Advanced Algebra

Lectures by Laurent Berger Notes by Alexis Marchand

ENS de Lyon S1 2018-2019 M1 course

Contents

1	Rin	ngs and modules 2					
	1.1	Modules, submodules and homomorphisms	2				
	1.2	Exact sequences	3				
	1.3	Sums, products and quotients	3				
	1.4	Snake Lemma	4				
	1.5	Noetherian modules	5				
	1.6	Free modules	5				
	1.7	Matrices	6				
	1.8	Cayley-Hamilton Theorem	6				
	1.9	Local rings	7				
2	Fin	initely generated modules over PIDs 7					
	2.1	Invariant factors for PIDs	7				
	2.2	Finitely generated modules over PIDs	9				
	2.3	Applications: finitely generated abelian groups, reduction of endomorphisms	10				
	2.4	Projective modules	11				
3	Ten	sor products	12				
0	3.1	Universal property of the tensor product	12				
	3.2	Tensor products exact sequences and quotients	13				
	3.3	Tensor products of homomorphisms	14				
	3.4	Extension of scalars	15				
	3.5	Tensor product of algebras over a ring	16				
	3.6	Flat modules	16				
	3.7	Flatness and relations	18				
	3.8	Symmetric products	18				
	3.9	Alternating products	19				
4 Localisation							
-	41	Local rings	20				
	4.2	Localisation of rings	$\frac{20}{21}$				
	4.3	Localisation of modules	22				
	т.9 Д Д	Localisation of ideals	22 22				
	4.5	Localisation of morphisms	20 23				
	ч.0 4.6	Localisation of finitaly presented modules	20 94				
	4.0	Localisation of minery presented modules	24				

5	Inte	gral extensions	25			
	5.1	Integral elements	25			
	5.2	Finiteness of invariants	26			
	5.3	Noether Normalisation Lemma	27			
	5.4	Hilbert's Nullstellensatz	28			
References						

1 Rings and modules

Notation 1.0.1. In this course, all rings will be commutative, with a unit element, and will verify $0 \neq 1$.

1.1 Modules, submodules and homomorphisms

Definition 1.1.1 (Module). A module M on a ring A is an abelian group equipped with a law $(a,m) \in A \times M \longrightarrow am \in M$ s.t.

- (i) $\forall (a,b) \in A^2, \ \forall (m,n) \in M^2, \ (a+b)m = am + bm \ a(m+n) = am + an.$
- (ii) $\forall (a,b) \in A^2, \forall m \in M, a(bm) = (ab)m.$
- (iii) $\forall m \in M, \ 1m = m.$

Example 1.1.2.

- (i) If the ring A is a field, A-modules are exactly A-vector spaces.
- (ii) Z-modules are exactly abelian groups.

Remark 1.1.3. Let A be a ring.

- (i) In general, in an A-module M, if $a \in A \setminus \{0\}$ and $m \in M$, am = 0 does not imply m = 0.
- (ii) A-modules do not have bases in general.

Definition 1.1.4 (Torsion elements). Let M be an A-module. We define:

$$M_{\text{tor}} = \{ m \in M, \exists a \in A \setminus \{0\}, am = 0 \}.$$

The elements of M_{tor} are called torsion elements. We say that M is torsion-free if $M_{\text{tor}} = \{0\}$.

Definition 1.1.5 (Submodule). Let M be an A-module. A submodule of M is an additive subgroup N s.t. $AN \subseteq N$.

Example 1.1.6. If A is a ring, the submodules of A (considered as an A-module) are exactly the ideals of A.

Proposition 1.1.7. Let M be an A-module. If A is an integral domain, then M_{tor} is a submodule of M.

Definition 1.1.8 (Module homomorphism). Let M and N be two A-modules. A map $f : M \to N$ is said to be a module homomorphism if f is additive and A-linear. The set of module homomorphisms from M to N is denoted by $\operatorname{Hom}_A(M, N)$ or $\operatorname{Hom}(M, N)$. It is an A-module.

Example 1.1.9. Let M be an A-module.

- (i) The module $\operatorname{Hom}_A(A, M)$ is isomorphic to M.
- (ii) The module $\operatorname{Hom}_A(M, A)$ is called the dual of M, and it is denoted by M^* or M^{\vee} . Its elements are called linear forms.

1.2 Exact sequences

Definition 1.2.1 (Kernel and image). Let $f : M \to N$ be a module homomorphism. We define Ker $f = f^{-1}(\{0\})$ and Im f = f(M). These are submodules of M and N respectively.

Definition 1.2.2 (Exact sequence). Consider three modules L, M, N and two homomorphisms $f : L \to M$ and $g : M \to N$. One can write this as a sequence:

$$L \xrightarrow{f} M \xrightarrow{g} N.$$

We say that the sequence is exact if $\operatorname{Im} f = \operatorname{Ker} g$. Likewise, for a (possibly infinite sequence) $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{f_3} \cdots$, we say that the sequence is exact at M_i if $\operatorname{Im} f_{i-1} = \operatorname{Ker} f_i$; and we say that the sequence is exact if it is exact at all positions.

Example 1.2.3. A sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is exact iff f is injective, g is surjective and Im f = Ker g.

Definition 1.2.4.

(i) Let M, N_1, N_2 be three A-modules and consider a homomorphism $f : N_1 \to N_2$. We define a module homomorphism:

$$f_*: \begin{vmatrix} \operatorname{Hom}_A(M, N_1) \longrightarrow \operatorname{Hom}_A(M, N_2) \\ g \longmapsto f \circ g \end{vmatrix}$$

(ii) Let M_1, M_2, N be three A-modules and consider a homomorphism $f : M_1 \to M_2$. We define a module homomorphism:

$$f^*: \begin{vmatrix} \operatorname{Hom}_A(M_2, N) \longrightarrow \operatorname{Hom}_A(M_1, N) \\ g \longmapsto g \circ f \end{vmatrix}$$

Proposition 1.2.5. Consider a sequence $N' \xrightarrow{f} N \xrightarrow{g} N''$. The following assertions are equivalent:

- (i) The sequence $0 \to N' \xrightarrow{f} N \xrightarrow{g} N''$ is exact.
- (ii) For any A-module M, the sequence $0 \to \operatorname{Hom}(M, N') \xrightarrow{f_*} \operatorname{Hom}(M, N) \xrightarrow{g_*} \operatorname{Hom}(M, N'')$ is exact.

Proposition 1.2.6. Consider a sequence $M' \xrightarrow{f} M \xrightarrow{g} M''$. The following assertions are equivalent:

- (i) The sequence $M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is exact.
- (ii) For any A-module N, the sequence $0 \to \operatorname{Hom}(M'', N) \xrightarrow{g^*} \operatorname{Hom}(M, N) \xrightarrow{f^*} \operatorname{Hom}(M', N)$ is exact.

1.3 Sums, products and quotients

Definition 1.3.1 (Sums and products). Let $(M_i)_{i \in I}$ be a family of A-modules.

- (i) The set $\prod_{i \in I} M_i$ has naturally the structure of an A-module.
- (ii) We define $\bigoplus_{i \in I} M_i = \{(m_i)_{i \in I} \in \prod_{i \in I} M_i, \{i \in I, m_i \neq 0\} \text{ is finite}\}.$

Hence, $\bigoplus_{i \in I} M_i$ is a submodule of $\prod_{i \in I} M_i$, and we have $\bigoplus_{i \in I} M_i = \prod_{i \in I} M_i$ iff I is finite.

Proposition 1.3.2. Let $(M_i)_{i \in I}$, $(N_j)_{i \in J}$, M and N be A-modules.

- (i) Hom $(M, \prod_{j \in J} N_j) \simeq \prod_{j \in J} \text{Hom}(M, N_j).$
- (ii) Hom $(\bigoplus_{i \in I} M_i, N) \simeq \prod_{i \in I} \text{Hom}(M_i, N).$

(iii) Hom $\left(\bigoplus_{i \in I} M_i, \prod_{j \in J} M_j\right) \simeq \prod_{(i,j) \in I \times J} \operatorname{Hom}(M_i, N_j).$

Definition 1.3.3 (Quotient). Let N be an A-module and M be a submodule of N. We define an equivalence relation \sim on N by $n_1 \sim n_2 \iff (n_1 - n_2) \in M$. The set of equivalence classes is denoted by N/M. It has a unique structure of A-module s.t. the natural projection $\pi : N \to N/M$ is a module homomorphism. Hence, if $i: M \to N$ denotes inclusion, we have an exact sequence:

$$0 \to M \xrightarrow{i} N \xrightarrow{\pi} N/M \to 0.$$

Proposition 1.3.4 (Universal property of the quotient). Let N be an A-module and M be a submodule of N. If $f: N \to P$ is a module homomorphism s.t. $M \subseteq \text{Ker } f$, then there is a unique map $\overline{f}: N/M \to P$ s.t. $f = \overline{f} \circ \pi$, where $\pi: N \to N/M$ is the natural projection.

Corollary 1.3.5. If we have an exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$, then $N \simeq M/\operatorname{Im} f$. In other words, given a module homomorphism $f: M \to N$, we have:

$$\operatorname{Im} f \simeq M / \operatorname{Ker} f.$$

Definition 1.3.6 (Cokernel). Given a module homomorphism $f: M \to N$, define:

$$\operatorname{Coker} f = N / \operatorname{Im} f.$$

We have the following exact sequence:

$$0 \to \operatorname{Ker} f \to M \xrightarrow{f} N \to \operatorname{Coker} f \to 0.$$

Proposition 1.3.7. Let $f : M \to N$ be a module homomorphism. Consider a submodule X of M and a submodule Y of N. Write $\pi_{M/X} : M \to M/X$ and $\pi_{N/Y} : N \to N/Y$ for the natural projections. If $f(X) \subseteq Y$, then there exists a unique map $\overline{f} : M/X \to N/Y$ s.t.

$$\pi_{N/Y} \circ f = \overline{f} \circ \pi_{M/X}.$$

1.4 Snake Lemma

Theorem 1.4.1 (Snake Lemma). Consider the following commutative diagram:

Assume that the two horizontal black sequences are exact. Then there is a natural map δ : Ker $c \rightarrow$ Coker a, and the red sequence is exact.

1.5 Noetherian modules

Notation 1.5.1. Let M be an A-module. Given a subset $P \subseteq M$, we denote by $(P) = \sum_{m \in P} Am$ the submodule of M generated by P.

Definition 1.5.2 (Noetherian module).

- (i) An A-module M is said to be of finite type (or finitely generated) if there exist m_1, \ldots, m_r s.t. $M = (m_1, \ldots, m_r)$. Equivalently, there exist $r \in \mathbb{N}^*$ and a surjective map $A^r \to M$.
- (ii) An A-module M is said to be noetherian if every submodule of M is of finite type.

Remark 1.5.3. The submodules of the A-module A are precisely the ideals of A, so A is noetherian as a ring iff A is noetherian as an A-module.

Proposition 1.5.4. An A-module M is noetherian iff every increasing sequence $(M_n)_{n \in \mathbb{N}}$ of submodules of M is eventually constant.

Lemma 1.5.5. Consider an exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$. Then M is noetherian iff L and N are noetherian.

Proof. (\Rightarrow) This amounts to proving that every submodule of a noetherian module is noetherian and that the image of a noetherian module by a homomorphism is noetherian. (\Leftarrow) Assume that L and N are noetherian. Let P be a submodule of M. Then $P \cap f(L)$ is a submodule of f(L), which is noetherian as the image of a noetherian module. Hence, there exist $\ell_1, \ldots, \ell_r \in L$ s.t. $P \cap f(L) = (f(\ell_1), \ldots, f(\ell_r))$. Likewise, there exist $p_1, \ldots, p_s \in P$ s.t. $g(P) = (g(p_1), \ldots, g(p_s))$. Using the fact that the sequence is exact, we now prove that $P = (f(\ell_1), \ldots, f(\ell_r), p_1, \ldots, p_s)$. \Box

Theorem 1.5.6. If A is a noetherian ring, then every finitely generated A-module M is noetherian.

Proof. Suppose that A is a notherian A-module. For $r \in \mathbb{N}^*$, we have an exact sequence $0 \to A \to A^r \to A^{r-1} \to 0$. Using Lemma 1.5.5, we use these exact sequences to prove by induction on r that A^r is noetherian for all $r \in \mathbb{N}^*$. Now, if M is a finitely generated A-module, there exist $r \in \mathbb{N}^*$ and a surjective map $f : A^r \to M$. Hence, $M = f(A^r)$ is noetherian as the image of a noetherian module.

1.6 Free modules

Definition 1.6.1 (Free module). Let M be an A-module. If $(m_j)_{j\in J} \in M^J$ is a family of elements of M, we get a map $f : \bigoplus_{j\in J} A \to M$ defined by $f(a_j) = a_j m_j$. We say that $(m_j)_{j\in J}$ is a basis of M if the map f is an isomorphism. We say that the module M is free if it admits a basis, i.e. if it is isomorphic to $\bigoplus_{j\in J} A$ for some set J.

Proposition 1.6.2. If M is a free A-module, then any two bases of M have the same cardinality.

Proof. By Krull's Theorem, A has a maximal ideal I. If $(m_j)_{j \in J}$ is a basis of M, then M/IM is an A/I-vector space and $(\overline{m}_j)_{j \in J}$ is a basis of this space. As any two bases of a vector space have the same cardinality, this proves the proposition.

Definition 1.6.3 (Free module of finite type). We say that an A-module M is free of finite type if it admits a finite basis, i.e. if M is isomorphic to A^r for some $r \in \mathbb{N}^*$. The integer r only depends on M, and it is called the rank of M.

1.7 Matrices

Definition 1.7.1 (Matrix of a module homomorphism). Let M and N be two A-modules that are free of rank r and s. Consider respective bases (m_1, \ldots, m_r) of M and (n_1, \ldots, n_s) of N. If $f \in \text{Hom}(M, N)$, then the matrix of f is $\text{Mat}(f) = (f_{ij})_{\substack{1 \le i \le s \\ 1 \le j \le r}} \in M_{s,r}(A)$ defined by:

$$\forall (i,j) \in \{1,\ldots,s\} \times \{1,\ldots,r\}, \ f(m_j) = \sum_{i=1}^{s} f_{ij}n_i.$$

Proposition 1.7.2. If $f : M \to N$ and $g : N \to L$ are two homomorphisms between three free A-modules of finite type equipped with bases, then Mat(fg) = Mat(f) Mat(g).

Proposition 1.7.3. Let M be a free A-module of rank r equipped with a basis. Consider $f \in \text{Hom}_A(M, M)$ and let P = Mat(f).

- (i) f is surjective $\iff (\det P) \in A^{\times}$.
- (ii) f is injective \iff (det P) is not a divisor of 0 in A.

Proof. (ii) (\Rightarrow) Suppose that (det *P*) is a divisor of 0 in *A*, i.e. there exists $h \in A \setminus \{0\}$ s.t. $h \det P = 0$. If $h \cdot P = 0$, then $P \cdot {}^t \begin{pmatrix} h & 0 & \cdots & 0 \end{pmatrix} = 0$ so Ker $f \neq \{0\}$. Therefore, assume that $h \cdot P \neq 0$, i.e. there exists $(i, j) \in \{1, \cdots, r\}^2$ s.t. $hP_{ij} \neq 0$. In other words, there is a 1×1 minor of *P* which is not killed by *h*. And the only $r \times r$ minor of *P* is killed by *h*. Hence *P* has a largest minor, of size n < r, which is not killed by *h*: call it $\mu = \min_{i_1, \dots, i_n} (P)$, with $h\mu \neq 0$. Take $i_0 \notin \{i_1, \dots, i_n\}$ and let $x = {}^t (x_1 \cdots x_r)$, where $x_i = 0$ if $i \notin \{i_0, \dots, i_r\}$, and $x_{i_k} = (-1)^k h \min_{i_0, \dots, i_k, \dots, i_n} (P)$. Note that $x_{i_0} = h\mu \neq 0$, so $x \neq 0$. However, it is easy to check that Px = 0. Hence, Ker $f \neq \{0\}$ and *f* is not injective.

Corollary 1.7.4. If M is a free A-module of finite type and $f \in \text{Hom}_A(M, M)$ is surjective, then f is bijective.

Corollary 1.7.5. If there exists an injective map $f \in \text{Hom}_A(A^r, A^s)$, then $r \leq s$

Proof. Suppose for contradiction that r > s. Then we can extend f to a map $\tilde{f} : x \in A^r \mapsto (f(x), 0) \in A^s \oplus A^{r-s} = A^r$. Hence, \tilde{f} is injective, but det f = 0, which is a contradiction. \Box

1.8 Cayley-Hamilton Theorem

Definition 1.8.1 (Characteristic polynomial). If $P \in M_n(A)$, the characteristic polynomial of P is defined by:

$$\Pi_P = \det\left(X \operatorname{Id} - P\right) \in A[X].$$

Remark 1.8.2. The data of an A[X]-module M is equivalent to an A-module M equipped with an A-linear map $f: M \to M$.

Theorem 1.8.3 (Cayley-Hamilton Theorem). Consider an A-module M generated by a finite number m_1, \ldots, m_n of elements. Let $f \in \text{Hom}_A(M, M)$ and take a matrix $P \in M_n(A)$ s.t. $\forall i \in \{1, \ldots, n\}, f(m_i) = \sum_{j=1}^n P_{ij}m_j$. Then $\prod_P(f) = 0$ on M.

Proof. View M as an A[X]-module by setting $X \cdot m = f(m)$ for $m \in M$. Hence, we have:

$$\begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix} = (X \operatorname{Id} - P) \begin{pmatrix} m_1\\ \vdots\\ m_n \end{pmatrix} = {}^t (\operatorname{Com} (X \operatorname{Id} - P)) (X \operatorname{Id} - P) \begin{pmatrix} m_1\\ \vdots\\ m_n \end{pmatrix} = \Pi_P(X) \cdot \begin{pmatrix} m_1\\ \vdots\\ m_n \end{pmatrix}.$$

Therefore, $\forall i \in \{1, \ldots, n\}$, $\Pi_P(f) \cdot m_i = \Pi_P(X) \cdot m_i = 0$. Since m_1, \ldots, m_n generate M, $\Pi_P(f) = 0$.

Remark 1.8.4. Proving the Cayley-Hamilton Theorem for any module gives the vector space version as a corollary.

Corollary 1.8.5. If M is a finitely generated A-module and I is an ideal of A s.t. IM = M, then there exists $x \in A$ s.t. $x \equiv 1 \mod I$ and xM = 0.

Proof. Let m_1, \ldots, m_n be a finite generating family for M. Note that there exists $P \in M_n(I)$ s.t. $\forall i \in \{1, \ldots, n\}, m_i = \sum_{j=1}^n P_{ij}m_j$ (because IM = M). Apply the Cayley-Hamilton Theorem to $f = \operatorname{id}_M$ with P as above. We take $x = \prod_P (1) \in A$; hence $x = \det(\operatorname{Id} - P) \equiv 1 \mod I$ (because $P \in M_n(I)$) and $\forall m \in M, xm = \prod_P (\operatorname{id}_M) \cdot m = 0$. \Box

1.9 Local rings

Definition 1.9.1 (Local ring). A ring A is said to be a local ring if it admits only one maximal ideal. In this case, if I is the unique maximal ideal of A, the quotient A/I is called the residue field of A.

Lemma 1.9.2. A ring A is local iff $A \setminus A^{\times}$ is an ideal of A.

Example 1.9.3.

- (i) A field is local (with maximal ideal $\{0\}$).
- (ii) \mathbb{Z}_p is local (with maximal ideal $p\mathbb{Z}_p$).
- (iii) $\mathbb{C}[[X]]$ is local (with maximal ideal $X\mathbb{C}[[X]]$).
- (iv) Consider a topological space X and choose $x \in X$. Let B be the set of pairs (\mathcal{U}, f) , where \mathcal{U} is an open neighbourhood of x and $f : \mathcal{U} \to \mathbb{R}$ is a continuous function. Define an equivalence relation \mathcal{R} on B by $(\mathcal{U}, f) \mathcal{R}(\mathcal{V}, g)$ iff there exists an open neighbourhood $\mathcal{W} \subseteq \mathcal{U} \cap \mathcal{V}$ of x s.t. $f_{|\mathcal{W}} = g_{|\mathcal{W}}$. Hence, the quotient $A = B/\mathcal{R}$ is naturally a ring, and it is local.

Proposition 1.9.4 (Nakayema's Lemma). Let A be a local ring with maximal ideal I. Consider a finitely generated A-module M. If m_1, \ldots, m_r are elements of M s.t. the A/I-vector space M/IM is generated by $\overline{m}_1, \ldots, \overline{m}_r$, then M is generated by m_1, \ldots, m_r .

Proof. Let $N = Am_1 + \cdots + Am_r$. We have M = N + IM, therefore $I \cdot (M/N) = (IM + N)/N = M/N$. By Corollary 1.8.5, there exists $x \equiv 1 \mod I$ s.t. $x \cdot M/N = 0$. Since A is local, $x \in A^{\times}$ and therefore M = N.

Corollary 1.9.5. Let A be a local ring with maximal ideal I. If M and N are two A-modules with M = N + IM, then N = M.

2 Finitely generated modules over PIDs

2.1 Invariant factors for PIDs

Theorem 2.1.1. If A is a PID, M is a free A-module of rank r and N is a submodule of M, then N is free of rank $\leq r$.

Proof. Let $(m_i)_{1 \le i \le r}$ be a basis of M. For $i \in \{1, \ldots, r\}$, define $N_i = N \cap (m_1, \ldots, m_i)$. By induction on i, let us show that N_i is free of rank $\le i$ (the result will follow by taking i = r). For $i = 1, N_1 \subseteq (m_1)$, and $(m_1) \simeq A$ (as an A-module). Since A is principal, N_1 is of the form (a_1m_1) for some $a_1 \in A$; hence N_1 is free of rank ≤ 1 . Assume the result has been proved up to i. We have $N_{i+1} \subseteq (m_1, \ldots, m_{i+1})$. Consider:

$$I = \left\{ a \in A, \ \exists \ (b_1, \dots, b_i) \in A^i, \ (b_1 m_1 + \dots + b_i m_i + a m_{i+1}) \in N_{i+1} \right\}.$$

I is an ideal of *A*. As *A* is principal, *I* is of the form (a_{i+1}) , with $a_{i+1} \in A$. If $a_{i+1} = 0$, then $N_{i+1} = N_i$ is free of rank $\leq i$ by induction. Otherwise, choose $x \in N_{i+1}$ s.t. the coefficient of m_{i+1} in *x* is a_{i+1} . For every $y \in N_{i+1}$, the coefficient of m_{i+1} in *y* is some multiple $b \cdot m_{i+1}$ of a_{i+1} , so $y - bx \in N_i$. This implies that $N_{i+1} = N_i + Ax$. But $N_i \cap Ax = \{0\}$, so:

$$N_{i+1} = N_i \oplus Ax$$

Now, N_{i+1} is free of rank $\leq i+1$ by induction.

Theorem 2.1.2. If A is a PID, M is a free A-module of rank r and N is a submodule of M of rank s, then there exists a basis $(m_i)_{1 \le i \le r}$ of M and $d_1, \ldots, d_s \in A \setminus \{0\}$ s.t.

- (i) $(d_i m_i)_{1 \le i \le s}$ is a basis of N.
- (ii) $d_1 \mid d_2 \mid \cdots \mid d_s$.

The ideals $(d_1), \ldots, (d_s)$ are determined by M/N; they are called the invariant factors of M/N.

Proof. We shall prove the result with the (stronger) assumption that A is euclidean, i.e. there exists a euclidean function $\mathcal{N} : A \setminus \{0\} \to \mathbb{N}$ s.t. for all $a \in A$ and for all $b \in A \setminus \{0\}$, there exist $q, r \in A$ with a = qb + r and either r = 0 or $\mathcal{N}(r) < \mathcal{N}(b)$. We use induction on r. We choose respective bases of M and N. Let $P \in M_{r,s}(A)$ be the matrix of the basis of N in terms of the basis of M. Changing bases amounts to multiplying P by invertible matrices on the left and on the right. Hence, it is enough to prove that there exist $X \in GL_r(A)$ and $Y \in GL_s(A)$ s.t.

$$XPY = \begin{bmatrix} \operatorname{diag}\left(d_1, \ldots, d_s\right) \\ 0 \end{bmatrix},$$

with $d_1 | \cdots | d_s$. In other words, it is enough to prove that, by using elementary operations on rows and columns (i.e. permutation of rows or columns, and transvection operations), one can go from P to a matrix of the above form. We may assume that $P \neq 0$ (otherwise we are done) and we let $\mathcal{N}(P) = \min_{\substack{1 \le i \le r \\ P_{ij} \neq 0}} \mathcal{N}(P_{ij})$. We can permute rows and columns so that $\mathcal{N}(P) = \mathcal{N}(P_{11})$. Now, if there

exists $i \in \{1, \ldots, r\}$ s.t. $P_{11} \nmid P_{i1}$, perform the euclidean division of P_{i1} by P_{11} : $P_{i1} = qP_{11} + r$, with $r \neq 0$. Now perform the operation $L_i \leftarrow L_i - qL_1$; we obtain a new matrix P' with $\mathcal{N}(P') < \mathcal{N}(P)$. After performing such operations a finite number of times, we will have $P_{11} \mid P_{i1}$ for all i; likewise, we can obtain $P_{11} \mid P_{1j}$ for all j. Now perform $L_i \leftarrow L_i - \frac{P_{i1}}{P_{11}}L_1$ for all $i \neq 1$ and $C_j \leftarrow C_j - \frac{P_{1j}}{P_{11}}C_1$ for all $j \neq 1$. We obtain a matrix of the form $\begin{bmatrix} P_{11} & 0 \\ 0 & Q \end{bmatrix}$, with $Q \in M_{r-1,s-1}(A)$. If there exists $(i,j) \in \{1,\ldots,r-1\} \times \{1,\ldots,s-1\}$ s.t. $P_{11} \nmid Q_{ij}$, perform $L_i \leftarrow L_i - qL_1$ as before in order to decrease the norm strictly. Thus, one may assume that $P_{11} \mid Q_{ij}$ for all (i,j). Now, applying the induction hypothesis to $\frac{Q}{P_{11}}$ gives the desired result.

Vocabulary 2.1.3. Let A be an integral domain.

(i) We say that A is an elementary divisor domain (EDD) if for all $P \in M_{r,s}(A)$, there exist $X \in GL_r(A)$ and $Y \in GL_s(A)$ s.t.

$$XPY = \begin{bmatrix} \operatorname{diag}\left(d_1, \ldots, d_s\right) \\ 0 \end{bmatrix},$$

with $d_1 \mid \cdots \mid d_s$.

(ii) We say that A is a Bézout domain if every finitely generated ideal of A is principal.

Proposition 2.1.4. If A is an EDD, then A is a Bézout domain.

Proof. Let $I = (x_1, \ldots, x_r)$ be a finitely generated ideal of A. Consider $P = {}^t (x_1 \cdots x_r) \in M_{r,1}(A)$. Since A is an EDD, there exist $X \in GL_r(A)$, $Y \in GL_s(A)$ and $d \in A$ s.t. $XPY = {}^t (d \ 0 \ \cdots \ 0)$. Hence, I = (d).

Corollary 2.1.5. Let A be an integral domain. We have the following chain of implications : A is a euclidean domain \Longrightarrow A is a PID \Longrightarrow A is an EDD \Longrightarrow A is a Bézout domain.

2.2 Finitely generated modules over PIDs

Proposition 2.2.1. If A is a PID and M is a finitely generated A-module, then there exist $n, m \in \mathbb{N}$ and nonzero elements $e_1, \ldots, e_m \in A \setminus A^{\times}$ with $e_1 \mid \cdots \mid e_m$ s.t.

$$M \simeq A^n \oplus A/e_1 A \oplus \cdots \oplus A/e_m A.$$

Proof. Since M is finitely generated, there exists a surjective map $f : A^r \to M$, with $r \in \mathbb{N}$. Let N = Ker f. By Theorem 2.1.2, there is a basis $(g_i)_{1 \leq i \leq r}$ of A^r and nonzero elements d_1, \ldots, d_s of A s.t. $d_1 \mid \cdots \mid d_s$ and:

$$N = d_1 g_1 A \oplus \dots \oplus d_s g_s A$$

Note that $M = \operatorname{Im} f \simeq A^r / \operatorname{Ker} f = A^r / N$. Therefore:

$$M \simeq \frac{g_1 A \oplus \dots \oplus g_r A}{d_1 g_1 A \oplus \dots \oplus d_s g_s A} \simeq A^{r-s} \oplus A/d_1 A \oplus \dots \oplus A/d_s A$$

But $A/d_i A = \{0\}$ if $d_i \in A^{\times}$; we obtain the result by throwing away the indices i s.t. $d_i \in A^{\times}$. \Box

Proposition 2.2.2. If M is a finitely generated module over a PID A, then the module M/M_{tor} is free of finite rank. Moreover, the integer n in Proposition 2.2.1 is the rank of M/M_{tor} . In particular, a torsion-free finitely generated module over a PID is free of finite rank.

Proposition 2.2.3. Let A be a PID and d_1, \ldots, d_m , e_1, \ldots, e_n be nonzero elements of $A \setminus A^{\times}$ s.t. $d_1 \mid \cdots \mid d_m$, $e_1 \mid \cdots \mid e_n$, and $A/d_1A \oplus \cdots \oplus A/d_mA \simeq A/e_1A \oplus \cdots \oplus A/e_nA$. Then m = n and $(d_i) = (e_i)$ for all $i \in \{1, \ldots, m\}$.

Proof. Since A is a PID, prime elements are the same as irreducible elements; hence, if $p \in A$ is prime, then (p) is maximal and A/pA is a field. Moreover, for $d \in A \setminus A^{\times}$, $\frac{A/dA}{p \cdot (A/dA)} \simeq \frac{A}{pA+dA}$ is A/pA if $p \mid d$, {0} otherwise. Hence, for any prime element $p \in A$, $\frac{A/d_1A \oplus \cdots \oplus A/d_mA}{p \cdot (A/d_1A \oplus \cdots \oplus A/d_mA)}$ is an (A/pA)-vector space whose dimension is the number of d_i that are divisible by p. Since $A/d_1A \oplus \cdots \oplus A/d_mA \simeq A/e_1A \oplus \cdots \oplus A/d_mA$, we have, for every prime element p:

$$|\{i \in \{1, \dots, m\}, p \mid d_i\}| = |\{j \in \{1, \dots, n\}, p \mid e_j\}|$$

Now choose a prime element p s.t. $p \mid d_1$. Then $p \mid d_1 \mid d_2 \mid \cdots \mid d_m$, so $|\{j \in \{1, \ldots, n\}, p \mid e_j\}| = m$, and $n \geq m$. By symmetry, n = m and $p \mid e_1 \mid \cdots \mid e_m$. Now if p divides some $d \in A$, then $p \cdot (A/dA) \simeq A/\left(\frac{d}{p}\right) A$. Here, this gives $A/\left(\frac{d_1}{p}\right) A \oplus \cdots \oplus A/\left(\frac{d_m}{p}\right) A \simeq A/\left(\frac{e_1}{p}\right) A \oplus \cdots \oplus A/\left(\frac{e_m}{p}\right) A$, which allows us to prove the result by induction. \Box

Theorem 2.2.4. If A is a PID and M is a finitely generated A-module, then there exist $n, m \in \mathbb{N}$ and nonzero elements $e_1, \ldots, e_m \in A \setminus A^{\times}$ with $e_1 \mid \cdots \mid e_m$ s.t.

$$M \simeq A^n \oplus A/e_1 A \oplus \cdots \oplus A/e_m A.$$

The integers n and m and the ideals (e_i) are uniquely determined by M.

Remark 2.2.5. Let A be a PID, $d \in A$. The module A/dA may be decomposed as follows: if $d = up_1^{\alpha_1} \cdots p_r^{\alpha_r}$, with the p_i distinct prime elements, $\alpha_i \in \mathbb{N}^*$ and $u \in A^{\times}$, then by the Chinese Remainder Theorem:

 $A/dA \simeq A/p_1^{\alpha_1}A \oplus \cdots \oplus A/p_r^{\alpha_r}A.$

However, one can prove that $A/p^{\alpha}A$ is indecomposable if p is prime and $\alpha \in \mathbb{N}^*$.

Definition 2.2.6 (Primary parts). If A is a PID and M is an A-module, then for any prime element $p \in A$, we define the p-primary part of M by:

$$M(p) = \{ m \in M, \exists \alpha \in \mathbb{N}, p^{\alpha}m = 0 \}$$

M(p) is a submodule of M.

Remark 2.2.7. Let A be a PID and M = A/dA. Write $d = up_1^{\alpha_1} \cdots p_r^{\alpha_r}$, with the p_i distinct prime elements, $\alpha_i \in \mathbb{N}^*$ and $u \in A^{\times}$. Then for all $j \in \{1, \ldots, r\}$, $M(p_j) \simeq A/p_j^{\alpha_j}A$. Hence, $M = \bigoplus_{p \text{ prime}} M(p)$.

Corollary 2.2.8. If A is a PID and M is a finitely generated A-module, then M(p) = 0 for all but finitely many prime elements p, and there exists $n \in \mathbb{N}$ s.t.

$$M \simeq A^n \oplus \left(\bigoplus_{p \ prime} M(p) \right).$$

Moreover, for every prime element p, there exist $\alpha_1(p) \leq \cdots \leq \alpha_{m(p)}(p)$ s.t.

$$M(p) \simeq \bigoplus_{i=1}^{m(p)} A/p^{\alpha_i(p)} A$$

The integers n, m(p), $\alpha_i(p)$ are uniquely determined by M.

2.3 Applications: finitely generated abelian groups, reduction of endomorphisms

Theorem 2.3.1. Let G be a finitely generated abelian group. Then there exist $n, m \in \mathbb{N}$ and integers $d_1, \ldots, d_m \geq 2$ with $d_1 \mid \cdots \mid d_m$ s.t.

$$G \simeq \mathbb{Z}^n \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_m\mathbb{Z}.$$

Proof. An abelian group is a \mathbb{Z} -module, so Theorem 2.2.4 applies.

Theorem 2.3.2. Let V be a finite-dimensional vector space over a field k. Let $f \in \text{End}(V)$. Note that V can be seen as a k[X]-module by setting $X \cdot v = f(v)$ for $v \in V$.

(i) There exist polynomials $D_1, \ldots, D_m \in k[X]$ with $D_1 | \cdots | D_m$ s.t.

$$V \simeq k[X]/(D_1) \oplus \cdots \oplus k[X]/(D_m).$$

Note that $k[X]/(D_i)$ is a cyclic subspace for f, for all $i \in \{1, \ldots, m\}$.

(ii) The ideals $(D_1), \ldots, (D_m)$ are the nonunit invariant factors of $(X \operatorname{Id} - M) \in M_d(k[X])$, where M is the matrix of f in a basis of V.

Proof. (i) The k[X]-module V is finitely generated because V is a finitely generated k-module. Moreover, according to the Cayley-Hamilton Theorem (Theorem 1.8.3), $M = M_{\text{tor}}$, which gives the result using Theorem 2.2.4. (ii) Let v_1, \ldots, v_d be a basis of V, let $M = (m_{ij})_{1 \le i,j \le d} = \text{Mat}(f)$. Consider a free k[X]-module W of rank d; write $W = \bigoplus_{i=1}^{d} k[X]\omega_i$ for some $(\omega_1, \ldots, \omega_d) \in W^d$. For $i \in \{1, \ldots, d\}$, set:

$$n_i = X\omega_i - \sum_{j=1}^d m_{ji}\omega_j \in W.$$

Consider $N = (n_1, \ldots, n_d) \subseteq W$. Now, define a map $\pi : W \to V$ by $\pi \left(\sum_{i=1}^d P_i(X) \omega_i \right) = \sum_{i=1}^d P_i(f) v_i$. The map π is k[X]-linear, and we claim that the sequence $0 \to N \to W \xrightarrow{\pi} V \to 0$ is exact. The surjectivity of π is clear since $\pi(\omega_i) = v_i$ for $i \in \{1, \ldots, d\}$. Moreover, for $i \in \{1, \ldots, d\}, \pi(n_i) = 0$ because $M = \operatorname{Mat}(f)$. Hence, $N \subseteq \operatorname{Ker} \pi$. Conversely, let $w \in \operatorname{Ker} \pi$. As $w \in W$, there exist $n \in N$ and $(a_1, \ldots, a_d) \in k^d$ s.t. $w = n + \sum_{i=1}^d a_i \omega_i$. But $w \in \operatorname{Ker} \pi$, and $n \in N \subseteq \operatorname{Ker} \pi$, so $0 = \pi \left(\sum_{i=1}^d a_i \omega_i \right) = \sum_{i=1}^d a_i v_i$. Hence, $a_i = 0$ for all $i \in \{1, \ldots, d\}$, and $w = n \in N$. This proves that the sequence $0 \to N \to W \xrightarrow{\pi} V \to 0$ is exact. Therefore, $V \simeq W/N$, so N is free of rank d and $N = \bigoplus_{i=1}^d k[X] \left(X \omega_i - \sum_{j=1}^d m_{ji} \omega_j \right)$. Now, note that $(X \operatorname{Id} - M)$ is the matrix of $\left(X \omega_i - \sum_{j=1}^d m_{ji} \omega_j \right)_{1 \le i \le d} \in W^d$ in the basis $(\omega_i)_{1 \le i \le d}$. **Remark 2.3.3.** With the notations of Theorem 2.3.2, D_m is the minimal polynomial of f and $D_1 \cdots D_m$ is its characteristic polynomial.

Corollary 2.3.4. Let k be a field and $A, B \in M_d(k)$. Then A and B are similar iff $(X \operatorname{Id} - A)$ and $(X \operatorname{Id} - B)$ are equivalent in $M_d(k[X])$.

Corollary 2.3.5 (Jordan normal form of an endomorphism). Let V be a finite-dimensional vector space over an algebraically closed field k. Let $f \in \text{End}(V)$. Then there exist $\lambda_1, \ldots, \lambda_s \in k$ s.t. $V = \bigoplus_{i=1}^{s} V_{\lambda_i}$, with V_{λ_i} stable by f and s.t. the matrix of the endomorphism induced by f in some basis of V_{λ_i} is:

λ_i	1	0	•••	0)
0	·.	·.	· .	:
:	۰.	·	·	0
:	·	·	·	1
$\sqrt{0}$	• • •	• • •	0	λ_i

Proof. View V as a k[X] module and use Corollary 2.2.8. Use the fact that the matrix above is the matrix of multiplication by X in the basis $((X - \lambda)^i)_{0 \le i \le \alpha - 1}$ of $k[X]/(X - \lambda)^{\alpha}$.

2.4 Projective modules

Definition 2.4.1 (Projective module). A module P is said to be projective if for every surjective linear map $f : N_1 \to N_2$ between modules, the induced map $f_* : \text{Hom}(P, N_1) \to \text{Hom}(P, N_2)$ is also surjective.

Example 2.4.2. Free modules are always projective.

Definition 2.4.3 (Split sequence). Consider an exact sequence $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$. The following assertions are equivalent:

- (i) There exists a linear map $r: P \to N$ s.t. $g \circ r = id_P$.
- (ii) There exists $P' \subseteq N$ s.t. $N = f(M) \oplus P'$.

In this case, we say the the sequence is split.

Proof. (i) \Rightarrow (ii) Take P' = r(P). (ii) \Rightarrow (i) Note that g induces an isomorphism $\tilde{g} : P' \to P$, so take $r = \tilde{g}^{-1} : P \to P' \subseteq N$.

Theorem 2.4.4. Let P be a module over a ring A. The following assertions are equivalent:

- (i) P is projective.
- (ii) Every exact sequence $0 \to M \to N \to P \to 0$ is split.
- (iii) There exists an A-module R s.t. $P \oplus R$ is free.

Proof. (i) \Rightarrow (ii) Consider an exact sequence $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$. Note that $g: N \to P$ is surjective, and P is projective, so $g_*: \text{Hom}(P, N) \to \text{Hom}(P, P)$ is surjective. Hence, there exists $r \in \text{Hom}(P, N)$ s.t. $g_*(r) = \text{id}_P$, i.e. $g \circ r = \text{id}_P$. Hence, the sequence is split. (ii) \Rightarrow (iii) Note that every module is the quotient of a free module, because every module has a (possibly infinite) generating family. Therefore, there exists a free module L and a surjective map $g: L \to P$. Hence, we get an exact sequence $0 \to \text{Ker } g \to L \xrightarrow{g} P \to 0$. Since this exact sequence splits, we get $L = r(P) \oplus \text{Ker } g \simeq P \oplus \text{Ker } g$, with $r: P \to N$ s.t. $g \circ r = \text{id}_P$. (iii) \Rightarrow (i) Let R be an A-module s.t. $L = R \oplus P$ is free. Consider a surjective map $g: N_1 \to N_2$. We know that L is projective (because L is free), so the induced map Hom $(L, N_1) \to \text{Hom}(L, N_2)$ is surjective. But Hom $(L, N_1) \simeq \text{Hom}(R, N_1) \oplus \text{Hom}(P, N_1)$ and Hom $(L, N_2) \simeq \text{Hom}(R, N_2) \oplus \text{Hom}(P, N_2)$, so the map Hom $(P, N_1) \to \text{Hom}(P, N_2)$ is also surjective and P is projective.

Remark 2.4.5. If P is a finitely generated projective module, the above proof shows the existence of a module R s.t. $P \oplus R$ is free of finite rank. In particular, over a PID, a module is projective and finitely generated iff it is free of finite rank.

Example 2.4.6. The following modules are projective but not free:

- (i) $\mathbb{Z}/2\mathbb{Z}$ is a projective $\mathbb{Z}/6\mathbb{Z}$ -module that is not free (because $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$).
- (ii) If M and N are free A- and B-modules respectively, then $M \times N$ is a projective $A \times B$ module, and it is free iff $\operatorname{rk}_A M = \operatorname{rk}_B N$.
- (iii) Let $A = \mathbb{Z}\left[\sqrt{-5}\right]$, $P = (3, 1 + \sqrt{-5}) \subseteq A$, $R = (3, 1 \sqrt{-5})$. We have P + R = A, $P \cap R = 3A$. Therefore, we have an exact sequence $0 \to 3A \to P \oplus R \to A \to 0$. This sequence is split because A is projective over itself. Hence, $P \oplus R \simeq A^2$, so P and R are projective. However, P and R are not free.
- (iv) Let A = C⁰ (Sⁿ, ℝ). Choose an orthonormal basis of ℝⁿ⁺¹ and let x̂₀,..., x̂_n : ℝⁿ⁺¹ → ℝ denote the associated coordinate functions. For i ∈ {0,...,n}, set x_i = x̂_i ∘ j ∈ A, where j : Sⁿ → ℝⁿ⁺¹ is the inclusion. Now let e = (x₀,...,x_n) ∈ Aⁿ⁺¹ and P = {v ∈ Aⁿ⁺¹, ⟨v | e⟩ = 0}. The A-module P is projective because Aⁿ⁺¹ = P ⊕ Ae. If P is free, then it must be of rank n, so there must exist v₁,...,v_n ∈ Aⁿ⁺¹ s.t. P = Av₁ ⊕ ··· ⊕ Av_n. Therefore, Aⁿ⁺¹ = Av₁ ⊕ ··· ⊕ Av_n ⊕ Ae. By fixing s ∈ Sⁿ and applying the map f ∈ A ↦ f(s) ∈ ℝ, we get ℝⁿ⁺¹ = ℝv₁(s) ⊕ ··· ⊕ ℝv_n(s) ⊕ ℝe(s). In particular, v₁(s) ≠ 0 for every s ∈ Sⁿ, and v₁(s) ∈ s[⊥], so v₁ is a nonvanishing continuous vector field on Sⁿ. This is impossible when n is even, due to the Hairy Ball Theorem.

3 Tensor products

3.1 Universal property of the tensor product

Theorem 3.1.1 (Existence of the tensor product). Let M and N be two A-modules. There exists an A-module $M \otimes N$ (sometimes written $M \otimes_A N$) together with a bilinear map $t : M \times N \to M \otimes N$ satisfying the following universal property: for any A-module P, the map $f \in \text{Hom}(M \otimes N, P) \mapsto$ $f \circ t \in \text{Bil}(M \times N, P)$ is an isomorphism of A-modules. Moreover, the module $M \otimes N$ is uniquely determined by this property, i.e. if X is an A-module together with a bilinear map $u : M \times N \to X$ satisfying the same universal property, then there exists a unique isomorphism $\varphi : X \to M \otimes N$ s.t. $t = \varphi \circ u$.

Proof. Let *L* be the free *A*-module whose basis is $([m,n])_{(m,n)\in M\times N}$, i.e. $L = \bigoplus_{(m,n)\in M\times N} A[m,n]$. Let *R* be the submodule of *L* generated by elements of the form $[a_1m_1 + a_2m_2, n] - a_1[m_1, n] - a_2[m_2, n]$ or $[m, b_1n_1 + b_2n_2] - b_1[m, n_1] - b_2[m, n_2]$ for $a_1, a_2, b_1, b_2 \in A, m, m_1, m_2 \in M, n, n_1, n_2 \in N$. Set $M \otimes N = L/R$ and define $m \otimes n$ to be the class of [m, n] in L/R for $(m, n) \in M \times N$. Hence, define a bilinear map $t : (m, n) \in M \times N \longmapsto m \otimes n \in M \otimes N$. If *P* is an *A*-module, the map $\Psi : f \in \text{Hom}(M \otimes N, P) \longmapsto f \circ t \in \text{Bil}(M \times N, P)$ is *A*-linear; let us prove that it is an isomorphism. The injectivity comes from the fact that $(m \otimes n)_{(m,n) \in M \times N}$ is a generating family for $M \otimes N$. For the surjectivity, let $g \in \text{Bil}(M \times N, P)$. Define $\tilde{f} : L \to P$ by $\tilde{f}([m, n]) = g(m, n)$ for $(m, n) \in M \times N$. We have $R \subseteq \text{Ker } \tilde{f}$ because *g* is bilinear; therefore, there exists $f : M \otimes N \to P$ s.t. $\tilde{f} = f \circ \pi$, where $\pi : L \to L/R = M \otimes N$ is the projection. Hence, $g = f \circ t$. This proves that $(M \otimes N, t)$ satisfies the universal property. Let (X, u) be another pair satisfying the same universal property. Since $t \in \text{Hom}(M \otimes N, X)$ s.t. $u = g \circ t$. Note that $f \circ g \circ t = t$, so $f \circ g = \text{id}_{M \otimes N}$ by the universal property. Likewise, $g \circ f = \text{id}_X$, so $f : X \to M \otimes N$ is an isomorphism and $t = f \circ u$.

Example 3.1.2.

- (i) $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ because $\forall (a, b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Q}, a \otimes b = na \otimes \frac{b}{n} = 0.$
- (ii) $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/(m \wedge n)\mathbb{Z}.$
- (iii) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} = \mathbb{Q}$.
- (iv) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}$.

Remark 3.1.3. Let M and N be two A-modules.

- (i) If $Bil(M \times N, P) = 0$ for every A-module P, then $M \otimes N = 0$.
- (ii) If M is generated by $(m_i)_{i \in I}$ and N is generated by $(n_j)_{j \in J}$, then $M \otimes N$ is generated by $(m_i \otimes n_j)_{(i,i) \in I \times J}$. In particular, if M and N are finitely generated, then so is $M \otimes N$.

Vocabulary 3.1.4. Let M and N be two A-modules. Elements of the form $m \otimes n \in M \otimes N$, for $(m,n) \in M \times N$, are called simple tensors. If $x \in M \otimes N$, the rank of x is the smallest integer r s.t. x can be written as the sum of r simple tensors.

Proposition 3.1.5. Let $M, N, P, (M_i)_{i \in I}$ be A-modules.

- (i) $M \otimes N = N \otimes M$.
- (ii) $M \otimes A = M$.
- (iii) $(\bigoplus_{i \in I} M_i) \otimes N = \bigoplus_{i \in I} (M_i \otimes N).$
- (iv) Hom $(M \otimes N, P)$ = Hom (M, Hom(N, P)).
- (v) $(M \otimes N) \otimes P = M \otimes (N \otimes P)$.

Remark 3.1.6. If M, N, P are A-modules, we shall write $M \otimes N \otimes P = (M \otimes N) \otimes P = M \otimes (N \otimes P)$. The A-module $M \otimes N \otimes P$ has a universal property w.r.t. multilinear maps on $M \times N \times P$.

Corollary 3.1.7. The tensor product of two free A-modules is a free A-module.

Corollary 3.1.8. The tensor product of two projective A-modules is a projective A-module.

Proof. If M and N are projective A-modules, then there exist A-modules M' and N' s.t. $M \oplus M'$ and $N \oplus N'$ are free. Therefore $(M \oplus M') \otimes (N \oplus N')$ is free. But:

$$(M \oplus M') \otimes (N \oplus N') = (M \otimes N) \oplus (M \otimes N') \oplus (M' \otimes N) \oplus (M' \otimes N').$$

Therefore, $M \otimes N$ is projective.

3.2 Tensor products, exact sequences and quotients

Proposition 3.2.1. If $M' \to M \to M'' \to 0$ is an exact sequence and N is a module, then the following sequence is exact:

$$M' \otimes N \to M \otimes N \to M'' \otimes N \to 0.$$

In particular, $\frac{M}{\operatorname{Im} M'} \otimes N = \frac{M \otimes N}{\operatorname{Im} (M' \otimes N)}$.

Proof. Let P be an A-module. Applying Proposition 1.2.6, we see that the sequence:

$$0 \to \operatorname{Hom}(M'', \operatorname{Hom}(N, P)) \to \operatorname{Hom}(M, \operatorname{Hom}(N, P)) \to \operatorname{Hom}(M', \operatorname{Hom}(N, P))$$

is exact. But this sequence can be rewritten as:

 $0 \to \operatorname{Hom} \left(M'' \otimes N, P \right) \to \operatorname{Hom} \left(M \otimes N, P \right) \to \operatorname{Hom} \left(M' \otimes N, P \right).$

Proposition 1.2.6 applied in the other direction now tells us that $M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$ is exact.

Remark 3.2.2. Even if a linear map $M' \to M$ between A-modules is injective, the induced map $M' \otimes N \to M \otimes N$ may not be injective for an A-module N. For example, the inclusion $2\mathbb{Z} \to \mathbb{Z}$ is injective but the induced map $2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}$ is zero.

Corollary 3.2.3. Let M be an A-module. If I is an ideal of A, then:

$$A/I \otimes M = M/IM.$$

Proof. We have an exact sequence $I \xrightarrow{j} A \xrightarrow{\pi} A/I \to 0$, which induces an exact sequence $I \otimes M \xrightarrow{\tilde{j}} M \xrightarrow{\tilde{\pi}} A/I \otimes M \to 0$. Since $\operatorname{Im} \tilde{j} = IM$, we obtain $A/I \otimes M = M/IM$.

Corollary 3.2.4. If I and J are two ideals of A, then:

$$A/I \otimes A/J = A/(I+J).$$

Corollary 3.2.5. If $K \xrightarrow{i} M \to P \to 0$ and $L \xrightarrow{j} N \to Q \to 0$ are two exact sequences, then the following sequence is exact:

$$(K \otimes N) \oplus (M \otimes L) \xrightarrow{i \otimes \mathrm{id} \oplus \mathrm{id} \otimes j} M \otimes N \longrightarrow P \otimes Q \longrightarrow 0.$$

In particular, $\frac{M}{\operatorname{Im} K} \otimes \frac{N}{\operatorname{Im} L} = \frac{M \otimes N}{\operatorname{Im} (K \otimes N) + \operatorname{Im} (M \otimes L)}$.

Definition 3.2.6 (Flat module). An A-module P is said to be flat if for every injective map $M' \to M$, the induced map $P \otimes M' \to P \otimes M$ is still injective.

Example 3.2.7. Any free module is flat.

Proposition 3.2.8. Projective modules are flat.

Proof. Use the fact that projective modules are direct summands of free modules.

3.3 Tensor products of homomorphisms

Definition 3.3.1 (Tensor product of homomorphisms). If $f : M_1 \to M_2$ and $g : N_1 \to N_2$ are homomorphisms of A-modules, then there exists a unique homomorphism $(f \otimes g) : M_1 \otimes N_1 \to M_2 \otimes N_2$ s.t.

$$\forall (m,n) \in M_1 \times N_1, (f \otimes g) (m \otimes n) = f(m) \otimes g(n).$$

Remark 3.3.2. Let M_1, M_2, N_1, N_2 be A-modules. The tensor product of homomorphisms defines a bilinear map \tilde{h} : Hom $(M_1, M_2) \times$ Hom $(N_1, N_2) \longrightarrow$ Hom $(M_1 \otimes N_1, M_2 \otimes N_2)$, which induces a linear map:

$$h: \operatorname{Hom}(M_1, M_2) \otimes \operatorname{Hom}(N_1, N_2) \longrightarrow \operatorname{Hom}(M_1 \otimes N_1, M_2 \otimes N_2)$$

In general, h has no reason to be either injective or surjective, but we shall see some cases in which it is.

Proposition 3.3.3. Let M_1, M_2, N_1, N_2 be A-modules. Assume that M_1 and N_1 (resp. M_1 and M_2) are free of finite rank. Then the map $h : \text{Hom}(M_1, M_2) \otimes \text{Hom}(N_1, N_2) \longrightarrow \text{Hom}(M_1 \otimes N_1, M_2 \otimes N_2)$ is an isomorphism.

Proof. Prove it firstly for $M_1 = N_1 = A$ (resp. $M_1 = M_2 = A$).

Remark 3.3.4. Let M_1, M_2, N_1, N_2 be free A-modules of finite rank equipped with bases. Let $f \in$ Hom (M_1, M_2) and $g \in$ Hom (N_1, N_2) . If $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} = Mat(f)$ and B = Mat(g), then in appropriate bases of $M_1 \otimes N_1$ and $M_2 \otimes N_2$, we have:

$$\operatorname{Mat}\left(f\otimes g\right) = \begin{bmatrix} a_{11}B & \cdots & a_{1p}B\\ \vdots & \ddots & \vdots\\ a_{n1}B & \cdots & a_{np}B \end{bmatrix}.$$

This matrix will be denoted by $A \otimes B$.

Corollary 3.3.5. Let M be a free A-module of finite rank. Then, for any A-module N, the map:

$$h: M^{\vee} \otimes N \longrightarrow \operatorname{Hom}(M, N)$$

is an isomorphism.

Proposition 3.3.6. Let V and W be two vector spaces over a field k. We have an isomorphism $\psi: V^{\vee} \otimes W \to \text{Hom}(V, W)$. If $f \in \text{Hom}(V, W)$, then the rank of f as a linear map is equal to the rank of $\psi^{-1}(f) \in V^{\vee} \otimes W$ (c.f. Vocabulary 3.1.4).

Proof. Let $t = \psi^{-1}(f)$. Let us show that $\operatorname{rk} f = \operatorname{rk} t$. (\leq) Write $t = \sum_{i=1}^{r} f_i \otimes w_i$, with $r = \operatorname{rk} t$, $f_1, \ldots, f_r \in V^{\vee}, w_1, \ldots, w_r \in W$. Then:

$$\forall v \in V, f(v) = \sum_{i=1}^{r} f_i(v) w_i.$$

Therefore, Im $f \subseteq \text{Vect}(w_1, \ldots, w_r)$ and $\operatorname{rk} f \leq r = \operatorname{rk} t$. (\geq) Let $(w_i)_{1 \leq i \leq r}$ be a basis of Im f. For $i \in \{1, \ldots, r\}$, let $p_i : \text{Im } f \to \mathbb{R}$ be the *i*-th coordinate function associated to the basis $(w_i)_{1 \leq i \leq r}$. Hence, $t = \sum_{i=1}^r (p_i \circ f) \otimes w_i$, so $\operatorname{rk} t \leq r = \operatorname{rk} f$.

Proposition 3.3.7. Let M_1, M_2, N_1, N_2 be A-modules. Assume that M_1 and N_1 (resp. M_1 and M_2) are finitely generated and projective. Then the map $h : \text{Hom}(M_1, M_2) \otimes \text{Hom}(N_1, N_2) \longrightarrow \text{Hom}(M_1 \otimes N_1, M_2 \otimes N_2)$ is an isomorphism.

Proof. Use Proposition 3.3.3 and the fact that finitely generated projective modules are direct summands of free modules of finite type. \Box

Remark 3.3.8. If M is a finitely generated, projective module, then we have an isomorphism $M^{\vee} \otimes M \simeq \operatorname{End}(M)$. On $M^{\vee} \otimes M$, there is a linear trace map $\operatorname{tr} : M^{\vee} \otimes M \to \mathbb{R}$ induced by the bilinear map $(f, x) \in M^{\vee} \times M \longrightarrow f(x) \in \mathbb{R}$. Hence, with the isomorphism $M^{\vee} \otimes M \simeq \operatorname{End}(M)$, we have a trace map $\operatorname{tr} : \operatorname{End}(M) \to \mathbb{R}$, which is a generalisation of the trace for endomorphisms of free modules of finite rank.

3.4 Extension of scalars

Definition 3.4.1 (Restriction of scalars). Let $f : A \to B$ be a ring homomorphism (e.g. an inclusion map). Any B-module N can be seen as an A-module by setting $a \cdot n = f(a) \cdot n$, for $a \in A$ and $n \in N$.

Definition 3.4.2 (Extension of scalars). Let $f : A \to B$ be a ring homomorphism. The ring B itself can be seen as an A-module by restriction of scalars; therefore, $B \otimes_A M$ is an A-module, that can also be seen as a B-module by setting $b \cdot (b' \otimes m) = (bb') \otimes m$ for $b, b' \in B$ and $m \in M$.

Example 3.4.3. Let M be a \mathbb{Z} -module and assume that $M = \mathbb{Z}^r \oplus M_{\text{tors}}$ for some $r \in \mathbb{N}$. Then $\mathbb{Q} \otimes_{\mathbb{Z}} M$ is the \mathbb{Q} -vector space \mathbb{Q}^r .

Proposition 3.4.4. Let $f : A \to B$ be a ring homomorphism. If M is an A-module and N is a B-module, then:

$$\operatorname{Hom}_{A}(M, N) \simeq \operatorname{Hom}_{B}(B \otimes_{A} M, N) \qquad (as \ B\text{-modules}).$$

Lemma 3.4.5. Let $f : A \to B$ be a ring homomorphism. If M is an A-module and N is a B-module, then:

 $M \otimes_A N \simeq (B \otimes_A M) \otimes_B N$ (as *B*-modules).

Corollary 3.4.6. Let $f : A \to B$ be a ring homomorphism. If P is a flat A-module, then $B \otimes_A P$ is a flat B-module.

3.5 Tensor product of algebras over a ring

Vocabulary 3.5.1 (A-algebra). If $f : A \to B$ is a ring homomorphism, we say that B is an A-algebra.

Proposition 3.5.2. If M and N are two A-algebras, then $M \otimes_A N$ is also an A-algebra.

Example 3.5.3. If B is an A-algebra, then:

$$B \otimes_A A[X] = B[X].$$

In particular, $A[X] \otimes_A A[Y] = A[X, Y]$.

Example 3.5.4. If X is a topological space, then:

$$\mathbb{C} \otimes_{\mathbb{R}} \mathcal{C}^0(X,\mathbb{R}) = \mathcal{C}^0(X,\mathbb{C})$$

Example 3.5.5. Let X and Y be two topological spaces. Then there exists a map:

 $m: \mathcal{C}^{0}(X,\mathbb{R}) \otimes_{\mathbb{R}} \mathcal{C}^{0}(Y,\mathbb{R}) \longrightarrow \mathcal{C}^{0}(X \times Y,\mathbb{R}),$

given by $m(f \otimes g)(x, y) = f(x)g(y)$, and this map is injective.

Example 3.5.6. Let K and L be two finite extensions of a field F of characteristic 0. By the Primitive Element Theorem, there exists $\alpha \in L$ s.t. $L = F(\alpha)$. If μ_{α} is the minimal polynomial of α over F, then $L = F[X]/(\mu_{\alpha})$, so:

$$K \otimes_F L = K[X]/(\mu_{\alpha})$$

Hence, if $\mu_{\alpha} = P_1 \cdots P_r$, where P_1, \ldots, P_r are irreducible over K, then:

$$K \otimes_F L = \bigoplus_{1 \le i \le r} K[X]/(P_i)$$

Thus, $K \otimes_F L$ can be written as a direct sum of extensions of K.

3.6 Flat modules

Definition 3.6.1 (Flat module). An A-module P is said to be flat if for every injective map $M' \to M$, the induced map $P \otimes M' \to P \otimes M$ is still injective.

Proposition 3.6.2.

- (i) Projective modules are flat.
- (ii) If P_1 and P_2 are two flat modules, then $P_1 \oplus P_2$ and $P_1 \otimes P_2$ are flat.

Proposition 3.6.3. Let P be a flat A-module.

- (i) If I is an ideal of A, then the map $I \otimes P \to IP$ is an isomorphism.
- (ii) If A is an integral domain, then P is torsion-free.

Definition 3.6.4 (Flat module for a specific module). Let M and P be two modules. We say that P is flat for M if for every submodule $M' \subseteq M$, the map $M' \otimes P \to M \otimes P$ is injective.

Remark 3.6.5. A module is flat iff it is flat for every module.

Lemma 3.6.6. If a module P is flat for a module M, then it is also flat for every quotient of M.

Proof. Write an exact sequence $0 \to K \to M \xrightarrow{\pi} N \to 0$. We want to show that P is flat for N. Hence, let $N' \subseteq N$ be a submodule; set $M' = \pi^{-1}(N')$. We have the following commutative diagram (with the horizontal and vertical sequences exact):

After taking the tensor product with P, we obtain:

Note that the arrow $P \otimes M' \to P \otimes M$ is injective because P is flat for M by assumption. Now, using this diagram, we show that the arrow $P \otimes N' \to P \otimes N$ is also injective as wanted.

Lemma 3.6.7. If a module P is flat for two modules M_1 and M_2 , then it is also flat for $M_1 \oplus M_2$.

Proof. Let $M = M_1 \oplus M_2$ and let M' be a submodule of M. Write $M'_1 = M' \cap M_1$ and $M'_2 = M' \cap M_2$. We have the following commutative diagram (with the horizontal and vertical sequences exact):

After taking the tensor product with P, we obtain:

$$\begin{array}{cccc} 0 & 0 \\ \downarrow & \downarrow \\ P \otimes M'_1 \to P \otimes M' \to P \otimes M'_2 \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow P \otimes M_1 \to P \otimes M \to P \otimes M_2 \longrightarrow 0 \end{array}$$

Note that the arrows $P \otimes M'_1 \to P \otimes M_1$ and $P \otimes M'_2 \to P \otimes M_2$ are injective because P is flat for M_1 and M_2 by assumption; moreover, the arrow $P \otimes M_1 \to P \otimes M$ is injective because $P \otimes M = P \otimes (M_1 \oplus M_2) = (P \otimes M_1) \oplus (P \otimes M_2)$. Now, using this diagram, we show that the arrow $P \otimes M' \to P \otimes M$ is also injective as wanted.

Lemma 3.6.8. If a module P is flat for each module in a family $(M_i)_{i \in I}$, then it is also flat for $\bigoplus_{i \in I} M_i$.

Proof. Note that by induction, Lemma 3.6.7 gives the result when I is finite. Now, write $M = \bigoplus_{i \in I} M_i$ and let $M' \subseteq M$ be a submodule. Let $f : P \otimes M' \to P \otimes M$ be the map induced by the inclusion $M' \subseteq M$. Let $x' \in \text{Ker } f$; we want to show that x' = 0. Write:

$$x' = \sum_{i=1}^r p_i \otimes m_i,$$

with $p_1, \ldots, p_r \in P, m_1, \ldots, m_r \in M'$. Let $M'' = (m_1, \ldots, m_r) \subseteq M'$ and set $x'' = \sum_{i=1}^r p_i \otimes m_i \in P \otimes M''$. The inclusion $M'' \subseteq M'$ induces a map $j : P \otimes M'' \to P \otimes M'$ and we have x' = j(x''). Moreover, as M'' is finitely generated, there exists a finite subset $J \subseteq I$ s.t. $M'' \subseteq \bigoplus_{j \in J} M_j = M_{\text{finite}}$. Since M_{finite} is a direct summand of M, the map $P \otimes M_{\text{finite}} \to P \otimes M$ is injective; moreover, by Lemma 3.6.7, the map $P \otimes M'' \to P \otimes M_{\text{finite}}$ is injective. Hence, by composition, the map $i : P \otimes M'' \to P \otimes M$ is injective. Therefore, since i(x'') = f(x') = 0, we obtain x'' = 0, and x' = j(x'') = 0 as wanted.

Theorem 3.6.9. Let P be an A-module. The following assertions are equivalent:

- (i) P is flat.
- (ii) P is flat for A, i.e. the map $I \otimes P \to P$ is injective for every ideal I of A.

Proof. Use Remark 3.6.5, Lemma 3.6.8 and Lemma 3.6.6, as well as the fact that every module can be written as the quotient of a free module. \Box

3.7 Flatness and relations

Definition 3.7.1 (Relations). Let M be an A-module. A relation in M is an equation $\sum_{i=1}^{r} f_i m_i = 0$, with $f_1, \ldots, f_r \in A$ and $m_1, \ldots, m_r \in M$. This relation is said to be trivial if there exist $(a_{ij})_{\substack{1 \le i \le r \\ 1 \le r \\ 1$

 $A^{r \times s}$ and $y_1, \ldots, y_s \in M$ s.t. $m_i = \sum_{j=1}^s a_{ij} y_j$ for all i and $0 = \sum_{i=1}^r f_i a_{ij}$ for all j.

Example 3.7.2. Consider A = k[X, Y], where k is a field. The relation $Y \cdot X - X \cdot Y = 0$ is trivial in A but not in the submodule M = (X, Y).

Proposition 3.7.3. An A-module M is flat iff every relation in M is trivial.

Proof. (\Leftarrow) Assuming that every relation in M is trivial, show that the map $I \otimes M \to M$ is injective for any ideal $I \subseteq A$ and apply Theorem 3.6.9. (\Rightarrow) Assume that M is flat and consider a relation $\sum_{i=1}^{r} f_i m_i = 0$ in M. Let $I = (f_1, \ldots, f_r) \subseteq A$. We have a natural surjective map $A^r \to I$, of kernel $N = \{(a_i)_{1 \leq i \leq r} \in A^r, \sum_{i=1}^{r} a_i f_i = 0\}$. Now, as M is flat, note that the exact sequence $0 \to N \to A^r \to I \to 0$ induces an exact sequence:

$$0 \to M \otimes N \to M^r \xrightarrow{\pi} M \otimes I \to 0$$

Since M is flat, the map $M \otimes I \to M$ is injective, which proves that $\sum_{i=1}^{r} m_i \otimes f_i = 0$, so $(m_i)_{1 \leq i \leq r} \in Ker \pi = Im(M \otimes N)$. Therefore, there exist $(a_{i1})_{1 \leq i \leq r}, \ldots, (a_{is})_{1 \leq i \leq r} \in N$ and $y_1, \ldots, y_s \in M$ s.t. $\sum_{j=1}^{s} y_j \otimes (a_{1j}, \ldots, a_{rj}) = (m_i)_{1 \leq i \leq r}$. Hence, the relation $\sum_{i=1}^{r} f_i m_i = 0$ is trivial.

3.8 Symmetric products

Notation 3.8.1. If M is an A-module, we write $T^k(M) = \underbrace{M \otimes \cdots \otimes M}_{k \text{ times}}$. For any A-module P, we have a bijection k-Lin $(M^k, P) \simeq \operatorname{Hom} (T^k(M), P)$.

Definition 3.8.2 (Symmetric multilinear map). Let M and P be two A-modules. A multilinear map $f \in k$ -Lin (M^k, P) is said to be symmetric if:

$$\forall (m_1,\ldots,m_k) \in M^k, \ \forall \sigma \in \mathfrak{S}_k, \ f(m_1,\ldots,m_k) = f\left(m_{\sigma(1)},\ldots,m_{\sigma(k)}\right).$$

Definition 3.8.3 (Symmetric product). Let M be an A-module. Let S be the submodule of $T^k(M)$ generated by $\{(m_1 \otimes \cdots \otimes m_k) - (m_{\sigma(1)} \otimes \cdots \otimes m_{\sigma(k)}), m_1, \ldots, m_k \in M, \sigma \in \mathfrak{S}_k\}$. We define:

$$\operatorname{Sym}^k(M) = T^k(M)/S.$$

For $m_1, \ldots, m_k \in M$, we shall denote the image of $m_1 \otimes \cdots \otimes m_k$ in $\text{Sym}^k(M)$ by $m_1 \cdots m_k$ to emphasize commutativity.

Proposition 3.8.4. Let M and P be two A-module. Then the set of symmetric k-linear maps $M^k \to P$ is in bijection with Hom $(\text{Sym}^k(M), P)$.

Remark 3.8.5. Let M be an A-module. The map $(v, w) \mapsto v \cdot w$ gives rise to a bilinear map $\operatorname{Sym}^k(M) \times \operatorname{Sym}^{\ell}(M) \to \operatorname{Sym}^{k+\ell}(M)$. Now, if we define:

$$\operatorname{Sym}(M) = \bigoplus_{k \in \mathbb{N}} \operatorname{Sym}^k(M),$$

then Sym(M) is a ring under the bilinear map defined above, called the symmetric algebra of M.

Proposition 3.8.6. Let M be an A-module generated by elements $m_1, \ldots, m_n \in M$. Then $\text{Sym}^k(M)$ is generated by $\{m_1^{a_1} \cdots m_n^{a_n}, a_1 + \cdots + a_n = k\}$.

Lemma 3.8.7. For $k, n \in \mathbb{N}$, $|\{(a_1, \ldots, a_n) \in \mathbb{N}^n, a_1 + \cdots + a_n = k\}| = \binom{n+k-1}{k}$.

Theorem 3.8.8. Let M be a free A-module of rank n, equipped with a basis $(m_i)_{1 \le i \le n}$. Then $\operatorname{Sym}^k(M)$ is free of rank $\binom{n+k-1}{k}$, with basis $(m_1^{a_1} \cdots m_n^{a_n})_{\substack{(a_1,\ldots,a_n) \in \mathbb{N}^n \\ a_1+\cdots+a_n=k}}$.

Proof. Denote $x_1^{a_1} \cdots x_n^{a_n}$ by x^a for $x = (x_i)_{1 \le i \le n} \in M^n$, $a = (a_i)_{1 \le i \le n} \in \mathbb{N}^n$. According to Proposition 3.8.6, it suffices to prove that the family $(m^a)_{\substack{a \in \mathbb{N}^n \\ a_1 + \cdots + a_n = k}}$ is linearly independent. For $a \in \mathbb{N}^n$ with $a_1 + \cdots + a_n = k$, define a multilinear form $f_a \in k$ -Lin (M^k, A) by:

$$f_a(m_{i_1}, \dots, m_{i_k}) = \begin{cases} 1 & \text{if } \forall \ell \in \{1, \dots, n\}, \ a_\ell = |\{j \in \{1, \dots, k\}, \ i_j = \ell\}| \\ 0 & \text{otherwise} \end{cases}$$

As $(m_i)_{1 \le i \le n}$ is a basis of M, this defines a (symmetric) k-linear form $f_a : M^k \to A$, which induces a linear map $\tilde{f}_a : \operatorname{Sym}^k(M) \to A$. For $b \in \mathbb{N}^n$ with $b_1 + \cdots + b_n = k$, we have $\tilde{f}_a(m^b) = \delta_{ab}$. Now, if $(\lambda_b)_{\substack{b \in \mathbb{N}^n \\ b_1 + \cdots + b_n = k}}$ is a family of scalars s.t.

$$\sum_{b_1+\dots+b_n=k}\lambda_b m^b=0,$$

then, for all $a \in \mathbb{N}^n$ with $a_1 + \cdots + a_n = k$, we have $\lambda_a = \tilde{f}_a \left(\sum_{b_1 + \cdots + b_n = k} \lambda_m b^m \right) = 0$. This shows the independence of $(m^a)_{\substack{a \in \mathbb{N}^n \\ a_1 + \cdots + a_n = k}}$.

Corollary 3.8.9. Let M be a free A-module of rank n, equipped with a basis $(m_i)_{1 \le i \le n}$. Then:

$$\operatorname{Sym}(M) \simeq A[X_1, \ldots, X_n],$$

and the isomorphism is given by $m_1^{a_1} \cdots m_n^{a_n} \mapsto X_1^{a_1} \cdots X_n^{a_n}$.

3.9 Alternating products

Definition 3.9.1 (Alternating multilinear map). Let M and P be two A-modules. A multilinear map $f \in k$ -Lin (M^k, P) is said to be alternating if:

$$\forall (m_1, \dots, m_k) \in M^k, \ (\exists i \neq j, \ m_i = m_j) \Longrightarrow f(m_1, \dots, m_k) = 0.$$

Lemma 3.9.2. Let M and P be two A-modules. If a k-linear map $f: M^k \to P$ is alternating, then it is antisymmetric, *i.e.*

$$\forall (m_1, \ldots, m_k) \in M^k, \, \forall \sigma \in \mathfrak{S}_k, \, f(m_1, \ldots, m_k) = \varepsilon(\sigma) f\left(m_{\sigma(1)}, \ldots, m_{\sigma(k)}\right).$$

Remark 3.9.3. The converse of Lemma 3.9.2 is false in general, but it becomes true if we assume that $2 \in A^{\times}$.

Definition 3.9.4 (Alternating product). Let M be an A-module. Let L be the submodule of $T^k(M)$ generated by $\{m_1 \otimes \cdots \otimes m_k, m_1, \ldots, m_k \in M, \exists i \neq j, m_i = m_j\}$. We define:

$$\Lambda^k(M) = T^k(M)/L.$$

For $m_1, \ldots, m_k \in M$, we shall denote the image of $m_1 \otimes \cdots \otimes m_k$ in $\Lambda^k(M)$ by $m_1 \wedge \cdots \wedge m_k$ to emphasize anticommutativity.

Proposition 3.9.5. Let M and P be two A-module. Then the set of alternating k-linear maps $M^k \to P$ is in bijection with Hom $(\Lambda^k(M), P)$.

Lemma 3.9.6. Let M be an A-module that is generated by n elements. Then $\Lambda^k(M) = 0$ as soon as k > n.

Theorem 3.9.7. Let M be a free A-module of rank n, equipped with a basis $(m_i)_{1 \le i \le n}$. Then $\Lambda^k(M)$ is free of rank $\binom{n}{k}$, with basis $(m_{i_1} \land \cdots \land m_{i_k})_{1 \le i_1 \le \cdots \le i_k \le n}$.

Proof. It is clear that $(m_{i_1} \wedge \cdots \wedge m_{i_k})_{1 \leq i_1 < \cdots < i_k \leq n}$ generates $\Lambda^k(M)$; it remains to prove that this family is linearly independent. To do this, we use the same strategy as in Theorem 3.8.8: it suffices to construct a linear form $f_{i_1,\ldots,i_k} : \Lambda^k(M) \to A$ for each sequence $1 \leq i_1 < \cdots < i_k \leq n$ s.t. $f_{i_1,\ldots,i_k}(m_{j_1} \wedge \cdots \wedge m_{j_k}) = \delta_{i_1j_1} \cdots \delta_{i_kj_k}$ for all $1 \leq j_1 < \cdots < j_k \leq n$. In the particular case where k = n, we take the linear form f_{i_1,\ldots,i_k} on $\Lambda^k(M)$ induced by the alternating k-linear form $\det_{(m_{i_1},\ldots,m_{i_k})} : M^k \to A$. Now, assume that k < n. For $1 \leq i_1 < \cdots < i_k \leq n$, choose $1 \leq i_{k+1} < \cdots < i_n \leq n$ s.t. $\{1,\ldots,n\} = \{i_\ell, \ell \in \{1,\ldots,n\}\}$ and set $y = m_{i_{k+1}} \wedge \cdots \wedge m_{i_n} \in \Lambda^{n-k}(M)$. Now, $x \mapsto x \wedge y$ defines a linear map $\theta : \Lambda^k(M) \to \Lambda^n(M)$, which sends $m_{j_1} \wedge \cdots \wedge m_{j_k}$ to $\pm m_1 \wedge \cdots \wedge m_n$ if $\{j_1,\ldots,j_k\} = \{i_1,\ldots,i_k\}$, 0 otherwise. Hence, by composing this map by the determinant, we obtain the desired map.

Notation 3.9.8. Let M be an A-module. Then any map $f \in End(M)$ induces a map $T^k(f) \in End(T^k(M))$, which induces maps $Sym^k(f) \in End(Sym^k(M))$ and $\Lambda^k(f) \in End(\Lambda^k(M))$.

Proposition 3.9.9. Let M be a free A-module of rank n, equipped with a basis $(m_i)_{1 \leq i \leq n}$. Let $f \in \text{End}(M)$. Then the matrix of $\Lambda^k(f)$ in the basis $(m_{i_1} \wedge \cdots \wedge m_{i_k})_{1 \leq i_1 < \cdots < i_k \leq n}$ is the matrix of $k \times k$ minors of Mat(f).

4 Localisation

4.1 Local rings

Definition 4.1.1 (Local ring). A ring A is said to be a local ring if one of the following two equivalent conditions is satisfied:

- (i) A has a unique maximal ideal.
- (ii) $A \setminus A^{\times}$ is an ideal of A.

In this case, if I is the unique maximal ideal of A, the quotient A/I is called the residue field of A. If M is an A-module, then $M/IM = M \otimes_A A/I$ is an (A/I)-vector space.

Proposition 4.1.2. Let A be a local ring with maximal ideal I.

(i) If M is a finitely generated A-module s.t. M = IM, then M = 0.

(ii) If M is a finitely generated A-module and $m_1, \ldots, m_r \in M$ are s.t. $\overline{m}_1, \ldots, \overline{m}_r \in M/IM$ generate M/IM, then m_1, \ldots, m_r generate M.

Theorem 4.1.3. If M is a finitely generated flat module over a local ring A, then M is free.

Proof. Let $x_1, \ldots, x_n \in M$ whose images in M/IM form a basis of the vector space M/IM over A/I. By Proposition 4.1.2, x_1, \ldots, x_n generate M; it remains to prove that they are linearly independent over A. We shall prove by induction on $r \in \{1, \ldots, n\}$ that x_1, \ldots, x_r are linearly independent, using the fact that every relation in M is trivial (Proposition 3.7.3). If r = 1, let $f_1 \in A$ s.t. $f_1x_1 = 0$. Since this relation is trivial, there exist $y_1, \ldots, y_s \in M$, $a_1, \ldots, a_s \in A$ s.t. $x_1 = a_1y_1 + \cdots + a_sy_s$ and $f_1a_j = 0$ for all j. But $\overline{x}_1 \neq 0$, so there exists j s.t. $a_j \notin I$. Therefore, $a_j \in A^{\times}$, and $f_1 = 0$. This proves the claim for r = 1. Assume we have proved the claim for (r - 1). Let $f_1, \ldots, f_r \in A$ s.t. $f_1x_1 + \cdots + f_rx_r = 0$. Since this relation is trivial, there exist $y_1, \ldots, y_s \in M$ and $(a_{ij})_{\substack{1 \le i \le r \\ 1 \le j \le s}} f_1 = 0$.

s.t. $x_i = \sum_{j=1}^s a_{ij} y_j$ for all i and $0 = \sum_{i=1}^r f_i a_{ij}$ for all j. Now, there exists (i, j) s.t. $a_{ij} \notin I$; we may assume that $a_{11} \notin I$, i.e. $a_{11} \in A^{\times}$. Now, we get:

$$f_2\left(x_2 - \frac{a_{21}}{a_{11}}x_1\right) + \dots + f_r\left(x_r - \frac{a_{r1}}{a_{11}}x_1\right) = 0.$$

By induction, we obtain $f_2 = \cdots = f_r = 0$ because $\left(\overline{x_2 - \frac{a_{21}}{a_{11}}x_1}\right), \ldots, \left(\overline{x_r - \frac{a_{r1}}{a_{11}}x_1}\right)$ are linearly independent in M/IM. Therefore, $f_1 = 0$, which proves the claim by induction.

Corollary 4.1.4. Over a local ring, a finitely generated module is projective iff it is flat iff is is free.

4.2 Localisation of rings

Remark 4.2.1. If A is an integral domain, then we know how to construct a field $\operatorname{Frac}(A)$ equipped with an injective map $j: A \to \operatorname{Frac}(A)$, s.t. for any ring B and for any morphism $\varphi: A \to B$ with $\varphi(A \setminus \{0\}) \subseteq B^{\times}$, there exists a unique morphism $\psi: \operatorname{Frac}(A) \to B$ s.t. $\varphi = \psi \circ j$.

Definition 4.2.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Define an equivalence relation on $A \times S$ by:

$$(a_1, s_1) \sim (a_2, s_2) \iff \exists t \in S, \ t \ (a_1 s_2 - a_2 s_1) = 0.$$

Denote $S^{-1}A = A \times S / \sim$ and write $\frac{a}{s}$ for the class of (a, s) in $S^{-1}A$.

Proposition 4.2.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Then the formulas $\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1s_2+a_2s_1}{s_1s_2}$ and $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1a_2}{s_1s_2}$ are well-defined on $S^{-1}A$ and make $S^{-1}A$ and A-algebra via the map $\phi_S : a \in A \mapsto \frac{a}{1} \in S^{-1}A$.

Proposition 4.2.4. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Then, for any ring B and for any morphism $f : A \to B$ with $\varphi(S) \subseteq B^{\times}$, there exists a unique morphism $g : S^{-1}A \to B$ s.t. $f = g \circ \phi_S$.

Lemma 4.2.5. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Consider the canonical map $\phi_S : A \to S^{-1}A$. We have:

$$\operatorname{Ker} \phi_S = \{ a \in A, \exists s \in S, as = 0 \}.$$

Example 4.2.6.

- (i) Let A be an integral domain. Then $S = A \setminus \{0\}$ is a multiplicative subset, $S^{-1}A = Frac(A)$ and ϕ_S is injective.
- (ii) Let A be a ring and p be a prime ideal of A. Then S = A\p is a multiplicative subset, and the ring S⁻¹A is denoted by A_p.

- (iii) Let A be a ring and $f \in A$ be an element that is not nilpotent. Then $S = \{f^n, n \in \mathbb{N}\}$ is a multiplicative subset, the ring $S^{-1}A$ is denoted by A_f and we have $A_f = A[X]/(Xf-1)$ (which we denote by $A\left[\frac{1}{f}\right]$).
- (iv) Let K and L be two fields. If $A = K \times L$ and $S = K \times L^{\times}$, then $S^{-1}A = L$ and $\phi_S : K \times L \to L$ is the projection on L.

Proposition 4.2.7. If \mathfrak{p} is a prime ideal of a ring A, then $A_{\mathfrak{p}}$ is a local ring, with maximal ideal $\mathfrak{m} = \left\{ \frac{a}{s}, a \in \mathfrak{p}, s \in S \right\}$. Moreover, we have:

$$A_{\mathfrak{p}}/\mathfrak{m} = \operatorname{Frac}\left(A/\mathfrak{p}\right).$$

Proof. It is clear that \mathfrak{m} is an ideal of $A_{\mathfrak{p}}$. Let us prove that $\mathfrak{m} = A_{\mathfrak{p}} \setminus A_{\mathfrak{p}}^{\times}$. (\supseteq) Let $\frac{a}{s} \in A_{\mathfrak{p}} \setminus \mathfrak{m}$, with $a \in A \setminus \mathfrak{p}$ and $s \in S$. Then $a \in S$, so $\frac{s}{a} \in A_{\mathfrak{p}}$ and $\frac{a}{s} \cdot \frac{s}{a} = 1$, i.e. $\frac{a}{s} \in A_{\mathfrak{p}}^{\times}$. (\subseteq) Let $\frac{a}{s} \in A_{\mathfrak{p}}^{\times}$. Then there exists $\frac{b}{t} \in A_{\mathfrak{p}}$ s.t. $\frac{a}{s} \cdot \frac{b}{t} = 1$, i.e. there exists $r \in S$ s.t. r(ab - st) = 0. Thus, $rab = rst \in S = A \setminus \mathfrak{p}$, and \mathfrak{p} is an ideal so $a \in A \setminus \mathfrak{p}$. Now, it remains to prove that $A_{\mathfrak{p}}/\mathfrak{m} = \operatorname{Frac}(A/\mathfrak{p})$. To do this, consider the natural projection $\pi : A \to A/\mathfrak{p}$. As A/\mathfrak{p} is an integral domain, it extends to a map $f : A \to \operatorname{Frac}(A/\mathfrak{p})$. If $a \in S$, then $\pi(a) \neq 0$, so $f(a) \in \operatorname{Frac}(A/\mathfrak{p})^{\times}$. Therefore, f induces a map $g : A_{\mathfrak{p}} \to \operatorname{Frac}(A/\mathfrak{p})$; we easily check that this map is surjective. And Ker g is a maximal ideal of $A_{\mathfrak{p}}$ because Im g is a field, so Ker $g = \mathfrak{m}$.

4.3 Localisation of modules

Definition 4.3.1. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. If M is an A-module, define an equivalence relation on $M \times S$ by:

$$(m_1, s_1) \sim (m_2, s_2) \iff \exists t \in S, \ t \ (m_1 s_2 - m_2 s_1) = 0.$$

Denote $S^{-1}M = M \times S / \sim$ and write $\frac{m}{s}$ for the class of (m, s) in $S^{-1}M$.

Proposition 4.3.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. If M is an A-module, then the formulas $\frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{m_1s_2+m_2s_1}{s_1s_2}$ and $\frac{a_1}{s_1} \cdot \frac{m_2}{s_2} = \frac{a_1m_2}{s_1s_2}$ are well-defined on $S^{-1}M$ and make $S^{-1}M$ and $S^{-1}A$ -module. Moreover, there is a linear map $m \in M \mapsto \frac{m}{1} \in S^{-1}M$ whose kernel is $\{m \in M, \exists s \in S, ms = 0\}$.

Proposition 4.3.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. If $u: M \to N$ is an A-linear map between A-modules, then there is an $S^{-1}A$ -linear map $S^{-1}u: S^{-1}M \to S^{-1}N$ s.t.

$$\left(S^{-1}u\right)\left(\frac{m}{s}\right) = \frac{u(m)}{s}.$$

Proposition 4.3.4. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Assume that we have an exact sequence $M' \xrightarrow{f} M \xrightarrow{g} M''$. Then the following sequence is also exact:

$$S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''.$$

Corollary 4.3.5. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. If N and P are two submodules of an A-module M, then:

$$S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P$$
 and $S^{-1}(N+P) = S^{-1}N + S^{-1}P$.

Proof. Note that we have an exact sequence $0 \to N \cap P \to N \oplus P \to N + P \to 0$ and apply Proposition 4.3.4.

Theorem 4.3.6. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Then, for any A-module M, there is a unique map $\varphi : S^{-1}A \otimes_A M \to S^{-1}M$ s.t. $\varphi\left(\frac{a}{s} \otimes m\right) = \frac{am}{s}$, and this map is an isomorphism. In particular:

$$S^{-1}A \otimes_A M \simeq S^{-1}M.$$

Proof. The existence and unicity of φ come from the bilinear map $\left(\frac{a}{s}, m\right) \in S^{-1}A \times M \longrightarrow \frac{am}{s} \in S^{-1}M$ (check that this map is well-defined by constructing a linear map $M \to \text{Hom}(S^{-1}A, S^{-1}M)$, which comes from a linear map $M \to \text{Hom}(A, M)$). The map φ is easily seen to be surjective. For the injectivity, prove that every element of $S^{-1}A \otimes_A M$ is equal to a simple tensor. \Box

Corollary 4.3.7. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Then $S^{-1}A$ is a flat A-module.

Proof. If we have an exact sequence of A-modules $0 \to M \to N$, then it induces an exact sequence $0 \to S^{-1}M \to S^{-1}N$ by Proposition 4.3.4, which is equivalent to $0 \to S^{-1}A \otimes_A M \to S^{-1}A \otimes_A N$ by Theorem 4.3.6.

Remark 4.3.8. We can generalise Theorem 4.3.6 as follows. If M and N are two A-modules, then there exists a unique map $\varphi : S^{-1}M \otimes_{S^{-1}A} S^{-1}N \to S^{-1}(M \otimes_A N)$ s.t. $\varphi\left(\frac{m}{s} \otimes \frac{n}{t}\right) = \frac{m \otimes n}{st}$. Moreover, φ is an isomorphism.

4.4 Localisation of ideals

Remark 4.4.1. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. We denote by $\mathfrak{J}(B)$ the set of ideals of a ring B. Then we have two maps:

- (i) The extension map $\mathfrak{E}: I \in \mathfrak{J}(A) \longmapsto S^{-1}I \in \mathfrak{J}(S^{-1}A).$
- (ii) The contraction map $\mathfrak{C}: J \in \mathfrak{J}(S^{-1}A) \longmapsto \phi_S^{-1}(J) \in \mathfrak{J}(A).$

Proposition 4.4.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. Then, we have:

$$\mathfrak{E} \circ \mathfrak{C} = \mathrm{id}_{\mathfrak{J}(S^{-1}A)}$$

In other words, for any ideal $J \subseteq S^{-1}A$, we have $J = S^{-1}\left(\phi_S^{-1}(J)\right)$

Corollary 4.4.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not containing 0. If A is noetherian, then so is $S^{-1}A$.

Proof. Let $(J_n)_{n\in\mathbb{N}}$ be an increasing sequence of ideals of $S^{-1}(A)$. Then $(\mathfrak{C}(J_n))_{n\in\mathbb{N}}$ is an increasing sequence of ideals of A, so there exists $n_0 \in \mathbb{N}$ s.t. $\forall n \ge n_0, \ \mathfrak{C}(J_n) = \mathfrak{C}(J_{n_0})$. As a consequence, $\forall n \ge n_0, \ J_n = \mathfrak{E} \circ \mathfrak{C}(J_n) = \mathfrak{E} \circ \mathfrak{C}(J_{n_0}) = J_{n_0}$.

4.5 Localisation of morphisms

Proposition 4.5.1. Let M be an A-module. The following assertions are equivalent:

- (i) M = 0.
- (ii) $M_{\mathfrak{p}} = 0$ for every prime ideal \mathfrak{p} of A.
- (iii) $M_{\mathfrak{m}} = 0$ for every maximal ideal \mathfrak{m} of A.

If in addition M is finitely generated, then the previous assertions are also equivalent to:

(iv) $M \otimes_A A/\mathfrak{m} = 0$ for every maximal ideal \mathfrak{m} of A.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are clear. Let us prove that (iii) \Rightarrow (i). Assume that $M \neq 0$ and let $x \in M \setminus \{0\}$. Then $Ann(x) = \{a \in A, ax = 0\}$ is a proper ideal of A so it is contained in a maximal ideal \mathfrak{m} . Now, if $\phi_{\mathfrak{m}} : M \to M_{\mathfrak{m}}$ is the canonical map, we know that:

$$\operatorname{Ker} \phi_{\mathfrak{m}} = \{ y \in M, \exists a \in A \backslash \mathfrak{m}, ay = 0 \}.$$

In particular, $x \notin \text{Ker } \phi_{\mathfrak{m}}$ (because $ax = 0 \Rightarrow a \in \text{Ann}(x) \Rightarrow a \in \mathfrak{m}$), so $M_{\mathfrak{m}} \neq 0$. Now, assume that M is finitely generated. It is clear that (i) \Rightarrow (iv), so it suffices to prove that (iv) \Rightarrow (iii). Let \mathfrak{m} be a maximal ideal of A. Recall that $A_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}} = A/\mathfrak{m}$ by Proposition 4.2.7. Thus, by Remark 4.3.8:

$$M_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}} = M_{\mathfrak{m}} \otimes_{A_{\mathfrak{m}}} A_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}} = (M \otimes_A / \mathfrak{m})_{\mathfrak{m}} = 0$$

By Nakayema's Lemma (Proposition 1.9.4), $M_{\mathfrak{m}} = 0$.

Corollary 4.5.2. Let $f : M \to N$ be a morphism of A-modules. Then the following assertions are equivalent:

- (i) $f: M \to N$ is injective (resp. surjective, bijective).
- (ii) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective (resp. surjective, bijective) for every prime ideal \mathfrak{p} of A.
- (iii) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective (resp. surjective, bijective) for every maximal ideal \mathfrak{m} of A.

Proof. We have an exact sequence:

$$0 \to \operatorname{Ker} f \to M \xrightarrow{J} N \to \operatorname{Coker} f \to 0.$$

If \mathfrak{p} is a prime ideal, then by Proposition 4.3.4, the following sequence is also exact:

$$0 \to (\operatorname{Ker} f)_{\mathfrak{p}} \to M_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} N_{\mathfrak{p}} \to (\operatorname{Coker} f)_{\mathfrak{p}} \to 0.$$

This proves that $(\text{Ker } f)_{\mathfrak{p}} = \text{Ker } (f_{\mathfrak{p}})$ and $(\text{Coker } f)_{\mathfrak{p}} = \text{Coker } (f_{\mathfrak{p}})$. Hence, by Proposition 4.5.1: f is injective iff Ker f = 0 iff $(\text{Ker } f)_{\mathfrak{p}}$ for every \mathfrak{p} iff Ker $(f_{\mathfrak{p}}) = 0$ for every \mathfrak{p} iff $f_{\mathfrak{p}}$ is injective for every \mathfrak{p} . For the surjectivity, use the cokernel instead of the kernel. For maximal ideals, the proof is exactly the same.

4.6 Localisation of finitely presented modules

Definition 4.6.1 (Finitely presented module). An A-module M is said to be finitely presented if one of the following two equivalent conditions is satisfied:

- (i) There exists an exact sequence $0 \to K \to A^r \to M \to 0$, with K finitely generated, $r \in \mathbb{N}$.
- (ii) There exists an exact sequence $A^s \to A^r \to M \to 0$, with $r, s \in \mathbb{N}$.

Remark 4.6.2. Over a noetherian ring, a module is finitely presented iff it is finitely generated.

Proposition 4.6.3. Let M and N be two A-modules. Then there is a unique $S^{-1}A$ -linear map:

$$\alpha: S^{-1}\operatorname{Hom}_A(M, N) \longrightarrow \operatorname{Hom}_{S^{-1}A}\left(S^{-1}M, S^{-1}N\right),$$

that sends $\frac{1}{s}f$ to the map $\frac{m}{t} \mapsto \frac{f(m)}{st}$. If in addition M is finitely presented, then α is an isomorphism.

Proof. The existence and unicity of α are routine verifications. Assume that M is finitely presented. Then there exist $r, s \in \mathbb{N}$ and an exact sequence $A^s \to A^r \to M \to 0$. We can either localise the sequence at S (using Proposition 4.3.4) and then apply Hom (\cdot, N) (using Proposition 1.2.6) or apply Hom (\cdot, N) and then localise at S. Hence, we obtain two exact sequences, and a commutative diagram:

$$\begin{array}{cccc} 0 & \longrightarrow & S^{-1}\operatorname{Hom}_{A}\left(M,N\right) & \longrightarrow & S^{-1}\operatorname{Hom}_{A}\left(A^{r},N\right) & \longrightarrow & S^{-1}\operatorname{Hom}_{A}\left(A^{s},N\right) \\ & & \alpha & \downarrow & & \alpha_{r} \\ 0 & \longrightarrow & \operatorname{Hom}_{S^{-1}A}\left(S^{-1}M,S^{-1}N\right) \to & \operatorname{Hom}_{S^{-1}A}\left(S^{-1}A^{r},S^{-1}N\right) \to & \operatorname{Hom}_{S^{-1}A}\left(S^{-1}A^{s},S^{-1}N\right) \end{array}$$

Using the fact that α_r and α_s are isomorphisms, we show that α is an isomorphism by diagram chasing.

Definition 4.6.4 (Locally free module). An A-module M is said to be locally free if, for every prime ideal \mathfrak{p} of A, $M_{\mathfrak{p}}$ is free over $A_{\mathfrak{p}}$.

Theorem 4.6.5. Let M be a finitely presented A-module. Then M is projective iff M is locally free.

Proof. (\Rightarrow) Assume that M is projective. Let \mathfrak{p} be a prime ideal of A. Then $M_{\mathfrak{p}} = M \otimes_A A_{\mathfrak{p}}$ is projective and finitely generated over the local ring $A_{\mathfrak{p}}$. By Corollary 4.1.4, $M_{\mathfrak{p}}$ is free over $A_{\mathfrak{p}}$. (\Leftarrow) Assume that M is locally free. Consider a surjective map of A-modules $P \to Q$. We must show that the induced map $\operatorname{Hom}_A(M, P) \longrightarrow \operatorname{Hom}_A(M, Q)$ is also surjective. By Corollary 4.5.2, it suffices to show that the map $(\operatorname{Hom}_A(M, P))_{\mathfrak{p}} \longrightarrow (\operatorname{Hom}_A(M, Q))_{\mathfrak{p}}$ is surjective for every prime ideal \mathfrak{p} of A. But since M is finitely presented, Proposition 4.6.3 gives $(\operatorname{Hom}_A(M, P))_{\mathfrak{p}} = \operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}, P_{\mathfrak{p}})$ and $(\operatorname{Hom}_A(M, Q))_{\mathfrak{p}} = \operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}, Q_{\mathfrak{p}})$. But the map $P_{\mathfrak{p}} \to Q_{\mathfrak{p}}$ is surjective (by Corollary 4.5.2), and $M_{\mathfrak{p}}$ is free (and thus projective) over $A_{\mathfrak{p}}$, so the map $\operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}, P_{\mathfrak{p}}) \longrightarrow \operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}, Q_{\mathfrak{p}})$ is surjective, which gives the result.

Corollary 4.6.6. If M is a finitely presented flat A-module, then M is projective.

Proof. If \mathfrak{p} is a prime ideal of A, then $M_{\mathfrak{p}}$ is flat and finitely presented over the local ring $A_{\mathfrak{p}}$, so it is free by Theorem 4.1.3. Therefore, M is locally free, so it is projective by Theorem 4.6.5.

5 Integral extensions

5.1 Integral elements

Definition 5.1.1 (Integral elements). Let A be a subring of a ring B. Let $x \in B$. The following assertions are equivalent:

- (i) There exists a monic polynomial $P \in A[X]$ s.t. P(x) = 0.
- (ii) A[x] is a finitely generated A-module.
- (iii) There exists a subring C of B containing A and x that is finitely generated as an A-module.

If these assertions are true, we say that x is integral over A.

Proof. (i) \Rightarrow (ii) Suppose that there exists $P = X^d + \sum_{k=0}^{d-1} a_k X^k \in A[X]$ monic s.t. P(x) = 0. Then we have:

$$x^d = -\sum_{k=0}^{d-1} a_k x^k.$$

By induction on $n \ge d$, we prove that $x^n \in Ax^{d-1} + \cdots + Ax + A$. Hence, $A[x] \subseteq Ax^{d-1} + \cdots + Ax + A$. (ii) \Rightarrow (iii) Take C = A[x]. (iii) \Rightarrow (i) Let C be a finitely generated subring of C containing A and x. Then we can define a map $\mu_x : c \in C \longrightarrow cx \in C$. By the Cayley-Hamilton Theorem (Theorem 1.8.3), there exists a monic polynomial $P \in A[X]$ s.t. $P(\mu_x) = 0$. In particular, $P(x) = P(\mu_x) \cdot 1 = 0$. \Box

Lemma 5.1.2. Let R be a subring of a ring S and let M be a finitely generated S-module. If S is also finitely generated as an R-module, then M is finitely generated as an R-module.

Corollary 5.1.3. Let A be a subring of a ring B. Then the set C of elements of B that are integral over A is a subring of B.

Proof. We need to prove that the sum and product of two integral elements is integral. Let $x, y \in B$ be two integral elements over A. Then y is integral over A[x], so A[x, y] is a finitely generated A[x]-module. And x is integral over A, so A[x] is a finitely generated A-module. By Lemma 5.1.2, A[x, y] is a finitely generated A-module. Moreover, A[x, y] is a subring of B that contains A, (x + y) and (xy), so (x + y) and (xy) are integral over A.

Definition 5.1.4 (Integral closure). Let A be a subring of a ring B. The ring C of elements of B that are integral over A is called the integral closure (or normalisation) of A in B.

- If C = A, we say that A is integrally closed in B.
- If C = B, we say that B is integral over A.

Vocabulary 5.1.5. An integral domain is said to be integrally closed if it is closed in its field of fractions.

Proposition 5.1.6. A factorial domain is integrally closed.

Example 5.1.7. If K is a finite extension of \mathbb{Q} , we denoted by \mathcal{O}_K the integral closure of \mathbb{Z} in K. The study of \mathcal{O}_K is a topic of algebraic number theory. For example, if $d \in \mathbb{N}_{\geq 2}$ and $K = \mathbb{Q}(\sqrt{d})$, then:

$$\mathcal{O}_K = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} & \text{if } d \not\equiv 1 \mod 4 \\ \mathbb{Z} \oplus \mathbb{Z}\frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4 \end{cases}$$

5.2 Finiteness of invariants

Definition 5.2.1 (Finitely generated algebra). Let B be an algebra over a ring A. We say that B is of finite type (or finitely generated) as an A-algebra if there exist $b_1, \ldots, b_n \in B$ s.t. $B = A[b_1, \ldots, b_n]$. Equivalently, there exists $n \in \mathbb{N}^*$ and a surjective map $A[X_1, \ldots, X_n] \to B$.

Remark 5.2.2. Let B be an algebra over a ring A. If B is finitely generated as an A-module, then it is finitely generated as an A-algebra, but the converse is false.

Notation 5.2.3. Let A be an algebra over a field k. If a group G acts k-algebraically on A, we write :

$$A^G = \{a \in A, \forall g \in G, g \cdot a = a\}$$

Then A^G is a subalgebra of A.

Lemma 5.2.4. If A is an finitely generated k-algebra, and G is a finite group acting k-algebraically on A, then the ring A is integral over A^G .

Proof. If $a \in A$, define:

$$P_a = \prod_{g \in G} \left(X - g \cdot a \right) \in A^G[X].$$

 P_a is monic and $P_a(a) = 0$, so a is integral over A^G .

Lemma 5.2.5. If a ring B is integral over A and finitely generated as an A-algebra, then B is finitely generated as an A-module.

Proof. Write $B = A[x_1, \ldots, x_n]$ and set $B_j = A[x_1, \ldots, x_j]$ for $j \in \{0, \ldots, n\}$. Then $B_{j+1} = B_j[x_{j+1}]$, and x_{j+1} is integral over B_j (because it is over B), so B_{j+1} is a finitely generated B_j -module. By Lemma 5.1.2, we obtain that $B_n = B$ is finitely generated over $B_0 = A$.

Proposition 5.2.6. Let B be a finitely generated k-algebra, and let A be a subalgebra of B s.t. B is a finitely generated A-module. Then A is a finitely generated k-algebra.

Proof. Write $B = k [x_1, \ldots, x_m] = Ay_1 + \cdots + Ay_n$, with $x_1, \ldots, x_n, y_1, \ldots, y_n \in B$. Hence, there exist elements $(a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ and $(a_{ijk})_{\substack{1 \le i, j, k \le n}}$ in A s.t.

$$x_i = \sum_{j=1}^n a_{ij} y_j$$
 and $y_i y_j = \sum_{k=1}^n a_{ijk} y_k$

We now set $A_0 = k \left[(a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}, (a_{ijk})_{\substack{1 \le i, j, k \le n \\ 1 \le j \le n}} \right]$; this is a subring of A which is a finitely generated k-algebra. We claim that $B = A_0 y_1 + \dots + y_n$. Firstly, note that (using induction on r), $y_{\ell_1} \cdots y_{\ell_r} \in A_0 y_1 + \dots + A_0 y_n$ for all indices ℓ_1, \dots, ℓ_r . Now, if $b \in B$, we can write $b = P(x_1, \dots, x_m)$ with $P \in k [X_1, \dots, X_m]$. Hence:

$$b = P\left(\sum_{j=1}^n a_{1j}y_j, \dots, \sum_{j=1}^n a_{mj}y_j\right).$$

Expandingt this expression, we obtain $b \in A_0y_1 + \cdots + A_0y_n$. Therefore, $B = A_0y_1 + \cdots + A_0y_n$ is a finitely generated A_0 -module. But A_0 is a noetherian ring, so B is a noetherian A_0 -module by Theorem 1.5.6, and $A \subseteq B$, so A is also a finitely generated A_0 -module, so it is a finitely generated k-algebra.

Theorem 5.2.7. If A is a finitely generated k-algebra, and G is a finite group acting k-algebraically on A, then A^G is finitely generated as a k-algebra.

Proof. Note that A is a finitely generated A^G -algebra (because it is a finitely generated k-algebra), and it is integral over A^G by Lemma 5.2.4. By Lemma 5.2.5, A is a finitely generated A^G -module. By Proposition 5.2.6, A^G is a finitely generated k-algebra.

Example 5.2.8. If $A = k [X_1, ..., X_n]$ and $G = \mathfrak{S}_n$ with $\sigma \cdot X_i = X_{\sigma(i)}$, then A^G is the k-algebra generated by the elementary symmetric polynomials.

5.3 Noether Normalisation Lemma

Definition 5.3.1 (Algebraic independence). Let B be an algebra over a ring A. Let $b_1, \ldots, b_n \in B$. We say that b_1, \ldots, b_n are algebraically independent *if*:

$$\forall P \in A[X_1, \dots, X_n], \ P(b_1, \dots, b_n) = 0 \Longrightarrow P = 0.$$

Remark 5.3.2. Algebraic independence is stronger than linear independence.

Lemma 5.3.3. We assume that k is an infinite field. If $P \in k[T_1, \ldots, T_k] \setminus \{0\}$, then there exists $t_1, \ldots, t_k \in k$ s.t. $P(t_1, \ldots, t_k) \neq 0$.

Proof. By induction on k.

Lemma 5.3.4. We assume that k is an infinite field. If $R \in k[T_1, \ldots, T_m] \setminus \{0\}$ is homogeneous, then there exist $t_1, \ldots, t_{m-1} \in k$ s.t. $R(t_1, \ldots, t_{m-1}, 1) \neq 0$.

Proof. Note that $R(T_1, ..., T_{m-1}, 1) \in k[T_1, ..., T_{m-1}] \setminus \{0\}$ and apply Lemma 5.3.3.

Lemma 5.3.5. We assume that k is an infinite field. Let A be a k-algebra. Let $a_1 \ldots, a_m \in A$ and $P \in k[X_1, \ldots, X_m] \setminus \{0\}$ s.t. $A = k[a_1, \ldots, a_m]$ and $P(a_1, \ldots, a_m) = 0$. Then there exist $a'_1, \ldots, a'_{m-1} \in A$ s.t. a_m is integral over $k[a'_1, \ldots, a'_m]$ and $A = k[a'_1, \ldots, a'_{m-1}, a_m]$.

Proof. Let $t_1, \ldots, t_{m-1} \in k$ (to be chosen later). Set $a'_i = a_i - t_i a_m$ for $i \in \{1, \ldots, m-1\}$. Let $B = k \begin{bmatrix} a'_1, \ldots, a'_{m-1} \end{bmatrix}$ and $Q = P \begin{pmatrix} a'_1 + t_1 X, \ldots, a'_{m-1} + t_{m-1} X, X \end{pmatrix} \in B[X]$. We have $A = B \begin{bmatrix} a_m \end{bmatrix}$ and $Q (a_m) = 0$. If d is the (total) degree of P, then Q is of degree at most d and the coefficient of X^d is $P_d (t_1, \ldots, t_{m-1}, 1)$, where P_d is the part of P that is homogeneous of degree d. According to Lemma 5.3.4, it is possible to choose $t_1, \ldots, t_{m-1} \in k$ s.t. $P_d (t_1, \ldots, t_{m-1}, 1) \in k^{\times}$. Hence, Q is a nonzero polynomial whose leading coefficient is a unit of k, and $Q (a_m) = 0$, so a_m is integral over B.

Theorem 5.3.6 (Noether Normalisation Lemma). We assume that k is an infinite field. If A is a finitely generated k-algebra, then there exist $x_1, \ldots, x_n \in A$ which are algebraically independent and s.t. A is a finitely generated $k [x_1, \ldots, x_n]$ -module. If in addition A is generated by m elements, then we can have $n \leq m$.

Proof. We proceed by induction on the number m of generators of A. If m = 0, then A = k and we are done. Assume the result is proven for (m - 1) and write $A = k [a_1, \ldots, a_m]$. If a_1, \ldots, a_m are algebraically independent, take $x_i = a_i$. Otherwise, there exists $P \in k [X_1, \ldots, X_m] \setminus \{0\}$ s.t. $P(a_1, \ldots, a_m) = 0$. By Lemma 5.3.5, there exist $a'_1, \ldots, a'_{m-1} \in A$ s.t. a_m is integral over $B = k [a'_1, \ldots, a'_{m-1}]$ and $A = B[a_m]$. By induction, there exist $x_1, \ldots, x_{n-1} \in B$ with $n - 1 \leq m - 1$, x_1, \ldots, x_{n-1} algebraically independent and s.t. B is a finitely generated $k [x_1, \ldots, x_{n-1}]$ -module. \Box

5.4 Hilbert's Nullstellensatz

Lemma 5.4.1. Let B be an integral domain. Assume that B is integral over a subring A. Then B is a field iff A is a field.

Proof. (\Leftarrow) Assume that A is a field. Let $x \in B \setminus \{0\}$. Since x is integral over A, A[x] is a finite dimensional A-vector space. And the map $y \in A[x] \mapsto yx \in A[x]$ is injective because B is an integral domain, so it is surjective, which proves that $x \in B^{\times}$. (\Rightarrow) Assume that B is a field. Let $x \in A \setminus \{0\}$. Then $x \in B^{\times}$, i.e. $x^{-1} \in B$. Therefore, x^{-1} is integral over A, i.e. there exist $a_0, \ldots, a_{n-1} \in A$ s.t.

$$a_0 + a_1 x^{-1} + \dots + a_{n-1} x^{-(n-1)} + x^{-n} = 0.$$

Therefore, $x^{-1} = -a_0 x^{n-1} - \dots - a_{n-2} x - a_{n-1} \in A$, so $x \in A^{\times}$.

Lemma 5.4.2. Let A be a finitely generated k-algebra. If A is a field, then A is a finite extension of k.

Proof. By the Noether Normalisation Lemma (Theorem 5.3.6), A is integral over $k[X_1, \ldots, X_n]$ for some $n \in \mathbb{N}$. By Lemma 5.4.1, $k[X_1, \ldots, X_n]$ is a field (because A is a field); therefore n = 0. \Box

Theorem 5.4.3 (Hilbert's Nullstellensatz). If k is an algebraically closed field, then the maximal ideals of $k [X_1, \ldots, X_n]$ are the ideals of the form $(X_1 - a_1, \ldots, X_n - a_n)$, with $a_1, \ldots, a_n \in k$.

Proof. Firstly, if $a_1, \ldots, a_n \in k$, then $(X_1 - a_1, \ldots, X_n - a_n) = \text{Ker } \varphi$, with:

$$\varphi: P \in k[X_1, \dots, X_n] \longmapsto P(a_1, \dots, a_n) \in k$$

But Im $\varphi = k$ is a field, so Ker φ is a maximal ideal of $k [X_1, \ldots, X_n]$. Therefore, the ideal $(X_1 - a_1, \ldots, X_n - a_n)$ is maximal for all $a_1, \ldots, a_n \in k$. Conversely, consider a maximal ideal I of $k [X_1, \ldots, X_n]$. We have a field $L = k [X_1, \ldots, X_n] / I$, which is also a finitely generated k-algebra. By Lemma 5.4.2, L is a finite extension of k. But k is algebraically closed, so L = k. Now, let $a_i \in k$ be the image of X_i in $L = k [X_1, \ldots, X_n] / I$ for $i \in \{1, \ldots, n\}$. We have $I \supseteq (X_1 - a_1, \ldots, X_n - a_n)$, and the ideal $(X_1 - a_1, \ldots, X_n - a_n)$ is maximal, so $I = (X_1 - a_1, \ldots, X_n - a_n)$.

Corollary 5.4.4. Let k be an algebraically closed field.

- (i) If J is an ideal of $k[X_1, \ldots, X_n]$, then the maximal ideals of $k[X_1, \ldots, X_n]/J$ are of the form $(\overline{X_1 a_1}, \ldots, \overline{X_n a_n})$, where $a_1, \ldots, a_n \in k$ are s.t. $P(a_1, \ldots, a_n) = 0$ for every $P \in J$.
- (ii) If $P_1, \ldots, P_m \in k[X_1, \ldots, X_n]$ have no common root in k, then there exist $f_1, \ldots, f_m \in k[X_1, \ldots, X_n]$ s.t. $f_1P_1 + \cdots + f_mP_m = 1$.

References

- [1] M.F. Atiyah and I.G. MacDonald. Introduction To Commutative Algebra.
- [2] N. Bourbaki. Algèbre commutative.
- [3] R. Douady and A. Douady. Algèbre et théories galoisiennes.
- [4] S. Lang. Algebra.