
Motives for modular forms

A. J. Scholl

Introduction

In [DeFM], Deligne constructs l-adic parabolic cohomology groups attached to holomorphic cusp forms of
weight ≥ 2 on congruence subgroups of SL2(Z). These groups occur in the l-adic cohomology of certain
smooth projective varieties over Q—the Kuga-Sato varieties— which are suitably compactified families of
products of elliptic curves. In view of Grothendieck’s conjectural theory of motives it is natural to hope that
the parabolic cohomology groups can be directly constructed as the kernel of some projectors (in a suitable
ring of algebraic correspondences) acting on the cohomology of these varieties. In this note we show that this
can be done; in fact the projector we use belongs to the group algebra of a finite group of automorphisms of
the Kuga-Sato variety.

The existence of such motives has been speculated for some time (see for instance the introduction to
[La]). In [Ja2] Jannsen has shown how to construct motives for modular forms in the category of motives
defined by absolute Hodge cycles; his construction is very general and should apply to automorphic forms
on other groups.

In §1 we state our results. As an application, we exhibit a relation between the the p-adic representation
of Gal(Qp/Qp) attached to a modular form, and the action of the Hecke operator Tp. This was suggested
by Fontaine, and I am very grateful to him for discussions on this topic. I am also indebted to Messing
for drawing my attention to the results of [GM], and to Jannsen, Rapoport and Schappacher for useful
discussions.

1. Definitions and results.

1.0.0. Consider integers n ≥ 3, k ≥ 1. (We do not treat here the case k = 0, which corresponds to cusp
forms of weight 2; the associated motives are then given by the Jacobians of modular curves, and are well
understood.) The properties of modular curves and universal families of elliptic curves used below can be
found in [DeFM], [DR] and [KM].

1.0.1. Denote by Mn the modular curve over Q parametrising elliptic curves with level n structure, and
let j : Mn −֒→ Mn be its smooth compactification (classifying generalised elliptic curves). Then Mn is the
complement in Mn of the cuspidal subscheme M∞

n , a finite sum of copies of SpecQ(ζn).

1.0.2. Write π : Xn → Mn for the universal elliptic curve with level n-structure (which exists as n ≥ 3),
and π̄ : Xn →Mn for the universal generalised elliptic curve. Thus Xn is a smooth and proper Q-scheme.
The open subscheme X

∗

n on which π̄ is smooth is the Néron model of Xn over Mn, and the fibres of π̄ over
M∞
n are isomorphic to the standard Néron n-gon, which we denote Cn.

1.0.3. Let π̄k : X
k

n → Mn be the k-fold fibre product of Xn with itself over Mn, and X
k

n
= π̄−1

k (Mn). If

k ≥ 2 then X
k

n is singular; denote by X
k

n
the canonical desingularisation of X

k

n constructed by Deligne in

[DeFM], Lemmes 5.4, 5.5. (In §3 below we shall give an alternative description of X
k

n
.) Let

X
k,∞

n = π̄−1
k (M∞

n )

= X
k

n −X
k

n

and write X
k,∞

n
= X

k

n
−X

k

n
.

1.1.0. The level n structure on Xn gives a homomorphism of group schemes over Mn

(Z/n)
2 ×Mn →֒ X

∗

n.

Therefore (Z/n)
2

acts by translations on Xn. Inversion in the fibres defines an involution of Xn, and we

obtain an action of the semi-direct product (Z/n)
2×µµµ2 on Xn.
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1.1.1. Let Σk be the symmetric group on k letters, acting on X
k

n by permuting the factors of the fibre
product. Then the wreath product

Γk
def
=((Z/n)2×µµµ2) ≀Σk

= ((Z/n)2×µµµ2)
k ×Σk

acts on X
k

n by automophisms in the fibres of π̄k. By the canonical nature of the desingularisation, this

extends to an action of Γk on X
k

n
.

1.1.2. Let ǫ : Γk → {±1} be the homomorphism which is trivial on (Z/n)2k, is the product map on µµµk2
and is the sign character on Σk. Let Πǫ ∈ Z [1/2n.k!] [Γk] be the projector attached to ǫ, and for any
Z [1/2n.k!]-module V on which Γk acts, write V (ǫ) for Πǫ(V ).

1.2.0. Recall the parabolic cohomology groups (in Betti and l-adic theories) attached to the space of cusp
forms of weight k + 2 and level n:

k
nWB = H1(Mn(C), j∗ SymkR1π∗Q)

k
nWl = H1

ét(Mn ⊗Q, j∗ Symk R1π∗Ql)

≃ k
nWB ⊗Q Ql.

They are subquotients of Hk+1
B (X

k

n
), Hk+1

l (X
k

n
) respectively. In [DeFM] these groups are defined instead

as the image of H1
c (Mn,−) in H1(Mn,−), but it is well known that these definitions are equivalent. There

is also a long exact sequence (in, say, l-adic cohomology)

0 −→ k
nWl −→ H1

ét(Mn ⊗Q, Symk R1π∗Ql) −→ H0
ét(M

∞
n ⊗Q,Ql(−k − 1)) −→ 0.

1.2.1. Theorem. For ? = B or l,
k
nW? = H∗

? (X
k

n
)(ǫ).

1.2.2. We call a Chow motive an object of the category of motives [Ma] over Q defined by taking as
morphisms

Hom(h(Y ), h(X)) = CHdimY (X × Y )⊗Q,

the Chow group of cycles of codimension dimY modulo rational equivalence. The pair (X
k

n
,Πǫ) then defines

a Chow motive, which we denote knW . The theorem shows that the realisations of knW are then the parabolic
cohomology groups.

1.2.3. We call a Grothendieck motive (with coefficients in a number field L) an object of the category of
motives over Q in which Hom(h(Y ), h(X)) is the group of algebraic cycles on X × Y of codimension dimY ,
tensored with L, modulo homological equivalence. The image of knW in this category can be decomposed
under action of the Hecke algebra for suitable L, and we shall obtain the following result.

1.2.4. Theorem. Let f =
∞∑
m=1

amq
m be a normalised newform of weight w, level n and character χ. Let

L be the field generated by the coefficients am, m ≥ 1. Then there is a Grothendieck motive M(f) over Q

with coefficients in E, with the following properties:

(i) If p6 |nl, and λ is a prime of L dividing l, then the λ-adic realisation Hλ(M(f)) of M(f) is unramified
at p, and the characteristic polynomial of a geometric Frobenius at p is the Hecke polynomial

Tp(X) = X2 − apX + χ(p)pw−1.

(ii) If p6 |n (and p ≥ w) and π is a prime of L dividing p, then the π-adic realisationHπ(M(f)) is a crystalline
representation of Gal(Qp/Qp), and the characteristic polynomial of φ on the associated φ-filtered module is
equal to Tp(X).

1.2.5. Remark. The hypothesis p ≥ w is required as the results of Fontaine and Messing [FM] are only
proved for primes p which are greater than the dimensions of the varieties in question (which is w− 1 in our
case). This restriction will be removed by forthcoming work of Faltings.
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1.2.6. Remark. One should be able to decompose k
nW already in the category of Chow motives (as is the

case for k = 0); but this seems very hard without assuming the standard conjectures.

1.3.0. Theorem 1.2.1 will be a consequence of a slightly more general result. Consider a twisted Poincaré
duality theory H∗, H∗ (in the sense of [BlO]) for varieties over Q with coefficients in a field of character-
istic zero. Assume that the projective bundle axiom holds. Then for any smooth S there is a canonical
decomposition

H∗(Gm × S, •) = H∗−2(S, • − 1)⊕H∗−1(S, •)

in which inversion x 7→ x−1 on Gm acts by +1 on the first summand, and by −1 on the second. As a simple
consequence, we have:

1.3.1. Lemma. i) Let ǫk be the restriction of the character ǫ to the subgroup µµµk2 ×Σk = µµµ2 ≀ Σk of Γk.
Then for any k,

H∗(G
k
m × S, •)(ǫk) = H∗−k(S, •).

ii) Let D ≃ Gk−1
m be the kernel of the product map

Gk
m → Gm, (x1, . . . , xk) 7→ x1 · · ·xk

which is stable under the action of Σk. Then

H∗(D × S, •)(sgn) = H∗−k+1(S, •).

1.3.2. Since X
1,∞

n is a union of Néron n-gons there is a (non-canonical) isomorphism

(X
k,∞

n )reg ∼−→M∞
n × (Gm × Z/n)k.

Define a map ρ as the composite

H∗(X
k

n
, •)

∂
−→ H∗−1(X

k,∞

n , •)(ǫ) −→ H∗−1(M
∞
n × (Gm × Z/n)k, •)(ǫ)

ρ
y≃

H∗−k−1(M
∞
n , •)

(the vertical arrow being an isomorphism by 1.3.1). Let j:X
k

n
→֒ X

k

n
be the inclusion morphism.

1.3.3. Theorem. There is a long exact sequence

. . . −→ H∗(X
k

n
, •)(ǫ)

j∗

−→H∗(X
k

n
, •)(ǫ)

ρ
−→H∗−k−1(M

∞
n , •) −→ H∗−1(X

k

n
, •)(ǫ) −→ . . . .

1.3.4. To deduce 1.2.1, recall that translation by sections of finite order acts trivially on R1π∗Ql, and by
the Künneth formula and the Leray spectral sequence (cf. the proof of 5.3 of [DeFM]) one has

H∗(X
k

n
⊗Q,Ql)(ǫ)

∼−→ H1(Mn ⊗Q, Symk R1π∗Ql)

and similarly in Betti cohomology. From 1.3.3 we deduce

Hi
l (
k
nW) = 0 for i 6= k + 1, k + 2

and an exact sequence

0 −→ Hk+1
l (knW) −→H1(Mn ⊗Q, Symk R1π∗Ql)

ρ
−→

H0(M∞
n ⊗Q,Ql(−k − 1))

σ
−→Hk+2

l (knW) −→ 0.

Since k 6= 0 the source and target of σ have different weights, so σ = 0 and the result follows by 1.2.0.

1.4.0. Other cohomology theories can be used in 1.3.3. For example, consider Beilinson’s motivic cohomology
HM (denoted HA in [Be1])

Hi
M(X,Q(j))

def
=K

(j)
2j−i(X)

the qj-eigenspace for the Adams operators ψq on K2j−i(X) ⊗Q. By Borel’s theorem H0
M(M∞

n ,Q(j)) = 0
if j > 0, and 1.3.1 then gives:
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1.4.1. Corollary. There is, for every l ≥ 0, an exact sequence

0 −→ Hk+2
M (knW ,Q(k + l + 2)) −→ Hk+2

M (X
k

n
,Q(k + l + 2))(ǫ)

ρ
−→H1

M(M∞
n ,Q(l + 1)).

1.4.2. An analogous sequence exists in Deligne-Beilinson (“absolute Hodge”) cohomology H∗
D(−,R(•)).

Using ideas of Beilinson (notably the Eisenstein symbol map [Be2]) one may then obtain results concerning
the leading coefficients at s = −l of the L-series L(knW , s) (which are products of Hecke L-series for cusp
forms of weight k + 2). The details will appear elsewhere [Sc3].

2. Products of double points.

2.0.0. For this section, S denotes the spectrum of a discrete valuation ring R with uniformiser π and residue
field κ.

2.0.1. For an integer k ≥ 1, write

Ek = S[x1, y1, . . . , xk, yk]/(xiyi − π)1≤i≤k.

Let F k be the special fibre {π = 0} of X ; it has a filtration

F k = F kk ⊃ F
k
k−1 ⊃ . . . ⊃ F

k
0 ⊃ F

k
−1 = ∅

where F kp is the closed subscheme of F k on which some (k − p) pairs of coordinates (xi, yi) simultaneously

vanish. The singular locus of Ek is F kk−2.

2.0.2. Proposition. Let φ : Êk → Ek be the blowing-up of the reduced point F k0 , and write F̂ kp for the

proper transform of F kp under φ, for 1 ≤ p ≤ k − 1.

i) Êk has an open covering by 2k copies Ui of A1 × Ek−1.

ii) Ui ∩ F̂ kp = A1 × F k−1
p−1 for 1 ≤ p ≤ k − 1.

2.1.0. Now fix k, and define E〈0〉 = Ek, F 〈0〉 = F k0 . For 1 ≤ p ≤ k − 1, define inductively φp : E〈p〉 →
E〈p− 1〉 to be the blowing-up along the closed subscheme F 〈p− 1〉 ⊂ E〈p− 1〉, and F 〈p〉 to be the proper
transform of F kp in E〈p〉. Induction on p and 2.0.2 show:

2.1.1. Proposition. For 0 ≤ p ≤ k − 1, there is an open covering of E〈p〉 by copies Vi of Ap × Ek−p such

that F 〈p〉 ∩ Vi = Ap × F k−p0 . In particular, F 〈p〉 ⊆ E〈p〉sing for 0 ≤ p ≤ k− 2, and Ẽ
def
=E〈k − 1〉 is regular.

2.1.2. Remark. The desingularisation Ẽ is the same as that of Lemme 5.5 of [DeFM]; we leave the
verification of this as an exercise.

2.1.3. Define G〈p〉 ⊂ E〈p〉 to be the locally closed subscheme

G〈p〉 = E〈p〉reg ∩ φ−1
p (F 〈p− 1〉) .

By 2.1.1, the composite

ψp
def
=φk−1 ◦ · · · ◦ φp+1 : Ẽ −→ E〈p〉

is an isomorphism over E〈p〉reg ⊃ G〈p〉. If we define Wp
def
=ψ−1

p

(
E〈p〉sing

)
for 0 ≤ p ≤ k− 2, then the special

fibre F̃ of Ẽ over S has a filtration

F̃ ⊃W0 ⊃W1 ⊃ . . . ⊃Wk−2 ⊃Wk−1 = ∅

by closed subschemes such that

Wp −Wp+1
∼−→ G〈p〉 for 0 ≤ p ≤ k − 2
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and
F̃ −W0

∼−→ F kk − F
k
k−2.

2.2.0. Consider the projective space P2r−1
κ over κ with homogeneous coordinates x1, y1,. . . , xl, yl, and let

Pr be the closed subscheme defined by the equations

x1y1 = . . . = xryr;

thus Pk is the projectivised tangent cone to Ek at the point F k0 . Define open subschemes:

P ′
r = {no two pairs (xi, yi) of coordinates vanish simultaneously}

P ′′
r = {no pair (xi, yi) of coordinates vanishes}

P ∗
r = {no single coordinate xi or yi vanishes}.

Then by 2.1.1 and 2.1.3, the fibration G〈p〉 → F 〈p〉 is locally on F 〈p〉 isomorphic to the product
P ′
k−p ×Ap → Ap.

2.3.0. The wreath product µµµ2 ≀ Σk acts on Ek and on Pk by permutations of the coordinates which leave

the set of pairs (xi, yi) unchanged. It permutes the 2p ·
(
k
p

)
irreducible components of F kp transitively, and

the stabiliser of a component is isomorphic to (µµµ2 ≀ Σk−p) × Σp, the subgroup µµµ2 ≀ Σk−p acting trivially on
the component.

The construction of the resolution Ẽ → Ek is invariant under µµµ2 ≀ Σk. In particular the group acts on
the fibration G〈p〉 → F 〈p〉.

2.3.1. Proposition. Let C be an irreducible component of F 〈p〉, and consider the subgroup µµµ2 ≀ Σk−p of
its stabiliser. The fibration

G〈p〉 ×F 〈p〉 C −→ C

together with the action of µµµ2 ≀ Σk−p, is locally isomorphic on C to the product P ′
k−p × C −→ C.

2.4.0. Let ǫr be the character of µµµ2 ≀ Σr defined in 1.3.1, and let H∗, H∗ be a Poincaré duality theory for
varieties over κ satisfying the conditions of 1.3.0.

2.4.1. Proposition. For any smooth T over κ,

H∗(P
′
r × T )(ǫr) = 0.

This is a consequence of the following three lemmas.

2.4.2. Lemma. H∗((P
′
r − P

′′
r )× T )(ǫr) = 0.

Proof. P ′
r−P

′′
r is a disjoint union of r·2r−1 copies of Gr−2

m , permuted transitively by µµµ2 ≀Σr. The component

{x1 = y1 = y2 = · · · = yr = 0, x2, . . . , xr 6= 0}

is acted on trivially by the transposition x1 ↔ y1, and the lemma follows.

2.4.3. Lemma. H∗(P ∗
r × T )(ǫr) is a free module over H∗(T ) generated by the image of

x1

y1
∪ . . . ∪

xr
yr

in

H∗(P ∗
r , r).

Proof. The morphism
Gr
m/κ → P ∗

r

(z1 . . . , zr) 7→ (z1, z
−1
1 ; . . . ; zr, z

−1
r )

is an isogeny with kernel µµµ2, hence

H∗(P ∗
r × T )(ǫr)

∼−→ H∗(Gr
m × T )(ǫr)

and we can apply 1.3.1.
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2.4.4. Lemma. H∗((P ′′
r − P

∗
r )× T )(ǫr) is free over H∗(T ) of rank one, and the boundary map

H∗(P ∗
r × T )(ǫr)→ H∗−1((P ′′

r − P
∗
r )× T )(ǫr)

is an isomorphism.

Proof. P ′′
r − P

∗
r is the disjoint union of 2r copies of Gr−1

m , permuted transitively by µµµ2 ≀ Σr. Therefore

H∗((P ′′
r − P

∗
r )× T )(ǫr) = H∗(Gr−1

m × T )(sgn)

and the latter is free of rank one over H∗(T ) by 1.3.1. Consider the component

Q = {x1 = x2 = . . . = xr = 0, y1, . . . , yr 6= 0}

of P ′′
r − P

∗
r . It belongs to the open set SpecR ⊂ P ′′

r , where

R = F

[
x1

y1
,
y2
y1
,

(
y2
y1

)−1

, . . . ,
yr
y1
,

(
yr
y1

)−1
]

and a local equation for Q on SpecR is
x1

y1
= 0. The generator of H∗(P ∗

r × T )(ǫr) may be written

ψ =
x1

y1
∪ . . . ∪

xr
yr

=
x1

y1
∪
x1

y1

(
y1
y2

)2

∪ . . . ∪
x1

y1

(
y1
yr

)2

= 2r−1 ·
x1

y1
∪
y1
y2
∪ . . . ∪

y1
yr

and the component along Q of the boundary of ψ is

2r−1 ·
y1
y2
∪ . . . ∪

y1
yr

which generates H∗(Q× T )(sgn) over H∗(T ) as required.
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3. Homology at infinity.

3.0. Resume the notations of §1. Write for convenience X = X
k

n, Y = X
k,∞

n , and filter Y by closed
subschemes

Y = Yk ⊃ Yk−1 ⊃ . . . ⊃ Y0 ⊃ Y−1 = ∅

where Yp is the set of (x1 . . . , xk)∈ Y such that at least (k − p) of the components xi are singular points
of the corresponding Néron polygon. Define inductively X〈p〉, Y 〈p〉, Z〈p〉 in a manner analogous to 2.1.0
above; more precisely, Y 〈0〉 = Y0 ⊂ X〈0〉 = X ; the morphism φp : X〈p〉 → X〈p− 1〉 is the blowing-up of
Y 〈p− 1〉, and Y 〈p〉 is the proper transform of Yp in X〈p〉; and

Z〈p〉 = φ−1
p (Y 〈p− 1〉) ∩X〈p〉reg ⊂ X〈p〉.

Write
X̃ = X〈k − 1〉

ψp
−→X〈p〉;

W 〈p〉 = ψ−1
p

(
X〈p〉sing

)
.

3.1.0. Theorem. i) X̃ is smooth over Q, and the action of ((Z/n)2×µµµ2) ≀ Σk = Γk on X extends to an

action on X̃ .

ii) ψ0 : X̃ → X is an isomorphism over Xreg, inducing an isomorphism

H∗(X̃)(ǫ) ∼−→ H∗(Xreg)(ǫ).

iii) The inclusion of the connected component X∗ of the Néron model of X
k

n
over Mn in Xreg induces

an isomorphism
H∗(Xreg)(ǫ) ∼−→ H∗(X∗)(ǫk).

Proof. i) Recall ([DR], Ch. VII) that the formal completion of Xn along any singular fibre is isomorphic

to the n-sided Tate curve G
q1/n

m /qZ over Q(ζn)[ [q
1/n] ]. Therefore the formal completion of X along Y is

locally isomorphic to the formal completion of Ek along F k (§2.0.1), and the result of 2.1.1 is applicable.

ii) We have a filtration

Y ⊃W 〈0〉 ⊃W 〈1〉 ⊃ . . . ⊃W 〈k − 2〉 ⊃W 〈k − 1〉 = ∅

such that W 〈p〉 −W 〈p+ 1〉 = Z〈0〉 is a fibration over Y 〈p〉 for the Zariski topology with fibre P ′
k−p. The

components of Y 〈p〉 over a fixed cusp are permuted transitively by Γk, and the stabiliser of a component
contains a subgroup µµµ2 ≀ Σk−p acting trivially on the base. By Proposition 2.4.1, H∗(W 〈p〉 −W 〈p+ 1〉)(ǫ)
is trivial for 0 ≤ p ≤ k − 2, and the result follows from the long exact sequence of cohomology.

iii) Lying over a fixed cusp there are knk components of Yk−1−Yk−2, each isomorphic to Gk−1
m , permuted

transitively by Γk. The stabiliser of a component is µµµ2×(µµµ2 ≀Σk−1), the first factor acting trivially. Therefore
H∗(Yk−1 − Yk−2)(ǫ) = 0, and by the exact cohomology sequence,

H∗(Xreg)(ǫ) = H∗(X − Yk−2)(ǫ)
∼−→ H∗(X − Yk−1)(ǫ).

Now the translations (Z/n)2k act trivially on H∗(X
k

n
) = H∗(X − Y ). We have X∗ ×Mn

M∞
n = Gk

m ×M
∞
n ,

(X − Yk−1)×Mn
M∞
n = Gk

m × (Z/n)k ×M∞
n , and the inclusion X∗ −֒→ X − Yk−1 induces an isomorphism

H∗(X∗ ×Mn
M∞
n ) ∼−→ H∗((X − Yk−1)×Mn

M∞
n )(Z/n)2k

;

the result follows from the 5-lemma applied to the long exact homology sequences for the inclusions X−Y →֒
X∗, X − Y →֒ Xreg.

3.1.1. Now applying the long exact cohomology sequence for the inclusion of X∗ in X̃ and Poincaré duality
gives Theorem 1.3.3.
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4. Hecke operators.

4.0.0. For this section, p will be a prime not dividing n. Let Mn,p be the modular curve over Q classifying
elliptic curves E with level n structure and a subgroup C ⊂ E of order p. The fibre product X

n,p
=

Xn ×Mn Mn,p is canonically isomorphic to the universal elliptic curve over Mn,p, hence has a canonical

subgroup scheme C. Write X
k

n,p
for the fibre product X

k

n
×Mn Mn,p.

4.0.1. Let Q be the quotient of X
n,p

by C, with level n structure coming from that on X
n,p

, and let Qk be

its k-fold fibre product over Mn,p. Consider the diagram:

X
k

n

φ1

←− X
k

n,p

ψ
−→ Qk

φ2

−→ X
k

ny
y

y
y

Mn ←− Mn,p == Mn,p −→ Mn

where the first and third squares are Cartesian, given by the classifying maps for the elliptic curves with
level n-structure X

n,p
and Q over Mn,p.

4.0.2. Define the Hecke correspondence Tp on X
k

n
by

Tp = φ1∗ψ
∗φ∗2.

The morphisms φi, ψ are finite and flat, and we therefore get induced endomorphism Tp of H∗(X
k

n
(C),Q)

and H∗
c (X

k

n
(C),Q), and their l-adic analogues.

4.1.0. In section (3.12) of [DeFM], Deligne defines Hecke operators on the groupsH1(Mn(C), Symk R1f∗Q),
the groups with compact support, and the corresponding groups in l-adic cohomology. Provisionally denote
these operators by T ′

p.

4.1.1. Proposition. The isomorphism

H∗(X
k

n
(C),Q)(ǫk)

∼−→ H1(Mn(C), Symk R1f∗Q)

(given by the Leray spectral sequence for X
k

n
→ Mn) identifies Tp and T ′

p. The same is true for the
cohomology with compact support.

This follows easily from Proposition 3.18 of [DeFM] and the functoriality of the Leray spectral sequence.

4.1.2. We now define the Hecke correspondence—still to be denoted Tp—on X
k

n
as the closure of the graph

of Tp in X
k

n
×X

k

n
.

4.1.3. Proposition. The action of Γk on H∗
B(X

k

n
) commutes with Tp. The action of the transpose of Tp

on the space of cusp forms H0(X
k

n
,Ωk+1) is the same as that of the classical Hecke operator.

Proof. The first part is immediate from the definition. For the second, see [Katz] 1.11.

4.1.4. The preceding two propositions imply that Tp induces an endomorphism of the motive knW , and that
on the realisation HB(knW) = k

nWB it agrees with T ′
p.

4.2.0. Write k = w−2, and assume first that n ≥ 3. The operators Tp for p6 |n generate a semisimple algebra
of endomorphisms of the parabolic cohomologyHB(knW) which commutes with the action ofGL2(Z/n). Since
f is a newform, the subspace of the space of cusp forms F k+1HDR(knW)⊗ L generated by f is the common
eigenspace of the tTp with eigenvalues ap intersected with the invariants under the subgroup

(
∗ ∗
0 1

)
⊂ GL2(Z/n).
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There is accordingly a projector Ψf in the endomorphism algebra of knW⊗L—viewed here as a Grothendieck
motive—whose kernel on the space of cusp forms is the subspace generated by f . We define M(f) be the
submotive of knW ⊗ L which is the kernel of Ψf .

If n < 3 then we replace n by nd for some d ≥ 3 and take invariants under ker{GL2(Z/nd)→ GL2(Z/n)}.

4.2.1. The Q-schemes Mn, X
k

n
extend to smooth schemes over Z[1/n] which have a modular interpretation

(see for example [DR] V.1.17), and the compactification X
k

n
extends to a smooth and proper scheme over

Z[1/n]. The motive M(f) therefore has good reduction at any p6 |n, in the sense of [GM] B.3.8; its λ-adic
realisations are unramified at p, and it has a crystalline realisation Hcrys(M(f)).

4.2.2. Identifying Hl(
k
nW) with k

nWl, we can then use the congruence relation ([DeFM] 4.9) to deduce
1.4.2(i), by a standard method: the relation Tp = F + I∗pV identifies the eigenvalues of F on Hλ(M(f)) as

being roots of Tp(X); an additional relation as in [Shimura] (7.5.2) shows that Hλ(M(f)) ≃ Hλ(M(f̄))⊗χ,
which is used to show that both roots of Tp(X) occur.

4.2.3. Now we prove 1.4.2(ii). Since M(f) has good reduction at p and p > dimX
k

n
= w − 1, by the main

result of [FM] the representation Hπ(M(f)) of Gal(Qp/Qp) is crystalline, and the associated φ-filtered
module is Hcrys(M(f)) together with its Hodge filtration. But if V is a smooth and proper Fp-scheme,
and Ψ an algebraic correspondence whose images in End(H∗

l (V )) and End(H∗
crys(V )) are projectors, then

the characteristic polynomials of the Frobenius endomorphism on Ψ(Hi
l (V )) and Ψ(Hi

crys(V )) are equal, by
[KMess] Theorem 2(2). Therefore the characteristic polynomial of φ on Hcrys(M(f)) is Tp(X).

4.2.4. Remark. It is possible to show that the φ-filtered module Hcrys(
k
nW) is isomorphic to the module

Lk(n,Qp) defined in [S] 2.7, 3.3 for p6 | 2n.
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