
Vanishing cycles and non-classical parabolic cohomologyA. J. Scholl10. IntroductionThe work described here began as an attempt to understand the structure of thecohomology groups associated to a subgroup � of �nite index of SL2(Z) which are notcongruence subgroups. One knows that to the space of cusp forms of weight w > 2 on �(whose dimension we denote by d) one can [15] attach a motiveM , which is pure of weightw�1 and of rank 2d, de�ned over some number �eld; it is a direct factor of the motive of asuitable compact model of the (w� 2)-fold �bre product of a family of elliptic curves overthe modular curve, as in the classical case of a congruence subgroup. The realisations ofM are the parabolic cohomology groups. By looking instead at the uncompacti�ed �brevariety (that is, with the divisor over the cusps removed) one gets a mixed motive M 0,which is a direct factor of the \motive with compact supports" of the noncompact variety;M 0 is an extension of M by an Artin motive of rank equal to the number of cusps of �.The cohomology classes associated to this Artin motive arise from Eisenstein series.In the case of a congruence subgroup this extension is trivial|it is split by the actionof the Hecke algebra (an example of the \Manin-Drinfeld principle"). Already for weight2 it is known that these extensions can be nontrivial in general, and for rather simplereasons. Namely, Belyi's theorem implies that any connected smooth curve C over Q (notnecessarily projective) has a Zariski open subset U whose complex points are isomorphicto the quotient of the upper-half plane by some �nite index subgroup �. In this situationM is the H1-motive of the compacti�cation of C, and the mixed motive M 0 is h1c(U), theH1 of U with compact supports. If C is the complement in a projective curve of, say, twopoints whose di�erence is a divisor of in�nite order, then the Abel-Jacobi theorem impliesthat M 0 is a nontrivial extension of motives.The search for algebraic invariants to classify the extension M 0 in general leads natu-rally to the study of the motivic cohomology of the �bre varieties. Beilinson's conjecturesgive a conjectural description of these groups. In this case the regulator map, which playsan essential role in the Beilinson conjectures, turns out to be zero|in fact the target spaceis zero. Assuming the truth of Beilinson's conjectures, this would imply that the elementof motivic cohomology which classify the extension M 0 can only be non-zero if it is non-integral, which for our purposes may be taken to mean that its image under the `-adicregulator map is not locally trivial. In other words, we have to study the action of inertiaat a prime of bad reduction on the `-adic realisation of M 0. This is the main problem ad-dressed in the present paper, independentally of any conjectures on motivic cohomology.We refer the reader to [16] for a discussion of the interpretation of the results as evidencefor an \S-integral" version of Beilinson's conjectures.1 Research partially funded by NSF grant #DMS{86107301



The main tool is, predictably, the theory of vanishing cycles in `-adic cohomology.The situation we consider is the following: let S be the spectrum of a strictly local discretevaluation ring, with generic point �, and �:X ! S a curve. Let D � X be an e�ectiverelative Cartier divisor, contained in the smooth part of X=S, and let F be a lisse Q`-sheaf on U = X � D. Write g : U ,! X be the inclusion, and assume that the residuecharacteristic of S is di�erent from `. We try to compute the action of Gal(��=�) on thenearby cycle sheavesRq	(g!F) at the closed points of D. If D is �etale over S then there areno vanishing cycles, by standard results. The case in which we obtain non-trivial results iswhen some connected component ofD is the union of two sections ofX=S which meet in thespecial �bre|here the vanishing cycle groups at the point of intersection were calculatedby Deligne in [7]. This is described in x1 of the paper, and may be of independent interest.In the second section we apply these results when X is the base of an elliptic surface�:E ! X, andD is the divisor over which � fails to be smooth. The sheaf F is a symmetricpower of the restriction of R1��Q` to U . This is the setting of parabolic cohomology. Inthe case of a classical elliptic modular surface it is known [8] that after a �nite base-changeD is �etale over S (the cusps of the modular curves do not meet in characteristic p). But foran elliptic surface attached to a general subgroup of SL2(Z) of �nite index this appears tobe a common phenomenon. Some examples of this are described in x4. These were chosenfor ease of computation rather than for any intrinsic properties, and from the (admittedlysparse) evidence it appears that the this type of bad reduction is the norm rather than theexception for a noncongruence subgroup.In x3 we explain how the vanishing cycle results show that certain parabolic elementsof motivic cohomology are non-trivial, and interpret them in terms of extensions of motives.As indicated above, the construction gives a family of elements of in�nite order in higherK-groups of algebraic varieties which have zero image under the archimedean regulator.In a companion paper [18] we will show how these results can be used to giveninformation about the image of the Galois group in the `-adic parabolic cohomology groups.For the examples considered in x4, we can prove that the \primitive part" of paraboliccohomology is an irreducible symplectic representation of Gal(Q=Q), and that the imageis an open subgroup of the group of symplectic similitudes.A further application of our method, described in detail in [19], is to show that theHecke algebra for an arbitrary �nite index subgroup of SL2(Z) can act on modular formsin a rather trivial way, supplementing a conjecture of Atkin (partially proved by Serre [20]and Thompson [22]).The author would like to thank P. Deligne for interesting discussions about vanishing cycles. Delignepointed out to us that our proof of the main theorem of x1 is very close to his proof (unpublished) ofthe theorem of Thom-Sebastiani. He would also like to thank L. Illusie and G. Laumon for valuablediscussions, and D. Blasius, who explained how to simplify our original proof of Proposition 5.1.Finally the author is pleased to thank the Institute for Advanced Study, Princeton, whose hospitalityhe enjoyed in the year 1989{90, when a large part of the work for this paper was done.2



1. Vanishing cycles1.1. For the foundations of the theory of vanishing cycles, the reader should consult[SGA7]. We �rst recall some standard notation. Let X = SpecA be normal, and ` aprime invertible in A. Let � be the generic point of X. For any non-zero t 2 A there is acanonical character �t : Gal(��=�)! Z̀ (1)� 7! � `npt��1�nIt factors through the fundamental group �1(X � ft = 0g; ��) of the complement of thezero-locus of t. Moreover if X is strictly local and t is a parameter then �t gives anisomorphism(1:1:1) �(`)1 (X � ft = 0g; ��) ��! Z̀ (1)depending only on the ideal tR � R.1.2. For the rest of this section, S will denote the spectrum of a strictly henselian discretevaluation ring, with generic point � and closed point s. We write I = Gal(��=�). Let ` bea prime di�erent from the residue characteristic of S.1.3. Let f : X ! S be a morphism of �nite type, and G a constructible Q`-sheaf on X.There is a commutative diagram:|X�� �������������!??y & �j�� X� j,�! X i �- Xs& ??y ??yf ??y� �! S  � sThe sheaves of nearby, resp. vanishing cycles are the complexes of Q`-sheaves on XsR	G = i�R�j��j�GR�G = Cone[i�G ! R	G]1.4. There is a long exact sequence(1:4:1) Hq(Xs; i�G)! Hq(Xs; R	G)! Hq(Xs; R�G)! : : :and for f proper, Hq(Xs; R	G) = Hq(X;R�j��j�G) = Hq(X��; �j�G)is the cohomology of the generic geometric �bre. There is a natural action of I on R	Gand R�G, compatible with the sequence (1.4.1).3



1.5. If x 2 Xs is a smooth point of the �bre such that G is smooth in some neighbourhodof x, then (R�G)x = 0, by the acyclicity of a smooth morphism. Suppose that �, Y aredisjoint closed subschemes of Xs, with dim� = 0, such that if x 2 Xs � � [ Y then f issmooth at x and G is smooth in a neighbourhood of x. Then R�G is acyclic o� �[Y and(1:5:1) Hq(Xs; R�G) = Hq(Y;R�GjY )�Mx2�(Rq�G)x1.6. We will calculate (R�G)x and the action of I on it in the following situation:(i) f : X ! S is a smooth curve. Let � be its generic point.(ii) There are two distinct sections zi : S ! Z (i = 1, 2) of f , with images Z1, Z2 � X.We assume that Z1, Z2 intersect at x 2 Xs, with intersection multiplicity d. WriteZ = Z1 [ Z2, and let i:Z ,! X be the inclusion, andg : U = X �Z ,! Xthe inclusion of the complement.(iii) There is a Q`-sheaf F on U which is smooth in a neighbourhood of x, such thatG = g!F .(iv) The local monodromy representation of �1( ~U; ��) on F�� is unipotent, and has a factoris-ation:|(1:6:1) �1( ~U; ��)! Mi=1;2�(`)1 ( ~Xx � ~Zi; ��) ��! Z̀(1)2 ��! AutF��for some homomorphism �.Here ~Xx is the strict henselisation of X at x, ~U = ~Xx �X U and ~Zi = ~Xx �X Zi. Alsowrite ~F = Fj ~U . The middle arrow in (1.6.1) comes from the isomorphisms (1.1.1) above.1.7. The determination of the groups of vanishing cycles in essentially this situation isdone in [7], x3.1. Brie
y, as the local monodromy is unipotent there exists a �ltration on~F such that Gr ~F extends to a smooth sheaf on ~Xx. Denoting the �bre of this extensionat x by (GrF)x, we then have:(Rq	g!F)x = (Rq�g!F)x = � 0 for q 6= 1(GrF)x for q = 1and there is an exact sequence(1:7:1) 0! (R0�i�i�g�F)x ! (R1�g!F)x ! (R1�g�F)x ! 0where(1:7:2) (R0�i�i�g�F)x = coker�(g�F)x ! Mi=1;2H0(Z��; i�g�F)�:4



1.8. De�ne an action of I on F�� byI ���! Z̀(1) d�diag,���! Z̀ (1)2 ��! AutF��Theorem 1.9. There is an I-equivariant isomorphism(R1�g!F)x ��! F��:The proof will be in four steps.Proposition 1.10. (First step) Theorem 1.9 holds in characteristic zero.1.11. The transcendental analogue of 1.6 is given by the following:(i) f : X = D�D! S = D is the morphism f(z; t) = t, where D is the unit disc. WriteD� = D � f0g, and let t0 2 D� be a base point.(ii) z = zi(t) (i = 1, 2) are distinct holomorphic sections of f with z1(0) = z2(0) = 0.Assume z1(t) 6= z2(t) if t 6= 0, and that z1 � z2 vanishes to order d at t = 0. Writeg : U ,! X for the inclusion of the complement of z1 and z2.(iii) F is a local system of Q-vector spaces on U with unipotent monodromy.1.12. Let m : D ! X be the section m = 12 (z1 + z2). As m(D�) � U we can pullF back to a local system m�F on D�, giving a natural action of �1(D�; t0) = Z(1) on(m�F)t0 = F(m(t0);t0).1.13. Since each �bre Xt is a disc, the group of vanishing cycles �R1�g!F�0 can be iden-ti�ed with the cohomology of the �breH1(Xt0 ; g!F)together with its action of �1(D�; t0).Proposition 1.14. There is a �1(D�; t0)-equivariant isomorphismH1(Xt0 ; g!F) ��! (m�F)t0 :Proof. Let V � X be the subsetV = �(�z1(t) + �z2(t); t) �� �; � � 0; �+ � = 1; t 2 D�	;thus for each t 2 D�, Vt is the line segment joining z1(t) and z2(t). We have for eacht 2 D� the inclusions Xt � Vt h,���! Ut g,���! Xt5



and an associated exact sequence of sheaves on Xt(1:14:1) 0! g!h!h�Ft ! g!Ft ! g!Ft��Vt ! 0(where Ft is the restriction of F to the �bre Ut). If F = A is constant on U thenH�(Xt; g!h!h�Ft) = H�(Xt relVt;Q) 
A = 0so by choosing a �ltration on F for which GrF is constant, one has in generalH�(Xt; g!h!h�Ft) = 0So by (1.14.1) we have(1:14:2) H1(Xt; g!Ft) ��! H1(Vt; g!Ft��Vt);and since Vt is an interval(1:14:3) H1(Vt; g!Ft��Vt) = H1(Vt rel@Vt;Q) 
Fm(t):Fixing an ordering of the sections z1, z2 determines an isomorphismH1(Vt rel @Vt;Q) ��! Qwhich by (1.14.2) and (1.14.3) gives an isomorphism of local systems on D�:R1f�g!F��D� ��!m�F :Proposition 1.15. The notation being as in 1.11{1.14, the following diagram commutes:|�1(D�; t0) m��! �1(U; (m(t0); t0)) �! Li �1(X � Zi; (m(t0); 0))k & kZ(1) d�diag����! Z(1)2Proof. We can assume that z1(t) = �z2(t) = td, so that m(t) = 0. Then there areisomorphisms X � Zi ��! D� �D given by (z; t) 7! (z + (�1)itd; t). From this is it easyto check that the generator of �1(D�; t0) is mapped by m� to d times the generator of�(X � Zi; (m(t0); t0)).Combining this with 1.14 and the Lefschetz principle, one obtains 1.10.6



Lemma 1.16. Let the assumptions be as in 1.6 above, but assume in addition thatX ' A 1S , that F is smooth on U , and that the global monodromy of F is unipotent.Then Hq(X��; g!F) ��! (Rq�g!F)xfor all q.Proof. By (1.4.1) it is enough to show that H�(Xs; g!F) = 0. First assume that F = A isconstant. Then H�(Xs; g!F) = h�(A 1 rel 0;Q`) 
A = 0. The general case reduces to thisby choosing a �ltration on F such that GrF is constant.1.17. (Second step) We now imitate the proof of the Picard-Lefschetz formula ([SGA7],expos�e XIV) to pass from characteristic zero to a particularly simple mixed characteristicsituation (over a base of dimension 2). Let p be a prime, and let S be the strict henselisationof SpecZ[y] at (p; y). Write X= A 1 � S= S[z] f�! S. Let �, � be the generic points of Sand X.Write Z1, Z2 for the sections z = 0, z = y of f , and set Z= Z1[Z2, g : U= X�Z ,! X.Finally, let F be a smooth Q`-sheaf on U (with l 6= p) whose global monodromy isunipotent, and admits a factorisation�1(U; ��) (�z;�z�y)����! Z̀ (1)2 ��! AutF��Proposition 1.18.(i) R1f�g!F is smooth on S0 = S�fy = 0g, and its formation commutes with basechange.(ii) De�ne an action of Gal(��=�) on F�� by the composite � � diag � �y. Then there is aGal(��=�)-equivariant isomorphismH1(X��;g!F) ��! F��:Proof. (i) We have U�S S0 ' A 1 � f0; 1g, and in this system of coordinates the sheaf Fis tamely rami�ed along 0, 1 and 1. Therefore the dimension of H1(X�t;g!F) is constantfor all geometric points �t of S0, and (i) follows.(ii) By part (i), R1f�g!F is tamely rami�ed along fy = 0g, and so the action ofGal(��=�) onH1(X��;g!F) factors through the character �y. Let S be the strict henselisationof SpecQ[y] at (y), and S ! S the obvious morphism. Then (ii) can be veri�ed afterpullback to S, where it is a consequence of 1.10 and 1.16 above.1.19. (Third step) Let S be as in 1.2 and S as in 1.17, and let � : S ! S a morphism. Setd = ord� ��y, and assume that 0 < d <1. De�ne:|X 0 = X �S;�S = A 1S ;Z 0 = pr�11 (Z) = Z 01 [ Z2, g0 : U 0 = X 0 � Z 0 ,! X 0,F 0 = pr�1F, a smooth Q`-sheaf on U 0;x0 = the point (z = 0) on the �bre X 0s.De�ne an action of I on F�� by the composite map � � (d� diag) � �� : I ! AutF��.7



Proposition 1.20. There is an I-equivariant isomorphism(R1�g0!F 0)x0 ��! F��:Proof. By 1.16 above, (R1�g0!F 0)x0 ��! H1(X��;g!F)and so the proposition follows from 1.18 and the commutativity of the squareGal(��=�) ���! �1(S0; ��)??y�� ??y�yZ̀(1) �d�! Z̀ (1)Proposition 1.21. (Fourth step) Given X=S, Z and F as in 1.6, there exists � : S ! Sas in 1.20 and a sheaf F on U as in 1.17 such that the triples( ~Xx; ~Z; ~F); ( ~X 0x0; ~Z 0; ~F 0)are isomorphic.Proof. The pair (X;Z) is locally isomorphic (for the �etale topology) to �SpecOS [z], fz(z��d) = 0g�. Therefore if we take � : S ! S by ��(y) = �d, the pairs ( ~Xx; ~Z), ( ~X 0x0 ; ~Z 0) areisomorphic. It remains to construct F. There is a commutative diagram�1( ~U 0; ��0) ���! �1(U; ��) � ��!??yo (�z;�z��d )& ??y(�z;�z�y)�1( ~U; ��) (1:6:1)���! Z̀(1)2 ��! AutF��Therefore the dotted arrow de�nes a sheaf F on U which satis�es the hypotheses 1.17,and which is equipped with an isomorphism F�� ��! F�� intertwining � and �. Therefore( ~Xx; ~Z; ~F) ' ( ~X 0x0; ~Z 0; ~F 0) as required.Combining 1.20 and 1.21 gives 1.9. 8



2. Application to parabolic cohomology2.1. We will apply the results of x1 to parabolic cohomology groups associated to (notnecessarily modular) families of elliptic curves. We �x a prime `; cohomology groups willunderstood to have coe�cients in Q` unless otherwise indicated. To begin with we reviewsome of the results of [15]; however in the present context we will have to adopt a di�erentnotation.2.2. We consider a smooth projective curve X over a number �eld K; it is assumed to begeometrically connected. Let �:E ! Xbe an elliptic surface equipped with a section e:X ! E. We assume:(i) � is semistable and strictly non-constant; and(ii) there exists a �nite K-group scheme G of sections of �, meeting every irreduciblecomponent of every geometric �bre.Explicitly, the �rst part of (ii) means that there is a monomorphism of group schemesover X G�X ! Esmoothwhere Esmooth � E is the open set of points at which � is smooth. By strictly nonconstantwe mean that � does not become isomorphic to a constant family after any �nite 
atbasechange X 0 ! X.2.3. Let Z � X be the �nite set of closed points over which � is not smooth, and letg:U = X � Z ,! X be the inclusion of the complement. Write�� : �E = E �X U ! Ufor the restriction of �. Let F be the rank 2 smooth Q`-sheaf R1���Q` on U , and let k > 0be an integer. The cohomology groups to be considered areH1(U;Symk F); H1c (U;Symk F)and the parabolic cohomologyH1(X; g� Symk F) ' Im�H1c (U;Symk F)! H1(U;Symk F)�:These groups occur in the cohomology of the Kuga-Sato �bre varieties, as we now recall.2.4. Consider the k-fold �bre product(2:4:1) kz }| {E �X : : :�X E :For k > 1 this has singularities at points of the form (P1; : : : ; Pk) such that Pi =2 Esmoothfor at least two distinct i. In [6], [15] it is explained how to resolve the singularities of9



(2.4.1) by successively blowing up strata of increasing dimension in the singular locus. Wewrite E(k) for the resulting desingularisation and Y (k) for the inverse image of Z in E(k).2.5. Let �k � Aut(E(k)=K) be the subgroup scheme generated by:� Sk, the symmetric group, acting by permuting the factors of the �bre product;� �k2, acting as multiplication by �1 on each factor; and� Gk, acting by translation.Then �k is actually the semidirect product (Go�2)koSk, and there is a unique char-acter �: �k ! �2 whose restrictions to the subgroups arethe trivial character of Gk;the character (xi) 7!Q xi of �k2 ;the sign character of Sk.2.6. To avoid risk of confusion we recall some elementary notions about group schemeactions. If V is a representation of Gal( �K=K) over (say) Q`, an action of a discreteK-group scheme H is the same as an abstract group actionH( �K) � V ! Vwhich is Gal( �K=K)-equivariant. For a character �:H ! G m of H, the eigenspaceV (�) = fv 2 V j gv = �(g)v for all g 2 H( �K)gis then Galois invariant.In the present setting the action of �k on E(k) induces an action on its `-adic coho-mology, as well as that of Y (k) and E(k) � Y (k) (with and without compact supports).2.7. We �rst recall the basically standard isomorphismsH1(U;Symk F) ��! Hk+1(E(k) � Y (k))(�)H1c (U;Symk F) ��! Hk+1c (E(k) � Y (k))(�):which are compatible with the natural transformation Hc ! H. Let ��(k) be the k-fold �bre product of ��. Then by the K�unneth formula R���(k)� Q` = 
kR����Q`, one hasR���(k)� Q`(�) = Symk F , and for k > 0 the sheaf Symk F has no H0 or H2 (with compactsupports or without). So the isomorphisms follow from the Leray spectral sequence.2.8. From Theorem 1.2.1 of [15] there is also an isomorphismH1(X; g� Symk F) ��! Hk+1(E(k))(�)which is compatible with the previous two isomorphisms. Moreover there are commutativeladders:(2:8:1)0 ! H1(X; g� Symk F) ! H1(U;Symk F) ! H0(Z)(�k � 1) ! 0??yo ??yo ??yo0 ! Hk+1(E(k))(�) ! Hk+1(E(k) � Y (k))(�) ! Hk+2Y (k) (E(k))(�) ! 010



(2:8:2)0 ! H0(Z) ! H1c (U;Symk F) ! H1(X; g� Symk F) ! 0??yo ??yo ??yo0 ! Hk(Y (k))(�) ! Hk+1c (E(k) � Y (k))(�) ! Hk+1(E(k))(�) ! 0in which the arrows are equivariant with respect to an open subgroup of Gal( �K=K).We shall indicate how the arguments of [15] must be modi�ed to obtain these resultsin the present more general setting. For convenience we will write references to that paperin the form MF1.2.3.2.9. The �rst modi�cation arises in MF1.3.2. The singular �bres of � need not be standardN�eron polygons. This depends on whether for z 2 Z the connected component of identityof Esmoothz is isomorphic to G m or to the norm 1 subgroup of RF=�(z)Gm, where F=�(z) isa quadratic extension. In `-adic cohomology this does not alter the groups obtained, butit means that the maps in (2.8.1), (2.8.2) need not be Galois equivariant.2.10. The construction of the desingularisation (MF2.1.1, MF3.1.0(i)) requires only thatthe singularities in the �bres of � be ordinary double points, locally isomorphic (for the�etale topology) to SpecR[x; y]=(xy � t). This holds in the present setting because ofhypothesis 2.2(i).2.11. For the calculation of the cohomology we can replace K by any �nite extension, somay assume that G is constant. The group �k then replaces the group ((Z=n)2o�2)koSkof MF1.1.1. The only place where the translations by sections of �nite order intervene isMF3.1.0(iii), in the proof of which one passes from invariants under �k to invariants (ofa di�erent module) under �k2oSk. This relies on the fact that �k permutes the compo-nents of a singular stratum transitively. This uses only the fact that (Z=n)2 meets everyirreducible component of every geometric �bre of the universal elliptic curve. Hypothesis2.2(ii) therefore ensures that MF1.3.3 and its corollary MF1.2.1 remain valid.2.12. The �rst ladder (2.8.1) is obtained by combining the exact sequences of MF1.2.0and MF1.3.4. The left hand square commutes by functoriality, and we simply choosethe third vertical arrow to make the second square commutative as well (this dependson the choices made earlier, cf. 2.9 above and MF1.3.2). The second ladder (2.8.2) isobtained from (2.8.1) by Poincar�e duality, since the two long exact cohomology sequencesfor the inclusion of a closed subscheme|one for cohomology with supports, the other forcohomology with compact supports|are dual up to sign. (A proof is given in [17], 0.2.)2.13. For later use we recall a consequence of the Shimura isomorphism. For these werequire a further hypothesis:(iii) The classifying map from U to the modular stackM of elliptic curves is �etale.Let ! be the dual of the Lie algebra sheaf of (the smooth part of) E over X. Then (iii)implies that the Kodaira-Spencer map ! ! 
(logZ) 
!
�1 is an isomorphism ([11]A1.3.17). From this it follows that the parabolic cohomology has Hodge type (k + 1; 0) +(0; k + 1) (see e.g. [13], 2.13(ii)). This gives the classical Shimura isomorphism, and in11



particular the formulae(2:13:1) dimQ ` H1(X; g� Symk F) = 2dimK H0(X;!
k 

1X);dimQ ` H1c (U; g� Symk F) = dimK H0(X;!
k 
 
1X)+ dimK H0(X;!
k 

1X(logZ)):2.14. Let j:X ! P1Q be the modular invariant of the family �. Then Z = j�1(1) since� is semistable. Write X for the normalisation of P1Z in the �eld of functions of X; then jextends to a �nite morphism jZ :X ! P1Z . Write Z � X for the closure of Z (or equivalentlythe inverse image j�1Z (1)). Set U = X �Z.Theorem 2.15. Suppose there exists a �nite prime v of K, of residue characteristic p 6= `,and a closed point x of the �bre Xv = X 
 �(v), such that:� Xv is smooth at x;� The set of irreducible components of Z which contain x consists of two distinct sectionz1, z2 of Z over Spec oK .Assume also that if p = 2 then k is even. Then there is an open subgroup I 0 � Iv of indexat most 2 and a commutative diagram of I 0-modules0 ! H0(Z) ! H1c (U;Symk F) ! H1(X; g� Symk F) ! 0??y??y� ??y??y ??y??y0 ! A ! B ! C ! 0where dimA = 1, dimC = k and B is an indecomposable unipotent I 0-module, and thetop row is given by (2.8.2).Corollary 2.16. Under the hypotheses of 2.15, the exact sequences of (2.8.1), (2.8.2) arenon-trivial extensions when restricted to any open subgroup of Gal( �K=K).In fact, since the action of I 0 on B is unipotent, it remains indecomposable whenrestricted to any subgroup of �nite index.2.17. Proof of 2.15. We will show that we can place ourselves in the situation of 1.6, ifnecessary after a �nite extension of ground �eld. The base scheme will be S = Spec ~oK;v,and for the smooth curve over S we will take any su�ciently small Zariski open subschemeof X 
 ~oK;v containing x.2.18. We �rst must show that Symk F extends to a sheaf on U which is smooth in aneighbourhood of x. We know that �:E ! X is \almost" the pullback of an elliptic curveover P1. To be precise, let  : E ! A 1Z � f0; 1728gbe the elliptic curve with a�ne equationu2 + tu = t3 � (36x+ 1)=(j � 1728)12



(j being the coordinate on A 1). Then the sheaf R1 �Q` is smooth of rank 2 with unipotentmonodromy along j = 1, and its pullback to U � fj = 0; 1728g is isomorphic to F 
L for some rank 1 sheaf L on U with L
2 ' Q`. Therefore if k is even Symk F isactually isomorphic to the pullback of Symk R1 �Q` and so extends to a smooth sheaf ona neighbourhood of x in U . In the case when k is odd (Symk F)
 L is isomorphic to thepullback of SymkR1 �Q`; but if p is odd, L is at most tamely rami�ed along Uv, and soby Abhyankar's lemma extends over Uv after a quadratic base extension K 0=K. We willassume that this basechange has been made in what follows, and I 0 will then be the inertiasubgroup of Gal( �K=K 0) at v.2.19. Finally we need to check hypothesis 1.6(iv) concerning monodromy. Let e1, e2 be therami�cation degrees of j:X ! P1K at z1, z2. Since E=X is semistable the local monodromyof F at z1 and z2 is unipotent and nontrivial. Now write~U = ~X�x�X U and ~V = fP1S;1�P1 A 1:The generic point � of X lifts to a geometric point �� of ~U , and jZ induces a morphism~U ! ~V; by abuse of notation denote the image of �� under this map by the same symbol.Then there is a commutative diagram: �(`)1 ( ~U ; ��). &Li=1;2 �(`)1 ( ~X�x � ~Zi; ��) �(`)1 (~V; ��)??yo ??yoZ̀(1)2 (
1;
2)7!�ei
i��������! Z̀(1)Since the monodromy representation of �(`)1 ( ~U ; ��) on Symk F�� factors through �(`)1 (~V; ��),the above diagram gives condition (iv).2.20. We can therefore apply Theorem 1.9. We have a commutative diagramH0(Z)k0 ! H0(Z; g� Symk F��Z) ! H1(X; g! Symk F) ! H1(X; g� Symk F) ! 0??y??y� ??y� ??y0 ! (R0�i�i�g� Symk F)�x ! (R1�g! Symk F)�x ! (R1�g� Symk F)�x ! 0k k kA B CHere the top line is the exact sequence (2.8.1), and the bottom is (1.7.1). The vertical map� is evidently surjective. From (1.7.2), A is 1-dimensional.13



Lemma 2.21. � is surjective.Consider the boundary map@: (R1�g! Symk F)�x ! H2c (U�v;Symk F)obtained from (1.4.1) and (1.5.1). It factors through H2c (C;Symk F), where C � U�v isthe unique irreducible component whose closure contains x. Now since k > 0 the sheaf(Symk F)_ = Symk F 
Q`(k) has no global sections over C, so this H2c vanishes.2.22. Now by 1.9 the group B is isomorphic, as I 0-module, to Symk F�� with the actiondescribed. By 2.21 above this is isomorphic to the standard (k +1)-dimensional represen-tation Symk � 1 �p0 1 �and theorem 2.15 is proved.3. Parabolic elements in motivic cohomology and extensions of motives3.1. Assume that we are in the situation of 2.15 above. Then the corollary shows that acertain extension of \motives" is non-trivial. In fact, let MM be Jannsen's category ofmixed motives ([10], x4) over K. Then the diagram (2.8.1) is the `-adic realisation of anexact sequence of motives0! hk+1(E(k))(�) ! hk+1(E(k) � Y (k))(�)! hk+2Y (k) (E(k))(�)! 0and that after possibly a �nite extension of K we have an isomorphismhk+2Y (k) (E(k))(�) ��! h0(Z)(�k � 1):Assume henceforth either that the smooth part of the �bre ��1(z1) is the product of G m(untwisted) with a �nite group scheme, or that k is even. Then z1 determines a mapQ(�k � 1) cl(z1)���! hk+2Y (k) (E(k))(�)and therefore by pullback we obtain an extension of motives(3:1:1) 0! hk+1(E(k))(�)! (�)! Q(�k � 1)! 0:The principles of motivic cohomology [2] indicate that (3.1.1) is classi�ed by an elementof the motivic cohomology groupHk+2M (E(k);Q(k + 1)) = K(k+1)k (E(k)):3.2. We will use the calculations of the motivic homology of the boundary Y (k) from [15]to identify such an element. We �rst state a rather general result, which in some caseshas been written down by Jannsen ([10], x9). Let V be a smooth quasi-projective scheme14



over K, and let W � V be a closed subscheme. The motivic cohomology with supports isde�ned by HaM;W (V; b) = GrbKW2b�a(V ) 
Qwhere KW� (V ) is K-theory of V with supports in W , and the graded part is with respectto the 
-�ltration. In [21] it is proved that the long exact sequence of K-theory withsupports respects the �-ring structure, so there is a long exact sequenceHaM;W (V; b)! HaM(V; b)! HaM(V �W; b)! Ha+1M;W (V; b)Soul�e also shows that motivic cohomology forms part of what is almost a Bloch-OgusPoincar�e duality theory [5]|the only restriction being that in the cohomology groups theambient schemes must be taken to be smooth.3.3. Let Hcont be continuous �etale cohomology [9]. There are Chern class mapsclW :HaM;W (V;Q(b)) ! Hacont;W (V;Q`(b))and we now de�ne HaM;W (V;Q(b))0 to be the kernel of the composite mapHaM;W (V;Q(b)) clW�! Hacont;W (V;Q`(b))! Hacont(V;Q`(b))! H0(K;Ha(V ;Q`(b))):The edge homomorphism in the Hochschild-Serre spectral sequence therefore yields a mapHaM;W (V;Q(b))0 ! H1(K;Ha�1(V ;Q`(b)))If ! 2 HaM;W (V;Q(b))0 we write !` for its image in H1(K;Ha�1(V ;Q`(b))) by the abovemap.3.4. If ! 2 HaM;W (V;Q(b))0 we can also form an extension of `-adic Galois modules asfollows: the image of ! in Ha(V ;Q`(b)) vanishes. Hence by pullback from the exactsequence:Ha�1W (V ;Q`(b))! Ha�1(V ;Q`(b)) ! Ha�1(V �W;Q`(b)) ! HaW (V ;Q`(b)) ! Ha(V ;Q`(b))x??clW (!) % 0Q`(0)we obtain an extension 0! A! B ! Q`(0)! 0of Q`(0) with A = coker�Ha�1W (V ;Q`(b))! Ha�1( �V ;Q`(b))�:Theorem 3.5. The extension B is classi�ed by the image of !` in H1(Gal( �K=K); A).Proof. This is very similar to Theorem 9.4 of [10]. Namely, let us de�ne analogouslyHacont;W (V;Q`(b))0 =ker[Hacont;W (V;Q`(b))! H0(K;Ha(V ;Q`(b)))]Hacont(V;Q`(b))0 =ker[Hacont(V;Q`(b))! H0(K;Ha(V ;Q`(b)))]:15



Then there is a diagramHacont;W (V;Q`(b))0 �����������!??y Hacont(V;Q`(b))0ker[HaW (V ;Q`(b))Gal( �K=K) ! Ha(V ;Q`(b))Gal( �K=K)]kk jjjjjjjj#�ker[HaW (V ;Q`(b))) ! Ha(V ;Q`(b))]Gal( �K=K)??y� H1(K;Ha�1������! (V ;Q`(b)))H1(K; coker[Ha�1W (V ;Q`(b))) ! Ha�1(V ;Q`(b))])Here the arrow labelled � is the edge homomorphism in the Hochschild-Serre spectralsequence, and � is the boundary map in the long exact cohomology sequence attached tothe short exact sequence0 �! coker[Ha�1W (V ;Q`(b))! Ha�1(V ;Q`(b))]�! Ha�1(V �W;Q`(b)) �! ker[HaW (V ;Q`(b)) ! Ha(V ;Q`(b))] �! 0:The commutativity of this diagram is a consequence of Proposition 9.4 of [10], and fromthis the desired compatibility follows.3.6. We next write down an element of Hk+2M (E(k);Q(k + 1)), which by Poincar�e dualityis the same as HMk (E(k);Q(0)). For this we shall use the results of [15]. Let Y� (k) � Y (k)be the connected component of the identity of the smooth part of Y (k). The proof ofMF3.1.0(ii) shows that the inclusion Y� (k) ,! Y (k) gives isomorphismsHk+2M;Y (k) (E(k);Q(k + 1)) = HMk (Y (k);Q(0))(�) ��! HMk (Y� (k);Q(0))(�):Taking z1 as in 3.1, one has thatHMk (��1(z1);Q(0))(�) is isomorphic toHMk (G km=�(z1);Q(0))(�),which is 1-dimensional and spanned by the cup-product t1 [ : : : [ tk, where ti is the stan-dard coordinate on the ith copy of G m. Picking such a generator, let ! denote its imagein Hk+2M;Y (k) (E(k);Q(k + 1)). From 2.15 and 3.5 we obtain the following result.Corollary 3.7. The `-adic realisation of the extension of motives (3.1.1) is classi�ed by anon-zero multiple of the image of !` in H1(K;Hk+1(E(k)=K ;Q`(k+ 1))(�)). In particular, ifthe hypotheses of 2.15 hold, then the image of ! in Hk+2M (E(k);Q(k + 1)) = K(k+1)k (E(k))is nonzero.3.8. The Deligne-Beilinson (or \absolute Hodge", see [3]) cohomology groupHk+2H (E(k)=R ;R(k+1)) is zero for k > 0, since E(k) is smooth and proper. Therefore there is no interpretationfor ! in terms of archimedean regulators. In fact, Beilinson's conjectures [2] predict that16



Hk+2M=Z (E(k);Q(k + 1)), the motivic cohomology group \over Z", vanishes. The existenceof ! does not contradict this, since the method we have used to show that ! is non-zerois to show that (modulo certain compatibilities) that it does not map to an element ofHk+2M=Z (E(k);Q(k + 1)) � Hk+2M (E(k);Q(k + 1)). Its existence should be accounted for bythe vanishing of an incomplete L-function at s = 1; and the analysis of the vanishing cyclescertainly shows that the local L-factor at p of the parabolic cohomologyH1(X; g� Symk F)has a pole at s = 1. For further discussion of the relation of these elements to an (as yetunformulated) S-integral version of Beilinson's conjectures, see [16].4. Examples4.1. We will give three examples to which the results of xx1{2 apply. In each case theelliptic surface E is constructed as follows. Let � � SL2(Z) be a subgroup of �nite index.The quotient of the upper half-plane by � is the set of complex points of a connectedsmooth curve over some number �eld K, whose smooth compacti�cation X� is equippedwith a �nite morphism j:X� ! P1K . We let E� be the minimal model of the �bre product(cf. 2.18 above) E �P1 X�:4.2. It is not necessarily the case that E�=X� satis�es the hypotheses of 2.2. To getaround this we follow a standard procedure, which was used in an almost identical way in[13] and [14], and consider the intersection �0 of � by its with the congruence subgroup��(N), when N � 3 is chosen to be divisible by the widths of all the cusps of �. ThenX�0 may be taken to be a component of the normalisation of the �bre productX� �P1 X(N)where X(N) is the modular curve over Q of level N , parameterising (generalised) ellipticcurves A with an isomorphism �N �Z=N ��! AN of determinant 1.4.3. By the choice of N the covering X�0 ! X(N) is actually �etale, and thus the ellipticsurface �0:E�0 ! X�0 is the pullback to X�0 of the standard universal generalised ellipticcurve Euniv with level N structure on X(N). In particular it is semistable. Moreover thereis a �nite group scheme of section of E�0=X�0 isomorphic to �N �Z=N which meets eachirreducible component of each degenerate �bre, namely the pullbacks of the tautologicalsections of the universal elliptic curve. Hence the conditions of 2.2 are satis�ed by E�0.4.4. To recover the parabolic cohomology groups for � from those of �0 it is necessaryonly to pass to invariants under a suitable subgroup scheme H of SL(�N �Z=N). Letk:X�0 ! X� be the covering; it is a torsor for some such subgroup scheme H. Denote allobjects corresponding to �0 by adding the symbol 0. Then de�ne�W k̀def=H1( �X�0 ; g0� Symk R1��0�Q`)H = H1( �X�; k�(g0� Symk R1���Q`)H)�W k̀!def=H1( �X�0 ; g0! Symk R1��0�Q`)H = H1( �X�; k�(g0! SymkR1���Q`)H)Since the elliptic curve E (2.18) already has semistable reduction at j = 1, the mon-odromy of the sheaf R1 �Q` on A 1 � f0; 1728g is unipotent at j = 1. So the sheaves17



k�(g0� SymkR1���Q`)H and g� Symk R1���Q` on X
 are isomorphic away from the pointswhere j = 0 or 1728. The same is true for k�(g0! Symk R1���Q`)H and g! Symk R1��0�Q`. Inother words, for the calculations of vanishing cycles we can work on X�.4.5. Assume that X� has genus 0, and that the �eld K is Q. Let t be any generator ofthe function �eld of X over Q which satis�es an equation of the form(4:5:1) P (t) + jQ(t) = 0where we assume P , Q 2 oK , degP = d > degQ and P monic. Then it is shown inProposition 2.7 of [14] that the representations �W k̀ of Gal(K=K) are unrami�ed at allprimes p of residue characteristic di�erent from ` for which:(i) P (t), Q(t) are p-integral, and their reductions ~P (t), ~Q(t) modulo p are relativelyprime; and(ii) at least one of ~P 0(t), ~Q0(t) is non-zero.The same argument applies also to the representations �W k̀!. (In fact the result isnot stated exactly in this form in [14], but it is easily checked that the proof yields thisresult.)Proposition 4.6. Suppose that p is a prime ofK for which condition 4.5(i) holds. Supposealso that(ii)' There exists exactly one root � 2 Qp of Q(t) (of arbitrary multiplicity) such thatordp(�) < 0.Then the hypotheses of Theorem 2.15 are satis�ed.Proof. Let op be the localisation of oK at p. As in the proof of 4.5, we observe that bycondition (i), the de�ning equation (4.5.1) gives a �nite morphismP1
op ! P1
op whosegeneric �bre is j:X� ! P1K . Hence in the notation of 2.15 the morphism jZ :X ! P1Z isgiven by (4.5.1) in a neighbourhood of the �bre at p. Replacing K by K(�), and takingfor zi the sections t =1, t = � lying over j =1 the conditions of 2.15 are satis�ed.4.7. We will consider the following three cases:(i) The subgroup �4;3 of index 7, generated by� 1 40 1� ; � 2 11 1� ; � 1 �12 �1� :(ii) The subgroup �5;2, also of index 7, generated by� 1 50 1� ; � 0 �11 0 � ; � 2 31 2� :(iii) The subgroup �711 of index 9 generated by� 1 70 1� ; � 0 �11 0 � ; � 3 �41 �1� ; ��1 �41 3 �18



which was considered in [14] (and before that by Atkin and Swinnerton-Dyer [1]).4.8. In each case the curve X� has genus zero, so the equations (4.5.1) can be found bymethods going back to Klein and Fricke, and systemised by Atkin and Swinnerton-Dyer.The relation (4.5.1) can, for suitable t, be put in the formj = E3(t)F3(t)3Q(t) = 1728 + E2(t)F2(t)2Q(t)for polynomialsE�(t), F�(t) with coe�cients inK, which may be computed by the methodof undetermined coe�cients.4.9. For the three examples the �eld K is in fact Q, and the j-equations are as follows:(i) For �4;3: j = �7�7 (t + 432)(t2 + 80t� 3888)3t3= �7�7 (t � 16)(t3 + 344t2 + 1944t+ 1083)2t3 + 1728:(ii) For �5;2: j = 7�7 (t+ 125)(t2 + 5t� 1280)3t2= 7�7 (t� 64)(t3 + 102t2 + 381t+ 64000)2t2 + 1728:(iii) For �711: j = 26 (t3 + 4t2 + 10t+ 6)3t2 + 13t=4 + 8= 26 t(t4 + 6t3 + 21t2 + 35t+ 63=2)2t2 + 13t=4 + 8 + 1728:To put these in a form to which 4.6 applies, we need to make a change of variables,given in the three cases respectively byt = 7t0 + 2; t = 7t0 + 1; t = t0=2giving the following result:Proposition 4.10. Let � be one of �4;3, �5;2, �7;1;1. Let p equal 7, 7 or 2 respectively.Then the hypotheses of 2.15 are satis�ed. In particular �W k̀! is a non-trivial extension of�W k̀ (for ` 6= p) and the image of ! in Hk+2M (E(k);Q(k + 1)) (cf. 3.7) is nonzero.4.11. Return to the general case, and let � � SL2(Z) be the smallest congruence groupcontaining �. We choose K and models for X�, X� such that the obvious transitionmorphism � : X� ! X� is de�ned over K. This determines direct and inverse image maps��:�W k̀ ! �W k̀; ��: �W k̀ ! �W k̀19
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