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A. M. W. Glass, Jǐŕı Rach̊unek & Reinhard Winkler

25th November 2002

To Ján Jakub́ık on his 80th birthday, as a tribute to his work and influence.

Abstract

We represent every normal-valued GMV-algebra as a GMV-algebra
of real-valued functions; we also describe the universal MV-algebras
and universal normal-valued GMV-algebras with a prescribed set of
components.

1 Introduction

 Lukasiewicz infinite valued propositional logic is one of the important ingre-
dients involved in the theory of fuzzy sets. It has truth values in the real
interval [0, 1]. This interval is a (linearly) ordered MV-algebra; it is obtained
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from the additive ordered group R (with 1 as strong order unit) using trun-
cated addition (at 1). In general, every MV-algebra M can be obtained in
this manner from an Abelian lattice-ordered group with strong order unit
[Mu]. The fundamental significance of the MV-algebra [0, 1] is underlined by
Chang’s Completeness Theorem ([CDM], Theorem 2.5.3): an MV-equation
holds in every MV-algebra iff it holds in [0, 1]. Moreover, by Di Nola’s Repre-
sentation Theorem ([CDM], Theorem 9.5.1), every MV-algebra can be repre-
sented as an algebra of [0, 1]∗-valued functions over some set, where [0, 1]∗ is
an ultrapower of [0, 1]. GMV-algebras have been recently introduced as non-
commutative generalisations of MV-algebras. They can be viewed as models
of an algebraic semantics that is a non-commutative generalisation of multi-
valued reasoning. The corresponding logic then lies between  Lukasiewicz
infinite valued logic and bilinear propositional logic ([Ra2]). Dvurečenskij
([Dv1]) essentially extended Mundici’s theorem proving that every GMV-
algebra is analagously obtainable from a (not necessarily Abelian) lattice-
group with a strong order unit. Because of the importance of the real interval
[0, 1] for MV-algebras and fuzzy logics, a natural question arises:

Is it possible to represent every GMV-algebra as a GMV-algebra of real-
valued functions?

In this paper we provide a positive answer for normal-valued GMV-
algebras (including all MV-algebras).

In [CHH], universals were obtained for Abelian lattice-ordered groups
(with a fixed set of components) using generalised valuation (real-valued func-
tion) groups. In [HMc], universals were obtained for transitive `-permutation
groups (with a fixed set of primitive components). In [GW], the rooted valua-
tion product and rooted Wreath product constructions were introduced and
developed. The latter provides universals (which are real-valued function
groups) in the intransitive case when the `-permutation group is normal-
valued and extends the results in [HMc] to this setting; the former is a re-
examination of the universals for Abelian lattice-ordered groups and locates
them in appropriate rooted Wreath products. In this article we adapt the
constructions of [GW] when strong order units are present and obtain con-
structions of universals for (Abelian) MV-algebras and normal-valued GMV-
algebras (with fixed sets of primitive components). Both are groups of real-
valued functions.

To make the paper self-contained, we reproduce the pertinent portions of
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[GW].

2 Universals for Abelian MV-algebras

2.1 Background

Throughout we will consider groups with partial orders defined on them
which are compatible with the group operation (i.e., xfy ≤ xgy whenever
f ≤ g). If the partial order is total, we call the structure an ordered group
or o-group for short; if the order is a lattice (the least upper bound (∨) and
greatest lower bound (∧) exist for any pair of elements), then we call the
structure a lattice-ordered group or `-group for short. In all these cases, we
will write G+ for {g ∈ G : g ≥ 1} and G+ for G+ \ {1}. If G is an `-group,
let |g| = g ∨ g−1. Then |g| ∈ G+ for all g ∈ G and |g| = 1 iff g = 1 [G2],
Lemma 2.3.8. We call an element u ∈ G+ a strong order unit if the convex
subgroup generated by u is equal to G. Equivalently, for each g ∈ G, there
is n ∈ Z+ such that |g| ≤ un.

Throughout, we will use the standard abbreviation `-subgroup for sub-
lattice subgroup.

MV-algebras were introduced by Chang [Ch] (see also [CDM]) as an alge-
braic counterpart of the  Lukasiewicz infinite valued propositional logic. Re-
cently, the second author [R1], and independently Georgescu and Iorgulescu
[GI1], [GI2], have introduced equivalent non-commutative generalizations of
MV-algebras, which, following [R1], we call GMV-algebras. These have been
extensively studied by Jakubik ([J1] — [J7]) and are also called pseudo MV-
algebras.

A GMV-algebra M is a monoid (M ;⊕, 0) with two unary operations ¬
and ∼ and one nullary operation 1 satisfying the conditions:

(where a� b is defined as ∼ (¬a⊕ ¬b))
a⊕ 1 = 1 = 1⊕ a, ¬(∼ a⊕ ∼ b) =∼ (¬a⊕ ¬b),
a⊕ (b� ∼ a) = b⊕ (a� ∼ b) = (¬b� a)⊕ b = (¬a� b)⊕ a,
(¬a⊕ b)� a = b� (a⊕ ∼ b), ∼ ¬a = a.
If M is a GMV-algebra, n ∈ Z+ and a ∈ M , let ⊕1 a = a and ⊕n+1 a =

(⊕n a)⊕ a.
If we put a ≤ b iff ¬a⊕b = 1 then (A;≤) is a bounded distributive lattice

(0 is the least element and 1 is the greatest) with a ∨ b = a⊕ (b� ∼ a) and
a ∧ b = a� (b⊕ ∼ a).
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If the monoid (M ;⊕, 0) is commutative, then the unary operations ¬ and
∼ coincide and exactly such GMV-algebras are MV-algebras.

MV- and GMV-algebras are closely related to Abelian `-groups and `-
groups. If G is an Abelian `-group , 0 < g ∈ G and [0, g] = {a ∈ G; 0 ≤
a ≤ g}, then for any a, b ∈ [0, g], let a ⊕ b = (a + b) ∧ g, ¬a = g − a and
∼ a = −a+ g. Then the monoid ([0, g];⊕, 0) with unary operations ¬ and ∼
and nullary operation g is a GMV-algebra (and is an MV-algebra provided
G is Abelian); we denote it M(G, g).

Conversely, Mundici [Mu] proved that if M is any MV-algebra then there
is an Abelian `-group G and a strong order unit u ∈ G such that M is
isomorphic toM(G, u), and that such G and u are unique up to isomorphism.
So we will denote by G(M) any of these `-groups with strong unit. Recently,
Dvurečenskij [Dv1] extended these results to GMV-algebras and `-groups
(which need not be Abelian) with strong units. The denotations G(M) and
M(G, u) will be used in the same sense as for the commutative cases.

If M is an MV- or GMV-algebra and ∅ 6= I ⊆ M , then I is called an
ideal of M if it is closed under ⊕ and if b ≤ a implies b ∈ I for any b ∈ M
and a ∈ I. An ideal I of M is called normal if ¬a � b ∈ I iff b� ∼ a ∈ I
for any a, b ∈ M . Let G be an `-group with strong order unit u. Denote
by C(G) the set of convex `-subgroups of G and by C(M(G, u)) the set of
ideals of M(G, u). Both C(G) and C(M(G, u)) are complete lattices with
respect to set-inclusion and the mapping ϕ : C(M(G, u)) −→ C(G) given by
ϕ : I 7−→ {g ∈ G; |g| ∧ u ∈ I} is a lattice isomorphism of C(M(G, u)) onto
C(G). (For MV-algebras see [CT], for GMV-algebras see [R2].) Let I(G) be
the set of `-ideals (i.e. normal convex `-subgroups) of G and I(M(G, u))
the set of normal ideals of M(G, u). The restriction of ϕ to I(M(G, u))
is an isomorphism between the complete lattices I(M(G, u)) and I(G) (see
[Dv2]).

We provide examples at the end of each subsection which the reader
is encouraged to consider while reading the definitions and proofs of the
theorems; they should help clarify matters.

2.2 MV-algebras associated with Abelian o-groups

Let Γ be a totally ordered set and {Rγ : γ ∈ Γ} a family of subgroups of the
additive o-group R of all real numbers. Let F be the additive group of all
f : Γ → R such that f(γ) ∈ Rγ for all γ ∈ Γ. For each f ∈ F , let supp(f),

4



the support of f , be the set {γ ∈ Γ : f(γ) 6= 0}. Let V = V (Γ, {Rγ : γ ∈ Γ})
be the set of all f ∈ F such that every non-empty subset of supp(f) has
a maximal element. Then V is a subgroup of F . It is an Abelian o-group
where f < g iff f(β) < g(β) where β is the greatest element of supp(g − f).

If Γ has a maximal element γ0, then any element u ∈ V with u(γ0) > 0
is a strong order unit. This follows immediately since R is Archimedean: so
there is n ∈ Z+ with g(γ0) < nu(γ0), whence g < nu.

If G is an Abelian o-group with a strong order unit u, then the set of
convex subgroups forms a chain under inclusion [G2], Lemma 3.1.2. Thus if
g ∈ G \ {0}, then there is a unique convex subgroup of G that is maximal
with respect to not containing g. It is called the value of g and will be
denoted by Vg. The intersection of all convex subgroups of G that contain
g and Vg is a convex subgroup of G denoted by V ∗g ; the pair (Vg, V

∗
g ) is

called a covering pair. Note that Vg = V−g and that the convex subgroup of
G generated by |g| is V ∗g ; i.e., |g| is a strong order unit for V ∗g . Note that
Vu is the maximal proper convex subgroup of G and V ∗u = G. Let Γ(G)
denote the set of all covering pairs totally ordered by inclusion. In 1901,
Hölder [Ho] proved that V ∗g /Vg is isomorphic to an additive subgroup Rγ of
R, and that this isomorphism preserves the natural orders. In 1907, H. Hahn
[Ha] obtained the crucial representation that (in modern terminology) every
Abelian o-group is a group of functions; indeed, if G is an Abelian o-group,
then G can be embedded in V = V (Γ(G), {R̄γ : γ ∈ Γ}) where R̄γ is the
divisible closure of Rγ in R. Moreover, this embedding preserves order and
the strong order unit, where we identify u with the function with u(γ) = 0
if γ 6= (Vu, V

∗
u ), and u(γ) is the image of u+ Vu in Rγ if γ = (Vu, V

∗
u ).

Now let M be an MV-algebra and g ∈ M \ {0}. Assume that the as-
sociated Abelian `-group G = G(M) is an o-group with strong order unit
u. So V ∗g is an Abelian o-group with strong order unit g. Let M(g) be the
MV-algebra associated with (V ∗g , g). Then M(g) is isomorphic (as an MV-
algebra) to the MV-algebra (M, g) which we also denote by M(g). That is,
we regard M(g) as both M(V ∗g , g) and {m ∈ M : m ≤ g} with truncated
addition at g. Let o be the maximal ideal of M(g) and R(g) be the MV-
algebra M(g)/o. Let (G(g), g) be the Archimedean o-group G(R(g)) with
strong order unit g/o. That is, if Vg is the value of g, then V ∗g /Vg = G(g)
and R(g) =M(G(g), g + Vg).

If f, g ∈M , then define f ∼ g if there are m,n ∈ Z+ such that f ≤ ⊕m g
and g ≤ ⊕n f . Then ∼ is an equivalence relation on M that is preserved
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under ⊕. If f ∼ u, then u is the largest element of the equivalence class of
f ; if 0 6= f 6∼ u, then the equivalence class of f has no largest element.

We therefore define R(g) = M(G(g), u) if g ∼ u, and R(g) = G(g) if
g 6∼ u. So R(g) is an Archimedean o-group if g 6∼ u, and R(g) is an MV-
algebra (with u as top element) if g ∼ u. Also, R(f) = R(g) if f ∼ g. Let
Γ(M) be the set of equivalence classes. Then Γ(M) inherits a natural total
order by [f ] < [g] iff f < g and f 6∼ g; it has maximal element [u]. We call
{R(g) : [g] ∈ Γ(M)} the set of components of the MV-algebra M .

Now let M be an MV-algebra and let G = G(M) with strong order unit u.
By Hahn’s Theorem, G can be embedded in V (Γ(G), {R̄γ : γ ∈ Γ(G)}) where
R̄γ is the divisible closure (in R) of Rγ. Clearly Γ(M) = Γ(G). Moreover,
R(g) = Rγ if [g] = γ 6= [u], and R(u) = M(G(u), u) is the MV-algebra
associated with [u]. In this context, we write R̄(u) for M(Ḡ(u), u), where
Ḡ(u) is the divisible closure of G(u) in R. That is,

Theorem 2.2.1 (Universals for MV-algebras associated with Abelian o-
groups)

Let M be an MV-algebra with G(M) an Abelian o-group with strong or-
der unit u. Let the components of M be {R(γ) : γ ∈ Γ(M)}. Then M
can be embedded (as an MV-algebra) in M(V, u) where V is the o-group
V (Γ(M), {Ḡ(γ) : γ ∈ Γ(M)}) with strong order unit u. That is, M(V, u) =
V (Γ(M), {R̄(γ) : γ ∈ Γ(M)}).

We close this subsection with some examples.

Example 1. Let Γ = {γ1, γ2} with γ1 < γ2. Let Rγ1 = R and Rγ2 = Z.
Let u(γj) = δ2,j (j = 1, 2). Then M(V, u) is the union of the sets (R+, 0),
(R−, 1), and the components are the Archimedean o-group R and the two
element MV-algebra {0, 1}. Any MV-algebra with these components can be
embedded in V (Γ, {R,Q ∩ [0, 1]}) =M(V (Γ, {R,Q}), u).

Example 2. Let Γ = {γ1, γ2, γ3} with γ1 < γ2 < γ3. Let Rγ1 = Z, Rγ2 = Q
and Rγ3 = R. Let u(γj) = δ3,j (j = 1, 2, 3). Then M(V, u) is the union of
the sets (Z+, 0, 0), (Z,Q+, 0), (Z,Q, r) (0 < r < 1), (Z,Q−, 1) and (Z−, 0, 1),
where (Z+, 0, 0) is the set of all functions f such that f(γ1) ∈ Z+, f(γ2) = 0 =
f(γ3), etc.. The components here are Z, Q and {r ∈ R : 0 ≤ r ≤ 1} (two o-
groups and an Archimedean MV-algebra on top). The only restrictions that
arise are the truncation at 0 and u. Any MV-algebra with these components
can be embedded in V (Γ, {Q,Q, [0, 1]}) =M(V (Γ, {Q,Q,R}), u).
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Example 3. Let Γ = Z+ with the reverse order: so 1 > 2 > . . .. Let
Rn = R for all n ∈ Z+. Let u(n) = 0 if n > 1 and u(1) = 1. Then
the top component is the MV-algebra {r ∈ R : 0 ≤ r ≤ 1}, and every
other component is the Archimedean o-group R. Thus M(V ) is the union
of the sets (0, . . . , 0,R+,R,R, . . .), (r,R,R, . . .) (r ∈ (0, 1)), (1, 0, 0, . . .),
(1, 0, . . . ,R−,R,R, . . .). Moreover, any MV-algebra with these components
can be embedded in M(V, u).

2.3 Rooted valuation groups

Now let Γ be a root system; i.e., a partially ordered set such that γ and δ
have a common lower bound only if γ ≤ δ or δ ≤ γ. For each γ ∈ Γ, let Rγ

be a subgroup of R. Let F be the additive group of all functions f : Γ→ R

with f(γ) ∈ Rγ for all γ ∈ Γ. For each g ∈ F , let supp(g) be defined as
before. Let V = V (Γ, {Rγ : γ ∈ Γ}) be the subgroup of all g ∈ F such that
every non-empty totally ordered subset of supp(g) has a maximal element.
Then V is an Abelian `-group where g > 0 iff g(δ) > 0 for every maximal
element δ of supp(g).

Let G be an Abelian `-group. By Zorn’s Lemma, if g ∈ G\{0}, then there
is a (not necessarily unique) convex sublattice subgroup of G that is maximal
with respect to not containing g. It is called a value of g and will be denoted
by Vg. The intersection of all convex `-subgroups of G that contain g and Vg is
a convex `-subgroup of G denoted by V ∗g ; the pair (Vg, V

∗
g ) is called a covering

pair. For fixed g ∈ G \ {0}, let Γ(g) be the set of all such pairs (Vg, V
∗
g ) with

Vg a value of g and V ∗g the cover of Vg. Now Γ(g) = Γ(g ∨ 0) ∪ Γ(−g ∨ 0)
where Γ(0) = ∅ ([G2], Lemma 2.3.8). So Γ(G) =

⋃
{Γ(g) : g ∈ G+} is the set

of all covering pairs. Partially order Γ(G) by inclusion. Then Γ(G) is a root
system ([G2], Corollary 3.5.5). Hölder’s proof applies and establishes that
V ∗g /Vg is isomorphic to an additive subgroup of R, and that this isomorphism
preserves the natural orders.

A subset Λ of the root system Γ(G) is called a plenary subset if (i) λ ∈ Λ
implies {γ ∈ Γ(G) : γ ≥ λ} ⊆ Λ, and (ii)

⋂
{Vg : (Vg, V

∗
g ) ∈ Λ} = {0}.

In 1963, Conrad, Harvey and Holland [CHH] extended Hahn’s Theorem
and proved that every Abelian `-group is a group of functions; indeed, if G
is an Abelian `-group and Γ′(G) is a plenary subset of Γ(G), then G can be
`-embedded in V = V (Γ′(G), {R̄γ : γ ∈ Γ′}) (an embedding that preserves
the group and lattice operations), where R̄γ is the divisible closure of Rγ in
R.
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We can obtain the Conrad-Harvey-Holland representation using rooted
valuation products.

Let Γ be a root system and V = V (Γ, {Rγ : γ ∈ Γ}) be as above.
Let ∆ be a maximal totally ordered subset of Γ. Since Γ is a root system,

if γ ≥ δ ∈ ∆, then γ ∈ ∆. Let

K(∆) = {g ∈ V : ∆ ∩ supp(g) = ∅}.

Then K(∆) is a convex `-subgroup of V . Now V/K(∆) is an `-group under
the naturally induced order: K(∆) + f < K(∆) + g iff (∆∩ supp(f − g)6= ∅
and f(δ) < g(δ) where δ is the maximal element of ∆∩ supp(f − g)). Let
ν(∆) be the natural `-surjection from V onto V/K(∆). Clearly, V/K(∆)
is naturally `-isomorphic to the Hahn group, V (∆) = V (∆, {Rδ : δ ∈ ∆}).
Call this `-isomorphism φ(∆). So ψ(∆) := φ(∆)ν(∆) : V → V (∆) is an
`-surjection.

Let M be the set of all totally ordered maximal subsets of Γ. Then we can
map V into V (M)(]) =

∏
∆∈M V (∆) using the ψ(∆)’s in the natural way:

ψ(g)∆ = ψ(∆)(g). Then ψ is an `-homomorphism where w ∈ V (M)(])+ iff
(∀∆ ∈M)(w∆ ≥ 0).

If g ∈
⋂
{K(∆) : ∆ ∈M}, then supp(g)= ∅ (whence g = 0); thus ψ is an

`-embedding of V into V (M)(]).
This construction is akin to writing V as a subdirect product of o-groups

and then using Hahn’s Theorem for each. In that sense, it is wasteful, and
we tighten it by using the compatibility condition

ψ(g)∆1(δ) = ψ(g)∆2(δ) ∀∆1,∆2 ∈M and δ ∈ ∆1 ∩∆2 (∗).

Consider V (M), the set of all elements of V (M)(]) that enjoy property (∗).
Then V (M) is an `-subgroup of V (M)(]) that contains ψ(V ).

We call V (M) the rooted valuation product of V .
Moreover, for each element w ∈ V (M), w∆1(γ) = w∆2(γ) for any ∆1,∆2 ∈

M to which γ belongs (by (∗)). Thus we can obtain an element w[ : Γ→ R.
Since supp(w∆) is inversely well-ordered for all ∆ ∈ M, the element w[

corresponding to w belongs to V . Consequently, ψ maps V onto V (M); that
is, V is `-isomorphic to V (M). Hence we obtained in [GW]:

If Γ is a root system, then V (Γ, {Rγ : γ ∈ Γ}) is a rooted valuation
product. Moreover:

Let G be an Abelian `-group with values indexed by Γ(G). Let Γ′ be
a plenary subset of Γ(G). Then G can be regarded as an `-subgroup of
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V (Γ′(G), {R̄γ : γ ∈ Γ′}). We define V(G) to be V (M), where M is the set of
all maximal totally ordered subsets of Γ′(G). Thus:

Every Abelian `-group G is an `-subgroup of a rooted valuation product
V(G).

Now, let M be an MV -algebra and G = G(M) be the corresponding
Abelian `-group with strong order unit u. We can proceed similarly to the
totally ordered case. If g ∈ M , then u 6∈ Vg for any value Vg ∈ Γ(g). Hence
there is a value Vu ∈ Γ(u) with Vu ⊇ Vg. So each maximal chain in Γ(M) has
a greatest element. We again take R(g) = V ∗g /o and take the corresponding
Archimedean o-group (G(g), g), etc. However, the rooted valuation product
V does not have a strong order unit if u has infinitely many values: let w be
any strictly positive element in the rooted valuation product having non-zero
values at each component of u. Let Λ = {γn : n ∈ Z+} be an infinite subset
of Γ(u). If f(γn) = nw(γn), f(γ) = u(γ) if γ ∈ Γ(u) \ Λ, and f(γ) = 0 if
γ 6∈ Λ, then f 6≤ mw for any m ∈ Z+ (consider their values at γm+1). Hence
w is not a strong order unit.

We therefore take the u-restricted rooted valuation product Ṽ(G); i.e.,
the convex (necessarily `-)subgroup of V(G) generated by u. Then as G is
generated as a convex `-subgroup by u, the `-embedding of G into V = V(G)
will be an `-embedding of G into Ṽ(G).

If we call the maximal components of an MV-algebra the set of MV-
algebrasR(γ) (γ ranging over an index set for Γ(u)) and all other components
the Archimedean Abelian o-groups R(γ) (γ ranging over the complement in
Γ of the index set for Γ(u)), then we obtain the MV-algebra analogue of the
Conrad-Harvey-Holland Theorem for Abelian `-groups.

Theorem 2.3.1 (Universals for MV-algebras)
Every MV-algebra M can be embedded (as an MV-algebra) inM(Ṽ(M), u)

where Ṽ(M) = Ṽ(Γ′(M), {R̄(γ) : γ ∈ Γ(M)}) with strong order unit u and
{R(γ) : γ ∈ Γ′(M)} is any plenary set of components of M .

Example 1. Let Γ = {γ1, γ2, γ3} be the root system with γj < γ3 (j =
1, 2) and γ1, γ2 incomparable. Let Rγ1 = R, Rγ2 = Z and Rγ3 = Q. Let
G = V (Γ, {Rγ : γ ∈ Γ}) and M = M(G, u) where u(γ1) = u(γ2) = 0 and
u(γ3) = 1. Then the components of G are R,Z,Q and those of M are R,Z
and [0, 1] ∩ Q. There are two maximal chains in Γ, namely C1 = {γ1, γ3}
and C2 = {γ2, γ3}. These give valuation groups V (C1) = V (C1, {R,Q})
and V (C2) = V (C2, {Z,Q}) with strong order unit (0, 1). Hence we get
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M(C1) = V (C1, {R,Q ∩ [0, 1]}) and M(C2) = V (C2, {Z,Q ∩ [0, 1]}). Here
Ṽ(G) = V(G) = G with strong order unit u and M =M(G, u).

Example 2. More generally, let Dn (n ∈ Z+) be a family of chains and
γ0 be an extra element. Let Γ = {γ0} ∪

⋃
n∈Z+

Dn with γ0 ≥ γ for all
γ ∈ Γ; thus Cn = {γ0} ∪ Dn (n ∈ Z+) are the maximal chains for Γ. Let
{Rγ : γ ∈ Γ} be a family of subgroups of R with u0 ∈ (Rγ0)+. Let u be
defined by u(γ) = 0 if γ 6= γ0, and u(γ0) = u0. Let G = V (Γ, {Rγ : γ ∈
Γ}). Then u is a strong order unit of G, and Ṽ(G) = V(G) = G. The
components are R̄γ (γ ∈ Γ \ {γ0}) (all of which are components of M̄ =
M(V(G), u) = M(V (Γ, {R̄(γ) : γ ∈ Γ}))), and R̄γ0 (which gives an MV-
algebra top componentM(R̄γ0 , u0) of M̄). Moreover, M̄ is the resulting MV-
algebra guaranteed by Theorem 2.3.1; it is universal for these components.

Example 3. Let G be as in the previous example and H = G ⊕ Z with
H+ = G+ ⊕ Z+. Then H is an `-group and has strong order unit v = (u, 1).
Then Ṽ(H) = V(H) = V(G)⊕Z and the associated MV-algebra is M̄⊕{0, 1}
with maximal element v (where M̄ is given by the previous example). It is
universal for MV-algebras with non-maximal components R̄γ (γ 6= γ0), and
maximal components M(R̄γ0 , u0) and {0, 1}.

We close with an easy example to illustrate how complicated things can
become with even a simple example.

Example 4. Let M be the set of all real sequences s such that s(n) ∈ [0, 1]
for all n ∈ Z+. Let G be the additive group of all bounded real sequences
and let u ∈ G be the constant sequence 1. Then G is an `-group under the
pointwise ordering: (f ∨ g)(n) = max{f(n), g(n)}, etc., and has strong order
unit u. Note that M =M(G, u). Among the values of u are G(m), the set of
the bounded sequences g ∈ G with g(m) = 0 (m ∈ Z+). Also there are values
of u which properly contain

∑∞
n=1R. For each g ∈ G+ and value Vg ∈ Γ(g),

we have V ∗g /Vg
∼= R. All components of G are isomorphic to R as are all

non-maximal components of M ; all maximal components of M are [0, 1]. So
V(G) = (V (Γ(M), {R : γ ∈ Γ(M)}) and Ṽ(M) = Ṽ(G) is the `-subgroup
of all elements f ∈ V(G) for which there is n0 = n0(f) ∈ Z+ such that
|f(γ)| < n0 for all γ ∈ Γ(u). Moreover, M is embedded in M(Ṽ(M), u) as
an MV-algebra (where u is the function with value 1 on all maximal elements
of Γ(M) and 0 on all other elements of Γ(M)). In this example, Ṽ(G) 6= V .
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3 Rooted Wreath products

3.1 Background

Let A(Ω) denote the group of all order-preserving permutations of a totally
ordered set (Ω,≤); i.e., A(Ω) = Aut(Ω,≤). Under the pointwise ordering,
this group of functions (under composition) is an `-group:

α(f ∨ g) = max{αf, αg} and α(f ∧ g) = min{αf, αg},

where, as is standard in permutation groups, we write αf for the image of
α ∈ Ω under f ∈ A(Ω).

Let A(Ω)+ = {g ∈ A(Ω) : (∀α ∈ Ω)(αg ≥ α)}.
Let (Ω,≤) denote the Dedekind completion of (Ω,≤); that is, the set

obtained by non-empty cuts with the inherited order (as in the construction
of (R,≤) from (Q,≤)). Each element of A(Ω) extends uniquely to an element
of A(Ω) and we will identify A(Ω) with this corresponding `-subgroup of
A(Ω).

For g ∈ A(Ω), let supp(g) = {α ∈ Ω : αg 6= α}, the support of g, and
Fix(g) = {α ∈ Ω : αg = α} = Ω \ supp(g). If α ∈ Ω, let ∆(g, α) be the
interval in Ω that is the convexification of the orbit of α under g; so

∆(g, α) = {β ∈ Ω : (∃m,n ∈ Z)(αgm ≤ β ≤ αgn}.

If αg 6= α, then ∆(g, α) is an open interval in Ω; otherwise it is a singleton.
Throughout, let G be an `-subgroup of A(Ω); so G+ = G∩A(Ω)+. A non-

empty convex subset X of Ω is called a convex G-block if (∀g ∈ G)(Xg = X
or Xg ∩X = ∅).

The convex G-block X is called an extensive block if for each x, y, z ∈ X,
there are f, g ∈ G such that y ≤ xf ∈ X and z ≥ xg ∈ X.

The convex G-block X is called a fat block if {Xg : g ∈ G and Xg > X}
has no least element (under <) and inf(

⋃
{Xg : g ∈ G and Xg > X}) =

sup(X), and similarly with < in place of >, where we write X < Y iff x < y
for all x ∈ X, y ∈ Y and take the supremum and infimum in Ω.

If X is a convex G-block, then X] =
⋃
{Xg : g ∈ G} is a G-invariant set,

and {Xg : g ∈ G} partititions X] into convex (in Ω) blocks which are fat (or
extensive) if X is.

More generally, let Y ⊆ Ω be a G-invariant set and C be an equivalence
relation on Y . If each C-class is a fat or extensive block, then C is a congruence
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and we call it a natural G-congruence on Y , or a natural partial G-congruence
(on Ω). So equivalence classes of natural partial G-congruences are convex.

We write dom(C) for the domain of the natural partial G-congruence C;
that is, all α ∈ Ω such that αCβ for some β ∈ Ω (and so, all α ∈ Ω such that
αCα). Note that α ∈dom(C) implies that αg ∈dom(C) for all g ∈ G. As is
standard, we write αC for {β ∈ Ω : αCβ}.

We will write C ⊆ D if αDβ whenever αCβ. This is clearly equivalent to
αC ⊆ αD for all α ∈ dom(C).

Under this partial order (⊆), the set of natural partial G-congruences
forms a root system ([Mc] or [G1], Theorem 3B†); so if C1, C2, C3 are natural
partial G-congruences and C1 ⊆ C2 ∩ C3, then C2 ⊆ C3 or C3 ⊆ C2. Moreover,
the union and non-empty intersections of natural partial G-congruences are
natural partial G-congruences.

As shown in [Mc] (or see [G1], Theorem 3C†), for any distinct α, β ∈ Ω
there are natural partial G-congruences C ⊆ C∗, such that αC∗β & ¬(αCβ),
where C and C∗ are natural G-congruences on the same set (αC∗)] — whence
G is transitive on the set of C∗-classes) — and no natural G-congruence on
(αC∗)] lies strictly between C and C∗:

The intersection of all natural partial G-congruences in which α, β belong
to the same class provides C∗. C is obtained by using Zorn’s Lemma: let Λ =
dom(C∗) and consider the set of all natural G-congruences on Λ (contained
in C∗) in which α and β belong to separate classes. This set is non-empty (it
includes the natural G-congruence on Λ all of whose classes are singletons)
and is closed under unions of chains. C is any maximal element thereof.

We write val(α, β) for such a pair (C, C∗) of natural partial G-congruences.
It is further shown that if X is any C∗-class, then G induces a permutation
action on X as follows:

Let G{X} = {g ∈ G : Xg = X}, an `-subgroup of G (convex in G under
the pointwise ordering). Let

L(X,G) = {g ∈ G{X} : (∀x ∈ X)((xC)g = xC)}.

Then L(X,G) is a normal `-subgroup of G{X} called the lazy subgroup asso-
ciated with (C, C∗).

Let Ĝ(X) = G{X}/L(X,G). Then Ĝ(X) acts faithfully on X/C := {xC :

x ∈ X}. The resulting permutation group (Ĝ(X), X/C) is called a primitive
component of G.

As shown in [Mc] (or see [G1], Theorems 4C and 4A), if Ĝ(X) 6= {1},
then (Ĝ(X), X/C) satisfies a trichotomy: it is either integral, or transitively
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derived from a subgroup of R, or transitively derived from an order-two
transitive faithful action on X. That is, either there is a subset of X/C that
is isomorphic to Z and Ĝ(X) acts as Z on this set (and on all of X/C), or
there is a dense subset Y/C of X/C on which: either Ĝ(X) acts as a right
regular subgroup of R or for all w, x, y, z ∈ Y with w < x and y < z, there
is f ∈ Ĝ(X) such that wCf = yC and xCf = zC.

Now let M be a GMV-algebra. Let (G, u) = G(M). By the Cayley-
Holland Theorem [H1] (or [G1] or [G2]), there is a totally ordered set Ω such
that (G,Ω) is an `-permutation group. For each α ∈ Ω, if αu 6= α, then
val(αu, α) gives rise to a maximal primitive component (GK ,ΩK) of (G,Ω)
which has strong order unit uK corresponding to u. Furthermore, every
element of the index set of primitive components (an induced root system)
is less than or equal to one of these. We call (M(GK , uK),ΩK) a maximal
primitive component of the GMV-algebra M associated with Ω; or, briefly, a
maximal primitive component of the permutation GMV-algebra (M,Ω) . The
non-maximal primitive components of the permutation GMV-algebra (M,Ω)
are the non-maximal primitive components of G(M) (c.f., Sections 2.2 and
2.3).

As before, if H is an `-group and g ∈ H \ {1}, then there is a convex
`-subgroup Vg of H maximal with respect to not containing g. (Vg is called
a value of g). Let V ∗g be the intersection of all convex `-subgroups of H that
contain Vg and g. If Vg � V ∗g for all g ∈ H \ {1} and values Vg of g, then we
call H normal-valued.

Analogously, if M is a GMV-algebra and a ∈ M \ {0}, then there is an
ideal Wa of M maximal with respect to not containing a, called a value of a.
Let W ∗

a be the intersection of all ideals of M that contain Wa and a. Then
Wa ⊂ W ∗

a . If x ⊕Wa = Wa ⊕ x for all a ∈ M \ {0}, values Wa of a and
elements x in W ∗

A, then M is called normal-valued.
If G is an `-group with strong order unit u, then G is a normal-valued

`-group iff M(G, u) is a normal-valued GMV-algebra by [Dv2].
It is well-known that an `-group H is normal-valued iff it satisfies the

identity |f ||g| ≤ |g|2|f |2 where |h| = h ∨ h−1 (see [G2], Section 4.2 and [G1],
Chapter 11). For other equivalent conditions, see op. cit.. Moreover, G
is normal-valued iff (∆(g, α) ⊆ ∆(f, α) or ∆(f, α) ⊆ ∆(g, α) for all f, g ∈
G, α ∈ Ω), [G1], Theorem 11A. That is, (writing P (G) for {∆(g, α) : g ∈
G,α ∈ Ω}),
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Lemma 3.1.1 G is normal valued iff P (G) is a root system under inclusion:
if I, J,K ∈ P (G) then K ⊆ I ∩ J implies I ⊆ J or J ⊆ I.

Equivalently, G is normal valued iff each non-trivial primitive component
of G is integral or transitively derived from a right regular representation of
a subgroup of (R,+) (and so every primitive component is Abelian).

Note that the root system of covering pairs of natural G-congruences is a
subset of the root system Γ(G): if g ∈ G+, let α ∈ Ω be such that αg 6= α. Let
val(αg, α) = (C, C∗), and G(α, g) = {f ∈ G : (∀β ∈ αC∗)(βfCβ)}, a convex
`-subgroup of G. Then G(α, g) is a value of g, and

⋂
{G(α, g) : g ∈ G+, α ∈

Ω, αg 6= α} = {1}. Thus Γ′(G) = {G(α, g) : g ∈ G+, α ∈ Ω, αg 6= α} is a
plenary subset of Γ(G).

Note that if (G,Ω) is normal valued, then G(α, g) = {f ∈ G : αfCα}
by Lemma 3.1.1. If G is an o-group or a transitive Abelian `-permutation
group, then Γ′(G) = Γ(G).

3.2 Transitive Wreath products

We recall the main theorem in [H] and [HMc] (or [G1], p.122 ff. or [G2], p.158
ff.). Let Ω be a chain and (G,Ω) be a transitive group of order-preserving
permutations of Ω with G an `-subgroup of A(Ω). Let K0 be the set of all
natural (in this case, extensive) G-congruences on Ω. Then K0 is a chain
under inclusion. Let K be the set of all covering pairs of natural (extensive)
G-congruences in K0. So if K ∈ K (say, K = val(x, y)), then (G,Ω) can be
embedded in

(W, Ω̂) = Wr {(Ĝ(xCK), xCK/CK) : K ∈ K},

the Wreath product of its primitive actions (where we write (CK , CK) for the
covering pair associated with K).

Specifically, if K is the set of covering pairs of natural G-congruences and
the primitive components of (G,Ω) are (GK ,ΩK) (K ∈ K), then K is totally
ordered by (C, C∗) < (D,D∗) iff C∗ ⊆ D. Let Ω† =

∏
{ΩK : K ∈ K}. Choose

an arbitrary fixed reference point in Ω† denoted by 0. For each α ∈ Ω†, let
supp(α)= {K ∈ K : αK 6= 0K}. Let

Ω̂ = {α ∈ Ω† : supp(α) is an inversely well-ordered subset of K}.

Note that if α, β ∈ Ω̂ are distinct, then ∅ 6= K(α, β) = {K ∈ K : αK 6= βK} ⊆
supp(α)∪ supp(β), and so K(α, β) is also inversely well-ordered. It therefore
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has a greatest element, say K0. We make Ω̂ a chain via: α < β if and only
if αK0 < βK0 .

We next define natural equivalence relations on Ω̂. For each K ∈ K,
define ≡K and ≡K by:

α ≡K β if αK′ = βK′ for all K ′ > K

α ≡K β if αK′ = βK′ for all K ′ ≥ K.

Hence if α 6= β and K0 is the largest element of K(α, β), then α ≡K β
if K ≥ K0 and α ≡K β if K > K0. Clearly, ≡K and ≡K have convex
classes (for all K ∈ K). We wish them to be convex congruences; so let
W1 = {g ∈ A(Ω̂) : (∀K ∈ K)(∀α, β ∈ Ω̂)[(α ≡K β ⇔ αg ≡K βg) & (α ≡K
β ⇔ αg ≡K βg)]}. Then ≡K and ≡K are convex W1-congruences. Observe
that
(α(≡K))/(≡K) is just ΩK for each α ∈ Ω̂ and K ∈ K.

For each K ∈ K and α ∈ Ω̂, let αK ∈
∏
{ΩK′ : K ′ > K} with (αK)K′ =

αK′ ; i.e., αK is α above K. Note that αK = βK precisely when α ≡K β.
For each g ∈ W1, α ∈ Ω̂ and K ∈ K, g induces an element of A(ΩK): Let

σ ∈ ΩK and define gK,αK by:

σgK,αK = (α′g)K ∈ ΩK

where α′ ≡K α and α′K = σ.

Lemma 3.2.1 With the above notation, gK,αK ∈ A(ΩK) for each α ∈ Ω̂,
g ∈ W1 and K ∈ K.

Let W = {g ∈ W1 : (∀K ∈ K)(∀α ∈ Ω̂)(gK,αK ∈ GK)}, an `-subgroup

of A(Ω̂); (W, Ω̂) is called the Wreath Product of {(GK ,ΩK) : K ∈ K} and is
written Wr {(GK ,ΩK) : K ∈ K}. The elements of W may be thought of as
K× Ω̂ matrices (gK,α) with gK,α = gK,β if αK = βK .

Lemma 3.2.2 Assume that each (GK ,ΩK) is transitive. Then so is (W, Ω̂) =
Wr {(GK ,ΩK) : K ∈ K}. Moreover, if 0′ ∈ Ω† is chosen as reference point

and the resulting Wreath product is (W ′,Ω′), then (W,Ω) and (W ′,Ω′) are
`-isomorphic.

The culmination of these considerations is:
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Theorem 3.2.3 [Holland & McCleary 1969] Let Ω be a totally ordered set
and (G,Ω) be a transitive `-permutation group. Let K = K(G,Ω), an index set
for the set of all covering pairs of convex congruences of (G,Ω) ordered in the
natural way by the induced inclusions. Let {(GK ,ΩK) : K ∈ K} be the set of
all primitive components of (G,Ω) and (W, Ω̂) = Wr {(GK ,ΩK) : K ∈ K}.
Then there are order-preserving injections φ : Ω → Ω̂ and ψ : G → W such
that fψ ∨ gψ = (f ∨ g)ψ for all f, g ∈ G. Moreover, (αg)φ = (αφ)(gψ) for
all α ∈ Ω, g ∈ G.

3.3 An Example

Let Ω be the totally ordered set obtained from R by replacing each rational
number by a copy of Z and each irrational number by a copy of R. So

Ω = {(n, q) : n ∈ Z, q ∈ Q} ∪ {(r, s) : r ∈ R, s ∈ R \Q},

ordered by (a, x) < (b, y) iff (x < y in R or, x = y & a < b (in Z or R)).
Let G be the group of all “generalised translations” of Ω; so if g ∈ A(Ω),

then g ∈ G iff there are q ∈ Q, f1 : Q→ Z and f2 : R \Q→ R such that

(a, x)g =

{
(a+ f1(x), x+ q) if x ∈ Q
(a+ f2(x), x+ q) if x 6∈ Q.

There are two non-trivial natural partial G-congruences whose domains are
not all of Ω: C1 has classes C(q) = {(n, q) : n ∈ Z} (q ∈ Q); C2 has classes
C(s) = {(r, s) : r ∈ R} (s ∈ R\Q). In this case, K the associated root system
of all covering pairs of partial natural G-congruences, is a three element
root system with a single maximal element K and two (unrelated) elements
C1, C2 < K. The maximal totally ordered subsets of K are C1 = {C1, K} and
C2 = {C2, K}. Note that the points (a, x) with x ∈ Q have no bearing on
C2, and the points (a, x) with x ∈ R\Q have no bearing on C1. We therefore
do not wish to consider W1 = (Z,Z) Wr (Q,R) and W2 = (R,R) Wr (Q,R)
but instead W (C1) = (Z,Z) Wr (Q,Q) and W (C2) = (R,R) Wr (Q,R \ Q),
and then sew these together.

So, in considering W (C1), we delete from Ω/CK those elements xCK for
which x ∈ R \ Q; that is, we remove all classes whose points do not belong
to dom(C1). Similarly, for W (C2). So instead of taking ΩK = R, we take
ΩK(C1) := Q and ΩK(C2) := R \Q.

Then W (Cj) = (Ĝ(Cj),Ω(Cj)) Wr (Ĝ(K),ΩK(Cj)) for j = 1, 2.
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In both cases we have a translation by a rational number in the “up-
stairs” part. Analogously to the rooted valuation product, we form the rooted
Wreath product:

W(G) = {(w1, w2) ∈ W (C1)×W (C2) : (xC1)w1 = (xC2)w2},

where we take the natural extensions of wj from ΩK(Cj) to ΩK (j = 1, 2).
This is possible since both are translations of subgroups of R.

Let u ∈ G be given by (a, x)u = (a, x + 1) for all (a, x) ∈ Ω. Then u
is a strong order unit in G. Let M = M(G, u). Then the non-maximal
primitive components of (M,Ω) are the `-permutation groups (Z,Z) and
(R,R), whereas the maximal component is (Q∩[0, 1],R). The rooted Wreath
product for G is that obtained from (Z,Z) Wr (Q,Q) & (R,R) Wr (Q,R\Q)
by identifying the “upstairs” part, whereas the rooted Wreath product for M
is that obtained from (Z,Z) Wr (Q∩ [0, 1],Q) & (R,R) Wr (Q∩ [0, 1],R\Q)
by identifying the “upstairs” part.

3.4 Rooted Wreath products

We wish to generalise the Wreath product construction ([H2], [HMc]) to
give a universal representation for normal-valued permutation groups (G,Ω)
which are not necessarily transitive.

Consider the normal-valued permutation group (G,Ω). As in the transi-
tive case, let K0 be the root system of all partial natural G-congruences on
Ω and K the associated root system of all covering pairs of partial natural
G-congruences.

If K ∈ K, then dom(CK) = dom(CK), and we will write dom(K) as an
abbreviation for this common domain.

For each G-orbit O of dom(K), choose exactly one point x(K,O), and
let T (K) be the resulting set of points (a subset of dom(K)). We do this in
such a way that K < K ′ implies that T (K ′) ⊆ T (K) (existence, op. cit.).

For each K ∈ K and orbit O, let X(K,O) = x(K,O)CK/CK . Let M be
the set of all maximal chains in K and C ∈M. For each K ∈ C, let

T (K,C) = {x(K,O) ∈ T (K) : x(K,O) 6∈
⋃
{T (K ′) : K ′ 6∈ C}},

and
ΩK(C) = {X(K,O) : x(K,O) ∈ T (K,C)},
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the “C restricted” domain of K ∈ C.

Remark: Since (G,Ω) is normal-valued, if the induced restriction of
g ∈ Ĝ(K) to ΩK(C) is the identity, then it is the identity on all of ΩK .

Let
Ω(C) :=

⋃
C∈C

ΩC(C),

the union of the “restricted” domains of the members of C.

Note that Ω(C)g = Ω(C) for all g ∈ G, C ∈ M. Then, as in Section 3.2
(or op. cit.), we can form the Wreath product

(W (C),Ω(C)) = Wr {(Ĝ(X(C,O)), X(C,O)) : x(C,O) ∈ T (C,C), C ∈ C}.

Since (G,Ω) is a normal-valued permutation group, each Ĝ(X(C,O))
is (`-)isomorphic to a subgroup R(x(C,O)) of R, and each X(C,O) is a
collection of orbits of R(x(C,O)) on each of which its action is induced by
the right regular action.

Let

L(C) =
⋂
{L(x(C,O)CC , G) : x(C,O) ∈ T (C,C), C ∈ C},

and G(C) = G/L(C). By the remark,

L(C) =
⋂
{L(x(C,O)CC , G) : x(C,O) ∈ T (C), C ∈ C}. (∗∗)

As above, we get a pair of embeddings (φC, ψC) of (G(C), Ω̂(C)) as in the
transitive case (by the remark).

Now
⋂
{L(C) : C ∈M} = {1} (since if g 6= 1, then xg 6= x for some x ∈ Ω;

then g 6∈ val(xg, x) and so g 6∈ L(C) for any chain C containing val(xg, x) by
(∗∗)). Thus we obtain an `-embedding θ : G →

∏
C∈MG/L(C) induced by

the natural maps νC : g 7→ L(C)g (C ∈M). Thus we have an `-embedding of
G into

∏
C∈MW (C) induced by {νCψC : C ∈M}.

To complete the analysis, we need two further observations:
(1) Since (G,Ω) is normal-valued, we have that for each K ∈ K and

xK ∈ T (K), either
(yCK)g = yCK for all yCKxK

or (yCK)g 6= yCK for all yCKxK .
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So, as in standard group theory, the right regular actions provide an index
set and we do not need to resort to a permutation representation approach
as in [HMc].

(2) Suppose that C1,C2 ∈ M. Then for all g ∈ G, y ∈ dom(C) and
C ∈ C1 ∩ C2,

(yCC)(gψC1) = (yCC)(gψC2).

Since K is a root system, it follows that if C ∈ C1 ∩ C2, and C < K ∈ K,
then K ∈ C1 ∩ C2.

In analogy with the rooted valuation product, we need to consider com-
patibility conditions to get a tighter embedding.

First note that we may uniquely extend each element of (GK ,ΩK(C)), and
that if K ∈ C1∩C2, then g ∈ Ĝ(K) is the same translation of ΩK as that given
by the extensions of the corresponding elements of each of (GK ,ΩK(C1)) and
(GK ,ΩK(C2)).

We define the rooted Wreath productW(G) to comprise all w ∈
∏

C∈MW (C)
that satisfy

(∀C1,C2 ∈M)(∀C ∈ C1 ∩ C2)(∀y ∈ dom(C))((yCC)wC1 = (yCC)wC2) (∗).

Thus if w ∈ W(G), then wC1 agrees with wC2 on the (possibly empty)
upper segment of C1 ∩ C2.

By (1) and (2) we have an embedding χ of G into W(G) that preserves
the (pointwise) ordering on G and any finite suprema and infima that exist
in G. Consequently, in [GW] we obtained the desired universal:

Theorem 3.4.1 If (G,Ω) is any normal-valued (coherent) permutation group
with natural primitive components (GK ,ΩK) (K ∈ K), then (G,Ω) can be `-
embedded in the rooted Wreath product of {(GK ,ΩK) : K ∈ K}).

Now if Ω is a totally ordered set and M is a GMV-algebra contained in
A(Ω) (i.e., (G(M),Ω) is an `-permutation group and u is the strong unit
of G = G(M)), then the non-maximal primitive components of (M,Ω) are
those of (G,Ω), and the maximal primitive components of (M,Ω) are those
of the form M((GK ,ΩK), uK) where K corresponds to val(αu, α) for some
α ∈ Ω. We `-embed (G,Ω) in the rooted Wreath productW(G) and continue
to denote the image of u by u. As in the case of rooted valuation products,
if {val(αu, α) : α ∈ Ω & αu 6= α} is an infinite set, then u is no longer a unit
in W(G); indeed, W(G) has no unit in this case. We therefore form W̃(G),
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the convex `-subgroup of W(G) generated by u. Note that the `-embedding
of G into W(G) is actually an `-embedding of G into W̃(G), and W̃(G) has
strong order unit u. LetW(M) =M(W̃(G), u) acting on Ω̂. ThenW(M) is
a GMV-algebra and (W(M), Ω̂) has the same primitive components as those
of M . We therefore obtain the GMV-algebra analogue of the normal-valued
`-permutation result of [GW] (Theorem 3.4.1 above):

Theorem 3.4.2 If M is any normal-valued GMV-algebra acting as a sub-
group of A(Ω) with natural primitive components (MK ,ΩK) (K ∈ K), then
(M,Ω) can be embedded (as a GMV-algebra) in the rooted Wreath product of
{(MK ,ΩK) : K ∈ K}).

The location of rooted valuation products inside rooted Wreath products
for GMV-algebras follows mutatis mutandis the work in [GW], Section 3.5
and we omit it here.

Example: For each a ∈ R+, let xfa = ax if x ≥ 0 and xfa = x if x ≤ 0;
and xga = ax if x ≤ 0 and xga = x if x ≥ 0. Let F = {fa : a ∈ R+}
and G = {ga : a ∈ R+}. Then F,G are Abelian subgroups of A(R) and
generate H = F × G; so 0h = 0 for all h ∈ H. Now F and G are totally
ordered (under the pointwise ordering) so H is an `-subgroup of A(R). Note
that if x ∈ R, then the orbit of x under H is either (−∞, 0), {0} or (0,∞).
Let u = f1g1 = f1 ∨ g1 and M = M(H, u). Let M(F ) = M(F, f1) and
M(G) = M(G, g1). So M(F ) = {fa : 0 ≤ a ≤ 1} and M(G) = {ga :
0 ≤ a ≤ 1}. The set of natural covering congruences is the four point root
system with a single maximal element and three incomparable elements below
it. The corresponding permutation groups are ({1}, {−, 0,+}), (M(G),R−),
({1}, {0}) and (M(F ),R+). If we ignore the trivial actions we get M(G) ×
M(F ) (with unit u) for both W(M) and V(M).
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