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1 Rings and modules
Notation 1.0.1. In this course, all rings will be commutative, with a unit element, and will verify
0 6= 1.

1.1 Modules, submodules and homomorphisms
Definition 1.1.1 (Module). A module M on a ring A is an abelian group equipped with a law
(a,m) ∈ A×M 7−→ am ∈M s.t.

(i) ∀(a, b) ∈ A2, ∀(m,n) ∈M2, (a+ b)m = am+ bm a(m+ n) = am+ an.

(ii) ∀(a, b) ∈ A2, ∀m ∈M, a(bm) = (ab)m.

(iii) ∀m ∈M, 1m = m.

Example 1.1.2.

(i) If the ring A is a field, A-modules are exactly A-vector spaces.

(ii) Z-modules are exactly abelian groups.

Remark 1.1.3. Let A be a ring.

(i) In general, in an A-module M , if a ∈ A\{0} and m ∈M , am = 0 does not imply m = 0.

(ii) A-modules do not have bases in general.

Definition 1.1.4 (Torsion elements). Let M be an A-module. We define:

Mtor = {m ∈M, ∃a ∈ A\{0}, am = 0} .

The elements of Mtor are called torsion elements. We say that M is torsion-free if Mtor = {0}.

Definition 1.1.5 (Submodule). Let M be an A-module. A submodule of M is an additive subgroup
N s.t. AN ⊆ N .

Example 1.1.6. If A is a ring, the submodules of A (considered as an A-module) are exactly the
ideals of A.

Proposition 1.1.7. Let M be an A-module. If A is an integral domain, then Mtor is a submodule
of M .

Definition 1.1.8 (Module homomorphism). Let M and N be two A-modules. A map f : M → N is
said to be a module homomorphism if f is additive and A-linear. The set of module homomorphisms
from M to N is denoted by HomA(M,N) or Hom(M,N). It is an A-module.

Example 1.1.9. Let M be an A-module.

(i) The module HomA(A,M) is isomorphic to M .

(ii) The module HomA(M,A) is called the dual of M , and it is denoted by M∗ or M∨. Its elements
are called linear forms.
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1.2 Exact sequences
Definition 1.2.1 (Kernel and image). Let f : M → N be a module homomorphism. We define
Ker f = f−1 ({0}) and Im f = f(M). These are submodules of M and N respectively.

Definition 1.2.2 (Exact sequence). Consider three modules L,M,N and two homomorphisms f :
L→M and g : M → N . One can write this as a sequence:

L
f−→M

g−→ N.

We say that the sequence is exact if Im f = Ker g. Likewise, for a (possibly infinite sequence)
M1

f1−→ M2
f2−→ M3

f3−→ · · · , we say that the sequence is exact at Mi if Im fi−1 = Ker fi; and we say
that the sequence is exact if it is exact at all positions.

Example 1.2.3. A sequence 0 → L
f−→ M

g−→ N → 0 is exact iff f is injective, g is surjective and
Im f = Ker g.

Definition 1.2.4.

(i) Let M,N1, N2 be three A-modules and consider a homomorphism f : N1 → N2. We define a
module homomorphism:

f∗ :
∣∣∣∣∣HomA (M,N1) −→ HomA (M,N2)

g 7−→ f ◦ g
.

(ii) Let M1,M2, N be three A-modules and consider a homomorphism f : M1 → M2. We define a
module homomorphism:

f ∗ :
∣∣∣∣∣HomA (M2, N) −→ HomA (M1, N)

g 7−→ g ◦ f
.

Proposition 1.2.5. Consider a sequence N ′ f−→ N
g−→ N ′′. The following assertions are equivalent:

(i) The sequence 0→ N ′
f−→ N

g−→ N ′′ is exact.

(ii) For any A-module M , the sequence 0 → Hom (M,N ′) f∗−→ Hom (M,N) g∗−→ Hom (M,N ′′) is
exact.

Proposition 1.2.6. Consider a sequence M ′ f−→M
g−→M ′′. The following assertions are equivalent:

(i) The sequence M ′ f−→M
g−→M ′′ → 0 is exact.

(ii) For any A-module N , the sequence 0 → Hom (M ′′, N) g∗−→ Hom (M,N) f∗−→ Hom (M ′, N) is
exact.

1.3 Sums, products and quotients
Definition 1.3.1 (Sums and products). Let (Mi)i∈I be a family of A-modules.

(i) The set ∏i∈IMi has naturally the structure of an A-module.

(ii) We define ⊕i∈IMi =
{

(mi)i∈I ∈
∏
i∈IMi, {i ∈ I, mi 6= 0} is finite

}
.

Hence, ⊕i∈IMi is a submodule of ∏i∈IMi, and we have ⊕i∈IMi = ∏
i∈IMi iff I is finite.

Proposition 1.3.2. Let (Mi)i∈I , (Nj)j∈J , M and N be A-modules.
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(i) Hom
(
M,

∏
j∈J Nj

)
' ∏j∈J Hom (M,Nj).

(ii) Hom (⊕i∈IMi, N) ' ∏i∈I Hom (Mi, N).

(iii) Hom
(⊕

i∈IMi,
∏
j∈JMj

)
' ∏(i,j)∈I×J Hom (Mi, Nj).

Definition 1.3.3 (Quotient). Let N be an A-module and M be a submodule of N . We define an
equivalence relation ∼ on N by n1 ∼ n2 ⇐⇒ (n1 − n2) ∈ M . The set of equivalence classes is
denoted by N/M . It has a unique structure of A-module s.t. the natural projection π : N → N/M is
a module homomorphism. Hence, if i : M → N denotes inclusion, we have an exact sequence:

0→M
i−→ N

π−→ N/M → 0.

Proposition 1.3.4 (Universal property of the quotient). Let N be an A-module and M be a sub-
module of N . If f : N → P is a module homomorphism s.t. M ⊆ Ker f , then there is a unique map
f : N/M → P s.t. f = f ◦ π, where π : N → N/M is the natural projection.

Corollary 1.3.5. If we have an exact sequence 0 → L
f−→ M

g−→ N → 0, then N ' M/ Im f . In
other words, given a module homomorphism f : M → N , we have:

Im f 'M/Ker f.

Definition 1.3.6 (Cokernel). Given a module homomorphism f : M → N , define:

Coker f = N/ Im f.

We have the following exact sequence:

0→ Ker f →M
f−→ N → Coker f → 0.

Proposition 1.3.7. Let f : M → N be a module homomorphism. Consider a submodule X of
M and a submodule Y of N . Write πM/X : M → M/X and πN/Y : N → N/Y for the natural
projections. If f(X) ⊆ Y , then there exists a unique map f : M/X → N/Y s.t.

πN/Y ◦ f = f ◦ πM/X .

1.4 Snake Lemma
Theorem 1.4.1 (Snake Lemma). Consider the following commutative diagram:

0 A B C 0u v

0 A′ B′ C ′ 0u′ v′
a b c

0 Ker a Ker b Ker c

Coker a Coker b Coker c 0

δ

Assume that the two horizontal black sequences are exact. Then there is a natural map δ : Ker c →
Coker a, and the red sequence is exact.
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1.5 Noetherian modules
Notation 1.5.1. Let M be an A-module. Given a subset P ⊆ M , we denote by (P ) = ∑

m∈P Am
the submodule of M generated by P .

Definition 1.5.2 (Noetherian module).

(i) An A-module M is said to be of finite type (or finitely generated) if there exist m1, . . . ,mr s.t.
M = (m1, . . . ,mr). Equivalently, there exist r ∈ N∗ and a surjective map Ar →M .

(ii) An A-module M is said to be noetherian if every submodule of M is of finite type.

Remark 1.5.3. The submodules of the A-module A are precisely the ideals of A, so A is noetherian
as a ring iff A is noetherian as an A-module.

Proposition 1.5.4. An A-module M is noetherian iff every increasing sequence (Mn)n∈N of sub-
modules of M is eventually constant.

Lemma 1.5.5. Consider an exact sequence 0 → L
f−→ M

g−→ N → 0. Then M is noetherian iff L
and N are noetherian.

Proof. (⇒) This amounts to proving that every submodule of a noetherian module is noetherian
and that the image of a noetherian module by a homomorphism is noetherian. (⇐) Assume that
L and N are noetherian. Let P be a submodule of M . Then P ∩ f(L) is a submodule of f(L),
which is noetherian as the image of a noetherian module. Hence, there exist `1, . . . , `r ∈ L s.t.
P ∩ f(L) = (f (`1) , . . . , f (`r)). Likewise, there exist p1, . . . , ps ∈ P s.t. g(P ) = (g (p1) , . . . , g (ps)).
Using the fact that the sequence is exact, we now prove that P = (f (`1) , . . . , f (`r) , p1, . . . , ps).

Theorem 1.5.6. If A is a noetherian ring, then every finitely generated A-module M is noetherian.

Proof. Suppose that A is a notherian A-module. For r ∈ N∗, we have an exact sequence 0→ A→
Ar → Ar−1 → 0. Using Lemma 1.5.5, we use these exact sequences to prove by induction on r that
Ar is noetherian for all r ∈ N∗. Now, if M is a finitely generated A-module, there exist r ∈ N∗
and a surjective map f : Ar → M . Hence, M = f (Ar) is noetherian as the image of a noetherian
module.

1.6 Free modules
Definition 1.6.1 (Free module). Let M be an A-module. If (mj)j∈J ∈ MJ is a family of elements
of M , we get a map f : ⊕j∈J A → M defined by f (aj) = ajmj. We say that (mj)j∈J is a basis of
M if the map f is an isomorphism. We say that the module M is free if it admits a basis, i.e. if it
is isomorphic to ⊕j∈J A for some set J .

Proposition 1.6.2. If M is a free A-module, then any two bases of M have the same cardinality.

Proof. By Krull’s Theorem, A has a maximal ideal I. If (mj)j∈J is a basis of M , then M/IM is an
A/I-vector space and (mj)j∈J is a basis of this space. As any two bases of a vector space have the
same cardinality, this proves the proposition.

Definition 1.6.3 (Free module of finite type). We say that an A-module M is free of finite type if
it admits a finite basis, i.e. if M is isomorphic to Ar for some r ∈ N∗. The integer r only depends
on M , and it is called the rank of M .
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1.7 Matrices
Definition 1.7.1 (Matrix of a module homomorphism). Let M and N be two A-modules that are
free of rank r and s. Consider respective bases (m1, . . . ,mr) of M and (n1, . . . , ns) of N . If f ∈
Hom(M,N), then the matrix of f is Mat(f) = (fij)1≤i≤s

1≤j≤r
∈Ms,r (A) defined by:

∀(i, j) ∈ {1, . . . , s} × {1, . . . , r} , f (mj) =
s∑
i=1

fijni.

Proposition 1.7.2. If f : M → N and g : N → L are two homomorphisms between three free
A-modules of finite type equipped with bases, then Mat(fg) = Mat(f) Mat(g).

Proposition 1.7.3. Let M be a free A-module of rank r equipped with a basis. Consider f ∈
HomA(M,M) and let P = Mat(f).

(i) f is surjective⇐⇒ (detP ) ∈ A×.

(ii) f is injective⇐⇒ (detP ) is not a divisor of 0 in A.

Proof. (ii) (⇒) Suppose that (detP ) is a divisor of 0 in A, i.e. there exists h ∈ A\{0} s.t. h detP =
0. If h · P = 0, then P · t

(
h 0 · · · 0

)
= 0 so Ker f 6= {0}. Therefore, assume that h · P 6= 0, i.e.

there exists (i, j) ∈ {1, · · · , r}2 s.t. hPij 6= 0. In other words, there is a 1 × 1 minor of P which is
not killed by h. And the only r × r minor of P is killed by h. Hence P has a largest minor, of size
n < r, which is not killed by h: call it µ = minorj1,...,jni1,...,in (P ), with hµ 6= 0. Take i0 6∈ {i1, . . . , in} and
let x = t

(
x1 · · · xr

)
, where xi = 0 if i 6∈ {i0, . . . , ir}, and xik = (−1)khminorj1,...,jn

i0,...,̂ik,...,in
(P ). Note

that xi0 = hµ 6= 0, so x 6= 0. However, it is easy to check that Px = 0. Hence, Ker f 6= {0} and f is
not injective.

Corollary 1.7.4. If M is a free A-module of finite type and f ∈ HomA(M,M) is surjective, then f
is bijective.

Corollary 1.7.5. If there exists an injective map f ∈ HomA (Ar, As), then r ≤ s

Proof. Suppose for contradiction that r > s. Then we can extend f to a map f̃ : x ∈ Ar 7−→
(f(x), 0) ∈ As ⊕ Ar−s = Ar. Hence, f̃ is injective, but det f = 0, which is a contradiction.

1.8 Cayley-Hamilton Theorem
Definition 1.8.1 (Characteristic polynomial). If P ∈Mn (A), the characteristic polynomial of P is
defined by:

ΠP = det (X Id−P ) ∈ A[X].

Remark 1.8.2. The data of an A[X]-module M is equivalent to an A-module M equipped with an
A-linear map f : M →M .

Theorem 1.8.3 (Cayley-Hamilton Theorem). Consider an A-module M generated by a finite num-
ber m1, . . . ,mn of elements. Let f ∈ HomA(M,M) and take a matrix P ∈ Mn (A) s.t. ∀i ∈
{1, . . . , n} , f (mi) = ∑n

j=1 Pijmj. Then ΠP (f) = 0 on M .

Proof. View M as an A[X]-module by setting X ·m = f(m) for m ∈M . Hence, we have:
0
...
0

 = (X Id−P )


m1
...
mn

 = t(Com (X Id−P )) (X Id−P )


m1
...
mn

 = ΠP (X) ·


m1
...
mn

 .
Therefore, ∀i ∈ {1, . . . , n} , ΠP (f) ·mi = ΠP (X) ·mi = 0. Since m1, . . . ,mn generate M , ΠP (f) =
0.
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Remark 1.8.4. Proving the Cayley-Hamilton Theorem for any module gives the vector space version
as a corollary.

Corollary 1.8.5. If M is a finitely generated A-module and I is an ideal of A s.t. IM = M , then
there exists x ∈ A s.t. x ≡ 1 mod I and xM = 0.

Proof. Let m1, . . . ,mn be a finite generating family for M . Note that there exists P ∈ Mn (I) s.t.
∀i ∈ {1, . . . , n} , mi = ∑n

j=1 Pijmj (because IM = M). Apply the Cayley-Hamilton Theorem to
f = idM with P as above. We take x = ΠP (1) ∈ A; hence x = det (Id−P ) ≡ 1 mod I (because
P ∈Mn (I)) and ∀m ∈M, xm = ΠP (idM) ·m = 0.

1.9 Local rings
Definition 1.9.1 (Local ring). A ring A is said to be a local ring if it admits only one maximal
ideal. In this case, if I is the unique maximal ideal of A, the quotient A/I is called the residue field
of A.

Lemma 1.9.2. A ring A is local iff A\A× is an ideal of A.

Example 1.9.3.

(i) A field is local (with maximal ideal {0}).

(ii) Zp is local (with maximal ideal pZp).

(iii) C[[X]] is local (with maximal ideal XC[[X]]).

(iv) Consider a topological space X and choose x ∈ X. Let B be the set of pairs (U , f), where U
is an open neighbourhood of x and f : U → R is a continuous function. Define an equivalence
relation R on B by (U , f)R (V , g) iff there exists an open neighbourhood W ⊆ U ∩ V of x s.t.
f|W = g|W . Hence, the quotient A = B/R is naturally a ring, and it is local.

Proposition 1.9.4 (Nakayema’s Lemma). Let A be a local ring with maximal ideal I. Consider a
finitely generated A-module M . If m1, . . . ,mr are elements of M s.t. the A/I-vector space M/IM
is generated by m1, . . . ,mr, then M is generated by m1, . . . ,mr.

Proof. Let N = Am1 + · · ·+Amr. We have M = N + IM , therefore I · (M/N) = (IM +N) /N =
M/N . By Corollary 1.8.5, there exists x ≡ 1 mod I s.t. x ·M/N = 0. Since A is local, x ∈ A× and
therefore M = N .

Corollary 1.9.5. Let A be a local ring with maximal ideal I. If M and N are two A-modules with
M = N + IM , then N = M .

2 Finitely generated modules over PIDs

2.1 Invariant factors for PIDs
Theorem 2.1.1. If A is a PID, M is a free A-module of rank r and N is a submodule of M , then
N is free of rank ≤ r.

Proof. Let (mi)1≤i≤r be a basis of M . For i ∈ {1, . . . , r}, define Ni = N ∩ (m1, . . . ,mi). By
induction on i, let us show that Ni is free of rank ≤ i (the result will follow by taking i = r). For
i = 1, N1 ⊆ (m1), and (m1) ' A (as an A-module). Since A is principal, N1 is of the form (a1m1)
for some a1 ∈ A; hence N1 is free of rank ≤ 1. Assume the result has been proved up to i. We have
Ni+1 ⊆ (m1, . . . ,mi+1). Consider:

I =
{
a ∈ A, ∃ (b1, . . . , bi) ∈ Ai, (b1m1 + · · ·+ bimi + ami+1) ∈ Ni+1

}
.
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I is an ideal of A. As A is principal, I is of the form (ai+1), with ai+1 ∈ A. If ai+1 = 0, then
Ni+1 = Ni is free of rank ≤ i by induction. Otherwise, choose x ∈ Ni+1 s.t. the coefficient of mi+1
in x is ai+1. For every y ∈ Ni+1, the coefficient of mi+1 in y is some multiple b · mi+1 of ai+1, so
y − bx ∈ Ni. This implies that Ni+1 = Ni + Ax. But Ni ∩ Ax = {0}, so:

Ni+1 = Ni ⊕ Ax.
Now, Ni+1 is free of rank ≤ i+ 1 by induction.
Theorem 2.1.2. If A is a PID, M is a free A-module of rank r and N is a submodule of M of rank
s, then there exists a basis (mi)1≤i≤r of M and d1, . . . , ds ∈ A\{0} s.t.
(i) (dimi)1≤i≤s is a basis of N .

(ii) d1 | d2 | · · · | ds.
The ideals (d1) , . . . , (ds) are determined by M/N ; they are called the invariant factors of M/N .
Proof. We shall prove the result with the (stronger) assumption that A is euclidean, i.e. there exists
a euclidean function N : A\{0} → N s.t. for all a ∈ A and for all b ∈ A\{0}, there exist q, r ∈ A
with a = qb + r and either r = 0 or N (r) < N (b). We use induction on r. We choose respective
bases of M and N . Let P ∈ Mr,s (A) be the matrix of the basis of N in terms of the basis of M .
Changing bases amounts to multiplying P by invertible matrices on the left and on the right. Hence,
it is enough to prove that there exist X ∈ GLr(A) and Y ∈ GLs(A) s.t.

XPY =
[
diag (d1, . . . , ds)

0

]
,

with d1 | · · · | ds. In other words, it is enough to prove that, by using elementary operations on rows
and columns (i.e. permutation of rows or columns, and transvection operations), one can go from
P to a matrix of the above form. We may assume that P 6= 0 (otherwise we are done) and we let
N (P ) = min1≤i≤r

1≤j≤s
Pij 6=0

N (Pij). We can permute rows and columns so thatN (P ) = N (P11). Now, if there

exists i ∈ {1, . . . , r} s.t. P11 - Pi1, perform the euclidean division of Pi1 by P11: Pi1 = qP11 + r, with
r 6= 0. Now perform the operation Li ← Li− qL1; we obtain a new matrix P ′ with N (P ′) < N (P ).
After performing such operations a finite number of times, we will have P11 | Pi1 for all i; likewise,
we can obtain P11 | P1j for all j. Now perform Li ← Li − Pi1

P11
L1 for all i 6= 1 and Cj ← Cj − P1j

P11
C1

for all j 6= 1. We obtain a matrix of the form
[
P11 0
0 Q

]
, with Q ∈ Mr−1,s−1 (A). If there exists

(i, j) ∈ {1, . . . , r − 1} × {1, . . . , s− 1} s.t. P11 - Qij, perform Li ← Li − qL1 as before in order to
decrease the norm strictly. Thus, one may assume that P11 | Qij for all (i, j). Now, applying the
induction hypothesis to Q

P11
gives the desired result.

Vocabulary 2.1.3. Let A be an integral domain.
(i) We say that A is an elementary divisor domain (EDD) if for all P ∈ Mr,s (A), there exist

X ∈ GLr(A) and Y ∈ GLs(A) s.t.

XPY =
[
diag (d1, . . . , ds)

0

]
,

with d1 | · · · | ds.

(ii) We say that A is a Bézout domain if every finitely generated ideal of A is principal.
Proposition 2.1.4. If A is an EDD, then A is a Bézout domain.
Proof. Let I = (x1, . . . , xr) be a finitely generated ideal of A. Consider P = t

(
x1 · · · xr

)
∈

Mr,1 (A). Since A is an EDD, there exist X ∈ GLr(A), Y ∈ GLs(A) and d ∈ A s.t. XPY =
t
(
d 0 · · · 0

)
. Hence, I = (d).

Corollary 2.1.5. Let A be an integral domain. We have the following chain of implications :
A is a euclidean domain =⇒ A is a PID =⇒ A is an EDD =⇒ A is a Bézout domain.
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2.2 Finitely generated modules over PIDs
Proposition 2.2.1. If A is a PID and M is a finitely generated A-module, then there exist n,m ∈ N
and nonzero elements e1, . . . , em ∈ A\A× with e1 | · · · | em s.t.

M ' An ⊕ A/e1A⊕ · · · ⊕ A/emA.

Proof. Since M is finitely generated, there exists a surjective map f : Ar → M , with r ∈ N. Let
N = Ker f . By Theorem 2.1.2, there is a basis (gi)1≤i≤r of Ar and nonzero elements d1, . . . , ds of A
s.t. d1 | · · · | ds and:

N = d1g1A⊕ · · · ⊕ dsgsA.
Note that M = Im f ' Ar/Ker f = Ar/N . Therefore:

M ' g1A⊕ · · · ⊕ grA
d1g1A⊕ · · · ⊕ dsgsA

' Ar−s ⊕ A/d1A⊕ · · · ⊕ A/dsA.

But A/diA = {0} if di ∈ A×; we obtain the result by throwing away the indices i s.t. di ∈ A×.

Proposition 2.2.2. If M is a finitely generated module over a PID A, then the module M/Mtor is
free of finite rank. Moreover, the integer n in Proposition 2.2.1 is the rank of M/Mtor. In particular,
a torsion-free finitely generated module over a PID is free of finite rank.

Proposition 2.2.3. Let A be a PID and d1, . . . , dm, e1, . . . , en be nonzero elements of A\A× s.t.
d1 | · · · | dm, e1 | · · · | en, and A/d1A ⊕ · · · ⊕ A/dmA ' A/e1A ⊕ · · · ⊕ A/enA. Then m = n and
(di) = (ei) for all i ∈ {1, . . . ,m}.

Proof. Since A is a PID, prime elements are the same as irreducible elements; hence, if p ∈ A is
prime, then (p) is maximal and A/pA is a field. Moreover, for d ∈ A\A×, A/dA

p·(A/dA) '
A

pA+dA is A/pA
if p | d, {0} otherwise. Hence, for any prime element p ∈ A, A/d1A⊕···⊕A/dmA

p·(A/d1A⊕···⊕A/dmA) is an (A/pA)-vector
space whose dimension is the number of di that are divisible by p. Since A/d1A ⊕ · · · ⊕ A/dmA '
A/e1A⊕ · · · ⊕ A/enA, we have, for every prime element p:

|{i ∈ {1, . . . ,m} , p | di}| = |{j ∈ {1, . . . , n} , p | ej}| .

Now choose a prime element p s.t. p | d1. Then p | d1 | d2 | · · · | dm, so |{j ∈ {1, . . . , n} , p | ej}| = m,
and n ≥ m. By symmetry, n = m and p | e1 | · · · | em. Now if p divides some d ∈ A, then
p · (A/dA) ' A/

(
d
p

)
A. Here, this gives A/

(
d1
p

)
A⊕ · · · ⊕A/

(
dm

p

)
A ' A/

(
e1
p

)
A⊕ · · · ⊕A/

(
em

p

)
A,

which allows us to prove the result by induction.

Theorem 2.2.4. If A is a PID and M is a finitely generated A-module, then there exist n,m ∈ N
and nonzero elements e1, . . . , em ∈ A\A× with e1 | · · · | em s.t.

M ' An ⊕ A/e1A⊕ · · · ⊕ A/emA.

The integers n and m and the ideals (ei) are uniquely determined by M .

Remark 2.2.5. Let A be a PID, d ∈ A. The module A/dA may be decomposed as follows: if
d = upα1

1 · · · pαr
r , with the pi distinct prime elements, αi ∈ N∗ and u ∈ A×, then by the Chinese

Remainder Theorem:
A/dA ' A/pα1

1 A⊕ · · · ⊕ A/pαr
r A.

However, one can prove that A/pαA is indecomposable if p is prime and α ∈ N∗.

Definition 2.2.6 (Primary parts). If A is a PID and M is an A-module, then for any prime element
p ∈ A, we define the p-primary part of M by:

M(p) = {m ∈M, ∃α ∈ N, pαm = 0} .

M(p) is a submodule of M .
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Remark 2.2.7. Let A be a PID and M = A/dA. Write d = upα1
1 · · · pαr

r , with the pi distinct
prime elements, αi ∈ N∗ and u ∈ A×. Then for all j ∈ {1, . . . , r}, M (pj) ' A/p

αj

j A. Hence,
M = ⊕

p prime M(p).

Corollary 2.2.8. If A is a PID and M is a finitely generated A-module, then M(p) = 0 for all but
finitely many prime elements p, and there exists n ∈ N s.t.

M ' An ⊕

 ⊕
p prime

M(p)
 .

Moreover, for every prime element p, there exist α1(p) ≤ · · · ≤ αm(p)(p) s.t.

M(p) '
m(p)⊕
i=1

A/pαi(p)A.

The integers n, m(p), αi(p) are uniquely determined by M .

2.3 Applications: finitely generated abelian groups, reduction of endo-
morphisms

Theorem 2.3.1. Let G be a finitely generated abelian group. Then there exist n,m ∈ N and integers
d1, . . . , dm ≥ 2 with d1 | · · · | dm s.t.

G ' Zn ⊕ Z/d1Z⊕ · · · ⊕ Z/dmZ.

Proof. An abelian group is a Z-module, so Theorem 2.2.4 applies.

Theorem 2.3.2. Let V be a finite-dimensional vector space over a field k. Let f ∈ End(V ). Note
that V can be seen as a k[X]-module by setting X · v = f(v) for v ∈ V .

(i) There exist polynomials D1, . . . , Dm ∈ k[X] with D1 | · · · | Dm s.t.

V ' k[X]/ (D1)⊕ · · · ⊕ k[X]/ (Dm) .

Note that k[X]/ (Di) is a cyclic subspace for f , for all i ∈ {1, . . . ,m}.

(ii) The ideals (D1) , . . . , (Dm) are the nonunit invariant factors of (X Id−M) ∈Md (k[X]), where
M is the matrix of f in a basis of V .

Proof. (i) The k[X]-module V is finitely generated because V is a finitely generated k-module.
Moreover, according to the Cayley-Hamilton Theorem (Theorem 1.8.3), M = Mtor, which gives the
result using Theorem 2.2.4. (ii) Let v1, . . . , vd be a basis of V , let M = (mij)1≤i,j≤d = Mat(f).
Consider a free k[X]-module W of rank d; write W = ⊕d

i=1 k[X]ωi for some (ω1, . . . , ωd) ∈ W d. For
i ∈ {1, . . . , d}, set:

ni = Xωi −
d∑
j=1

mjiωj ∈ W.

ConsiderN = (n1, . . . , nd) ⊆ W . Now, define a map π : W → V by π
(∑d

i=1 Pi(X)ωi
)

= ∑d
i=1 Pi(f)vi.

The map π is k[X]-linear, and we claim that the sequence 0 → N → W
π−→ V → 0 is exact. The

surjectivity of π is clear since π (ωi) = vi for i ∈ {1, . . . , d}. Moreover, for i ∈ {1, . . . , d}, π (ni) = 0
because M = Mat(f). Hence, N ⊆ Ker π. Conversely, let w ∈ Ker π. As w ∈ W , there exist
n ∈ N and (a1, . . . , ad) ∈ kd s.t. w = n + ∑d

i=1 aiωi. But w ∈ Ker π, and n ∈ N ⊆ Ker π,
so 0 = π

(∑d
i=1 aiωi

)
= ∑d

i=1 aivi. Hence, ai = 0 for all i ∈ {1, . . . , d}, and w = n ∈ N . This
proves that the sequence 0 → N → W

π−→ V → 0 is exact. Therefore, V ' W/N , so N is free
of rank d and N = ⊕d

i=1 k[X]
(
Xωi −

∑d
j=1 mjiωj

)
. Now, note that (X Id−M) is the matrix of(

Xωi −
∑d
j=1 mjiωj

)
1≤i≤d

∈ W d in the basis (ωi)1≤i≤d.
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Remark 2.3.3. With the notations of Theorem 2.3.2, Dm is the minimal polynomial of f and
D1 · · ·Dm is its characteristic polynomial.

Corollary 2.3.4. Let k be a field and A,B ∈Md (k). Then A and B are similar iff (X Id−A) and
(X Id−B) are equivalent in Md (k[X]).

Corollary 2.3.5 (Jordan normal form of an endomorphism). Let V be a finite-dimensional vector
space over an algebraically closed field k. Let f ∈ End(V ). Then there exist λ1, . . . , λs ∈ k s.t.
V = ⊕s

i=1 Vλi
, with Vλi

stable by f and s.t. the matrix of the endomorphism induced by f in some
basis of Vλi

is: 

λi 1 0 · · · 0
0 . . . . . . . . . ...
... . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · · · · 0 λi


.

Proof. View V as a k[X] module and use Corollary 2.2.8. Use the fact that the matrix above is the
matrix of multiplication by X in the basis

(
(X − λ)i

)
0≤i≤α−1

of k[X]/ (X − λ)α.

2.4 Projective modules
Definition 2.4.1 (Projective module). A module P is said to be projective if for every surjective
linear map f : N1 → N2 between modules, the induced map f∗ : Hom (P,N1) → Hom (P,N2) is also
surjective.

Example 2.4.2. Free modules are always projective.

Definition 2.4.3 (Split sequence). Consider an exact sequence 0 → M
f−→ N

g−→ P → 0. The
following assertions are equivalent:

(i) There exists a linear map r : P → N s.t. g ◦ r = idP .

(ii) There exists P ′ ⊆ N s.t. N = f(M)⊕ P ′.

In this case, we say the the sequence is split.

Proof. (i) ⇒ (ii) Take P ′ = r(P ). (ii) ⇒ (i) Note that g induces an isomorphism g̃ : P ′ → P , so
take r = g̃−1 : P → P ′ ⊆ N .

Theorem 2.4.4. Let P be a module over a ring A. The following assertions are equivalent:

(i) P is projective.

(ii) Every exact sequence 0→M → N → P → 0 is split.

(iii) There exists an A-module R s.t. P ⊕R is free.

Proof. (i) ⇒ (ii) Consider an exact sequence 0 → M
f−→ N

g−→ P → 0. Note that g : N → P is
surjective, and P is projective, so g∗ : Hom (P,N) → Hom (P, P ) is surjective. Hence, there exists
r ∈ Hom (P,N) s.t. g∗(r) = idP , i.e. g ◦ r = idP . Hence, the sequence is split. (ii) ⇒ (iii) Note
that every module is the quotient of a free module, because every module has a (possibly infinite)
generating family. Therefore, there exists a free module L and a surjective map g : L → P . Hence,
we get an exact sequence 0 → Ker g → L

g−→ P → 0. Since this exact sequence splits, we get
L = r(P ) ⊕ Ker g ' P ⊕ Ker g, with r : P → N s.t. g ◦ r = idP . (iii) ⇒ (i) Let R be an
A-module s.t. L = R ⊕ P is free. Consider a surjective map g : N1 → N2. We know that L is
projective (because L is free), so the induced map Hom (L,N1) → Hom (L,N2) is surjective. But
Hom (L,N1) ' Hom (R,N1) ⊕ Hom (P,N1) and Hom (L,N2) ' Hom (R,N2) ⊕ Hom (P,N2), so the
map Hom (P,N1)→ Hom (P,N2) is also surjective and P is projective.
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Remark 2.4.5. If P is a finitely generated projective module, the above proof shows the existence of
a module R s.t. P ⊕ R is free of finite rank. In particular, over a PID, a module is projective and
finitely generated iff it is free of finite rank.

Example 2.4.6. The following modules are projective but not free:

(i) Z/2Z is a projective Z/6Z-module that is not free (because Z/6Z ' Z/2Z⊕ Z/3Z).

(ii) If M and N are free A- and B-modules respectively, then M ×N is a projective A×B module,
and it is free iff rkAM = rkB N .

(iii) Let A = Z
[√
−5
]
, P =

(
3, 1 +

√
−5
)
⊆ A, R =

(
3, 1−

√
−5
)
. We have P + R = A,

P ∩R = 3A. Therefore, we have an exact sequence 0→ 3A→ P ⊕R→ A→ 0. This sequence
is split because A is projective over itself. Hence, P ⊕ R ' A2, so P and R are projective.
However, P and R are not free.

(iv) Let A = C0 (Sn,R). Choose an orthonormal basis of Rn+1 and let x̂0, . . . , x̂n : Rn+1 → R denote
the associated coordinate functions. For i ∈ {0, . . . , n}, set xi = x̂i◦j ∈ A, where j : Sn → Rn+1

is the inclusion. Now let e = (x0, . . . , xn) ∈ An+1 and P = {v ∈ An+1, 〈v | e〉 = 0}. The
A-module P is projective because An+1 = P ⊕ Ae. If P is free, then it must be of rank
n, so there must exist v1, . . . , vn ∈ An+1 s.t. P = Av1 ⊕ · · · ⊕ Avn. Therefore, An+1 =
Av1 ⊕ · · · ⊕ Avn ⊕ Ae. By fixing s ∈ Sn and applying the map f ∈ A 7→ f(s) ∈ R, we get
Rn+1 = Rv1(s)⊕· · ·⊕Rvn(s)⊕Re(s). In particular, v1(s) 6= 0 for every s ∈ Sn, and v1(s) ∈ s⊥,
so v1 is a nonvanishing continuous vector field on Sn. This is impossible when n is even, due
to the Hairy Ball Theorem.

3 Tensor products

3.1 Universal property of the tensor product
Theorem 3.1.1 (Existence of the tensor product). Let M and N be two A-modules. There exists
an A-module M ⊗N (sometimes written M ⊗AN) together with a bilinear map t : M ×N →M ⊗N
satisfying the following universal property: for any A-module P , the map f ∈ Hom (M ⊗N,P ) 7−→
f ◦ t ∈ Bil (M ×N,P ) is an isomorphism of A-modules. Moreover, the module M ⊗ N is uniquely
determined by this property, i.e. if X is an A-module together with a bilinear map u : M ×N → X
satisfying the same universal property, then there exists a unique isomorphism ϕ : X → M ⊗N s.t.
t = ϕ ◦ u.

Proof. Let L be the free A-module whose basis is ([m,n])(m,n)∈M×N , i.e. L = ⊕
(m,n)∈M×N A[m,n].

Let R be the submodule of L generated by elements of the form [a1m1 + a2m2, n] − a1 [m1, n] −
a2 [m2, n] or [m, b1n1 + b2n2]−b1 [m,n1]−b2 [m,n2] for a1, a2, b1, b2 ∈ A,m,m1,m2 ∈M , n, n1, n2 ∈ N .
Set M ⊗ N = L/R and define m ⊗ n to be the class of [m,n] in L/R for (m,n) ∈ M × N . Hence,
define a bilinear map t : (m,n) ∈ M × N 7−→ m ⊗ n ∈ M ⊗ N . If P is an A-module, the
map Ψ : f ∈ Hom (M ⊗N,P ) 7−→ f ◦ t ∈ Bil (M ×N,P ) is A-linear; let us prove that it is an
isomorphism. The injectivity comes from the fact that (m⊗ n)(m,n)∈M×N is a generating family for
M ⊗ N . For the surjectivity, let g ∈ Bil (M ×N,P ). Define f̃ : L → P by f̃ ([m,n]) = g(m,n) for
(m,n) ∈ M ×N . We have R ⊆ Ker f̃ because g is bilinear; therefore, there exists f : M ⊗N → P
s.t. f̃ = f ◦ π, where π : L → L/R = M ⊗ N is the projection. Hence, g = f ◦ t. This proves that
(M ⊗N, t) satisfies the universal property. Let (X, u) be another pair satisfying the same universal
property. Since t ∈ Hom (M ×N,M ⊗N), there exists f ∈ Hom (X,M ⊗N) s.t. t = f◦u. Likewise,
there exists g ∈ Hom (M ⊗N,X) s.t. u = g ◦ t. Note that f ◦ g ◦ t = t, so f ◦ g = idM⊗N by the
universal property. Likewise, g ◦ f = idX , so f : X →M ⊗N is an isomorphism and t = f ◦ u.

Example 3.1.2.
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(i) Z/nZ⊗Z Q = 0 because ∀(a, b) ∈ Z/nZ×Q, a⊗ b = na⊗ b
n

= 0.

(ii) Z/mZ⊗Z Z/nZ = Z/(m ∧ n)Z.

(iii) Q⊗Z Z = Q.

(iv) Q⊗Z Q = Q.

Remark 3.1.3. Let M and N be two A-modules.

(i) If Bil(M ×N,P ) = 0 for every A-module P , then M ⊗N = 0.

(ii) If M is generated by (mi)i∈I and N is generated by (nj)j∈J , then M ⊗ N is generated by
(mi ⊗ nj)(i,j)∈I×J . In particular, if M and N are finitely generated, then so is M ⊗N .

Vocabulary 3.1.4. Let M and N be two A-modules. Elements of the form m ⊗ n ∈ M ⊗ N , for
(m,n) ∈ M × N , are called simple tensors. If x ∈ M ⊗ N , the rank of x is the smallest integer r
s.t. x can be written as the sum of r simple tensors.

Proposition 3.1.5. Let M,N,P, (Mi)i∈I be A-modules.

(i) M ⊗N = N ⊗M .

(ii) M ⊗ A = M .

(iii) (⊕i∈IMi)⊗N = ⊕
i∈I (Mi ⊗N).

(iv) Hom (M ⊗N,P ) = Hom (M,Hom (N,P )).

(v) (M ⊗N)⊗ P = M ⊗ (N ⊗ P ).

Remark 3.1.6. IfM,N,P are A-modules, we shall writeM⊗N⊗P = (M ⊗N)⊗P = M⊗(N ⊗ P ).
The A-module M ⊗N ⊗ P has a universal property w.r.t. multilinear maps on M ×N × P .

Corollary 3.1.7. The tensor product of two free A-modules is a free A-module.

Corollary 3.1.8. The tensor product of two projective A-modules is a projective A-module.

Proof. If M and N are projective A-modules, then there exist A-modules M ′ and N ′ s.t. M ⊕M ′

and N ⊕N ′ are free. Therefore (M ⊕M ′)⊗ (N ⊕N ′) is free. But:

(M ⊕M ′)⊗ (N ⊕N ′) = (M ⊗N)⊕ (M ⊗N ′)⊕ (M ′ ⊗N)⊕ (M ′ ⊗N ′) .

Therefore, M ⊗N is projective.

3.2 Tensor products, exact sequences and quotients
Proposition 3.2.1. If M ′ → M → M ′′ → 0 is an exact sequence and N is a module, then the
following sequence is exact:

M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0.

In particular, M
ImM ′

⊗ N = M⊗N
Im(M ′⊗N) .

Proof. Let P be an A-module. Applying Proposition 1.2.6, we see that the sequence:

0→ Hom (M ′′,Hom(N,P ))→ Hom (M,Hom(N,P ))→ Hom (M ′,Hom(N,P ))

is exact. But this sequence can be rewritten as:

0→ Hom (M ′′ ⊗N,P )→ Hom (M ⊗N,P )→ Hom (M ′ ⊗N,P ) .

Proposition 1.2.6 applied in the other direction now tells us that M ′⊗N →M ⊗N →M ′′⊗N → 0
is exact.
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Remark 3.2.2. Even if a linear map M ′ → M between A-modules is injective, the induced map
M ′ ⊗N → M ⊗N may not be injective for an A-module N . For example, the inclusion 2Z→ Z is
injective but the induced map 2Z⊗ Z/2Z→ Z⊗ Z/2Z is zero.

Corollary 3.2.3. Let M be an A-module. If I is an ideal of A, then:

A/I ⊗M = M/IM.

Proof. We have an exact sequence I j−→ A
π−→ A/I → 0, which induces an exact sequence I ⊗M j̃−→

M
π̃−→ A/I ⊗M → 0. Since Im j̃ = IM , we obtain A/I ⊗M = M/IM .

Corollary 3.2.4. If I and J are two ideals of A, then:

A/I ⊗ A/J = A/(I + J).

Corollary 3.2.5. If K i−→ M → P → 0 and L j−→ N → Q → 0 are two exact sequences, then the
following sequence is exact:

(K ⊗N)⊕ (M ⊗ L) i⊗id⊕ id⊗j−−−−−−→M ⊗N −→ P ⊗Q −→ 0.

In particular, M
ImK
⊗ N

ImL
= M⊗N

Im(K⊗N)+Im(M⊗L) .

Definition 3.2.6 (Flat module). An A-module P is said to be flat if for every injective mapM ′ →M ,
the induced map P ⊗M ′ → P ⊗M is still injective.

Example 3.2.7. Any free module is flat.

Proposition 3.2.8. Projective modules are flat.

Proof. Use the fact that projective modules are direct summands of free modules.

3.3 Tensor products of homomorphisms
Definition 3.3.1 (Tensor product of homomorphisms). If f : M1 → M2 and g : N1 → N2 are
homomorphisms of A-modules, then there exists a unique homomorphism (f ⊗ g) : M1 ⊗ N1 →
M2 ⊗N2 s.t.

∀ (m,n) ∈M1 ×N1, (f ⊗ g) (m⊗ n) = f(m)⊗ g(n).
Remark 3.3.2. Let M1,M2, N1, N2 be A-modules. The tensor product of homomorphisms defines
a bilinear map h̃ : Hom (M1,M2) × Hom (N1, N2) −→ Hom (M1 ⊗N1,M2 ⊗N2), which induces a
linear map:

h : Hom (M1,M2)⊗ Hom (N1, N2) −→ Hom (M1 ⊗N1,M2 ⊗N2) .
In general, h has no reason to be either injective or surjective, but we shall see some cases in which
it is.

Proposition 3.3.3. Let M1,M2, N1, N2 be A-modules. Assume that M1 and N1 (resp. M1 and M2)
are free of finite rank. Then the map h : Hom (M1,M2)⊗Hom (N1, N2) −→ Hom (M1 ⊗N1,M2 ⊗N2)
is an isomorphism.

Proof. Prove it firstly for M1 = N1 = A (resp. M1 = M2 = A).
Remark 3.3.4. Let M1,M2, N1, N2 be free A-modules of finite rank equipped with bases. Let f ∈
Hom (M1,M2) and g ∈ Hom (N1, N2). If A = (aij)1≤i≤n

1≤j≤p
= Mat(f) and B = Mat(g), then in

appropriate bases of M1 ⊗N1 and M2 ⊗N2, we have:

Mat (f ⊗ g) =


a11B · · · a1pB
... . . . ...

an1B · · · anpB

 .
This matrix will be denoted by A⊗B.
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Corollary 3.3.5. Let M be a free A-module of finite rank. Then, for any A-module N , the map:

h : M∨ ⊗N −→ Hom (M,N)

is an isomorphism.

Proposition 3.3.6. Let V and W be two vector spaces over a field k. We have an isomorphism
ψ : V ∨ ⊗W → Hom (V,W ). If f ∈ Hom (V,W ), then the rank of f as a linear map is equal to the
rank of ψ−1(f) ∈ V ∨ ⊗W (c.f. Vocabulary 3.1.4).

Proof. Let t = ψ−1(f). Let us show that rk f = rk t. (≤) Write t = ∑r
i=1 fi ⊗ wi, with r = rk t,

f1, . . . , fr ∈ V ∨, w1, . . . , wr ∈ W . Then:

∀v ∈ V, f(v) =
r∑
i=1

fi(v)wi.

Therefore, Im f ⊆ Vect (w1, . . . , wr) and rk f ≤ r = rk t. (≥) Let (wi)1≤i≤r be a basis of Im f . For
i ∈ {1, . . . , r}, let pi : Im f → R be the i-th coordinate function associated to the basis (wi)1≤i≤r.
Hence, t = ∑r

i=1 (pi ◦ f)⊗ wi, so rk t ≤ r = rk f .

Proposition 3.3.7. Let M1,M2, N1, N2 be A-modules. Assume that M1 and N1 (resp. M1 and
M2) are finitely generated and projective. Then the map h : Hom (M1,M2) ⊗ Hom (N1, N2) −→
Hom (M1 ⊗N1,M2 ⊗N2) is an isomorphism.

Proof. Use Proposition 3.3.3 and the fact that finitely generated projective modules are direct
summands of free modules of finite type.

Remark 3.3.8. If M is a finitely generated, projective module, then we have an isomorphism M∨⊗
M ' End(M). On M∨ ⊗M , there is a linear trace map tr : M∨ ⊗M → R induced by the bilinear
map (f, x) ∈ M∨ ×M 7−→ f(x) ∈ R. Hence, with the isomorphism M∨ ⊗M ' End(M), we have
a trace map tr : End(M) → R, which is a generalisation of the trace for endomorphisms of free
modules of finite rank.

3.4 Extension of scalars
Definition 3.4.1 (Restriction of scalars). Let f : A→ B be a ring homomorphism (e.g. an inclusion
map). Any B-module N can be seen as an A-module by setting a ·n = f(a) ·n, for a ∈ A and n ∈ N .

Definition 3.4.2 (Extension of scalars). Let f : A→ B be a ring homomorphism. The ring B itself
can be seen as an A-module by restriction of scalars; therefore, B ⊗A M is an A-module, that can
also be seen as a B-module by setting b · (b′ ⊗m) = (bb′)⊗m for b, b′ ∈ B and m ∈M .

Example 3.4.3. Let M be a Z-module and assume that M = Zr ⊕Mtors for some r ∈ N. Then
Q⊗Z M is the Q-vector space Qr.

Proposition 3.4.4. Let f : A → B be a ring homomorphism. If M is an A-module and N is a
B-module, then:

HomA(M,N) ' HomB (B ⊗AM,N) (as B-modules).

Lemma 3.4.5. Let f : A→ B be a ring homomorphism. If M is an A-module and N is a B-module,
then:

M ⊗A N ' (B ⊗AM)⊗B N (as B-modules).

Corollary 3.4.6. Let f : A→ B be a ring homomorphism. If P is a flat A-module, then B⊗A P is
a flat B-module.
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3.5 Tensor product of algebras over a ring
Vocabulary 3.5.1 (A-algebra). If f : A → B is a ring homomorphism, we say that B is an
A-algebra.

Proposition 3.5.2. If M and N are two A-algebras, then M ⊗A N is also an A-algebra.

Example 3.5.3. If B is an A-algebra, then:

B ⊗A A[X] = B[X].

In particular, A[X]⊗A A[Y ] = A[X, Y ].

Example 3.5.4. If X is a topological space, then:

C⊗R C0 (X,R) = C0 (X,C) .

Example 3.5.5. Let X and Y be two topological spaces. Then there exists a map:

m : C0 (X,R)⊗R C0 (Y,R) −→ C0 (X × Y,R) ,

given by m(f ⊗ g)(x, y) = f(x)g(y), and this map is injective.

Example 3.5.6. Let K and L be two finite extensions of a field F of characteristic 0. By the
Primitive Element Theorem, there exists α ∈ L s.t. L = F (α). If µα is the minimal polynomial of α
over F , then L = F [X]/ (µα), so:

K ⊗F L = K[X]/ (µα) .
Hence, if µα = P1 · · ·Pr, where P1, . . . , Pr are irreducible over K, then:

K ⊗F L =
⊕

1≤i≤r
K[X]/ (Pi) .

Thus, K ⊗F L can be written as a direct sum of extensions of K.

3.6 Flat modules
Definition 3.6.1 (Flat module). An A-module P is said to be flat if for every injective mapM ′ →M ,
the induced map P ⊗M ′ → P ⊗M is still injective.

Proposition 3.6.2.

(i) Projective modules are flat.

(ii) If P1 and P2 are two flat modules, then P1 ⊕ P2 and P1 ⊗ P2 are flat.

Proposition 3.6.3. Let P be a flat A-module.

(i) If I is an ideal of A, then the map I ⊗ P → IP is an isomorphism.

(ii) If A is an integral domain, then P is torsion-free.

Definition 3.6.4 (Flat module for a specific module). Let M and P be two modules. We say that
P is flat for M if for every submodule M ′ ⊆M , the map M ′ ⊗ P →M ⊗ P is injective.

Remark 3.6.5. A module is flat iff it is flat for every module.

Lemma 3.6.6. If a module P is flat for a module M , then it is also flat for every quotient of M .

Proof. Write an exact sequence 0 → K → M
π−→ N → 0. We want to show that P is flat for N .

Hence, let N ′ ⊆ N be a submodule; set M ′ = π−1 (N ′). We have the following commutative diagram
(with the horizontal and vertical sequences exact):
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0 K M ′ N ′ 0π

0 K M N 0π
= ⊆ ⊆

0 0

After taking the tensor product with P , we obtain:

P ⊗K P ⊗M ′ P ⊗N ′ 0

P ⊗K P ⊗M P ⊗N 0

=

0

Note that the arrow P ⊗M ′ → P ⊗M is injective because P is flat for M by assumption. Now,
using this diagram, we show that the arrow P ⊗N ′ → P ⊗N is also injective as wanted.

Lemma 3.6.7. If a module P is flat for two modules M1 and M2, then it is also flat for M1 ⊕M2.

Proof. LetM = M1⊕M2 and letM ′ be a submodule ofM . WriteM ′
1 = M ′∩M1 andM ′

2 = M ′∩M2.
We have the following commutative diagram (with the horizontal and vertical sequences exact):

0 M ′
1 M ′ M ′

2 0

0 M1 M M2 0

⊆ ⊆ ⊆

0 0 0

After taking the tensor product with P , we obtain:

P ⊗M ′
1 P ⊗M ′ P ⊗M ′

2 0

0 P ⊗M1 P ⊗M P ⊗M2 0

0 0

Note that the arrows P ⊗ M ′
1 → P ⊗ M1 and P ⊗ M ′

2 → P ⊗ M2 are injective because P is
flat for M1 and M2 by assumption; moreover, the arrow P ⊗ M1 → P ⊗ M is injective because
P ⊗M = P ⊗ (M1 ⊕M2) = (P ⊗M1)⊕ (P ⊗M2). Now, using this diagram, we show that the arrow
P ⊗M ′ → P ⊗M is also injective as wanted.

Lemma 3.6.8. If a module P is flat for each module in a family (Mi)i∈I , then it is also flat for⊕
i∈IMi.

Proof. Note that by induction, Lemma 3.6.7 gives the result when I is finite. Now, write M =⊕
i∈IMi and let M ′ ⊆ M be a submodule. Let f : P ⊗M ′ → P ⊗M be the map induced by the

inclusion M ′ ⊆M . Let x′ ∈ Ker f ; we want to show that x′ = 0. Write:

x′ =
r∑
i=1

pi ⊗mi,
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with p1, . . . , pr ∈ P , m1, . . . ,mr ∈ M ′. Let M ′′ = (m1, . . . ,mr) ⊆ M ′ and set x′′ = ∑r
i=1 pi ⊗mi ∈

P ⊗M ′′. The inclusion M ′′ ⊆ M ′ induces a map j : P ⊗M ′′ → P ⊗M ′ and we have x′ = j (x′′).
Moreover, asM ′′ is finitely generated, there exists a finite subset J ⊆ I s.t. M ′′ ⊆⊕j∈JMj = Mfinite.
Since Mfinite is a direct summand of M , the map P ⊗ Mfinite → P ⊗ M is injective; moreover,
by Lemma 3.6.7, the map P ⊗ M ′′ → P ⊗ Mfinite is injective. Hence, by composition, the map
i : P ⊗ M ′′ → P ⊗ M is injective. Therefore, since i (x′′) = f (x′) = 0, we obtain x′′ = 0, and
x′ = j (x′′) = 0 as wanted.

Theorem 3.6.9. Let P be an A-module. The following assertions are equivalent:

(i) P is flat.

(ii) P is flat for A, i.e. the map I ⊗ P → P is injective for every ideal I of A.

Proof. Use Remark 3.6.5, Lemma 3.6.8 and Lemma 3.6.6, as well as the fact that every module can
be written as the quotient of a free module.

3.7 Flatness and relations
Definition 3.7.1 (Relations). LetM be an A-module. A relation inM is an equation ∑r

i=1 fimi = 0,
with f1, . . . , fr ∈ A and m1, . . . ,mr ∈M . This relation is said to be trivial if there exist (aij)1≤i≤r

1≤j≤s
∈

Ar×s and y1, . . . , ys ∈M s.t. mi = ∑s
j=1 aijyj for all i and 0 = ∑r

i=1 fiaij for all j.

Example 3.7.2. Consider A = k[X, Y ], where k is a field. The relation Y ·X −X · Y = 0 is trivial
in A but not in the submodule M = (X, Y ).

Proposition 3.7.3. An A-module M is flat iff every relation in M is trivial.

Proof. (⇐) Assuming that every relation in M is trivial, show that the map I ⊗ M → M is
injective for any ideal I ⊆ A and apply Theorem 3.6.9. (⇒) Assume that M is flat and consider a
relation ∑r

i=1 fimi = 0 in M . Let I = (f1, . . . , fr) ⊆ A. We have a natural surjective map Ar → I,
of kernel N =

{
(ai)1≤i≤r ∈ Ar,

∑r
i=1 aifi = 0

}
. Now, as M is flat, note that the exact sequence

0→ N → Ar → I → 0 induces an exact sequence:

0→M ⊗N →M r π−→M ⊗ I → 0

Since M is flat, the map M ⊗ I →M is injective, which proves that ∑r
i=1 mi⊗fi = 0, so (mi)1≤i≤r ∈

Ker π = Im(M ⊗ N). Therefore, there exist (ai1)1≤i≤r , . . . , (ais)1≤i≤r ∈ N and y1, . . . , ys ∈ M s.t.∑s
j=1 yj ⊗ (a1j, . . . , arj) = (mi)1≤i≤r. Hence, the relation ∑r

i=1 fimi = 0 is trivial.

3.8 Symmetric products
Notation 3.8.1. If M is an A-module, we write T k(M) = M ⊗ · · · ⊗M︸ ︷︷ ︸

k times

. For any A-module P , we

have a bijection k-Lin
(
Mk, P

)
' Hom

(
T k(M), P

)
.

Definition 3.8.2 (Symmetric multilinear map). Let M and P be two A-modules. A multilinear map
f ∈ k-Lin

(
Mk, P

)
is said to be symmetric if:

∀ (m1, . . . ,mk) ∈Mk, ∀σ ∈ Sk, f (m1, . . . ,mk) = f
(
mσ(1), . . . ,mσ(k)

)
.

Definition 3.8.3 (Symmetric product). Let M be an A-module. Let S be the submodule of T k(M)
generated by

{
(m1 ⊗ · · · ⊗mk)−

(
mσ(1) ⊗ · · · ⊗mσ(k)

)
, m1, . . . ,mk ∈M, σ ∈ Sk

}
. We define:

Symk(M) = T k(M)/S.

For m1, . . . ,mk ∈ M , we shall denote the image of m1 ⊗ · · · ⊗ mk in Symk(M) by m1 · · ·mk to
emphasize commutativity.

18



Proposition 3.8.4. Let M and P be two A-module. Then the set of symmetric k-linear maps
Mk → P is in bijection with Hom

(
Symk(M), P

)
.

Remark 3.8.5. Let M be an A-module. The map (v, w) 7→ v · w gives rise to a bilinear map
Symk(M)× Sym`(M)→ Symk+`(M). Now, if we define:

Sym(M) =
⊕
k∈N

Symk(M),

then Sym(M) is a ring under the bilinear map defined above, called the symmetric algebra of M .

Proposition 3.8.6. Let M be an A-module generated by elements m1, . . . ,mn ∈M . Then Symk(M)
is generated by {ma1

1 · · ·man
n , a1 + · · ·+ an = k}.

Lemma 3.8.7. For k, n ∈ N, |{(a1, . . . , an) ∈ Nn, a1 + · · ·+ an = k}| =
(
n+k−1

k

)
.

Theorem 3.8.8. Let M be a free A-module of rank n, equipped with a basis (mi)1≤i≤n. Then
Symk(M) is free of rank

(
n+k−1

k

)
, with basis (ma1

1 · · ·man
n )(a1,...,an)∈Nn

a1+···+an=k
.

Proof. Denote xa1
1 · · ·xan

n by xa for x = (xi)1≤i≤n ∈ Mn, a = (ai)1≤i≤n ∈ Nn. According to Propo-
sition 3.8.6, it suffices to prove that the family (ma) a∈Nn

a1+···+an=k
is linearly independent. For a ∈ Nn

with a1 + · · ·+ an = k, define a multilinear form fa ∈ k-Lin
(
Mk, A

)
by:

fa (mi1 , . . . ,mik) =

1 if ∀` ∈ {1, . . . , n} , a` = |{j ∈ {1, . . . , k} , ij = `}|
0 otherwise

.

As (mi)1≤i≤n is a basis of M , this defines a (symmetric) k-linear form fa : Mk → A, which induces
a linear map f̃a : Symk(M)→ A. For b ∈ Nn with b1 + · · ·+ bn = k, we have f̃a

(
mb
)

= δab. Now, if
(λb) b∈Nn

b1+···+bn=k
is a family of scalars s.t.

∑
b1+···+bn=k

λbm
b = 0,

then, for all a ∈ Nn with a1 + · · ·+ an = k, we have λa = f̃a (∑b1+···+bn=k λmb
m) = 0. This shows the

independence of (ma) a∈Nn

a1+···+an=k
.

Corollary 3.8.9. Let M be a free A-module of rank n, equipped with a basis (mi)1≤i≤n. Then:

Sym(M) ' A [X1, . . . , Xn] ,

and the isomorphism is given by ma1
1 · · ·man

n 7→ Xa1
1 · · ·Xan

n .

3.9 Alternating products
Definition 3.9.1 (Alternating multilinear map). Let M and P be two A-modules. A multilinear
map f ∈ k-Lin

(
Mk, P

)
is said to be alternating if:

∀ (m1, . . . ,mk) ∈Mk, (∃i 6= j, mi = mj) =⇒ f (m1, . . . ,mk) = 0.

Lemma 3.9.2. Let M and P be two A-modules. If a k-linear map f : Mk → P is alternating, then
it is antisymmetric, i.e.

∀ (m1, . . . ,mk) ∈Mk, ∀σ ∈ Sk, f (m1, . . . ,mk) = ε(σ)f
(
mσ(1), . . . ,mσ(k)

)
.

19



Remark 3.9.3. The converse of Lemma 3.9.2 is false in general, but it becomes true if we assume
that 2 ∈ A×.

Definition 3.9.4 (Alternating product). Let M be an A-module. Let L be the submodule of T k(M)
generated by {m1 ⊗ · · · ⊗mk, m1, . . . ,mk ∈M, ∃i 6= j, mi = mj}. We define:

Λk(M) = T k(M)/L.

For m1, . . . ,mk ∈ M , we shall denote the image of m1 ⊗ · · · ⊗ mk in Λk(M) by m1 ∧ · · · ∧ mk to
emphasize anticommutativity.

Proposition 3.9.5. Let M and P be two A-module. Then the set of alternating k-linear maps
Mk → P is in bijection with Hom

(
Λk(M), P

)
.

Lemma 3.9.6. Let M be an A-module that is generated by n elements. Then Λk(M) = 0 as soon
as k > n.

Theorem 3.9.7. Let M be a free A-module of rank n, equipped with a basis (mi)1≤i≤n. Then Λk(M)
is free of rank

(
n
k

)
, with basis (mi1 ∧ · · · ∧mik)1≤i1<···<ik≤n.

Proof. It is clear that (mi1 ∧ · · · ∧mik)1≤i1<···<ik≤n generates Λk(M); it remains to prove that this
family is linearly independent. To do this, we use the same strategy as in Theorem 3.8.8: it suffices
to construct a linear form fi1,...,ik : Λk(M) → A for each sequence 1 ≤ i1 < · · · < ik ≤ n s.t.
fi1,...,ik (mj1 ∧ · · · ∧mjk) = δi1j1 · · · δikjk for all 1 ≤ j1 < · · · < jk ≤ n. In the particular case
where k = n, we take the linear form fi1,...,ik on Λk(M) induced by the alternating k-linear form
det(mi1 ,...,mik) : Mk → A. Now, assume that k < n. For 1 ≤ i1 < · · · < ik ≤ n, choose 1 ≤ ik+1 <

· · · < in ≤ n s.t. {1, . . . , n} = {i`, ` ∈ {1, . . . , n}} and set y = mik+1 ∧ · · · ∧min ∈ Λn−k(M). Now,
x 7→ x∧ y defines a linear map θ : Λk(M)→ Λn(M), which sends mj1 ∧ · · · ∧mjk to ±m1 ∧ · · · ∧mn

if {j1, . . . , jk} = {i1, . . . , ik}, 0 otherwise. Hence, by composing this map by the determinant, we
obtain the desired map.

Notation 3.9.8. Let M be an A-module. Then any map f ∈ End(M) induces a map T k(f) ∈
End

(
T k(M)

)
, which induces maps Symk(f) ∈ End

(
Symk(M)

)
and Λk(f) ∈ End

(
Λk(M)

)
.

Proposition 3.9.9. Let M be a free A-module of rank n, equipped with a basis (mi)1≤i≤n. Let
f ∈ End(M). Then the matrix of Λk(f) in the basis (mi1 ∧ · · · ∧mik)1≤i1<···<ik≤n is the matrix of
k × k minors of Mat(f).

4 Localisation

4.1 Local rings
Definition 4.1.1 (Local ring). A ring A is said to be a local ring if one of the following two equivalent
conditions is satisfied:

(i) A has a unique maximal ideal.

(ii) A\A× is an ideal of A.

In this case, if I is the unique maximal ideal of A, the quotient A/I is called the residue field of A.
If M is an A-module, then M/IM = M ⊗A A/I is an (A/I)-vector space.

Proposition 4.1.2. Let A be a local ring with maximal ideal I.

(i) If M is a finitely generated A-module s.t. M = IM , then M = 0.

20



(ii) If M is a finitely generated A-module and m1, . . . ,mr ∈ M are s.t. m1, . . . ,mr ∈ M/IM
generate M/IM , then m1, . . . ,mr generate M .

Theorem 4.1.3. If M is a finitely generated flat module over a local ring A, then M is free.

Proof. Let x1, . . . , xn ∈M whose images inM/IM form a basis of the vector spaceM/IM over A/I.
By Proposition 4.1.2, x1, . . . , xn generate M ; it remains to prove that they are linearly independent
over A. We shall prove by induction on r ∈ {1, . . . , n} that x1, . . . , xr are linearly independent, using
the fact that every relation in M is trivial (Proposition 3.7.3). If r = 1, let f1 ∈ A s.t. f1x1 = 0.
Since this relation is trivial, there exist y1, . . . , ys ∈M , a1, . . . , as ∈ A s.t. x1 = a1y1 + · · ·+ asys and
f1aj = 0 for all j. But x1 6= 0, so there exists j s.t. aj 6∈ I. Therefore, aj ∈ A×, and f1 = 0. This
proves the claim for r = 1. Assume we have proved the claim for (r − 1). Let f1, . . . , fr ∈ A s.t.
f1x1 + · · · + frxr = 0. Since this relation is trivial, there exist y1, . . . , ys ∈ M and (aij)1≤i≤r

1≤j≤s
∈ Ar×s

s.t. xi = ∑s
j=1 aijyj for all i and 0 = ∑r

i=1 fiaij for all j. Now, there exists (i, j) s.t. aij 6∈ I; we may
assume that a11 6∈ I, i.e. a11 ∈ A×. Now, we get:

f2

(
x2 −

a21

a11
x1

)
+ · · ·+ fr

(
xr −

ar1
a11

x1

)
= 0.

By induction, we obtain f2 = · · · = fr = 0 because
(
x2 − a21

a11
x1
)
, . . . ,

(
xr − ar1

a11
x1
)
are linearly

independent in M/IM . Therefore, f1 = 0, which proves the claim by induction.

Corollary 4.1.4. Over a local ring, a finitely generated module is projective iff it is flat iff is is free.

4.2 Localisation of rings
Remark 4.2.1. If A is an integral domain, then we know how to construct a field Frac(A) equipped
with an injective map j : A → Frac(A), s.t. for any ring B and for any morphism ϕ : A → B with
ϕ (A\{0}) ⊆ B×, there exists a unique morphism ψ : Frac(A)→ B s.t. ϕ = ψ ◦ j.

Definition 4.2.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Define an equivalence relation on A× S by:

(a1, s1) ∼ (a2, s2)⇐⇒ ∃t ∈ S, t (a1s2 − a2s1) = 0.

Denote S−1A = A× S/ ∼ and write a
s
for the class of (a, s) in S−1A.

Proposition 4.2.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Then the formulas a1

s1
+ a2

s2
= a1s2+a2s1

s1s2
and a1

s1
· a2
s2

= a1a2
s1s2

are well-defined on S−1A and
make S−1A an A-algebra via the map φS : a ∈ A 7−→ a

1 ∈ S
−1A.

Proposition 4.2.4. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Then, for any ring B and for any morphism f : A→ B with ϕ (S) ⊆ B×, there exists
a unique morphism g : S−1A→ B s.t. f = g ◦ φS.

Lemma 4.2.5. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Consider the canonical map φS : A→ S−1A. We have:

KerφS = {a ∈ A, ∃s ∈ S, as = 0} .

Example 4.2.6.

(i) Let A be an integral domain. Then S = A\{0} is a multiplicative subset, S−1A = Frac(A) and
φS is injective.

(ii) Let A be a ring and p be a prime ideal of A. Then S = A\p is a multiplicative subset, and the
ring S−1A is denoted by Ap.
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(iii) Let A be a ring and f ∈ A be an element that is not nilpotent. Then S = {fn, n ∈ N} is
a multiplicative subset, the ring S−1A is denoted by Af and we have Af = A[X]/ (Xf − 1)
(which we denote by A

[
1
f

]
).

(iv) Let K and L be two fields. If A = K×L and S = K×L×, then S−1A = L and φS : K×L→ L
is the projection on L.

Proposition 4.2.7. If p is a prime ideal of a ring A, then Ap is a local ring, with maximal ideal
m =

{
a
s
, a ∈ p, s ∈ S

}
. Moreover, we have:

Ap/m = Frac (A/p) .

Proof. It is clear that m is an ideal of Ap. Let us prove that m = Ap\A×p . (⊇) Let a
s
∈ Ap\m, with

a ∈ A\p and s ∈ S. Then a ∈ S, so s
a
∈ Ap and a

s
· s
a

= 1, i.e. a
s
∈ A×p . (⊆) Let a

s
∈ A×p . Then there

exists b
t
∈ Ap s.t. a

s
· b
t

= 1, i.e. there exists r ∈ S s.t. r (ab− st) = 0. Thus, rab = rst ∈ S = A\p,
and p is an ideal so a ∈ A\p. Now, it remains to prove that Ap/m = Frac (A/p). To do this,
consider the natural projection π : A → A/p. As A/p is an integral domain, it extends to a map
f : A → Frac (A/p). If a ∈ S, then π(a) 6= 0, so f(a) ∈ Frac (A/p)×. Therefore, f induces a map
g : Ap → Frac (A/p); we easily check that this map is surjective. And Ker g is a maximal ideal of Ap

because Im g is a field, so Ker g = m.

4.3 Localisation of modules
Definition 4.3.1. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. If M is an A-module, define an equivalence relation on M × S by:

(m1, s1) ∼ (m2, s2)⇐⇒ ∃t ∈ S, t (m1s2 −m2s1) = 0.

Denote S−1M = M × S/ ∼ and write m
s
for the class of (m, s) in S−1M .

Proposition 4.3.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. If M is an A-module, then the formulas m1

s1
+ m2

s2
= m1s2+m2s1

s1s2
and a1

s1
· m2
s2

= a1m2
s1s2

are well-defined on S−1M and make S−1M an S−1A-module. Moreover, there is a linear map m ∈
M 7−→ m

1 ∈ S
−1M whose kernel is {m ∈M, ∃s ∈ S, ms = 0}.

Proposition 4.3.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. If u : M → N is an A-linear map between A-modules, then there is an S−1A-linear
map S−1u : S−1M → S−1N s.t. (

S−1u
) (m

s

)
= u(m)

s
.

Proposition 4.3.4. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Assume that we have an exact sequence M ′ f−→M

g−→M ′′. Then the following sequence
is also exact:

S−1M ′ S−1f−−−→ S−1M
S−1g−−−→ S−1M ′′.

Corollary 4.3.5. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. If N and P are two submodules of an A-module M , then:

S−1 (N ∩ P ) = S−1N ∩ S−1P and S−1 (N + P ) = S−1N + S−1P.

Proof. Note that we have an exact sequence 0 → N ∩ P → N ⊕ P → N + P → 0 and apply
Proposition 4.3.4.
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Theorem 4.3.6. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Then, for any A-module M , there is a unique map ϕ : S−1A ⊗A M → S−1M s.t.
ϕ
(
a
s
⊗m

)
= am

s
, and this map is an isomorphism. In particular:

S−1A⊗AM ' S−1M.

Proof. The existence and unicity of ϕ come from the bilinear map
(
a
s
,m
)
∈ S−1A ×M 7−→ am

s
∈

S−1M (check that this map is well-defined by constructing a linear map M → Hom (S−1A, S−1M),
which comes from a linear map M → Hom(A,M)). The map ϕ is easily seen to be surjective. For
the injectivity, prove that every element of S−1A⊗AM is equal to a simple tensor.

Corollary 4.3.7. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Then S−1A is a flat A-module.

Proof. If we have an exact sequence of A-modules 0→M → N , then it induces an exact sequence
0→ S−1M → S−1N by Proposition 4.3.4, which is equivalent to 0→ S−1A⊗AM → S−1A⊗AN by
Theorem 4.3.6.

Remark 4.3.8. We can generalise Theorem 4.3.6 as follows. If M and N are two A-modules, then
there exists a unique map ϕ : S−1M⊗S−1AS

−1N → S−1 (M ⊗A N) s.t. ϕ
(
m
s
⊗ n

t

)
= m⊗n

st
. Moreover,

ϕ is an isomorphism.

4.4 Localisation of ideals
Remark 4.4.1. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. We denote by J (B) the set of ideals of a ring B. Then we have two maps:

(i) The extension map E : I ∈ J(A) 7−→ S−1I ∈ J (S−1A).

(ii) The contraction map C : J ∈ J (S−1A) 7−→ φ−1
S (J) ∈ J(A).

Proposition 4.4.2. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. Then, we have:

E ◦ C = idJ(S−1A) .

In other words, for any ideal J ⊆ S−1A, we have J = S−1
(
φ−1
S (J)

)
Corollary 4.4.3. Let A be a ring and let S be a multiplicative subset of A containing 1 and not
containing 0. If A is noetherian, then so is S−1A.

Proof. Let (Jn)n∈N be an increasing sequence of ideals of S−1(A). Then (C (Jn))n∈N is an increasing
sequence of ideals of A, so there exists n0 ∈ N s.t. ∀n ≥ n0, C (Jn) = C (Jn0). As a consequence,
∀n ≥ n0, Jn = E ◦ C (Jn) = E ◦ C (Jn0) = Jn0 .

4.5 Localisation of morphisms
Proposition 4.5.1. Let M be an A-module. The following assertions are equivalent:

(i) M = 0.

(ii) Mp = 0 for every prime ideal p of A.

(iii) Mm = 0 for every maximal ideal m of A.

If in addition M is finitely generated, then the previous assertions are also equivalent to:

(iv) M ⊗A A/m = 0 for every maximal ideal m of A.
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Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. Let us prove that (iii) ⇒ (i). Assume that
M 6= 0 and let x ∈M\{0}. Then Ann(x) = {a ∈ A, ax = 0} is a proper ideal of A so it is contained
in a maximal ideal m. Now, if φm : M →Mm is the canonical map, we know that:

Kerφm = {y ∈M, ∃a ∈ A\m, ay = 0} .

In particular, x 6∈ Kerφm (because ax = 0⇒ a ∈ Ann(x)⇒ a ∈ m), so Mm 6= 0. Now, assume that
M is finitely generated. It is clear that (i)⇒ (iv), so it suffices to prove that (iv)⇒ (iii). Let m be
a maximal ideal of A. Recall that Am/mm = A/m by Proposition 4.2.7. Thus, by Remark 4.3.8:

Mm/mm = Mm ⊗Am Am/mm = (M ⊗A /m)m = 0.

By Nakayema’s Lemma (Proposition 1.9.4), Mm = 0.

Corollary 4.5.2. Let f : M → N be a morphism of A-modules. Then the following assertions are
equivalent:

(i) f : M → N is injective (resp. surjective, bijective).

(ii) fp : Mp → Np is injective (resp. surjective, bijective) for every prime ideal p of A.

(iii) fm : Mm → Nm is injective (resp. surjective, bijective) for every maximal ideal m of A.

Proof. We have an exact sequence:

0→ Ker f →M
f−→ N → Coker f → 0.

If p is a prime ideal, then by Proposition 4.3.4, the following sequence is also exact:

0→ (Ker f)p →Mp
fp−→ Np → (Coker f)p → 0.

This proves that (Ker f)p = Ker (fp) and (Coker f)p = Coker (fp). Hence, by Proposition 4.5.1: f is
injective iff Ker f = 0 iff (Ker f)p for every p iff Ker (fp) = 0 for every p iff fp is injective for every p.
For the surjectivity, use the cokernel instead of the kernel. For maximal ideals, the proof is exactly
the same.

4.6 Localisation of finitely presented modules
Definition 4.6.1 (Finitely presented module). An A-module M is said to be finitely presented if
one of the following two equivalent conditions is satisfied:

(i) There exists an exact sequence 0→ K → Ar →M → 0, with K finitely generated, r ∈ N.

(ii) There exists an exact sequence As → Ar →M → 0, with r, s ∈ N.

Remark 4.6.2. Over a noetherian ring, a module is finitely presented iff it is finitely generated.

Proposition 4.6.3. Let M and N be two A-modules. Then there is a unique S−1A-linear map:

α : S−1 HomA(M,N) −→ HomS−1A

(
S−1M,S−1N

)
,

that sends 1
s
f to the map m

t
7→ f(m)

st
. If in addition M is finitely presented, then α is an isomorphism.

Proof. The existence and unicity of α are routine verifications. Assume thatM is finitely presented.
Then there exist r, s ∈ N and an exact sequence As → Ar → M → 0. We can either localise
the sequence at S (using Proposition 4.3.4) and then apply Hom (·, N) (using Proposition 1.2.6) or
apply Hom (·, N) and then localise at S. Hence, we obtain two exact sequences, and a commutative
diagram:
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0 S−1 HomA (M,N) S−1 HomA (Ar, N) S−1 HomA (As, N)

0 HomS−1A (S−1M,S−1N) HomS−1A (S−1Ar, S−1N) HomS−1A (S−1As, S−1N)

α αr αs

Using the fact that αr and αs are isomorphisms, we show that α is an isomorphism by diagram
chasing.

Definition 4.6.4 (Locally free module). An A-module M is said to be locally free if, for every prime
ideal p of A, Mp is free over Ap.

Theorem 4.6.5. Let M be a finitely presented A-module. Then M is projective iff M is locally free.

Proof. (⇒) Assume that M is projective. Let p be a prime ideal of A. Then Mp = M ⊗A Ap is
projective and finitely generated over the local ring Ap. By Corollary 4.1.4, Mp is free over Ap. (⇐)
Assume that M is locally free. Consider a surjective map of A-modules P → Q. We must show that
the induced map HomA(M,P ) −→ HomA(M,Q) is also surjective. By Corollary 4.5.2, it suffices
to show that the map (HomA (M,P ))p −→ (HomA (M,Q))p is surjective for every prime ideal p of
A. But since M is finitely presented, Proposition 4.6.3 gives (HomA (M,P ))p = HomAp (Mp, Pp) and
(HomA (M,Q))p = HomAp (Mp, Qp). But the map Pp → Qp is surjective (by Corollary 4.5.2), andMp

is free (and thus projective) over Ap, so the map HomAp (Mp, Pp) −→ HomAp (Mp, Qp) is surjective,
which gives the result.

Corollary 4.6.6. If M is a finitely presented flat A-module, then M is projective.

Proof. If p is a prime ideal of A, then Mp is flat and finitely presented over the local ring Ap, so it
is free by Theorem 4.1.3. Therefore, M is locally free, so it is projective by Theorem 4.6.5.

5 Integral extensions

5.1 Integral elements
Definition 5.1.1 (Integral elements). Let A be a subring of a ring B. Let x ∈ B. The following
assertions are equivalent:

(i) There exists a monic polynomial P ∈ A[X] s.t. P (x) = 0.

(ii) A[x] is a finitely generated A-module.

(iii) There exists a subring C of B containing A and x that is finitely generated as an A-module.

If these assertions are true, we say that x is integral over A.

Proof. (i)⇒ (ii) Suppose that there exists P = Xd+∑d−1
k=0 akX

k ∈ A[X] monic s.t. P (x) = 0. Then
we have:

xd = −
d−1∑
k=0

akx
k.

By induction on n ≥ d, we prove that xn ∈ Axd−1 + · · ·+Ax+A. Hence, A[x] ⊆ Axd−1 + · · ·+Ax+A.
(ii)⇒ (iii) Take C = A[x]. (iii)⇒ (i) Let C be a finitely generated subring of C containing A and x.
Then we can define a map µx : c ∈ C 7−→ cx ∈ C. By the Cayley-Hamilton Theorem (Theorem 1.8.3),
there exists a monic polynomial P ∈ A[X] s.t. P (µx) = 0. In particular, P (x) = P (µx) · 1 = 0.

Lemma 5.1.2. Let R be a subring of a ring S and let M be a finitely generated S-module. If S is
also finitely generated as an R-module, then M is finitely generated as an R-module.
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Corollary 5.1.3. Let A be a subring of a ring B. Then the set C of elements of B that are integral
over A is a subring of B.

Proof. We need to prove that the sum and product of two integral elements is integral. Let x, y ∈ B
be two integral elements over A. Then y is integral over A[x], so A[x, y] is a finitely generated A[x]-
module. And x is integral over A, so A[x] is a finitely generated A-module. By Lemma 5.1.2, A[x, y]
is a finitely generated A-module. Moreover, A[x, y] is a subring of B that contains A, (x + y) and
(xy), so (x+ y) and (xy) are integral over A.

Definition 5.1.4 (Integral closure). Let A be a subring of a ring B. The ring C of elements of B
that are integral over A is called the integral closure (or normalisation) of A in B.

• If C = A, we say that A is integrally closed in B.

• If C = B, we say that B is integral over A.

Vocabulary 5.1.5. An integral domain is said to be integrally closed if it is closed in its field of
fractions.

Proposition 5.1.6. A factorial domain is integrally closed.

Example 5.1.7. If K is a finite extension of Q, we denoted by OK the integral closure of Z in K.
The study of OK is a topic of algebraic number theory. For example, if d ∈ N≥2 and K = Q

(√
d
)
,

then:

OK =

Z⊕ Z
√
d if d 6≡ 1 mod 4

Z⊕ Z1+
√
d

2 if d ≡ 1 mod 4
.

5.2 Finiteness of invariants
Definition 5.2.1 (Finitely generated algebra). Let B be an algebra over a ring A. We say that B is of
finite type (or finitely generated) as an A-algebra if there exist b1, . . . , bn ∈ B s.t. B = A [b1, . . . , bn].
Equivalently, there exists n ∈ N∗ and a surjective map A [X1, . . . , Xn]→ B.

Remark 5.2.2. Let B be an algebra over a ring A. If B is finitely generated as an A-module, then
it is finitely generated as an A-algebra, but the converse is false.

Notation 5.2.3. Let A be an algebra over a field k. If a group G acts k-algebraically on A, we write
:

AG = {a ∈ A, ∀g ∈ G, g · a = a} .

Then AG is a subalgebra of A.

Lemma 5.2.4. If A is an finitely generated k-algebra, and G is a finite group acting k-algebraically
on A, then the ring A is integral over AG.

Proof. If a ∈ A, define:
Pa =

∏
g∈G

(X − g · a) ∈ AG[X].

Pa is monic and Pa(a) = 0, so a is integral over AG.

Lemma 5.2.5. If a ring B is integral over A and finitely generated as an A-algebra, then B is
finitely generated as an A-module.

Proof. Write B = A [x1, . . . , xn] and set Bj = A [x1, . . . , xj] for j ∈ {0, . . . , n}. Then Bj+1 =
Bj [xj+1], and xj+1 is integral over Bj (because it is over B), so Bj+1 is a finitely generated Bj-
module. By Lemma 5.1.2, we obtain that Bn = B is finitely generated over B0 = A.
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Proposition 5.2.6. Let B be a finitely generated k-algebra, and let A be a subalgebra of B s.t. B is
a finitely generated A-module. Then A is a finitely generated k-algebra.

Proof. Write B = k [x1, . . . , xm] = Ay1 + · · · + Ayn, with x1, . . . , xn, y1, . . . , yn ∈ B. Hence, there
exist elements (aij)1≤i≤m

1≤j≤n
and (aijk)1≤i,j,k≤n in A s.t.

xi =
n∑
j=1

aijyj and yiyj =
n∑
k=1

aijkyk.

We now set A0 = k

[
(aij)1≤i≤m

1≤j≤n
, (aijk)1≤i,j,k≤n

]
; this is a subring of A which is a finitely generated

k-algebra. We claim that B = A0y1 + · · ·+ yn. Firstly, note that (using induction on r), y`1 · · · y`r ∈
A0y1 + · · · + A0yn for all indices `1, . . . , `r. Now, if b ∈ B, we can write b = P (x1, . . . , xm) with
P ∈ k [X1, . . . , Xm]. Hence:

b = P

 n∑
j=1

a1jyj, . . . ,
n∑
j=1

amjyj

 .
Expandingt this expression, we obtain b ∈ A0y1 + · · · + A0yn. Therefore, B = A0y1 + · · · + A0yn
is a finitely generated A0-module. But A0 is a noetherian ring, so B is a noetherian A0-module by
Theorem 1.5.6, and A ⊆ B, so A is also a finitely generated A0-module, so it is a finitely generated
k-algebra.

Theorem 5.2.7. If A is a finitely generated k-algebra, and G is a finite group acting k-algebraically
on A, then AG is finitely generated as a k-algebra.

Proof. Note that A is a finitely generated AG-algebra (because it is a finitely generated k-algebra),
and it is integral over AG by Lemma 5.2.4. By Lemma 5.2.5, A is a finitely generated AG-module.
By Proposition 5.2.6, AG is a finitely generated k-algebra.

Example 5.2.8. If A = k [X1, . . . , Xn] and G = Sn with σ · Xi = Xσ(i), then AG is the k-algebra
generated by the elementary symmetric polynomials.

5.3 Noether Normalisation Lemma
Definition 5.3.1 (Algebraic independence). Let B be an algebra over a ring A. Let b1, . . . , bn ∈ B.
We say that b1, . . . , bn are algebraically independent if:

∀P ∈ A [X1, . . . , Xn] , P (b1, . . . , bn) = 0 =⇒ P = 0.

Remark 5.3.2. Algebraic independence is stronger than linear independence.

Lemma 5.3.3. We assume that k is an infinite field. If P ∈ k [T1, . . . , Tk] \{0}, then there exists
t1, . . . , tk ∈ k s.t. P (t1, . . . , tk) 6= 0.

Proof. By induction on k.

Lemma 5.3.4. We assume that k is an infinite field. If R ∈ k [T1, . . . , Tm] \{0} is homogeneous,
then there exist t1, . . . , tm−1 ∈ k s.t. R (t1, . . . , tm−1, 1) 6= 0.

Proof. Note that R (T1, . . . , Tm−1, 1) ∈ k [T1, . . . , Tm−1] \{0} and apply Lemma 5.3.3.

Lemma 5.3.5. We assume that k is an infinite field. Let A be a k-algebra. Let a1 . . . , am ∈ A
and P ∈ k [X1, . . . , Xm] \{0} s.t. A = k [a1, . . . , am] and P (a1, . . . , am) = 0. Then there exist
a′1, . . . , a

′
m−1 ∈ A s.t. am is integral over k [a′1, . . . , a′m] and A = k

[
a′1, . . . , a

′
m−1, am

]
.
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Proof. Let t1, . . . , tm−1 ∈ k (to be chosen later). Set a′i = ai − tiam for i ∈ {1, . . . ,m− 1}. Let
B = k

[
a′1, . . . , a

′
m−1

]
and Q = P

(
a′1 + t1X, . . . , a

′
m−1 + tm−1X,X

)
∈ B[X]. We have A = B [am]

and Q (am) = 0. If d is the (total) degree of P , then Q is of degree at most d and the coefficient of
Xd is Pd (t1, . . . , tm−1, 1), where Pd is the part of P that is homogeneous of degree d. According to
Lemma 5.3.4, it is possible to choose t1, . . . , tm−1 ∈ k s.t. Pd (t1, . . . , tm−1, 1) ∈ k×. Hence, Q is a
nonzero polynomial whose leading coefficient is a unit of k, and Q (am) = 0, so am is integral over
B.

Theorem 5.3.6 (Noether Normalisation Lemma). We assume that k is an infinite field. If A is a
finitely generated k-algebra, then there exist x1, . . . , xn ∈ A which are algebraically independent and
s.t. A is a finitely generated k [x1, . . . , xn]-module. If in addition A is generated by m elements, then
we can have n ≤ m.

Proof. We proceed by induction on the number m of generators of A. If m = 0, then A = k and
we are done. Assume the result is proven for (m − 1) and write A = k [a1, . . . , am]. If a1, . . . , am
are algebraically independent, take xi = ai. Otherwise, there exists P ∈ k [X1, . . . , Xm] \{0} s.t.
P (a1, . . . , am) = 0. By Lemma 5.3.5, there exist a′1, . . . , a′m−1 ∈ A s.t. am is integral over B =
k
[
a′1, . . . , a

′
m−1

]
and A = B [am]. By induction, there exist x1, . . . , xn−1 ∈ B with n − 1 ≤ m − 1,

x1, . . . , xn−1 algebraically independent and s.t. B is a finitely generated k [x1, . . . , xn−1]-module.
Since A = B [am] with am integral over B, A is a finitely generated k [x1, . . . , xn−1]-module.

5.4 Hilbert’s Nullstellensatz
Lemma 5.4.1. Let B be an integral domain. Assume that B is integral over a subring A. Then B
is a field iff A is a field.

Proof. (⇐) Assume that A is a field. Let x ∈ B\{0}. Since x is integral over A, A[x] is a finite
dimensional A-vector space. And the map y ∈ A[x] 7→ yx ∈ A[x] is injective because B is an integral
domain, so it is surjective, which proves that x ∈ B×. (⇒) Assume that B is a field. Let x ∈ A\{0}.
Then x ∈ B×, i.e. x−1 ∈ B. Therefore, x−1 is integral over A, i.e. there exist a0, . . . , an−1 ∈ A s.t.

a0 + a1x
−1 + · · ·+ an−1x

−(n−1) + x−n = 0.

Therefore, x−1 = −a0x
n−1 − · · · − an−2x− an−1 ∈ A, so x ∈ A×.

Lemma 5.4.2. Let A be a finitely generated k-algebra. If A is a field, then A is a finite extension
of k.

Proof. By the Noether Normalisation Lemma (Theorem 5.3.6), A is integral over k [X1, . . . , Xn] for
some n ∈ N. By Lemma 5.4.1, k [X1, . . . , Xn] is a field (because A is a field); therefore n = 0.

Theorem 5.4.3 (Hilbert’s Nullstellensatz). If k is an algebraically closed field, then the maximal
ideals of k [X1, . . . , Xn] are the ideals of the form (X1 − a1, . . . , Xn − an), with a1, . . . , an ∈ k.

Proof. Firstly, if a1, . . . , an ∈ k, then (X1 − a1, . . . , Xn − an) = Kerϕ, with:

ϕ : P ∈ k [X1, . . . , Xn] 7−→ P (a1, . . . , an) ∈ k.

But Imϕ = k is a field, so Kerϕ is a maximal ideal of k [X1, . . . , Xn]. Therefore, the ideal
(X1 − a1, . . . , Xn − an) is maximal for all a1, . . . , an ∈ k. Conversely, consider a maximal ideal I
of k [X1, . . . , Xn]. We have a field L = k [X1, . . . , Xn] /I, which is also a finitely generated k-algebra.
By Lemma 5.4.2, L is a finite extension of k. But k is algebraically closed, so L = k. Now, let ai ∈ k
be the image of Xi in L = k [X1, . . . , Xn] /I for i ∈ {1, . . . , n}. We have I ⊇ (X1 − a1, . . . , Xn − an),
and the ideal (X1 − a1, . . . , Xn − an) is maximal, so I = (X1 − a1, . . . , Xn − an).

Corollary 5.4.4. Let k be an algebraically closed field.
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(i) If J is an ideal of k [X1, . . . , Xn], then the maximal ideals of k [X1, . . . , Xn] /J are of the form(
X1 − a1, . . . , Xn − an

)
, where a1, . . . , an ∈ k are s.t. P (a1, . . . , an) = 0 for every P ∈ J .

(ii) If P1, . . . , Pm ∈ k [X1, . . . , Xn] have no common root in k, then there exist f1, . . . , fm ∈
k [X1, . . . , Xn] s.t. f1P1 + · · ·+ fmPm = 1.
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