Vanishing cycles and non-classical parabolic cohomology

A. J. Scholl!

0. Introduction

The work described here began as an attempt to understand the structure of the
cohomology groups associated to a subgroup T' of finite index of SLy(Z) which are not
congruence subgroups. One knows that to the space of cusp forms of weight w > 2 on I'
(whose dimension we denote by d) one can [15] attach a motive M, which is pure of weight
w — 1 and of rank 2d, defined over some number field; it is a direct factor of the motive of a
suitable compact model of the (w — 2)-fold fibre product of a family of elliptic curves over
the modular curve, as in the classical case of a congruence subgroup. The realisations of
M are the parabolic cohomology groups. By looking instead at the uncompactified fibre
variety (that is, with the divisor over the cusps removed) one gets a mixed motive M',
which is a direct factor of the “motive with compact supports” of the noncompact variety;
M' is an extension of M by an Artin motive of rank equal to the number of cusps of T
The cohomology classes associated to this Artin motive arise from Eisenstein series.

In the case of a congruence subgroup this extension is trivial—it is split by the action
of the Hecke algebra (an example of the “Manin-Drinfeld principle”). Already for weight
2 it 1s known that these extensions can be nontrivial in general, and for rather simple
reasons. Namely, Belyi’s theorem implies that any connected smooth curve C over Q) (not
necessarily projective) has a Zariski open subset U whose complex points are isomorphic
to the quotient of the upper-half plane by some finite index subgroup I'. In this situation
M is the H'-motive of the compactification of C', and the mixed motive M’ is h1(U), the
H' of U with compact supports. If C' is the complement in a projective curve of, say, two
points whose difference is a divisor of infinite order, then the Abel-Jacobi theorem implies
that M’ is a nontrivial extension of motives.

The search for algebraic invariants to classify the extension M’ in general leads natu-
rally to the study of the motivic cohomology of the fibre varieties. Beilinson’s conjectures
give a conjectural description of these groups. In this case the regulator map, which plays
an essential role in the Beilinson conjectures, turns out to be zero—in fact the target space
is zero. Assuming the truth of Beilinson’s conjectures, this would imply that the element
of motivic cohomology which classify the extension M’ can only be non-zero if it is non-
integral, which for our purposes may be taken to mean that its image under the (-adic
regulator map is not locally trivial. In other words, we have to study the action of inertia
at a prime of bad reduction on the ¢-adic realisation of M’. This is the main problem ad-
dressed in the present paper, independentally of any conjectures on motivic cohomology.
We refer the reader to [16] for a discussion of the interpretation of the results as evidence
for an “S-integral” version of Beilinson’s conjectures.

1 Research partially funded by NSF grant #DMS-8610730



The main tool is, predictably, the theory of vanishing cycles in ¢-adic cohomology.
The situation we consider is the following: let S be the spectrum of a strictly local discrete
valuation ring, with generic point n, and 7: X — S a curve. Let D C X be an effective
relative Cartier divisor, contained in the smooth part of X/S, and let F be a lisse (-
sheaf on U = X — D. Write g : U — X be the inclusion, and assume that the residue
characteristic of S is different from (. We try to compute the action of Gal(7/n) on the
nearby cycle sheaves R1W(¢1F) at the closed points of D. If D is étale over S then there are
no vanishing cycles, by standard results. The case in which we obtain non-trivial results is
when some connected component of D is the union of two sections of X /S which meet in the
special fibre—here the vanishing cycle groups at the point of intersection were calculated
by Deligne in [7]. This is described in §1 of the paper, and may be of independent interest.

In the second section we apply these results when X is the base of an elliptic surface
m: E — X, and D is the divisor over which = fails to be smooth. The sheaf F is a symmetric
power of the restriction of R'7,(J) to U. This is the setting of parabolic cohomology. In
the case of a classical elliptic modular surface it is known [8] that after a finite base-change
D is étale over S (the cusps of the modular curves do not meet in characteristic p). But for
an elliptic surface attached to a general subgroup of SLy(Z) of finite index this appears to
be a common phenomenon. Some examples of this are described in §4. These were chosen
for ease of computation rather than for any intrinsic properties, and from the (admittedly
sparse) evidence it appears that the this type of bad reduction is the norm rather than the
exception for a noncongruence subgroup.

In §3 we explain how the vanishing cycle results show that certain parabolic elements
of motivic cohomology are non-trivial, and interpret them in terms of extensions of motives.
As indicated above, the construction gives a family of elements of infinite order in higher
K-groups of algebraic varieties which have zero image under the archimedean regulator.

In a companion paper [18] we will show how these results can be used to given
information about the image of the Galois group in the ¢-adic parabolic cohomology groups.
For the examples considered in §4, we can prove that the “primitive part” of parabolic
cohomology is an irreducible symplectic representation of Gal(QQ/Q), and that the image
is an open subgroup of the group of symplectic similitudes.

A further application of our method, described in detail in [19], is to show that the
Hecke algebra for an arbitrary finite index subgroup of SLy(Z) can act on modular forms

in a rather trivial way, supplementing a conjecture of Atkin (partially proved by Serre [20]
and Thompson [22]).
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the theorem of Thom-Sebastiani. He would also like to thank L. Illusie and G. Laumon for valuable
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Finally the author is pleased to thank the Institute for Advanced Study, Princeton, whose hospitality
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1. Vanishing cycles

1.1. For the foundations of the theory of vanishing cycles, the reader should consult
[SGAT]. We first recall some standard notation. Let X = Spec A be normal, and ¢ a
prime invertible in A. Let £ be the generic point of X. For any non-zero ¢t € A there is a

er: Gal(£/€) — Zy(1)
o (V)

It factors through the fundamental group 71(X — {t = 0},£) of the complement of the
zero-locus of t. Moreover if X is strictly local and ¢ is a parameter then e; gives an

canonical character

isomorphism
(1.1.1) X —{t=0}7) =5 Z(1)

depending only on the ideal tR C R.

1.2. For the rest of this section, S will denote the spectrum of a strictly henselian discrete
valuation ring, with generic point n and closed point s. We write I = Gal(7j/n). Let ¢ be
a prime different from the residue characteristic of 5.

1.3. Let f : X — S be a morphism of finite type, and G a constructible (Q,-sheaf on X.
There i1s a commutative diagram:—

X, — X — X,
R T TR
n — S «— s

The sheaves of nearby, resp. vanishing cycles are the complexes of (Qj-sheaves on X

RYG =1*Rj.j*G
R®G = Coneli*G — RYG]|

1.4. There is a long exact sequence
(1.4.1) HY(X;,1"G) — HY(Xs,RVG) - H{(X,,R®G) — ...
and for f proper,

HI(X, RUG) = HI(X, Rj.j*G) = H'(X,,j"G)

is the cohomology of the generic geometric fibre. There is a natural action of I on R¥G
and R®G, compatible with the sequence (1.4.1).
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1.5. If x € X is a smooth point of the fibre such that G is smooth in some neighbourhod

of x, then (R®G), = 0, by the acyclicity of a smooth morphism. Suppose that X, Y are
disjoint closed subschemes of X, with dim ¥ = 0, such that if + € X; — X UY then f is
smooth at x and G is smooth in a neighbourhood of . Then R®G is acyclic off X UY and

(1.5.1) HY(X,,R®G) = H'(Y, R®G|y) & @D(R'®G),
TEL

1.6. We will calculate (R®G), and the action of I on it in the following situation:
(i) f:X — S is asmooth curve. Let £ be its generic point.
(ii) There are two distinct sections z; : S — Z (¢ = 1, 2) of f, with images Z;, Z» C X.

We assume that Z;, Z; intersect at © € X, with intersection multiplicity d. Write
Z = 71U Zy, and let i: Z — X be the inclusion, and

g:U=X—-7—=X

the inclusion of the complement.

(iii) There is a (Q-sheaf F on U which is smooth in a neighbourhood of x, such that
g=aqF.

(iv) The local monodromy representation of 7y ((j, £) on F¢ is unipotent, and has a factoris-
ation:—

(1.6.1) m(U,6) — @@ m? (X, — Zi,8) =5 Ze(1)? =5 Aut F

for some homomorphism y.

Here X:I is the strict henselisation of X at =z, U= X'I x x U and Z~Z = X'I X x Z;. Also
write ' = F|g. The middle arrow in (1.6.1) comes from the isomorphisms (1.1.1) above.

1.7. The determination of the groups of vanishing cycles in essentially this situation is
done in [7], §3.1. Briefly, as the local monodromy is unipotent there exists a filtration on
F such that Gr F extends to a smooth sheaf on X,. Denoting the fibre of this extension
at « by (GrF),, we then have:

0 for ¢ #£ 1

(R F), = (R1®9.F), = {(Grf)x for ¢ = 1

and there is an exact sequence

(1.7.1) 0 — (R°®i,i*guF)y — (R O®pF), — (R'®g.F), — 0

where

(1.7.2) (R'®ii* g, F ). = coker[(g.F)e — €D H(Zy,1"g.F)].
i=1,2



1.8. Define an action of I on F¢ by

dxdia,
T2 Z0(1) =5 Zy(1)2 25 Aut 7

Theorem 1.9. There is an [-equivariant isomorphism

(R'®qiF)e = F¢.

The proof will be in four steps.
Proposition 1.10. (First step) Theorem 1.9 holds in characteristic zero.

1.11. The transcendental analogue of 1.6 is given by the following:

(i) f: X =D xD — S =D is the morphism f(z,t) = t, where D is the unit disc. Write
D* = D — {0}, and let ty € D* be a base point.

(ii) z = z;(t) (¢ = 1, 2) are distinct holomorphic sections of f with z1(0) = z3(0) =
Assume z1(t) # z2(t) if t # 0, and that z; — z2 vanishes to order d at ¢+ = 0. erte
g : U — X for the inclusion of the complement of z; and z3.

(iii) F is a local system of (Qvector spaces on U with unipotent monodromy.

1.12. Let m : D — X be the section m = %(21 + z3). As m(D*) C U we can pull
F back to a local system m*F on D*, giving a natural action of m;(D*,#y) = Z(1) on

(m *F)to = F(m(tO),tO)‘

1.13. Since each fibre X, is a disc, the group of vanishing cycles (Rl @g;f)o can be iden-
tified with the cohomology of the fibre

HY (X, g F)
together with its action of m1(D*, ).
Proposition 1.14. There is a 71(D*, ty)-equivariant isomorphism
HY (X4, o F) — (m*F),, .
Proof. Let V C X be the subset
V= {(Az1(t) + pza(t),t) | A, p >0, A+ p=1, t € D*};

thus for each t € D*, V; is the line segment joining z1(¢) and z2(t). We have for each

t € D* the inclusions N ;

Xy —Vie Uy Xy




and an associated exact sequence of sheaves on X,

(1.14.1) 0— gthuh*Fy — g1 Fy — g!ft‘vt — 0
(where Fy is the restriction of F to the fibre Uy). If 7 = A is constant on U then
H* (X, gthih*Fy) = H*(X;rel Vi, Q@ A =0
so by choosing a filtration on F for which GrF is constant, one has in general
H*( Xy, gthth*Fy) =0

So by (1.14.1) we have

(1.14.2) HY (X, F2) = H' (Ve 7))

and since V4 is an interval

(1.14.3) H' (Vi,gFe]y,) = H' (VireloVi, Q) @ Foe)-
Fixing an ordering of the sections 21, 2o determines an isomorphism
H'(Virel 3V, Q) = Q

which by (1.14.2) and (1.14.3) gives an isomorphism of local systems on D*:

R foqiF| e — m*F.
[
Proposition 1.15. The notation being as in 1.11-1.14, the following diagram commutes:—
m(D*to) =5 m(U,(m(to),to)) — @ m(X = Zi,(m(to),0))
I N\ I

dxdiag

1) — 1)

Proof. We can assume that zi(t) = —z(t) = t% so that m(t) = 0. Then there are
isomorphisms X — Z; == D* x D given by (z,t) (2 + (=1)1% t). From this is it easy
to check that the generator of m(D*,ty) is mapped by m, to d times the generator of
(X — Zi, (m(tg),10))- |

Combining this with 1.14 and the Lefschetz principle, one obtains 1.10.
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Lemma 1.16. Let the assumptions be as in 1.6 above, but assume in addition that
X ~ AL, that F is smooth on U, and that the global monodromy of F is unipotent.
Then

HY( X5, i F) — (R1®qiF),

for all q.

Proof. By (1.4.1) it is enough to show that H*(X,, ¢F) = 0. First assume that F = A is
constant. Then H*(X,, ¢ F) = h*(A'rel0,Q,) ©® A = 0. The general case reduces to this
by choosing a filtration on F such that GrF is constant. |

1.17. (Second step) We now imitate the proof of the Picard-Lefschetz formula ([SGAT],
exposé XIV) to pass from characteristic zero to a particularly simple mixed characteristic
situation (over a base of dimension 2). Let p be a prime, and let S be the strict henselisation
of Spec Z]y] at (p,y). Write X = A' x S = §[2] .S Let 1, & be the generic points of S
and X.

Write Zy, Z, for the sections z = 0, z = y of f, and set Z=2Z,UZy, g: U=X-Z— X

Finally, let F be a smooth (Q-sheaf on U (with / # p) whose global monodromy is
unipotent, and admits a factorisation

_ (Ezaﬁz—y)
m(WE) —5 Zy(1) -5 At F.
Proposition 1.18.
(i) R'f,gF is smooth on S8° = S—{y = 0}, and its formation commutes with basechange.
(ii) Define an action of Gal(m/n) on Fz by the composite 6 o diag o €,. Then there is a

Gal(n/n)-equivariant isomorphism

H'(Xq, %) = F¢.

Proof. (i) We have U xg S* ~ A — {0,1}, and in this system of coordinates the sheaf F
is tamely ramified along 0, 1 and co. Therefore the dimension of H' (X, giF) is constant
for all geometric points ¢ of 8%, and (i) follows.

(ii) By part (i), R'f.gF is tamely ramified along {y = 0}, and so the action of
Gal(n/n) on H'(X;, g F) factors through the character €,. Let S be the strict henselisation
of SpecQly] at (y), and S — S the obvious morphism. Then (ii) can be verified after
pullback to S, where it is a consequence of 1.10 and 1.16 above. |

1.19. (Third step) Let S be asin 1.2 and S asin 1.17, and let ¢ : S — S a morphism. Set
d = ord; ¢y, and assume that 0 < d < oo. Define:—

X'=X x §=A;
S

7' =pri(Z)=2{02, ¢ : U =X'— 7' — X',

F' = pri F, a smooth (Qy-sheaf on U’;

x' = the point (z = 0) on the fibre X!.

Define an action of I on Fg by the composite map 6 o (d x diag) o e : I — Aut F.
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Proposition 1.20. There is an I-equivariant isomorphism

(Rl (I)g!lf'l)w/ l> 9:3

Proof. By 1.16 above,
(R'®g{F' ) — H' (X5, 8:F)

and so the proposition follows from 1.18 and the commutativity of the square
_ P _
Gallifn) 25 m(S',)
Z(1) =% Z(1)
|

Proposition 1.21. (Fourth step) Given X/S, Z and F as in 1.6, there exists ¢ : S — S
as in 1.20 and a sheaf F on U as in 1.17 such that the triples

(X., Z,F), (X', 2", F")
are isomorphic.

Proof. The pair (X, Z) is locally isomorphic (for the étale topology) to (Spec Oslz], {z(z—
) = O}) Therefore if we take ¢ : S — S by ¢*(y) = 7¢, the pairs (XI, Z~), (X"w/, Z~’) are

isomorphic. It remains to construct &F. There is a commutative diagram

m (U, &) — (W, &)
AN
Ez (Ez’fz_ﬁd) \ E(EZ’EZ—y)\\
o (1.6.1) . ~
m (U, §) — Zo(1)2  — Aut Fg

Therefore the dotted arrow defines a sheaf F on U which satisfies the hypotheses 1.17,
and which is equipped with an isomorphism F = Fe¢ intertwining 6 and x. Therefore

(XI,Z,f) o~ (X"x/,Z’,]:—’) as required.
Combining 1.20 and 1.21 gives 1.9. |



2. Application to parabolic cohomology

2.1. We will apply the results of §1 to parabolic cohomology groups associated to (not
necessarily modular) families of elliptic curves. We fix a prime ¢; cohomology groups will
understood to have coefficients in () unless otherwise indicated. To begin with we review
some of the results of [15]; however in the present context we will have to adopt a different
notation.

2.2. We consider a smooth projective curve X over a number field K; it is assumed to be
geometrically connected. Let

mhkE—X
be an elliptic surface equipped with a section e: X — E. We assume:
(i) = is semistable and strictly non-constant; and

(ii) there exists a finite K-group scheme G of sections of m, meeting every irreducible
component of every geometric fibre.

Explicitly, the first part of (ii) means that there is a monomorphism of group schemes
over X

Gx X — Esmooth

where ESm°th © F is the open set of points at which 7 is smooth. By strictly nonconstant

we mean that m does not become isomorphic to a constant family after any finite flat

basechange X' — X.

2.3. Let Z C X be the finite set of closed points over which 7 is not smooth, and let
¢:U =X — Z — X be the inclusion of the complement. Write

F E=ExxU—=U

for the restriction of 7. Let F be the rank 2 smooth (Q)-sheaf R'#,(, on U, and let k > 0

be an integer. The cohomology groups to be considered are
HY(U,Sym"* F), HYU,Sym"* F)
and the parabolic cohomology
H'(X, g, Sym* F) ~ Im[H}(U, Sym"* F) — H'(U,Sym"* F)].

These groups occur in the cohomology of the Kuga-Sato fibre varieties, as we now recall.

2.4. Consider the k-fold fibre product

(2.4.1) EXX...XxE.

For k > 1 this has singularities at points of the form (Py,..., Py) such that P; ¢ Esmeoth
for at least two distinet ¢. In [6], [15] it is explained how to resolve the singularities of
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(2.4.1) by successively blowing up strata of increasing dimension in the singular locus. We
write E¥) for the resulting desingularisation and Y*) for the inverse image of Z in E(*).

2.5. Let I'y C Aut(E(®)/K) be the subgroup scheme generated by:
o &, the symmetric group, acting by permuting the factors of the fibre product;
o uf, acting as multiplication by 41 on each factor; and
o G*, acting by translation.

Then T’y is actually the semidirect product (Gxu,)* xSy, and there is a unique char-
acter e:I'y — W, whose restrictions to the subgroups are

the trivial character of G*;
the character (x;) +— [] @i of u%;
the sign character of &y.

2.6. To avoid risk of confusion we recall some elementary notions about group scheme
actions. If V is a representation of Gal(K/K) over (say) (), an action of a discrete
K-group scheme H is the same as an abstract group action

HE)xV =V
which is Gal(K /K )-equivariant. For a character ¢: H — (5, of H, the eigenspace
V(g)={veV]gv=19¢(g)r forallge H(K)}

1s then Galois invariant.

In the present setting the action of I'y on E(®) induces an action on its (-adic coho-
mology, as well as that of Y(*) and E(*) — y (k) (with and without compact supports).

2.7. We first recall the basically standard isomorphisms
HY(U,Sym* F) =5 HMYE®R — Y#)(e)
HYTU,Sym"* F) = HHY(E® —y®)(e).
which are compatible with the natural transformation H, — H. Let #¥) be the k-

fold fibre product of 7. Then by the Kiinneth formula R*ﬁik)@( = @"R*7,(Q),, one has
R*ﬁ'ik)@((ﬁ) = Sym* F, and for k > 0 the sheaf Sym"* F has no H® or H? (with compact

supports or without). So the isomorphisms follow from the Leray spectral sequence.

2.8. From Theorem 1.2.1 of [15] there is also an isomorphism

HY (X, g. Sym* F) =5 B (E®)(e)

which is compatible with the previous two isomorphisms. Moreover there are commutative
ladders:

(2.8.1) . o o
0 — HY(X,g.Sym"F) — HY(U,Sym" F) — H°Z)(-k-1) — 0

5 s 5

0 —  HED) e - HFE®-YE) e — HEZEW) — 0
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0 — H'Z) —  H{UsSywm'F) - H'(X,gSm‘F) — 0

z [ 1

0 — HYYW)(e) — HMYE® -YR®)e) —  HYE®)e) — 0

in which the arrows are equivariant with respect to an open subgroup of Gal(K /K).

We shall indicate how the arguments of [15] must be modified to obtain these results
in the present more general setting. For convenience we will write references to that paper

in the form MF1.2.3.

2.9. The first modification arises in MF1.3.2. The singular fibres of m need not be standard
Néron polygons. This depends on whether for z € Z the connected component of identity
of Esmooth is isomorphic to (5, or to the norm 1 subgroup of Rp /(2 Gy, where F/r(z) is
a quadratic extension. In ¢-adic cohomology this does not alter the groups obtained, but
it means that the maps in (2.8.1), (2.8.2) need not be Galois equivariant.

2.10. The construction of the desingularisation (MF2.1.1, MF3.1.0(i)) requires only that
the singularities in the fibres of 7 be ordinary double points, locally isomorphic (for the

étale topology) to Spec R[x,y]/(xy — t). This holds in the present setting because of
hypothesis 2.2(i).

2.11. For the calculation of the cohomology we can replace K by any finite extension, so
may assume that G is constant. The group Ty then replaces the group ((Z/n)?xu, )* x &y
of MF1.1.1. The only place where the translations by sections of finite order intervene is
MF3.1.0(iii), in the proof of which one passes from invariants under I'y to invariants (of
a different module) under p% x&y. This relies on the fact that I'y permutes the compo-
nents of a singular stratum transitively. This uses only the fact that (Z/n)? meets every
irreducible component of every geometric fibre of the universal elliptic curve. Hypothesis
2.2(ii) therefore ensures that MF1.3.3 and its corollary MF1.2.1 remain valid.

2.12. The first ladder (2.8.1) is obtained by combining the exact sequences of MF1.2.0
and MF1.3.4. The left hand square commutes by functoriality, and we simply choose
the third vertical arrow to make the second square commutative as well (this depends
on the choices made earlier, cf. 2.9 above and MF1.3.2). The second ladder (2.8.2) is
obtained from (2.8.1) by Poincaré duality, since the two long exact cohomology sequences
for the inclusion of a closed subscheme—one for cohomology with supports, the other for
cohomology with compact supports—are dual up to sign. (A proof is given in [17], 0.2.)

2.13. For later use we recall a consequence of the Shimura isomorphism. For these we
require a further hypothesis:

(iii) The classifying map from U to the modular stack M of elliptic curves is étale.

Let w be the dual of the Lie algebra sheaf of (the smooth part of) E over X. Then (iii)
implies that the Kodaira-Spencer map w — Q(log Z) @ w®~! is an isomorphism ([11]
A1.3.17). From this it follows that the parabolic cohomology has Hodge type (k + 1,0) 4+
(0,k + 1) (see e.g. [13], 2.13(ii)). This gives the classical Shimura isomorphism, and in
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particular the formulae

dimg, H' (X, g« Sym" F) = 2dimx H*(X, w™* @ QY),
(2.13.1) dimg, HY(T, g« Sym* F) = dimy H*(X, 0" @ Q%)
+ dimy H2(X, w® @ Q% (log 2)).

2.14. Let j: X — Pl@ be the modular invariant of the family 7. Then Z = j~!(c0) since

7 1s semistable. Write X" for the normalisation of [P)lz in the field of functions of X; then j
extends to a finite morphism jzz X — Py, Write Z C X for the closure of Z (or equivalently
the inverse image j;'(00)). Set U = X — Z.

Theorem 2.15. Suppose there exists a finite prime v of K, of residue characteristic p # (,
and a closed point x of the fibre X\, = X @ r(v), such that:

o X, is smooth at x;

e The set of irreducible components of Z which contain x consists of two distinct section
z1, 22 of Z over Specog.

Assume also that if p =2 then k is even. Then there is an open subgroup I' C I, of index
at most 2 and a commutative diagram of I'-modules

0 — HYZ) — Hcl(U,Symk}") - Hl(y7g*8ymkf) =0

Lo s

— B — C — 0

0 —

where dim A = 1, dim C = k and B is an indecomposable unipotent I'-module, and the
top row is given by (2.8.2).

Corollary 2.16. Under the hypotheses of 2.15, the exact sequences of (2.8.1), (2.8.2) are
non-trivial extensions when restricted to any open subgroup of Gal(K /K).

In fact, since the action of I' on B is unipotent, it remains indecomposable when
restricted to any subgroup of finite index.

2.17. Proof of 2.15. We will show that we can place ourselves in the situation of 1.6, if
necessary after a finite extension of ground field. The base scheme will be S = Spec oy v,
and for the smooth curve over S we will take any sufficiently small Zariski open subscheme
of X @ o0x,, containing z.

2.18. We first must show that Sym* F extends to a sheaf on ¢ which is smooth in a
neighbourhood of x. We know that 7: E — X is “almost” the pullback of an elliptic curve

over P'. To be precise, let
€ — Ay, —{0,1728)

be the elliptic curve with affine equation
u? +tu =1 — (362 +1)/(j — 1728)
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(7 being the coordinate on A ). Then the sheaf R'1),(J, is smooth of rank 2 with unipotent
monodromy along j = oo, and its pullback to U — {j = 0,1728} is isomorphic to F &
L for some rank 1 sheaf £ on U with £%2 ~ (Q,. Therefore if k is even Sym"* F is
actually isomorphic to the pullback of Sym” R'4,(Q), and so extends to a smooth sheaf on
a neighbourhood of = in U/. In the case when k is odd (Symk F) @ L is isomorphic to the
pullback of Sym* R+, Qy; but if p is odd, £ is at most tamely ramified along U,, and so
by Abhyankar’s lemma extends over U, after a quadratic base extension K'/K. We will
assume that this basechange has been made in what follows, and I’ will then be the inertia
subgroup of Gal(K /K') at v.

2.19. Finally we need to check hypothesis 1.6(iv) concerning monodromy. Let €1, e3 be the
ramification degrees of j: X — [P at zy, z,. Since E/X is semistable the local monodromy
of F at z; and 23 is unipotent and nontrivial. Now write

U=X; xU and )}:PSOOXAI-
X P
The generic point £ of X lifts to a geometric point ¢ of U, and j7 induces a morphism
U — V; by abuse of notation denote the image of £ under this map by the same symbol.
Then there is a commutative diagram:

o

(v1,72)—=Xeivy:

Zo(1)? —_— Z(1)

Since the monodromy representation of ﬂif)(fl, £) on Sym”* Fe factors through Fif)()}, £),
the above diagram gives condition (iv).

2.20. We can therefore apply Theorem 1.9. We have a commutative diagram
H'(Z)
I
0 — H'ZgSym"Flz) — H'(X,gSym"F) — H'(X,g.Sym"F) — 0

- g {
0 — (Roq)i*@'*g*Symk}")i — (Rl@g;Symk}")@ — (Rl@g*Symk}—)f — 0

I I I
A B C

Here the top line is the exact sequence (2.8.1), and the bottom is (1.7.1). The vertical map
« is evidently surjective. From (1.7.2), A is 1-dimensional.
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Lemma 2.21. [ is surjective.

Consider the boundary map
d: (R*®g, Sym"* F); — H*(Uy, Sym* F)

obtained from (1.4.1) and (1.5.1). It factors through H?(C,Sym* F), where C' C U, is
the unique irreducible component whose closure contains x. Now since & > 0 the sheaf

(Symk F)V = Sym* F @ (k) has no global sections over C', so this H? vanishes.

2.22. Now by 1.9 the group B is isomorphic, as I'-module, to Sym* F¢ with the action
described. By 2.21 above this is isomorphic to the standard (k 4 1)-dimensional represen-

tation
k 1 €p
Sym (0 1 )

3. Parabolic elements in motivic cohomology and extensions of motives

and theorem 2.15 is proved.

3.1. Assume that we are in the situation of 2.15 above. Then the corollary shows that a
certain extension of “motives” is non-trivial. In fact, let MM be Jannsen’s category of
mixed motives ([10], §4) over K. Then the diagram (2.8.1) is the (-adic realisation of an
exact sequence of motives

0— hk+1(E(k))(€) N hk—l—l(E(k) _ Y(k))(e) — h’;j(‘kz)(E(k))(e) — 0

and that after possibly a finite extension of K we have an isomorphism

PR (BW)(e) =5 h°(Z)(—k — 1).

Assume henceforth either that the smooth part of the fibre 771(z;) is the product of G,
(untwisted) with a finite group scheme, or that k is even. Then z; determines a map

cl(z1)

U~k —1) —— WFLEW)(e)

and therefore by pullback we obtain an extension of motives
(3.1.1) 0— MY E®)(e) = (x) » Y=k —1) — 0.

The principles of motivic cohomology [2] indicate that (3.1.1) is classified by an element
of the motivic cohomology group

HYP(E®, Qk +1)) = KMV (ED).

3.2. We will use the calculations of the motivic homology of the boundary Y *) from [15]
to identify such an element. We first state a rather general result, which in some cases
has been written down by Jannsen ([10], §9). Let V be a smooth quasi-projective scheme
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over I, and let W C V be a closed subscheme. The motivic cohomology with supports is
defined by

Hiy w(V,b) = Gr’ Ky_.(V)eQ

where KV (V) is K-theory of V with supports in W, and the graded part is with respect
to the ~y-filtration. In [21] it is proved that the long exact sequence of K-theory with
supports respects the A-ring structure, so there is a long exact sequence

Hiy (V. b) — Hi(V.b) — Hi(V = W,b) — Higy (V,h)

Soulé also shows that motivic cohomology forms part of what is almost a Bloch-Ogus
Poincaré duality theory [5]——the only restriction being that in the cohomology groups the
ambient schemes must be taken to be smooth.

3.3. Let Hcont be continuous étale cohomology [9]. There are Chern class maps

clw: Hiy w (V. Qb)) = Hegne w(V,Qu(D))

and we now define Hi, - (V, Q(5))° to be the kernel of the composite map

Hw(V, QoY) 2% B (V,Qu(0) — HE (V.Qu(b) — BO(K, HY(V, Qb))

The edge homomorphism in the Hochschild-Serre spectral sequence therefore yields a map
Hyy w(V, Q)" — HY(K,H* NV, Qu(D)))

If we H%A’W(V,Q(b))o we write w for its image in H'(K, H*=1(V,Qy(b))) by the above
map.
3.4. fw € H%A’W(V,Q(b))o we can also form an extension of (-adic Galois modules as

follows: the image of w in H*(V,((b)) vanishes. Hence by pullback from the exact
sequence:

HZAV,Qub)) — H NV, Qb)) — H NV =W, Qb)) - He(V, Qb)) — HYV, Qb))
ce(w) 7o
Q(0)

we obtain an extension

0—A—B—Q0)—0

of Q(0) with o B
A = coker [HEZH(V, Qu(b) — H*~H(V, Qu(0))].

Theorem 3.5. The extension B is classified by the image of wy in H'(Gal(K /K), A).

Proof. This is very similar to Theorem 9.4 of [10]. Namely, let us define analogously

Heon (V. Q(D))" =ke [Hfont w(V, @1 — HO(K, H"(V,Qy(b)))]
cont V @( b cont V @( - HO K Ha(v @Z(b)))]
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Then there is a diagram

Hcaont,W(Vv Qf(b))o

E \>
ker[H“W(V7 @[(b))Gal(K/R’) — HY(V, @[(b))Gal(f(/K)]

ker[H“W(V, Qb)) — HY(V, Qb)) GalK/E)

(- HY(K, H YV, Qb))
H(K, coker[ HEZV(V, Qb)) — H* NV, Qb)) =

cont V @Z

Here the arrow labelled o is the edge homomorphism in the Hochschild-Serre spectral
sequence, and 7 is the boundary map in the long exact cohomology sequence attached to
the short exact sequence

0— coker[H“W_l(V, Qb)) — H* =1V, Qu(b))]
—s H NV - W, Qb)) — ker[H“W(V, Qb)) — HY(V,Qud))] — 0.

The commutativity of this diagram is a consequence of Proposition 9.4 of [10], and from
this the desired compatibility follows.

3.6. We next write down an element of Hﬂ'z(E(k), Q(k + 1)), which by Poincaré duality

is the same as H{(E™® (Q0)). For this we shall use the results of [15]. Let Y(*®) ¢ y'(¥)
be the connected component of the identity of the smooth part of Y*). The proof of

MF3.1.0(ii) shows that the inclusion Y *) < Y ¥ gives isomorphisms
Ho 3o (BW Qe+ 1) = By W, Q0))(e) = B (YP, Q0))(e)

Taking z; asin 3.1, one has that HM (21), Q0))(e) is isomorphic to HM(Gm/,{(Zl) Qoy)(
which is 1- d1mens1ona1 and spanned by the cup- product t1 U...Ut, where t; is the stan-
dard coordinate on the i'" copy of G,. Picking such a generator, let w denote its image

in Hﬁj;w (E®) (% 4+ 1)). From 2.15 and 3.5 we obtain the following result.

Corollary 3.7. The (-adic realisation of the extension of motives (3.1.1) is classified by a

non-zero multiple of the image of wy in H'(K, Hk"'l(E(/I;—z,, Qu(k+1))(e)). In particular, if

the hypotheses of 2.15 hold, then the image of w in Hﬂ'z(E(k), Qk+1)) = I&’,Ek+1)(E(k))

1S nonzero.

3.8. The Deligne-Beilinson (or “absolute Hodge”, see [3]) cohomology group Hk+2 E;ﬁg, R(k+

1)) is zero for k > 0, since E™) is smooth and proper. Therefore there is no interpretation
for w in terms of archimedean regulators. In fact, Beilinson’s conjectures [2] predict that
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Hﬂ/ZZ(E(k), Q(k + 1)), the motivic cohomology group “over Z”, vanishes. The existence
of w does not contradict this, since the method we have used to show that w is non-zero
is to show that (modulo certain compatibilities) that it does not map to an element of
Hﬂ/ZZ(E(k), Qr+1) C Hﬂ'z(E(k), Qk +1)). Its existence should be accounted for by
the vanishing of an incomplete L-function at s = 1; and the analysis of the vanishing cycles
certainly shows that the local L-factor at p of the parabolic cohomology H* (X, g. Sym* F)
has a pole at s = 1. For further discussion of the relation of these elements to an (as yet
unformulated) S-integral version of Beilinson’s conjectures, see [16].

4. Examples

4.1. We will give three examples to which the results of §§1-2 apply. In each case the
elliptic surface F is constructed as follows. Let T' C SLy(Z) be a subgroup of finite index.
The quotient of the upper half-plane by I' is the set of complex points of a connected
smooth curve over some number field K, whose smooth compactification Xt is equipped
with a finite morphism j: Xt — [P-. We let Ep be the minimal model of the fibre product
(cf. 2.18 above)

& X XF.

4.2. Tt is not necessarily the case that Ep/Xr satisfies the hypotheses of 2.2. To get
around this we follow a standard procedure, which was used in an almost identical way in
[13] and [14], and consider the intersection I of T by its with the congruence subgroup
+I'(N), when N > 3 is chosen to be divisible by the widths of all the cusps of I'. Then

X1/ may be taken to be a component of the normalisation of the fibre product
Xr xp X(N)

where X (V) is the modular curve over (Q of level N, parameterising (generalised) elliptic
curves A with an isomorphism py x Z/N = Ay of determinant 1.

4.3. By the choice of N the covering Xt — X(N) is actually étale, and thus the elliptic
surface 7': Epr — X/ is the pullback to X1/ of the standard universal generalised elliptic
curve BV with level N structure on X(N). In particular it is semistable. Moreover there
is a finite group scheme of section of Ers/Xr/ isomorphic to py x Z/N which meets each
irreducible component of each degenerate fibre, namely the pullbacks of the tautological
sections of the universal elliptic curve. Hence the conditions of 2.2 are satisfied by FErp.

4.4. To recover the parabolic cohomology groups for I' from those of T" it is necessary
only to pass to invariants under a suitable subgroup scheme H of SL(uy x Z/N). Let
k: Xtr — Xr be the covering; it is a torsor for some such subgroup scheme H. Denote all
objects corresponding to I by adding the symbol . Then define
def = N _ .
PWEEH (X, g, Sym RFQ)" = H' (Xr, k(gL Sym® R'7,Q)™)
PWEEH (X, gf Sym* R'FL Q)Y = H (Xp, ku(gf Sym* R'7,.Qp)")

Since the elliptic curve £ (2.18) already has semistable reduction at j = oo, the mon-
odromy of the sheaf R'¢,(Q, on A — {0,1728} is unipotent at j = co. So the sheaves
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k(gL Sym* R'7, Q)" and g, Sym* R'%,Q), on X, are isomorphic away from the points
where j = 0 or 1728. The same is true for k.(g, Sym* R'7, Q)" and ¢ Sym* R'#' Q). In
other words, for the calculations of vanishing cycles we can work on Xr.

4.5. Assume that Xt has genus 0, and that the field K is (Q. Let ¢ be any generator of
the function field of X over (Q which satisfies an equation of the form

(4.5.1) P(t)+jQ(t)=0

where we assume P, ) € ox, degP = d > deg@ and P monic. Then it is shown in
Proposition 2.7 of [14] that the representations (W} of Gal(K/K) are unramified at all
primes p of residue characteristic different from ¢ for which:

(i) P(t), Q(t) are p-integral, and their reductions P(t), Q(t) modulo p are relatively
prime; and
(ii) at least one of ﬁ’(t), @’(t) is non-zero.

The same argument applies also to the representations W§,. (In fact the result is
not stated exactly in this form in [14], but it is easily checked that the proof yields this
result. )

Proposition 4.6. Suppose that p is a prime of K for which condition 4.5(i) holds. Suppose
also that

(ii)” There exists exactly one root 3 € Qp of Q(t) (of arbitrary multiplicity) such that
ord,(3) < 0.

Then the hypotheses of Theorem 2.15 are satisfied.

Proof. Let o0, be the localisation of ox at p. As in the proof of 4.5, we observe that by
condition (i), the defining equation (4.5.1) gives a finite morphism ' @0, — ' @0, whose
generic fibre is j: Xt — [P}-. Hence in the notation of 2.15 the morphism jzz X — P is
given by (4.5.1) in a neighbourhood of the fibre at p. Replacing K by IK(/3), and taking

for z; the sections ¢t = 0o, t = 3 lying over j = oo the conditions of 2.15 are satisfied.
4.7. We will consider the following three cases:

(1) The subgroup I'y 3 of index 7, generated by

G () Go)

(i1) The subgroup I's 5, also of index 7, generated by

B¢ G

(iii) The subgroup I'71; of index 9 generated by

G- (0 G ()
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which was considered in [14] (and before that by Atkin and Swinnerton-Dyer [1]).

4.8. In each case the curve Xt has genus zero, so the equations (4.5.1) can be found by
methods going back to Klein and Fricke, and systemised by Atkin and Swinnerton-Dyer.
The relation (4.5.1) can, for suitable ¢, be put in the form

. Es(t)F5(1)° E2(t)Fy(t)?
=7 om P T o

for polynomials F,(t), F,(t) with coefficients in &', which may be computed by the method
of undetermined coefficients.

4.9. For the three examples the field K is in fact (, and the j-equations are as follows:

(i) For I'y 3:
(t 4+ 432)(¢? + 80t — 3888)*

. —7
J = =7 t3
t — 16)(#> + 344¢% + 1944¢ + 108°%)2
= _7—7( )t + t3+ + ) + 1728.
(ii) For I's 5:
o (4 125)(#* 4 5t — 1280)3
J=7 2
t — 64)(t? + 102t% 4 381¢ + 64000)?
= 7—7( )t + t2+ + ) +1728.
(iii) For I'711:
. e (PP 42 410t +6)°
)= 12 4 13t/4 + 8
t(t* 4 613 4+ 212 + 35t + 63/2)?
:26(Jr * i i /)—|—1728.

#2 4 13t/4 + 8

To put these in a form to which 4.6 applies, we need to make a change of variables,
given in the three cases respectively by

t=Tt'+2; t=Tt+1;, t=1¢)/2
giving the following result:

Proposition 4.10. Let I' be one of I'y 3, I's 2, I'7 1,1. Let p equal 7, 7 or 2 respectively.

Then the hypotheses of 2.15 are satisfied. In particular W}, is a non-trivial extension of
o WE (for ( # p) and the image of w in Hﬂ'z(E(k), Q(k + 1)) (cf. 3.7) is nonzero.

4.11. Return to the general case, and let A C SLy(Z) be the smallest congruence group
containing I'. We choose K and models for Xp, XA such that the obvious transition
morphism ¢ : Xp — XA is defined over K. This determines direct and inverse image maps

¢*:AW£€ _>FW£{€7 ¢*3FW£€ - AWz{C

19



whose composite is multiplication by the degree of ¢. We define FW?’Prim C pWE to be

ker ¢,. Then W} is the direct sum of FW;’Prim and A WF. There is a similar decomposi-
tion

(4.11.1) Wiy = AW @ FWz{Cfprim-

4.12. Suppose that p is a prime of K for which the hypotheses of 2.15 hold. Then the
unipotent element u € Aut W}, preserves the decomposition (4.11.1). The following

remark will be used in [18,19] in the study of the image of Galois in Aut FW;’Prim.

Lemma 4.13. Let u' € AutFWf!’prim, u" € AutFWf’Prim be the images of u. Then
(u' —1)* £ 0 and (u" — 1)1 £ 0.

Proof. We have to go back to the construction of wu; it comes from the homomorphism
WF — B = (R'®g Sym" F),

into the group of vanishing cycles at the cusp z in characteristic p. Now for the congruence
subgroup A we know (cf. [12] 10.8.3) that (for I sufficiently large) the subscheme of cusps
is étale over 0. Therefore on the curve XA there are no vanishing cycles, so the image of
AW;“! in B is zero, which is what we need. [

References

1 A.O.L. Atkin, H. P. F. Swinnerton-Dyer; Modular forms on noncongruence subgroups.
AMS Proc. Symp. Pure Math. 19 (1971), 1-25

2 A. A. Beilinson; Higher regulators and values of L-functions. J. Soviet Math. 30
(1985), 2036-2070

3 A. A. Beilinson; Notes on absolute Hodge cohomology. Applications of algebraic K-
theory to algebraic geometry and number theory (Contemporary Mathematics 55

(1986)), 35-68

4 B. J. Birch, W. Kuyk; Modular functions of one variable IV. Lect. notes in mathe-
matics 476 (Springer 1973)

5 S. Bloch, A. Ogus; Gersten’s conjecture and the homology of schemes. Ann. Sci. Ec.
Norm. Sup. (4) 7 (1974), 181-202

6 P. Deligne; Formes modulaires et représentations (-adiques. Sém. Bourbaki, éxposé
355. Lect. notes in mathematics 179, 139-172 (Springer, 1969)

7 P. Deligne; La conjecture de Wesl II. Publ. Math. IHES 52 (1980), 137252

8 P. Deligne, M. Rapoport; Les schémas de modules des courbes elliptiques. Modular
functions of one variable II. Lect. notes in mathematics 349, 143-316 (Springer, 1973)

9 U. Jannsen; Continuous étale cohomology. Math. Annalen 280 (1988) 207245

20



10

11

12

13

14

15
16

17

18

19
20
21
22

U. Jannsen; Mized motives and algebraic K -theory. Lecture notes in math. 1400

(1990)

N. M. Katz; p-adic properties of modular schemes and modular forms. Modular func-
tions of one variable III. Lect. notes in mathematics 350, 69-190 (Springer, 1973)

N. M. Katz, B. Mazur; Arithmetic moduli of elliptic curves. Annals of Maths. Studies
108 (Princeton, 1985)

A. J. Scholl; Modular forms and de Rham cohomology; Atkin—Swinnerton-Dyer con-
gruences. Invent. math. 79 (1985) 49-77

A. J. Scholl; The (-adic representations associated to a certain moncongruence sub-
group. J. fur die reine und ang. Math. 392 (1988), 1-15

A. J. Scholl; Motives for modular forms. Inventiones math. 100 (1990), 419-430

A. J.Scholl; Modular forms and algebraic K-theory. Journées Arithmétiques de Geneve
1991, ed. D. Coray. Astérisque 209 (1992), 85-97

A.J. Scholl; Height pairings and special values of L-functions. AMS Proc. Symp. Pure
Math. 55 (1994), part 1, 571-598

A. J. Scholl; On some (-adic representations of Gal(QQ/Q) attached to noncongruence
subgroups. Preprint (1993)

A. J. Scholl; On the Hecke algebra of @ noncongruence subgroup. Preprint (1993)
J.-P. Serre; Letter to Thompson. Appendix to [22]
C. Soulé; Opérations en K-théorie algébrique. Canad. J. Math. 37 (1985), 488-550

J. G. Thompson; Hecke operators and noncongruence subgroups. In: Group Theory

(Singapore 1987), 215-224 (de Gruyter, Berlin-New York, 1989)

Department of Mathematical Sciences
Science Laboratories

University of Durham

Durham DH1 3LE

England

e-mail: a.j.scholl@durham.ac.uk

21



