Motives for modular forms

A. J. Scholl

Introduction

In [DeFM], Deligne constructs l-adic parabolic cohomology groups attached to holomorphic cusp forms of
weight > 2 on congruence subgroups of SL2(Z). These groups occur in the l-adic cohomology of certain
smooth projective varieties over Q—the Kuga-Sato varieties— which are suitably compactified families of
products of elliptic curves. In view of Grothendieck’s conjectural theory of motives it is natural to hope that
the parabolic cohomology groups can be directly constructed as the kernel of some projectors (in a suitable
ring of algebraic correspondences) acting on the cohomology of these varieties. In this note we show that this
can be done; in fact the projector we use belongs to the group algebra of a finite group of automorphisms of
the Kuga-Sato variety.

The existence of such motives has been speculated for some time (see for instance the introduction to
[La]). In [Ja2] Jannsen has shown how to construct motives for modular forms in the category of motives
defined by absolute Hodge cycles; his construction is very general and should apply to automorphic forms
on other groups.

In §1 we state our results. As an application, we exhibit a relation between the the p-adic representation
of Gal(ﬁp /Qp) attached to a modular form, and the action of the Hecke operator T},. This was suggested
by Fontaine, and I am very grateful to him for discussions on this topic. I am also indebted to Messing
for drawing my attention to the results of [GM], and to Jannsen, Rapoport and Schappacher for useful

discussions.

1. Definitions and results.

1.0.0. Cousider integers n > 3, k > 1. (We do not treat here the case k = 0, which corresponds to cusp
forms of weight 2; the associated motives are then given by the Jacobians of modular curves, and are well
understood.) The properties of modular curves and universal families of elliptic curves used below can be
found in [DeFM], [DR] and [KM].

1.0.1. Denote by M, the modular curve over QQ parametrising elliptic curves with level n structure, and
let j : M,, — M, be its smooth compactification (classifying generalised elliptic curves). Then M,, is the
complement in M, of the cuspidal subscheme M2°, a finite sum of copies of Spec Q((,)-

1.0.2. Write 7 : X,, — M, for the universal elliptic curve with level n-structure (which exists as n > 3),
and 7 : X,, — M, for the universal generalised elliptic curve. Thus X, is a smooth and proper Q-scheme.
The open subscheme YZ on which 7 is smooth is the Néron model of X,, over M, and the fibres of 7 over
M2 are isomorphic to the standard Néron n-gon, which we denote C,.

1.0.3. Let 7, : 72 — M,, be the k-fold fibre product of X,, with itself over M, and XZ = ﬁk_l (M,,). It
k > 2 then 72 is singular; denote by 7: the canonical desingularisation of 7: constructed by Deligne in

[DeFM], Lemmes 5.4, 5.5. (In §3 below we shall give an alternative description of ?:) Let

—k,00

X~ = (M)

~-X.-x"

n

and write X = X" — X"
n n n
1.1.0. The level n structure on X,, gives a homomorphism of group schemes over M,
(Z/n)? x M, — X,,.

Therefore (Z/n)” acts by translations on X,,. Inversion in the fibres defines an involution of X, and we
obtain an action of the semi-direct product (Z/n)* Xps on X,,.
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1.1.1. Let X; be the symmetric group on k letters, acting on 72 by permuting the factors of the fibre

product. Then the wreath product

TS (Z/n)? o) 1 5,

= ((Z/n)* Apa)* AZy,

acts on X, by automophisms in the fibres of 7. By the canonical nature of the desingularisation, this

. =k
extends to an action of I'x on Xn.

1.1.2. Let € : Ty — {£1} be the homomorphism which is trivial on (Z/n)?*, is the product map on p}
and is the sign character on ¥j. Let II. € Z[1/2n.k!][T'x] be the projector attached to ¢, and for any
Z [1/2n.k!]-module V' on which T'y, acts, write V(e) for II.(V).

1.2.0. Recall the parabolic cohomology groups (in Betti and [-adic theories) attached to the space of cusp
forms of weight k + 2 and level n:

’erLWB = Hl(ﬁn(C),j* Symk Rle*Q)
in = Helt (Mﬂ & 67 .7* Symk Rlﬂ-*Ql)
~ W ®q Q.

They are subquotients of H ]];H(?:), H f“(?:) respectively. In [DeFM] these groups are defined instead
as the image of H}(M,,,—) in H'(M,, —), but it is well known that these definitions are equivalent. There
is also a long exact sequence (in, say, [-adic cohomology)

0— *W, — HA(M, ® Q,Sym" R'7.Q;) — HS (M © Q, Qi(—k — 1)) — 0.

1.2.1. Theorem. For? = B orl,
k

B Wy = H; (X,)(e).
1.2.2. We call a Chow motive an object of the category of motives [Ma] over Q defined by taking as

morphisms .
Hom(h(Y),h(X)) = CH™Y (X xY) ® Q,

the Chow group of cycles of codimension dim Y modulo rational equivalence. The pair (?:, I1.) then defines

a Chow motive, which we denote *)V. The theorem shows that the realisations of £V are then the parabolic
cohomology groups.

1.2.3. We call a Grothendieck motive (with coefficients in a number field L) an object of the category of
motives over Q in which Hom(h(Y'), h(X)) is the group of algebraic cycles on X x Y of codimension dimY’,
tensored with L, modulo homological equivalence. The image of ¥}V in this category can be decomposed
under action of the Hecke algebra for suitable L, and we shall obtain the following result.

o0
1.2.4. Theorem. Let f = > amq™ be a normalised newform of weight w, level n and character x. Let
m=1

L be the field generated by the coefficients a,,, m > 1. Then there is a Grothendieck motive M (f) over Q
with coefficients in E, with the following properties:

(i) If pfnl, and X is a prime of L dividing l, then the A\-adic realisation Hx(M(f)) of M(f) is unramified
at p, and the characteristic polynomial of a geometric Frobenius at p is the Hecke polynomial

T,(X) = X2 - apX + x(p)pw_l.

(ii) Ifpfn (andp > w) and 7 is a prime of L dividing p, then the m-adic realisation H(M(f)) is a crystalline

representation of Gal(Q,,/Qy), and the characteristic polynomial of ¢ on the associated ¢-filtered module is
equal to Tp(X).

1.2.5. Remark. The hypothesis p > w is required as the results of Fontaine and Messing [FM] are only
proved for primes p which are greater than the dimensions of the varieties in question (which is w — 1 in our
case). This restriction will be removed by forthcoming work of Faltings.
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1.2.6. Remark. One should be able to decompose ¥ already in the category of Chow motives (as is the
case for k = 0); but this seems very hard without assuming the standard conjectures.

1.3.0. Theorem 1.2.1 will be a consequence of a slightly more general result. Consider a twisted Poincaré
duality theory H*, H, (in the sense of [BlO]) for varieties over Q with coefficients in a field of character-
istic zero. Assume that the projective bundle axiom holds. Then for any smooth S there is a canonical
decomposition

H,. (G, x S,0) =H, o(S,e —1)® H._1(S,e)
in which inversion  — 2! on G,, acts by +1 on the first summand, and by —1 on the second. As a simple

consequence, we have:

1.3.1. Lemma. i) Let €, be the restriction of the character € to the subgroup ;1,’2“ N = po 1 Xy of T'y.
Then for any k,
H.(GF x S, e)(ex) = Ho (S, o).

ii) Let D ~ GF~1 be the kernel of the product map
an—>Gm, (T1,...,T) — X1 Tk
which is stable under the action of Xj. Then

H.(D x S,e0)(sgn) = Hy_r4+1(5, ®). |
1.3.2. Since 7,11’00 is a union of Néron n-gons there is a (non-canonical) isomorphism

(XEyres 5 N[ » (G X Z/0)E.

n
Define a map p as the composite

H(XE o) 2 H Xy o)) — Hoa(M® x (G x Z/n)", 0)(c)

: |-

H*fkfl(Msoa .)
(the vertical arrow being an isomorphism by 1.3.1). Let j: X : — ?: be the inclusion morphism.

1.3.3. Theorem. There is a long exact sequence

k

X i t o) ()L H 1 (M2 0) — Hoy (X, 0)(€) — ...

c— H (X' o) (e) Lo H. (X"

1.3.4. To deduce 1.2.1, recall that translation by sections of finite order acts trivially on R'7,Q;, and by
the Kiinneth formula and the Leray spectral sequence (cf. the proof of 5.3 of [DeFM]) one has
H* (X! ©Q,Qu)(e) > H'(M, ® Q,Sym" R'7.Q))
and similarly in Betti cohomology. From 1.3.3 we deduce
Hitw)y=0 for i#k+1,k+2
and an exact sequence
0— HlkH(ﬁW) —HYM, ® Q,Sym" R'n,Q;) %
HY M ®Q,Qi(—k —1))-=H (W) — 0.
Since k # 0 the source and target of o have different weights, so ¢ = 0 and the result follows by 1.2.0.

1.4.0. Other cohomology theories can be used in 1.3.3. For example, consider Beilinson’s motivic cohomology

Hpq (denoted H 4 in [Bel])
3 .y def j
Hjy(X. Q) K] (X)
the ¢/-eigenspace for the Adams operators 17 on Ks;_;(X) ® Q. By Borel’s theorem H3, (M, Q(j)) =0
if 7 > 0, and 1.3.1 then gives:



1.4.1. Corollary. There is, for every | > 0, an exact sequence
0 — HYP2(EW, Q(k+1+2)) — HEPA(XE, QU +1+2)) ()2 H (M, Q(I + 1)).

1.4.2. An analogous sequence exists in Deligne-Beilinson (“absolute Hodge”) cohomology H3(—,R(e)).
Using ideas of Beilinson (notably the Eisenstein symbol map [Be2]) one may then obtain results concerning
the leading coefficients at s = —I of the L-series L(¥W),s) (which are products of Hecke L-series for cusp
forms of weight k + 2). The details will appear elsewhere [Sc3].

2. Products of double points.

2.0.0. For this section, S denotes the spectrum of a discrete valuation ring R with uniformiser 7 and residue
field k.

2.0.1. For an integer k > 1, write
EF = Sler,y1, - 2k, yrl/ (wiys — W)lgigk-
Let F'* be the special fibre {7 = 0} of X; it has a filtration
FFr=FFoFf o . DFf>FF =0

where Fi is the closed subscheme of F* on which some (k — p) pairs of coordinates (z;,y;) simultaneously
vanish. The singular locus of EFis F, ,5_2.

2.0.2. Proposition. Let ¢ : E* — E* be the blowing-up of the reduced point F¥, and write F; for the
proper transform of sz under ¢, for 1 <p <k —1.

i) E* has an open covering by 2k copies U; of At x EF-1,
i) UiNEF =AY x By for 1 <p<k—1. [ |

2.1.0. Now fix k, and define E{0) = E*, F(0) = Fy. For 1 < p < k — 1, define inductively ¢, : E(p) —
E(p — 1) to be the blowing-up along the closed subscheme F(p — 1) C E(p — 1), and F(p) to be the proper
transform of Fi in E(p). Induction on p and 2.0.2 show:

2.1.1. Proposition. For 0 < p < k — 1, there is an open covering of E{(p) by copies V; of AP x E¥~P such

that F(p) NV; = AP x Fy~P. In particular, F(p) C E(p)™® for 0 < p < k —2, and EYE(k - 1) is regular.

2.1.2. Remark. The desingularisation E is the same as that of Lemme 5.5 of [DeFM]; we leave the
verification of this as an exercise.

2.1.3. Define G(p) C E(p) to be the locally closed subscheme
Glp)=E@™ne," (Flp-1)).

By 2.1.1, the composite

def =
1/)p§¢k,1o-~o¢)p+1 :E—>E<p>

is an isomorphism over E(p)™& > G(p). If we define Wpdzef

fibre F of E over S has a filtration

(U (E(p)8) for 0 < p < k — 2, then the special

FOWeoWiD..oWr oD W1 =0
by closed subschemes such that
Wy =Wy — Gp) for0<p<k—2
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and B
F-Wo = Ff—FF,.

2.2.0. Consider the projective space P2"~! over x with homogeneous coordinates 1, y1,. .., zi, yi, and let
P, be the closed subscheme defined by the equations

Ilyl =...= CCTyT;
thus P, is the projectivised tangent cone to E* at the point Fé“. Define open subschemes:
P! = {no two pairs (z;,y;) of coordinates vanish simultaneously}

P/ = {no pair (z;,y;) of coordinates vanishes}
P’ = {no single coordinate x; or y; vanishes}.
Then by 2.1.1 and 2.1.3, the fibration G(p) — F(p) is locally on F(p) isomorphic to the product
P, x AP = AP,
2.3.0. The wreath product ps ! ¥) acts on E* and on P, by permutations of the coordinates which leave

the set of pairs (z;,y;) unchanged. It permutes the 27 - (f}) irreducible components of F]f transitively, and

the stabiliser of a component is isomorphic to (3! X;—p) X Xy, the subgroup ps ! ¥j—p acting trivially on
the component.

The construction of the resolution E — E* is invariant under o 1 Xg. In particular the group acts on
the fibration G(p) — F(p).

2.3.1. Proposition. Let C be an irreducible component of F(p), and consider the subgroup ps ! ¥j_, of
its stabiliser. The fibration
G<p> XF(;D) C —C

together with the action of po ¢ Xi—p, is locally isomorphic on C' to the product P,é_p xC—C. ]

2.4.0. Let €, be the character of py 1 X, defined in 1.3.1, and let H*, H, be a Poincaré duality theory for
varieties over k satisfying the conditions of 1.3.0.

2.4.1. Proposition. For any smooth T over k,
H.(P. x T)(e) = 0.
This is a consequence of the following three lemmas.
2.4.2. Lemma. H,.((P.— P!)xT)(e) =0.
Proof. P/— P! is a disjoint union of 7-2"~! copies of G""2, permuted transitively by p?3,.. The component
{fei=p=9y2==y =0, 22,...,2, # 0}

is acted on trivially by the transposition x; < y1, and the lemma follows. ]

T

2.4.3. Lemma. H*(P} x T)(e,) is a free module over H*(T') generated by the image of Dy v

Y Yr
H*(P*,r).
Proof. The morphism
G:n/f-c - P:
(21 20) = (21,27 55 2 27 0)
is an isogeny with kernel p,, hence
H*(P? x T)(er) = H"(Gy, x T)(er)
and we can apply 1.3.1. |



2.4.4. Lemma. H*((P! — P*) x T)(e,) is free over H*(T) of rank one, and the boundary map
H*(P; % T){e,) — H*" (P! - P}) x T)(er)

is an isomorphism.

Proof. P — P7 is the disjoint union of 2" copies of G’ !, permuted transitively by p, ! 3. Therefore
H*((P! = Pf) x T)(er) = H*(Gy" x T)(sgn)

and the latter is free of rank one over H*(T') by 1.3.1. Consider the component
Q={r1=22=...=2,=0, y1,...,y # 0}

of P/ — P*. It belongs to the open set Spec R C P/, where

-1 -1
vi'yi \w/) Ty \

and a local equation for @ on Spec R is L _ 0. The generator of H*(P* x T)(e,) may be written
Y1

R=F

X X
Yp="uU...uZL

Y1 Yr
X X 2 X 2
_—1U—1<ﬂ) u...U—1<ﬂ>
Y1 Y1 \Y2 Y1 \Yr
—or-1. B Uy ¥
Y1 Y2 Yr

and the component along @ of the boundary of 1 is

or-1. Ny UL
Y2 Yr

which generates H*(Q x T')(sgn) over H*(T') as required.



3. Homology at infinity.

3.0. Resume the notations of §1. Write for convenience X = Yﬁ, Y = YZ’OO, and filter Y by closed
subschemes
Y=Y,DY,1D..0YyDY_; =0

where Y}, is the set of (z1...,25)€ Y such that at least (k — p) of the components z; are singular points
of the corresponding Néron polygon. Define inductively X (p), Y (p), Z(p) in a manner analogous to 2.1.0
above; more precisely, Y(0) = Yy C X(0) = X; the morphism ¢, : X(p) — X (p — 1) is the blowing-up of
Y(p—1), and Y(p) is the proper transform of Y, in X (p); and

Z{p) = ¢, (Y{p—1)) N X (p)™® C X(p).
Write ~ ”
X = X (b 1)25 X ()
Wip) =, ' (X(p)™e).

3.1.0. Theorem. i) X is smooth over Q, and the action of ((Z/n)? X¥ps) 1 Xy = Ty on X extends to an
action on X.

ii) ¥y : X — X is an isomorphism over X8, inducing an isomorphism

H*(X)(e) = H*(X™*)(e).

iii) The inclusion of the connected component X* of the Néron model of X : over M,, in X™® induces
an isomorphism
H(X™8)(e) — H™(X7)(ex).

Proof. i) Recall ([DR], Ch. VII) that the formal completion of X,, along any singular fibre is isomorphic

_1/n
to the n-sided Tate curve Go /q% over Q(()[[¢"/™]]. Therefore the formal completion of X along Y is
locally isomorphic to the formal completion of E¥ along F* (§2.0.1), and the result of 2.1.1 is applicable.

ii) We have a filtration
YOWO)OW({1)D...OW(k—-2)DW(k—-1)=0

such that W(p) — W(p +1) = Z(0) is a fibration over Y (p) for the Zariski topology with fibre P;_ . The
components of Y (p) over a fixed cusp are permuted transitively by T'y, and the stabiliser of a component
contains a subgroup ps ! ¥, acting trivially on the base. By Proposition 2.4.1, H,(W{p) — W{p + 1))(e)
is trivial for 0 < p < k — 2, and the result follows from the long exact sequence of cohomology.

iii) Lying over a fixed cusp there are kn* components of Y;_1 —Yj_2, each isomorphic to G¥~1, permuted
transitively by T'y. The stabiliser of a component is gy X (#2135 —1), the first factor acting trivially. Therefore
H*(Yi—1 — Yi_2)(e) = 0, and by the exact cohomology sequence,

H*(X™8)(e) = H*(X — Yi_2)(e) = H*(X — Yj_1)(e).

Now the translations (Z/n)?* act trivially on H*(X:) = H*(X —Y). We have X* x3; M2 = GE x M,
(X = Yi1) X7, Mi® = G, x (Z/n)F x M;®, and the inclusion X* — X — Y} induces an isomorphism
2k

H*(X* xq7. M®) =5 H*((X = Yio1) xq7, M2)#/m

the result follows from the 5-lemma applied to the long exact homology sequences for the inclusions X —Y «—

X* X —-Y — Xres, ]
3.1.1. Now applying the long exact cohomology sequence for the inclusion of X* in X and Poincaré duality
gives Theorem 1.3.3. ]



4. Hecke operators.

4.0.0. For this section, p will be a prime not dividing n. Let M, , be the modular curve over Q classifying
elliptic curves F with level n structure and a subgroup C' C FE of order p. The fibre product X np =
Xn X1, My is canonically isomorphic to the universal elliptic curve over M, ,, hence has a canonical

subgroup scheme C'. Write X: » for the fibre product X: X M, Moy p.

4.0.1. Let @ be the quotient of X | » by C', with level n structure coming from that on X . and let Q" be
its k-fold fibre product over M, ,. Consider the diagram:

xPoan xh o n gr 22 P

n,p
| l | l
M, — My, =— M,, — M,

where the first and third squares are Cartesian, given by the classifying maps for the elliptic curves with
level n-structure X | » and @Q over M, .

4.0.2. Define the Hecke correspondence T}, on X: by

Tp = ¢1*¢*¢§

The morphisms ¢;, ¢ are finite and flat, and we therefore get induced endomorphism T}, of H*(X :(C), Q)

and H:(X:(C), Q), and their l-adic analogues.

4.1.0. Insection (3.12) of [DeFM], Deligne defines Hecke operators on the groups H' (M,,(C), Sym” R' f.Q),
the groups with compact support, and the corresponding groups in /-adic cohomology. Provisionally denote
these operators by T}.

4.1.1. Proposition. The isomorphism

H*(X"(C),Q)(ex) == H'(M,(C),Sym" R'£.Q)

(given by the Leray spectral sequence for X: — My identifies T;, and T,. The same is true for the
cohomology with compact support.

This follows easily from Proposition 3.18 of [DeFM] and the functoriality of the Leray spectral sequence.
]
4.1.2. We now define the Hecke correspondence—still to be denoted 7},—on ?Z as the closure of the graph
. =k =k
of T, n X xX .

4.1.3. Proposition. The action of I'y on Hj (?ﬁ) commutes with T,,. The action of the transpose of T},

on the space of cusp forms H° (?:, QF+1) is the same as that of the classical Hecke operator.

Proof. The first part is immediate from the definition. For the second, see [Katz] 1.11. |

4.1.4. The preceding two propositions imply that T}, induces an endomorphism of the motive EW, and that
on the realisation Hp(EW) = FWp it agrees with T}.

4.2.0. Write k = w—2, and assume first that n > 3. The operators T}, for pfn generate a semisimple algebra
of endomorphisms of the parabolic cohomology Hp (% W) which commutes with the action of GL2(Z/n). Since
f is a newform, the subspace of the space of cusp forms F**'Hpr(¥W) ® L generated by f is the common
eigenspace of the ‘T, with eigenvalues a, intersected with the invariants under the subgroup

<3 *1‘) C GLy(Z/n).
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There is accordingly a projector ¥ ¢ in the endomorphism algebra of kW @ L—viewed here as a Grothendieck
motive—whose kernel on the space of cusp forms is the subspace generated by f. We define M(f) be the
submotive of W ® L which is the kernel of U .

If n < 3 then we replace n by nd for some d > 3 and take invariants under ker{GL2(Z/nd) — GL2(Z/n)}.

4.2.1. The Q-schemes M,,, X Z extend to smooth schemes over Z[1/n] which have a modular interpretation

(see for example [DR] V.1.17), and the compactification ?Z extends to a smooth and proper scheme over
Z[1/n]. The motive M(f) therefore has good reduction at any pfn, in the sense of [GM] B.3.8; its A-adic
realisations are unramified at p, and it has a crystalline realisation Herys(M (f)).

4.2.2. Identifying H;(EW) with W, we can then use the congruence relation ([DeFM] 4.9) to deduce
1.4.2(i), by a standard method: the relation T}, = F' + I;V identifies the eigenvalues of F' on Hx(M(f)) as

being roots of T}, (X ); an additional relation as in [Shimura] (7.5.2) shows that Hx(M(f)) ~ Hx(M(f))®x,
which is used to show that both roots of T, (X) occur.

4.2.3. Now we prove 1.4.2(ii). Since M(f) has good reduction at p and p > dim?: = w — 1, by the main

result of [FM] the representation H,(M(f)) of Gal(Q,/Q,) is crystalline, and the associated ¢-filtered
module is Hepys(M(f)) together with its Hodge filtration. But if V' is a smooth and proper F,-scheme,
and W an algebraic correspondence whose images in End(H;(V)) and End(H}(V)) are projectors, then
the characteristic polynomials of the Frobenius endomorphism on W(H;(V)) and W(H/,(V)) are equal, by
[KMess| Theorem 2(2). Therefore the characteristic polynomial of ¢ on Hepys(M(f)) is Tp(X). |
4.2.4. Remark. It is possible to show that the ¢-filtered module Hepys(EW) is isomorphic to the module

Li(n,Q,) defined in [S] 2.7, 3.3 for pf2n.
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