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Abstract

We discuss the relationship between different notions of “integral-
ity” in motivic cohomology/K-theory which arise in the Beilinson and
Bloch-Kato conjectures, and prove their equivalence in some cases for
products of curves, as well as obtaining a general result, first proved
by Jannsen (unpublished), reducing their equivalence to standard con-
jectures in arithmetic algebraic geometry.

1 Introduction

This paper is a continuation of [18]. Its main aim is to give an unconditional
proof of the following comparison between two different notions of integral
motivic cohomology, which was (in the special case i = 3, n = d = 2) stated
(and used) without proof in [18, 2.3.10]. (I am grateful to those who insisted
to me that this gap be filled.)

Theorem 1.1. Let F be a number field, with ring of integers o. Let C1, . . . , Cd

be smooth projective curves over F , and let M ⊂ h(
∏
Cj) be a submotive of

the Chow motive of their product. Let 0 < i ≤ 2n−1. Then if n ≥ d, the inte-
gral motivic cohomology H i

M/o(M,n) and the unramified motivic cohomology

H i
M,nr(M,n) coincide.

(Of course, one expects this to hold for any Chow motive without the
condition n ≥ d, and even the stronger statement in which HM,nr is replaced
by the Bloch-Kato HM,f -subgroup.) We prove this using a rather general
compatibility in étale cohomology (3.1), plus Soulé’s bounds on K-groups of
special varieties over finite fields [19].

We first review the definitions of the various objects in Theorem 1.1.
More generally, let (F, o) be one of the following:

(i) F a number field, o its ring of integers or a localisation of it;
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(ii) o a Henselian discrete valuation ring whose field of fractions F has
characteristic 0, and whose residue field is finite.

Let U/F be a proper and smooth scheme. Then there are defined motivic
cohomology groups H i

M(U, n) = H i
M(U,Q(n)), for integers i, n. With ra-

tional coefficients, one has a K-theoretic interpretation (or, if one prefers,
definition):

H i
M(U, n) = K

(n)
2n−iU ⊂ K2n−i(U)⊗Q

the eigenspace on which Adams operators ψq act as multiplication by qn.
If U extends to a regular scheme X, proper and flat over o, then the

integral motivic cohomology is defined to be

H i
M/o(U, n) := im

[
K

(n)
2n−i(X) → H i

M(U, n)
]

If M is an effective Chow motive, then X = e · h(U) for some U and some
idempotent e ∈ Endh(U). One may choose U in such a way that it has a
regular proper model X, and the subspaces

H i
M(M,n) = e ·H i

M(U, n), HM/o(M,n) = e ·H i
M/o(U, n)

of H i
M(U, n) depend functorially only on M (this is the main result of [18,

§1]). The integral motivic cohomology groups H∗
M/o(M, ∗) feature in Beilin-

son’s conjectures on special values of L-functions [1, 3, 14].
There is defined an `-adic regulator map, with values in continuous `-adic

cohomology [8]
reg` : H i

M(U, n) → H i(U,Q`(n)).

If i 6= 2n then one knows that the composite

H i
M(U, n) → H i(U,Q`(n)) → H i(U ⊗ F ,Q`(n))

is zero, so that the Hochschild-Serre spectral sequence in continuous `-adic
cohomology induces a homomorphism, the `-adic Abel-Jacobi map

AJ` : H i
M(U, n) → H1(F, V`)).

Here we have written V` = H i−1(U ⊗ F ,Q`(n)) for the `-adic cohomology of
the geometric fibre. Let v be a prime of F not dividing `, with residue field kv,
and Fv the completion of F at v. Let Gv = Gal(F v/Fv), Iv = Gal(F v/F

nr
v )

the inertia group, and Γv = Gal(k̄v/kv) = Gv/Iv.1 Recall the exact sequence

1In case (ii), we mean that v is the canonical place of F , so Gv = G, and that the
residue characteristic of F is different from `.
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of ramified and unramified cohomology

0 // H1(Γv, V
Iv
` ) // H1(Gv, V`) // H1(Iv, V`)

Γv // 0

H1
nr(Fv, V`) H1

ram(Fv, V`)

Let resv : H1(F, V`) → H1(Fv, V`) be the restriction map. Bloch and Kato [4]
define a subspace H1

f (Fv, V`) which coincides with H1
nr(Fv, V`) if ` 6= pv, and

use this to define a subspace of motivic cohomology by

H i
M,f (X,n) =

⋂
v,`

(resv ◦AJ`)
−1(H1

f (Fv, V`)) (1)

— in the notation of Bloch-Kato and Fontaine–Perrin-Riou, V` is the reali-
sation of the motive V = hi−1(U)(n), and they write H1

M,f (V ) for the group
(1). Implicit in Bloch-Kato’s generalisation of the Beilinson conjectures is
part (i) of the following conjecture (and see already [2, 4.0.(b)] for the case
` 6= pv) — part (ii) is folklore:

Conjecture 1.2. (i) H i
M,f (U, n) = H i

M/o(U, n).

(ii) for fixed v the subspace

ker
[
H i
M(U, n) → H1(Fv, V`)/H

1
f (Fv, V`)

]
is independent of `.

Let us from now on ignore the places v dividing ` (which, to be sure, are
the most interesting ones) and define

H i
M,nr(U, n) =

⋂
v,` 6=pv

(resv ◦ reg`)
−1(H1

nr(Fv, V`))

The ring Endh(U) of correspondences on U (for rational equivalence) acts on
everything in sight and so for a submotiveM ⊂ h(U) the groupsH i

M,f (M,n)0 ⊂
H i
M,nr(M,n) ⊂ H i

M(M,n) are defined.
It is well known that one has HM/o ⊂ HM,nr (we recall the proof in

the next section) and even that HM/o ⊂ HM,f under suitable hypothe-
ses. . . (Similar statements hold for ` = char(k), see for example [12, 13]).

Jannsen showed (unpublished) that the equality of HM/o and HM,nr

would follow from two standard conjectures: the monodromy-weight con-
jecture on the action of inertia on `-adic cohomology, and his generalisation
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of the Tate conjecture on algebraic cycles to arbitrary varieties over finite
fields. See 2.4 below. After reviewing some of what is known in the next
section, will prove a rather general compatibility in `-adic cohomology, from
which Jannsen’s result will be a corollary.

For historical reasons I have kept to the old definition of motivic coho-
mology using K-theory, rather than higher Chow groups. It should not
be hard to rewrite everything here in terms of higher Chow groups, us-
ing the localisation techniques of Levine [11]. However there are no new
phenomena to be expected when working with Z-coefficients, if only be-
cause, for a Z`-representation T of Gal(F/F ) (for F local or global) Bloch
and Kato define H1

f (F, T ) to be simply the preimage, via the natural map
H1(F, T ) → H1(F, T ⊗Q`) of the subspace H1

f (F, T ⊗Q`) ⊂ H1(F, T ⊗Q`).
Moreover, the integral groups “without denominators” are only meaningful
in the presence of a regular model X of U , not just a regular alteration.

2 Preliminaries

For completeness, let us first recall what happens when i = 2n. In this case,
the localisation sequence of K-theory shows that H2n

M/o(U, n) and H2n
M(U, n)

are equal; this group is CHn(U) ⊗ Q, the Chow group of codimension n
cycles on U . In this case the cycle class map H2n

M(U, n) → H2n(U,Q`(n))
is non-zero, and its kernel is H2n

M(U, n)0 :=CHn(U)0 ⊗ Q, the subgroup of
cycles homologically equivalent to zero. The Abel-Jacobi homomorphism is
a map from H2n

M(U, n)0 to H1(F, V`), and the obstruction to the equality
H2n
M,nr(U, n)0 = H2n

M(U, n)0 lies in the ramified cohomology groups

H1(Iv, V`)
Γv = HomΓv(Q`(1− n), H2n−1(U,Q`(n− 1))Iv). (2)

The monodromy-weight conjecture (recalled as 2.1 below) implies that the Iv-
coinvariants ofH2n−1(U,Q`) have weights≥ 2n−1, and therefore that the ob-
struction group (2) vanishes. In other words, H2n

M,nr(U, n)0 ⊂ H2n
M/o(U, n)0 =

H2n
M(U, n)0, with equality if the monodromy-weight conjecture holds.

Since H i
M(U, n) ⊂ K2n−iU⊗Q vanishes for i > 2n, we assume henceforth

that q := 2n− i > 0.
For the moment suppose that we are in setting (i). Write o(v) for the

localisation of o at v, ov for its completion, and kv for its residue field.
Assume that U has a regular and proper model X over o. Then from the
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localisation sequences

KqX → KqU →
∐

v

K ′
q−1X ⊗ kv

KqX ⊗ o(v) → KqU → K ′
q−1X ⊗ kv

KqX ⊗ ov → KqU ⊗ Fv → K ′
q−1X ⊗ kv

we see that

H i
M/o(U, n) = ker

[
H i
M(U, n) →

∐
v

H i
M(U ⊗ Fv, n)

H i
M/o(U ⊗ Fv, n)

]

(cf. [18, 1.3.5–6]). Since by definition the corresponding identity holds for
HM,nr, the comparison between HM/o and HM,nr is reduced to the local case.

We also recall that both the integrality and the unramified conditions
are stable under finite extensions F ′/F : under the inclusion H i

M(U, n) ⊂
H i
M(U ⊗ F ′, n) one has

H i
M/o(U, n) = H i

M(U, n) ∩H i
M/o(U ⊗ F ′, n)

H i
M,nr(U, n) = H i

M(U, n) ∩H i
M,nr(U ⊗ F ′, n)

which for HM,nr is clear from the definition, and for HM/o follows from [18,
§1].

For the rest of the paper we will assume that we are in the local case
(ii): thus F is local, with valuation ring o and finite residue field k, and
write S = Spec o = {η, s} as usual. Let f : X → S be proper and flat, with
special fibre g : Y = Xs → Spec k and generic fibre U = X \ Y = Xη. Let
d = dimU , and write G = Gal(F/F ), I for the inertia subgroup of G and
Γ = Gal(k̄/k) = G/I.

We consider the analogue of AJ` on X itself. By the proper base-change
theorem

H0(S,Rif∗Q`(n)) = H0(s, Rig∗Q`(n)) = H i(Y ,Q`(n))Γ = 0

since by Deligne [6], the weights of H i(Y ,Q`(n) are ≤ (i−2n), hence nonzero.
So from the Hochschild-Serre spectral sequence we obtain an edge homomor-
phism

e1 : H i(X,Q`(n)) → H1(S,F) where F = Ri−1f∗Q`(n).

5



Composing with the Chern character ch : KqX → H i(X,Q`(n)), we obtain
a commutative diagram, in which the bottom row is exact:

KqX

e1◦ch
��

// KqU

AJ`

��

H1(S,F)

��

// H1(η,Fη)

H1(S, j∗Fη)

H1(s, i∗j∗Fη)

0 // H1(Γ,F I
η̄ ) // H1(G,Fη̄) // H1(I,Fη̄)Γ

(3)

This shows that H i
M/o(X,n) ⊂ H i

M,`−f (X,n) whenever ` 6= char(k), as
mentioned in the introduction.

We next review when the obstruction group H1(I,Fη̄)Γ can be non-zero.
First recall:

Conjecture 2.1 (Monodromy-weight conjecture). Let W• denote the weight
filtration on Hj(U,Q`), and let N : Hj(U,Q`) → Hj(U,Q`)(−1) denote the
“logarithm of monodromy” operator. Then for each r ≥ 0, N r induces an
isomorphism

N̄ r : grW
j+rH

j(U,Q`)
∼−→ grW

j−rH
j(U,Q`)(−r).

Assume that X is regular, and that Y is a reduced strict normal crossings
divisor in X. Then the weight spectral sequence of Rapoport-Zink [15, ]
controls the weights of Hj(U,Q`); let h = h(X) be the least positive integer
such that no set of more than h components of Y has non-trivial intersection.
Then

grW
w Hj(U,Q`) 6= 0 ⇒ max{0, j − h, 2d− j} ≤ w ≤ min{2j, j + h, 2d}.

In general we may replace U by an alteration U ′ for which such a model
U ′ ⊂ X ′ exists, and take h = h(X ′).
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Therefore if H1(I,Fη̄)Γ = HomΓ(Q`(1−n), H i−1(U,Q`)I) is non-zero, the
pair (i, n) must satisfy the inequalities

n ≤ d+ 1, n ≤ i ≤ 2d and i ≥ 2n− h− 1.

We also have the obvious inequality i ≤ 2n. So far we have not used
the monodromy-weight conjecture; if we assume it, then the weights of
Hj(U,Q`)I are all ≥ j, whence we have an additional inequality i ≤ 2n− 1,
which just excludes the case i = 2n already considered at the beginning of
this section.

For U a product of curves, Theorem 1.1 therefore shows that:

• in the region n > d + 1, one has H i
M/o(U, n) = H i

M(U, n) (for this the
compatibility 4.1 is not needed, only the computations on the special
fibre at the end of this section); and

• along the lines n = d and n = d + 1 the integrality conditions (which
are in general non-trivial) coincide.

Notice also that over a number field one expects H i
M(U, n) = 0 as soon as

i > 2d+ 1.

i =
 2n

i =
 2n−h−1

i = n i = 2d+1

n = d+1

n = d

i =
 2n−1

n

i

To go further we want to enlarge the diagram (3) to

KqX //

��

KqU
α //

��

β

&&MMMMMMMMMMMM
K ′

q−1Y

φ

��
�
�
�

0 // H1(Γ,F I
η̄ ) // H1(G,Fη̄) // H1(I,Fη̄)Γ // 0

(4)
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for a suitable vertical map φ, where the top row is the localisation sequence
in K ′-theory, so as to compare the kernels of α and β. We recall (see §3)

that under the boundary map ∂, the subspace K
(n)
q U ⊂ KqU ⊗ Q maps

into the subspace K
′(n−d−1)
q−1 Y ⊂ K ′

q−1Y ⊗ Q, and that the Riemann-Roch

transformation τ maps K
′(n−d−1)
q−1 Y to the space of Γ-invariants of the `-adic

homology group

H2d−i+1(Y ,Q`(d− n+ 1)) = H i−2d−1(Y ,Rf !
sQ`(n− d− 1))

' H2d−i+1(Y ,Q`(d− n+ 1))∨

(the isomorphism being given by Grothendieck-Verdier duality). In the bot-
tom row, we have

H1(I,Fη̄) = H i−1(U,Q`(n− 1))I '
[
H2d−i+1(U,Q`(d− n+ 1))I

]∨
by Poincaré duality. Finally we have the specialisation map

sp : H2d−i+1(Y ,Q`) → H2d−i+1(U,Q`)
I

and we can therefore formulate the desired compatibility as:

Proposition 2.2. The following diagram is commutative up to sign:

K
(n)
q U //

AJ`

��

K
′(n−d−1)
q−1 Y

τ

��

H i−2d−1(Y ,Rf !
sQ`(n− d− 1))

'
��

H1(G,H i−1(U,Q`(n)))

��

H2d−i+1(Y ,Q`(d− n+ 1))∨

H1(I,H i−1(U,Q`(n)))Γ � � // (H2d−i+1(U,Q`(d− n+ 1))∨)I

sp∨

OO

This will be reformulated in a more general setting in the next section.
First, we draw some consequences from it. We recall that the monodromy-
weight conjecture implies:

Conjecture 2.3 (Local invariant cycle “theorem”). Suppose that X is reg-
ular. Then for every j the specialisation map

sp : Hj(Y ,Q`) → Hj(U,Q`)
I

is a surjection.

8



From 2.2 one then obtains immediately:

Corollary 2.4 (Jannsen). Suppose that the Riemann-Roch transformation

τ : K
′(d−n−1)
q−1 Y ⊗Q` → H2d−2n+q+1(Y ,Q`(d− n+ 1))

is injective, and that the local invariant cycle theorem 2.3 holds for (X, i−1).
Then H i

M/o(U, n) = H i
M,nr(U, n).

The hypothesis that τ is injective would be a consequence of Jannsen’s
generalisation of the Tate conjecture:

Conjecture 2.5 (Jannsen [9, 12.4(a)]). If Y is proper over a finite field k,
of dimension d, then Frobenius acts semisimply on the `-adic homology of Y ,
and for every q and m the Riemann-Roch transformation is an isomorphism

τ : K ′(m)
q Y ⊗Q`

∼−→ Hq−2m(Y ,Q`(−m))Γ.

As is shown in [9, 12.7], this is equivalent to standard conjectures for
K-theory of nonsingular varieties over finite fields:

Conjecture 2.6 (Tate, Parshin). Let Y be proper and smooth over a finite
field k.

• The action of Gal(k̄/k) on H∗(Y ,Q`) is semisimple.

• The cycle class map CH∗(Y ) ⊗ Q` → H2∗(Y ,Q`(∗))Gal(k̄/k) is an iso-
morphism.

• If q > 0, then KqY ⊗Q = 0.

(Jannsen’s proof that 2.6 implies 2.5 assumes resolution of singularities,
but one can remove this by appealing instead to De Jong’s alterations theo-
rem [10].)

We now analyze the proof in more detail to obtain Theorem 1.1. Granted
Proposition 2.2, It suffices to prove the following two Propositions.

Proposition 2.7. Let U = C1 × · · · × Cd be a product of smooth proper
curves. Then for all j, the monodromy-weight conjecture holds for Hj(U).

Proof. The monodromy-weight conjecture is stable under products (by the
Künneth formula and [6, (1.6.9)]), so in particular it holds if U is a product
of curves (even for products of varieties of dimension at most 2, by [15]).

Proposition 2.8. Let U = C1 × · · · × Cd be a product of smooth proper
curves. Then after replacing F by a finite extension, U admits a proper
regular model X/o for which:
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(i) Y is a strict normal crossings divisor on X, and for every intersection
Z of components of Y , the Γ-module H∗(Z̄,Q`) is semisimple.

(ii) the Riemann-Roch transformation on the homology of the special fibre

τ : HM
2m−j(Y,m)⊗Q` → H2m−j(Y ,Q`(m))Γ

is an isomorphism for m ≤ 1.

Proof. We first need to construct a suitable regular model for U . After
passing to a finite extension of F we may assume that each factor Cµ has
semistable reduction, and further has a semistable model Dµ whose special
fibre is a reduced strict normal crossing divisor, whose components and sin-
gular points are all rational over the residue field. Let X ′ =

∏
Dµ. Then X ′

is regular apart from singularities which are locally smooth over a product
of double points; that is, locally isomorphic, for the étale topology, to

Spec o[x1, y1, . . . , yr, yr, z1, . . . , zs]/(x1y1 − πF , . . . , xryr − πF ).

Take X → X ′ to be the resolution given in [5, Lemme 5.5]. The special fibre
Y = ∪Yα is a normal crossings divisor in X. Write as usual

YJ =
⋂
α∈J

Yα for J ⊂ {α}

Y〈q〉 =
∐

#J=q+1

YJ for q ≥ 0

Then the description of the desingularisation as an iterated blowup [16, §2]
shows that each YJ belongs to Ck, the smallest class of smooth and proper
schemes over k such that

(i) Ck contains all products of smooth proper geometrically connected
curves;

(ii) If W is in Ck and P → W is a projective bundle, then P is in Ck;

(iii) If Z ⊂ W with W and Z both in Ck, then the blowup of W along Z is
in Ck.

If W is in Ck and dimW = d, then the Chow motive of W can be computed
using the fomulae for the Chow motives of projective bundles and blowups,
and it is a sum of Chow motives of the form ⊗1≤j≤sh

1(Dj)⊗ L⊗t for curves
Dj and some t ≥ 0 with s + t ≤ d. From this it follows that the `-adic
cohomology of YJ is semisimple.
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Together with the inclusion maps YJ ′ ⊂ YJ for J ′ ⊃ J ′, the Y〈q〉 form a
strict simplicial scheme

Y〈•〉 =
[
· · ·

//... //
Y〈2〉

//
//
//
Y〈1〉

//
// Y〈0〉

]
and the homology, both `-adic and motivic, of Y is computed by a spectral
sequence:

MErs
1 = HM

2m−s(Y〈−r〉,m) ⇒ HM
2m−r−s(Y,m)

`Ers
1 = H2m−s(Ȳ〈−r〉,m) ⇒ H2m−r−s(Y ,m) (5)

In the `-adic spectral sequence, since the YJ are smooth and proper we can
rewrite the E1 terms as

`Ers
1 = H2d+2r−2m+s(Ȳ〈−r〉, d+ r −m)

which is pure of weight s, and semisimple by (i). So the term (`Ers
1 )Γ vanishes

unless s = 0, and so we may conclude that, after passing to Γ-invariants, the
spectral sequence degenerates to an identity

H2m−j(Y ,Q`(m))Γ = Hj

[
H2m(Ȳ〈•〉,Q`(m))Γ

]
.

Consider now the motivic spectral sequence. Its E1-terms may be computed
as K-theory:

MErs
1 = H2d+2r−2m+s

M (Y〈−r〉, d+ r −m) = K
(d+r−m)
−s Y〈−r〉.

We can then apply the following trivial extension of [19, Theorem 4].

Theorem 2.9 (Soulé). Let Z be in Ck, of dimension ≤ d. Then

(i) for every a > 0 and every b ≥ d− 1, K
(b)
a Z = 0; and

(ii) for m = 0, 1 the cycle class map CHm(Z)⊗Q` → H2(d−m)(Z̄,Q`(d−
m)) is an isomorphism.

Proof. As observed above, the Chow motive of Z is a submotive of the motive
of the product of d curves, to which Soulé’s result applies.

In the present case, since dimY〈−r〉 = d + r, part (i) gives MErs
1 = 0 for

all s 6= 0, provided m ≤ 1. Therefore the spectral sequence also reduces to
an identity

HM
2m−j(Y,m) = Hj

[
HM

2m(Y〈•〉,m)
]

= Hj

[
CHm(Y〈•〉)⊗Q

]
.
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By (ii) we also have for every m ≤ 1 an isomorphism of homological com-
plexes

CHm(Y〈•〉)⊗Q` → H2m(Ȳ〈•〉,Q`(m))Γ

(for m < 0 both complexes are obviously zero). Therefore by comparing
homology we get that τ is an isomorphism.
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3 Homological setting

In this section, S = Spec o is to be any Henselian trait (the spectrum of
a Henselian discrete valuation ring), with generic and closed points η, s, of
residue characteristic different from `, and f : X → S any quasi-projective
and flat morphism of relative dimension d. Label the morphisms:

Y
� � g

//

fs

��

X

f

��

U? _hoo

fη

��

s
� �

i
// S η? _

j
oo

We will replace K-theory by K ′-theory and étale cohomology by homology.
We review some facts from [20]. Recall that when U is smooth, the γ-
filtration F •

γ on KqU satisfies

(F n
γ KqU)⊗Q =

⊕
m≥n

K(m)
q U.

In general one has an increasing filtration F• on K ′U ⊗ Q (defined by em-
bedding U in a smooth scheme Z and taking a shift of the γ-filtration on
KZU = K ′U). There are modified Adams operators φk on K ′-theory and, if

K
′(n)
q U ⊂ K ′

qU ⊗Q denotes the (φk = km)-eigenspace, then

F−n(K ′
qU ⊗Q) =

⊕
m≥n

K ′(m)
q U.

When U is smooth the isomorphism KqU
∼−→ K ′

qU carries F n
γ (KqU ⊗Q) to

Fd−n(K ′
qU ⊗Q) and therefore induces isomorphisms Kq(n)U

∼−→ K
′(n−d)
q U .

In [7] there are defined `-adic Riemann-Roch transformations

τ : K ′
qU → Hq−2m(U,Q`(−m))

whose target is `-adic homology, defined as

H−j(U,Q`(−m)) = Hj(U,Rf !
ηQ`(m)).

When U is smooth, the Riemann-Roch theorem shows that for the Adams
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eigenspaces there is a commutative diagram

K
(n)
q

ch //

'

��

H2n−q(U,Q`(n))

'(P.D.)

��

H2n−2d−q(U,Rf !
ηQ`(n− d))

K
′(n−d)
q U

τ // Hq+2d−2n(U,Q`(d− n))

where the isomorphism labelled (P.D.) is the “Poincaré duality” isomorphism
given by Rf !

ηQ` = Q`(d)[2d].
All this applies equally to Y . In étale homology there is a boundary map

∂` : H−i(U,Q`(−m)) → H−i+1(Y,Q`(−m+ 1))

defined as the composite

H−i(U,Q`(−m)) = H i(U,Rf !
ηQ`(m))

∂−→H i+1
Y (X,Rf !Q`(m))

=H i+1(Y,Rg!Rf !
sQ`(m))

=H i+1(Y,Rf !
sRi

!Q`(m))

=H i−1(Y,Rf !
sQ`(m− 1))

=H−i+1(Y,Q`(−m+ 1))

using the purity Ri!Q` = Q`(−1)[−2] on S. The boundary maps ∂M and ∂`

in K ′-theory and étale homology are compatible: the square

K
′(m)
q U

τ //

∂M
��

Hq−2m(U,Q`(−m))

∂`

��

K
′(m−1)
q−1 Y

τ // Hq−2m+1(Y,Q`(−m+ 1))

(6)

is commutative, cf. [9, end of §8.1]. (The strange numbering of the homolog-
ical boundary map comes from the equality of the dimensions of U and Y ;
by considering U as having dimension (d + 1) — as for example is done in
[11] — would lead to a more natural numbering).

We have a Hochschild-Serre spectral sequence in homology:

Eab
2 = Ha(G,H−b(U,Q`(•))) ⇒ H−a−b(U,Q`(•))

and therefore, if Filn is the abutment filtration, so that

Fil1H∗(U,Q`(•)) = ker
[
H∗(U,Q`(•)) → H∗(U,Q`(•))

]
14



there is an edge homomorphism

e1 : Fil1Hj(U,Q`(•)) → H1(G,Hj+1(U,Q`(•))).

Let (K
′(m)
q U)0 = τ−1(Fil1Hq−2m(U,Q`(−m))) ⊂ K

′(m)
q U . We can then state

the homological generalisation of 2.2. Let

sp′ : H∗(U,Q`(•))I → H∗(Y ,Q`(•))

be the transpose, for Grothendieck-Verdier duality, of the specialisation map

sp : H∗
c (Y ,Q`(•)) → H∗

c (U,Q`(•))I .

Proposition 3.1. The following diagram is commutative up to sign:

(K
′(m)
q U)0

τ

��

∂M // K
′(m−1)
q−1 Y

τ

��

Fil1Hq−2m(U,Q`(−m))

e1

��

Hq−2m+1(Y,Q`(1−m))

��

H1(G,Hq−2m+1(U,Q`(−m)))

��

Hq−2m+1(Y ,Q`(1−m))

H1(I,Hq−2m+1(U,Q`(−m)))
� � // Hq−2m+1(U,Q`(1−m))I

sp′

OO

The compatibility of boundary maps (6) means that we can get rid of the
K ′-theory and express 3.1 as a purely cohomological compatibility. We shall
state and prove this in the next section.

4 `-adic compatibility

Since the target space in the diagram is the homology Hq−2m+1(Y ,Q`(1−m))
of the geometric special fibre, we may replace S by its strict Henselisation.
Then we can remove the twists, and Proposition 3.1 will follow from the

15



commutativity of the following diagram, for any r ∈ Z:

Fil1Hr+1(U,Rf !
ηQ`)

e1 //

� _

��

H1(I,Hr(U,Rf !
η̄Q`))

=

��

Hr+1(U,Rf !
ηQ`)

∂

��

Hr(U,Rf !
η̄Q`)I(−1)

=

��

Hr+2(Y,Rg!Rf !Q`)

=

��

[
H−r

c (U,Q∨
` )I(1)

]∨
sp∨

��

Hr(Y,Rf !
sQ`(−1))

= // [H−r
c (Y,Q∨

` )(1)]
∨

We may push this down onto S, where it becomes the case K = Rf∗Rf
!Q`,

L = Rf!Q` of the following statement.

Proposition 4.1. Let S be a strictly Henselian trait, with generic and closed
points η, s, whose residue characteristic is different from `. Let K, L ∈
D+

c (S,Q`) together with a pairing K ⊗L→ Q`(1), inducing a cohomological
pairing

β : H2
s (S,K)⊗H0(s, Ls) → H2

s (S,Q`(1)) = Q`

Then the following diagram is commutative up to sign:

Fil1H1(η,Kη)
e1 //

� _

��

H1(η,H0(Kη))

=

��

H1(η,Kη)

∂

��

H0(Kη̄)I(−1)

β
��[

H0(Lη̄)I
]∨

sp∨

��

H2
s (S,K)

β
// H0(s, Ls)

∨

Proof. We can check this by pairing the whole diagram with H0(S, L), and

16



are therefore reduced to the commutativity of the diagram:

Fil1H1(η,Kη)⊗H0(S, L)
e1⊗id

//

� _

��

H1(η,H0(Kη))⊗H0(S, L)

��

H1(η,Kη)⊗H0(S, L)

∂⊗id

��

H0(Kη̄)I ⊗H0(Lη̄)I(−1)

β

��

H2
s (S,K)⊗H0(S, L)

β
// H2

s (S,Q`(1)) = Q`

To prove this we enlarge it to the enormous diagram below:

17



Fil1H1(η,Kη)⊗H0(S, L)
� � //

id⊗j∗

��

H1(η,Kη)⊗H0(S, L)

��

∂⊗i∗

**UUUUUUUUUUUUUUUUU

Fil1H1(η,Kη)⊗H0(η, Lη)

e1⊗e0

��
∪

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

1
2

H2(s, Ri!K)⊗H0(s, i∗L)

∪
��

H1(η,H0(Kη))⊗H0(η,H0(Lη))

∪
��

3

H2(s, Ri!(K ⊗ L))

β

��

H1(η,H0(Kη)⊗H0(Lη))

∪
��

Fil1H1(η,Kη ⊗ Lη)
� � //

e1

tthhhhhhhhhhhhhhhhhh
β

��
5

H1(η,Kη ⊗ Lη)

∂
44iiiiiiiiiiiiiiiii

β

��

H1(η,H0(Kη ⊗ Lη))

β

��

4 Fil1H1(η, A(1))

hhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

7

H1(η, A(1))
∂ //

6

H2(s, Ri!A(1))

cl(s)−1

'

ttiiiiiiiiiiiiiiiiiiiiii

H1(η, A(1))
'

Kummer
// A

18



The commutativity of the various parts of this diagram are as follows:
Parts (1), (4) and (5) obviously commute, and (6) commutes by functo-

riality.
Part (2) commutes up to sign by [17, 0.1], and part (3) commutes by [17,

0.4]. The remaining compatibility is (7), which is anti-commutative by [22,
“Cycle”, 2.1.3].
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