \in W^{k,p}(\Omega)$. If k = 0, it suffices to take the extension by 0.

Theorem 6.4.2. Assume that $p \in [1, +\infty[$ and $\Omega = \mathbb{R}^d_+$. Then there exists an extension operator $P: W^{k,p}(\mathbb{R}^d_+) \to W^{k,p}(\mathbb{R}^d)$ that is a right inverse of the restriction operator.

Proof. For $u \in W^{k,p}(\mathbb{R}^+_d)$, define:

$$Pu(x_1, \dots, x_d) = \begin{cases} u(x_1, \dots, x_d) & \text{if } x_d > 0\\ \sum_{j=1}^{k+1} a_j u(x_1, \dots, x_{d-1}, -jx_d) & \text{if } x_d \le 0 \end{cases}$$

where a_1, \ldots, a_{k+1} are determined by the following Vandermonde linear system:

$$\forall m \in \{0, \dots, k\}, \sum_{j=1}^{k+1} (-j)^m a_j = 1.$$

It is clear that P is a linear map satisfying $R \circ P = \mathrm{id}_{W^{k,p}(\mathbb{R}^d_+)}$; it remains to show that $\mathrm{Im} P \subseteq W^{k,p}(\mathbb{R}^d_+)$ and that P is continuous. \Box

Theorem 6.4.3. Assume that $p \in [1, +\infty[$ and let Ω be a bounded domain with a \mathcal{C}^k boundary. Then there exists an extension operator $P: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ that is a right inverse of the restriction operator.

6.5 Embeddings of distribution spaces

Definition 6.5.1 (Distribution space). A distribution space is a Banach space E that is included in $\mathcal{D}'(\Omega)$ s.t. for all $\varphi \in \mathcal{D}(\Omega)$, the map $u \in E \longmapsto \langle u, \varphi \rangle \in \mathbb{K}$ is continuous.

Remark 6.5.2. If F is a distribution space and E is a closed subspace of F s.t. the inclusion $E \subseteq F$ is continuous, then E is also a distribution space.

Example 6.5.3.

- (i) $L^{p}(\Omega)$ is a distribution space for $p \in [1, +\infty]$.
- (ii) $W^{k,p}(\Omega)$ is a distribution space for $p \in [1, +\infty]$.
- (iii) $\mathcal{C}^0\left(\overline{\Omega}\right) \cap L^\infty\left(\overline{\Omega}\right)$ is a distribution space, equipped with $\|\cdot\|_{L^\infty}$.
- (iv) $\mathcal{C}^{\alpha}\left(\overline{\Omega}\right) = \left\{ u \in \mathcal{C}^{0}\left(\overline{\Omega}\right) \cap L^{\infty}\left(\overline{\Omega}\right), \sup_{x \neq y} \frac{|u(x) u(y)|}{|x y|^{\alpha}} < +\infty \right\}$ is a distribution space for $\alpha \in [0, 1[$, equipped with $\|\cdot\|_{\mathcal{C}^{\alpha}}$ defined by:

$$||f||_{\mathcal{C}^{\alpha}} = ||f||_{L^{\infty}} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Lemma 6.5.4. Let E and F be two distribution spaces over Ω and assume that $E \subseteq F$. Then the inclusion $E \subseteq F$ is continuous.

Proof. Consider $X = \{(u, u), u \in E\} \subseteq E \times F$; X is the graph of the inclusion map $E \subseteq F$. By the Closed Graph Theorem (Theorem 1.2.9), it suffices to prove that X is a closed subspace of $E \times F$. Hence, let $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ s.t. $(u_n, u_n) \to (u, v)$ in $E \times F$. Then $u_n \to u$ in E, so $u_n \stackrel{*}{\rightharpoonup} u$ in \mathcal{D}' . Likewise, $u_n \stackrel{*}{\rightharpoonup} v$ in \mathcal{D}' , so u = v and $(u, v) \in X$.

Lemma 6.5.5. Let E and F be two distribution spaces over Ω and let D be a dense subspace of E s.t. $D \subseteq F$. Assume that there exists $C \in \mathbb{R}_+$ s.t.

$$\forall u \in D, \ \|u\|_F \le C \, \|u\|_E.$$

Then $E \subseteq F$, with a continuous inclusion.

Proof. Let $u \in E$. Then there exists $(u_n)_{n \in \mathbb{N}} \in D^{\mathbb{N}}$ s.t. $u_n \to u$ in E. The sequence $(u_n)_{n \in \mathbb{N}}$ is Cauchy in E, and therefore in F because $||u_p - u_q||_F \leq C ||u_p - u_q||_E$ for all $p, q \in \mathbb{N}$. Since F is a Banach space, there exists $v \in F$ s.t. $u_n \to v$ in F. Now, $u_n \stackrel{*}{\rightharpoonup} u$ in \mathcal{D}' and $u_n \stackrel{*}{\rightharpoonup} v$ in \mathcal{D}' so $u = v \in F$. Moreover, $||u||_F = \lim_{n \to +\infty} ||u_n||_F \leq C \lim_{n \to +\infty} ||u_n||_E = ||u||_E$.

6.6 Sobolev embeddings

Theorem 6.6.1 (Morrey's Theorem). Let Ω be either \mathbb{R}^d , \mathbb{R}^d_+ or a bounded domain with a \mathcal{C}^1 boundary. Assume that d . Then:

$$W^{1,p}\left(\Omega\right) \subseteq \mathcal{C}^{\alpha}\left(\overline{\Omega}\right),$$

with $\alpha = 1 - \frac{d}{p} \in [0, 1[.$

Proof. We only prove the case where $\Omega = \mathbb{R}^d$ (for the other cases, use the extension operators given by Theorems 6.4.2 and 6.4.3). Let $E = W^{1,p}(\mathbb{R}^d)$, $F = \mathcal{C}^{\alpha}(\mathbb{R}^d)$ and $D = \mathcal{D}(\mathbb{R}^d) \subseteq E \cap F$. According to Proposition 6.2.4, D is dense in E. Therefore, by Lemma 6.5.5, it suffices to prove the existence of a constant $C \in \mathbb{R}_+$ s.t. $\forall u \in D$, $||u||_{\mathcal{C}^{\alpha}} \leq C ||u||_{W^{1,p}}$. To do this, show firstly that if B_r is any (closed) ball of radius r containing a point $x \in \mathbb{R}^d$, then:

$$\left| u(x) - \frac{1}{\lambda(B_r)} \int_{B_r} u(y) \, \mathrm{d}y \right| \leq \underbrace{\frac{2}{\lambda(B_1)^{1/p}} \left(\int_0^1 t^{-d/p} \, \mathrm{d}t \right)}_{C_1} \| \nabla u \|_{L^p} r^{\alpha}.$$

Hence, if $x, y \in \mathbb{R}^d$ and if $r = \frac{1}{2} |x - z|$, by choosing B_r to be the ball with centre $\frac{x+y}{2}$ and with radius r, we obtain:

$$|u(x) - u(z)| \le 2^{1-\alpha} C_1 \|\nabla u\|_{L^p} |x - z|^{\alpha}.$$

Next, we need to show that u is bounded. To do this, note that, if B_1 is any (closed) ball of radius 1, then:

$$\left|\frac{1}{\lambda(B_1)}\int_{B_1} u(y) \, \mathrm{d}y\right| \leq \frac{1}{\lambda(B_1)^{1/p}} \|u\|_{L^p}.$$

Using this and the previous inequalities, we obtain an upper bound for $||u||_{L^{\infty}}$, and then for $||u||_{\mathcal{C}^{\alpha}}$. \Box

Theorem 6.6.2 (Gagliardo–Nirenberg Theorem). Let Ω be either \mathbb{R}^d , \mathbb{R}^d_+ or a bounded domain with a \mathcal{C}^1 boundary. Assume that $1 \leq p < d$. Then:

$$W^{1,p}\left(\Omega\right)\subseteq L^{p^{*}}\left(\Omega\right),$$

where $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{d}$.

Proof. The strategy is exactly the same as for Morrey's Theorem (Theorem 6.6.1): we assume that $\Omega = \mathbb{R}^d$ and we work with functions in $\mathcal{D}(\mathbb{R}^d)$. Firstly, assume that p = 1. In this case, prove that, for any compactly supported \mathcal{C}^1 function u, we have $||u||_{L^{d/(d-1)}} \leq ||u||_{W^{1,1}}$. For the general case, fix $s = \frac{p(d-1)}{d-p} > 1$, so that $p^* = \frac{sd}{d-1}$. Note that $t \mapsto |t|^s$ is a \mathcal{C}^1 function. Thus, $|u|^s$ is a compactly supported \mathcal{C}^1 function. Apply the previous case and obtain the desired inequality.

Corollary 6.6.3. Let Ω be either \mathbb{R}^d , \mathbb{R}^d_+ or a bounded domain with a \mathcal{C}^1 boundary. Assume that $1 \leq p < d$. Then:

$$\forall r \in [p, p^*], W^{1,p}(\Omega) \subseteq L^r(\Omega),$$

where $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{d}$.

6.7 Compact embeddings

Definition 6.7.1 (Compact embedding). Let E and F be two distribution spaces s.t. $E \subseteq F$. We say the the embedding $E \subseteq F$ is compact if the unit ball B_E of E is relatively compact in F. Equivalently, from every sequence $(u_n)_{n\in\mathbb{N}} \in E^{\mathbb{N}}$ that is bounded in E, we can extract a subsequence which converges in F.

Remark 6.7.2. If E is of infinite dimension, then the embedding $E \subseteq E$ is never compact.

Theorem 6.7.3. Let Ω be a bounded domain in \mathbb{R}^d with a \mathcal{C}^1 boundary.

- (i) If p > d and $0 \le \beta < 1 \frac{d}{p}$, then the embedding $W^{1,p}(\Omega) \subseteq C^{\beta}(\overline{\Omega})$ (given by Theorem 6.6.1) is compact.
- (ii) If p < d and $1 \le r < p^*$, then the embedding $W^{1,p}(\Omega) \subseteq L^r(\Omega)$ (given by Corollary 6.6.3) is compact.

6.8 Sobolev spaces of fractional order

Lemma 6.8.1. Let $k \in \mathbb{N}$. Then:

$$W^{k,2}\left(\mathbb{R}^{d}\right) = \left\{ u \in \mathcal{S}'\left(\mathbb{R}^{d}\right), \left(\left(1 + \left|\xi\right|^{2}\right)^{k/2} \mathcal{F}u\right) \in L^{2}\left(\mathbb{R}^{d}\right) \right\}.$$

In addition, $\|\cdot\|_{W^{k,2}}$ is equivalent to the norm $\|\cdot\|$ defined by:

$$||u|| = \left\| \left(1 + |\xi|^2 \right)^{k/2} \mathcal{F}u \right\|_{L^2}$$

Definition 6.8.2 $(H^s(\mathbb{R}^d))$. For $s \in \mathbb{R}$, define:

$$H^{s}\left(\mathbb{R}^{d}\right) = \left\{ u \in \mathcal{S}'\left(\mathbb{R}^{d}\right), \left(\left(1 + \left|\xi\right|^{2}\right)^{s/2} \mathcal{F}u\right) \in L^{2}\left(\mathbb{R}^{d}\right) \right\}$$

 $H^{s}(\mathbb{R}^{d})$ can also be denoted by $W^{s,2}(\mathbb{R}^{d})$. We equip it with the scalar product $((\cdot, \cdot))_{H^{s}}$ defined by:

$$((u,v))_{H^s} = \int_{\mathbb{R}^d} \left(1 + |\xi|^2\right)^s \overline{\mathcal{F}u(\xi)} \mathcal{F}v(\xi) \, \mathrm{d}\xi$$

(in the case where $\mathbb{K} = \mathbb{R}$, we have to take the real part because the Fourier transform is not necessarily real-valued). Thus, $H^s(\mathbb{R}^d)$ is a Hilbert space.

Proposition 6.8.3.

(i) For $k \in \mathbb{N}$, the new definition of $H^k(\mathbb{R}^d) = W^{k,2}(\mathbb{R}^d)$ agrees with the original one.

- (ii) If $s \leq \sigma$, then $H^s(\mathbb{R}^d) \supseteq H^\sigma(\mathbb{R}^d)$.
- (iii) $H^0\left(\mathbb{R}^d\right) = L^2\left(\mathbb{R}^d\right).$
- (iv) If $s \ge 0$, $H^s(\mathbb{R}^d) \subseteq L^2(\mathbb{R}^d)$. In particular, the elements of $H^s(\mathbb{R}^d)$ are functions.
- (v) For $s \in \mathbb{R}$, $\mathcal{D}(\mathbb{R}^d)$ is dense in $H^s(\mathbb{R}^d)$.

Definition 6.8.4 $(H^s(\Omega))$. If Ω is a domain of \mathbb{R}^d with a \mathcal{C}^1 boundary, we define:

$$H^{s}(\Omega) = \left\{ u_{|\Omega}, \ u \in H^{s}\left(\mathbb{R}^{d}\right) \right\},\$$

and we equip this space with the norm $\|\cdot\|_{H^s}$ defined by:

$$\|v\|_{H^s} = \inf_{\substack{u \in H^s\left(\mathbb{R}^d\right)\\ u_{|\Omega} = v}} \|u\|_{H^s}$$

Hence, $H^{s}(\Omega)$ is a Hilbert space.

6.9 Trace theorems

Theorem 6.9.1. Let $s \in \left]\frac{1}{2}, +\infty\right[$. Then the linear map $u \in \mathcal{D}\left(\mathbb{R}^{d}\right) \mapsto u_{|\{x_{d}=0\}} \in \mathcal{D}\left(\mathbb{R}^{d-1}\right)$ extends uniquely to a continuous linear operator $\gamma : H^{s}\left(\mathbb{R}^{d}\right) \to H^{s-\frac{1}{2}}\left(\mathbb{R}^{d-1}\right)$. In addition, there exists a continuous linear operator $R : H^{s-\frac{1}{2}}\left(\mathbb{R}^{d-1}\right) \to H^{s}\left(\mathbb{R}^{d}\right)$ s.t. $\gamma \circ R = \text{id.}$ In particular, γ is surjective (and open).

Proof. For the existence and uniqueness of γ , by density of $\mathcal{D}(\mathbb{R}^d)$ in $H^s(\mathbb{R}^d)$, it suffices to prove the existence of $C \in \mathbb{R}_+$ s.t.

$$\forall u \in \mathcal{D}\left(\mathbb{R}^{d}\right), \left\|u_{|\{x_{d}=0\}}\right\|_{H^{s-\frac{1}{2}}} \leq C \left\|u\right\|_{H^{s}}.$$

For the existence of R, choose $\theta \in \mathcal{D}(\mathbb{R})$ s.t. $\int_{\mathbb{R}} \theta = 1$. Now, for $g \in H^{s-\frac{1}{2}}(\mathbb{R}^{d-1})$, define:

$$h: \xi \in \mathbb{R}^{d} \longmapsto \sqrt{2\pi} \cdot \theta \left(\frac{\xi_{d}}{\sqrt{1+\left|\xi'\right|^{2}}}\right) \cdot \frac{1}{\sqrt{1+\left|\xi'\right|^{2}}} \cdot \mathcal{F}g\left(\xi'\right),$$

with $\xi = (\xi', \xi_d) \in \mathbb{R}^{d-1} \times \mathbb{R}$, and let $Rg = \mathcal{F}^{-1}h \in \mathcal{S}'(\mathbb{R}^d)$. Check that $Rg \in H^s(\mathbb{R}^d)$ and that the linear map $R : H^{s-\frac{1}{2}}(\mathbb{R}^{d-1}) \to H^s(\mathbb{R}^d)$ thus defined is continuous, then show that $\gamma \circ R = \text{id}$. \Box **Remark 6.9.2.** In Theorem 6.9.1, the lifting R is not unique.

Corollary 6.9.3. Let $s \in \left]\frac{1}{2}, +\infty\right[$. Then there exists a continuous linear operator $\gamma_0 : H^s\left(\mathbb{R}^d_+\right) \to H^{s-\frac{1}{2}}\left(\mathbb{R}^{d-1}\right)$ s.t. the following diagram commutes:

where γ is as in Theorem 6.9.1 and $H^s(\mathbb{R}^d) \to H^s(\mathbb{R}^d_+)$ is the restriction. Moreover, there exists a continuous linear operator $R: H^{s-\frac{1}{2}}(\mathbb{R}^{d-1}) \to H^s(\mathbb{R}^d_+)$ s.t. $\gamma_0 \circ R = \text{id.}$ In particular, γ_0 is surjective (and open).

References

[1] H. Brezis. Analyse fonctionnelle.