Integral elements of K-theory and products of
modular curves II

A J Scholl

Abstract

We discuss the relationship between different notions of “integral-
ity” in motivic cohomology/K-theory which arise in the Beilinson and
Bloch-Kato conjectures, and prove their equivalence in some cases for
products of curves, as well as obtaining a general result, first proved
by Jannsen (unpublished), reducing their equivalence to standard con-
jectures in arithmetic algebraic geometry.

1 Introduction

This paper is a continuation of [18]. Its main aim is to give an unconditional
proof of the following comparison between two different notions of integral
motivic cohomology, which was (in the special case i = 3, n = d = 2) stated
(and used) without proof in [18, 2.3.10]. (I am grateful to those who insisted
to me that this gap be filled.)

Theorem 1.1. Let F' be a number field, with ring of integerso. Let Cy, ..., Cy
be smooth projective curves over F, and let M C h(][[C};) be a submotive of
the Chow motive of their product. Let0 < i < 2n—1. Then if n > d, the inte-
gral motivic cohomology Hj\A/D(M, n) and the unramified motivic cohomology

Hi\ (M, ) coincide.

(Of course, one expects this to hold for any Chow motive without the
condition n > d, and even the stronger statement in which H ., is replaced
by the Bloch-Kato Haq g-subgroup.) We prove this using a rather general
compatibility in étale cohomology (3.1), plus Soulé’s bounds on K-groups of
special varieties over finite fields [19].

We first review the definitions of the various objects in Theorem 1.1.
More generally, let (F,0) be one of the following:

(i) F' a number field, o its ring of integers or a localisation of it;
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(ii) o a Henselian discrete valuation ring whose field of fractions F' has
characteristic 0, and whose residue field is finite.

Let U/F be a proper and smooth scheme. Then there are defined motivic
cohomology groups H},(U,n) = H'(U,Q(n)), for integers i, n. With ra-
tional coefficients, one has a K-theoretic interpretation (or, if one prefers,
definition):

Hiy(Un) =K .U C Kypi(U)®Q

2n—1
the eigenspace on which Adams operators ¢ act as multiplication by ¢".
If U extends to a regular scheme X, proper and flat over o, then the
integral motivic cohomology is defined to be
Hiyjo(Us ) i=im [ K$ (X) = Hi, (U, )
If M is an effective Chow motive, then X = e - h(U) for some U and some

idempotent e € End h(U). One may choose U in such a way that it has a
regular proper model X, and the subspaces

Hi(M,n)=e-Hj,(Un), Huyp(Mn)=e- Hj\,[/o(U, n)

of H%(U,n) depend functorially only on M (this is the main result of [18,
§1]). The integral motivic cohomology groups H}, /U(M ,*) feature in Beilin-
son’s conjectures on special values of L-functions [1, 3, 14].
There is defined an f-adic regulator map, with values in continuous ¢-adic
cohomology [8]
reg,: Hy(U,n) — H'(U, Qu(n)).

If i # 2n then one knows that the composite
Hy\(U,n) — H'(U,Qq(n)) — H (U @ F,Qu(n))

is zero, so that the Hochschild-Serre spectral sequence in continuous /-adic
cohomology induces a homomorphism, the ¢-adic Abel-Jacobi map

Ay Hiy(U,n) — H'(F, V).

Here we have written V; = H'"Y(U ® F,Q(n)) for the f-adic cohomology of
the geometric fibre. Let v be a prime of F' not dividing ¢, with residue field k,,
and F, the completion of F at v. Let G, = Gal(F,/F,), I, = Gal(F,/F")
the inertia group, and I', = Gal(k,/k,) = G,/I,.! Recall the exact sequence

n case (ii), we mean that v is the canonical place of F, so G, = G, and that the
residue characteristic of F is different from /.



of ramified and unramified cohomology

0 — HYT,,V/*) — HY(G,,V)) — HY(I,,V))'* — 0

H,, (Fy, Vo) H, o (Fo, Vi)

ram

Let res,: HY(F,V,) — H'(F,, V;) be the restriction map. Bloch and Kato [4]
define a subspace H}(Fv, V,) which coincides with H! (F,,V,) if £ # p,, and
use this to define a subspace of motivic cohomology by

Hjq (X, n) = ((res, 0AJo) " (H}(F,, V7)) (1)
vl

— in the notation of Bloch-Kato and Fontaine—Perrin-Riou, V; is the reali-
sation of the motive V' = h*~'(U)(n), and they write H}, (V') for the group
(1). Implicit in Bloch-Kato’s generalisation of the Beilinson conjectures is
part (i) of the following conjecture (and see already [2, 4.0.(b)] for the case
¢ # p,) — part (ii) is folklore:

Conjecture 1.2. (i) Hj, ;(U,n) = H},,,(U,n).
(i) for fized v the subspace

ker [Hy,(U,n) — H'(F,,V,)/H}(F,, V)]
is independent of L.

Let us from now on ignore the places v dividing ¢ (which, to be sure, are
the most interesting ones) and define

Hj\fl,m(U? n) = ﬂ (res, o Tegz)_l(Hir(Fm Vi)
v l#py

The ring End h(U) of correspondences on U (for rational equivalence) acts on
everything in sight and so for a submotive M C h(U) the groups Hj ;(M,n)° C
Hi\ (M, n) C Hy (M, n) are defined.

It is well known that one has Hyo C Hpagpr (we recall the proof in
the next section) and even that Hu(, C Haqy under suitable hypothe-
ses. .. (Similar statements hold for ¢ = char(k), see for example [12, 13]).

Jannsen showed (unpublished) that the equality of Hy, and Hpp,
would follow from two standard conjectures: the monodromy-weight con-
jecture on the action of inertia on f-adic cohomology, and his generalisation
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of the Tate conjecture on algebraic cycles to arbitrary varieties over finite
fields. See 2.4 below. After reviewing some of what is known in the next
section, will prove a rather general compatibility in ¢-adic cohomology, from
which Jannsen’s result will be a corollary.

For historical reasons I have kept to the old definition of motivic coho-
mology using K-theory, rather than higher Chow groups. It should not
be hard to rewrite everything here in terms of higher Chow groups, us-
ing the localisation techniques of Levine [11]. However there are no new
phenomena to be expected when working with Z-coefficients, if only be-
cause, for a Zs-representation T of Gal(F/F) (for F local or global) Bloch
and Kato define H}(F ,T') to be simply the preimage, via the natural map
H'(F,T) — H'(F,T ®Qq) of the subspace H{(F,T® Q) C H'(F,T ® Qy).
Moreover, the integral groups “without denominators” are only meaningful
in the presence of a regular model X of U, not just a regular alteration.

2 Preliminaries

For completeness, let us first recall what happens when ¢ = 2n. In this case,
the localisation sequence of K-theory shows that Hf\ff/o(U, n) and H33(U,n)
are equal; this group is CH™(U) ® Q, the Chow group of codimension n
cycles on U. In this case the cycle class map H3%(U,n) — H>(U,Qu(n))
is non-zero, and its kernel is H3(U,n)?:=CH"(U)" ® Q, the subgroup of
cycles homologically equivalent to zero. The Abel-Jacobi homomorphism is
a map from H3%(U,n)? to H'(F,V,), and the obstruction to the equality
H3i ,(U,n)? = H34 (U, n)° lies in the ramified cohomology groups

H'(1,, Vi)™ = Homr, (Q¢(1 — n), H*"~(U, Q¢(n — 1))1,)- (2)

The monodromy-weight conjecture (recalled as 2.1 below) implies that the I,-
coinvariants of H2"~*(U, Q) have weights > 2n—1, and therefore that the ob-
struction group (2) vanishes. In other words, H3y,,.(U,n)" C HJQ\Z/U(U, n)? =
H3%(U,n)°, with equality if the monodromy-weight conjecture holds.

Since H',(U,n) C Ky,_;U ®Q vanishes for i > 2n, we assume henceforth
that ¢:=2n —1 > 0.

For the moment suppose that we are in setting (i). Write o(,) for the
localisation of o at v, o, for its completion, and k, for its residue field.
Assume that U has a regular and proper model X over 0. Then from the
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localisation sequences
KX = KU - [[ K, X @k,

KX ®og) — KU — K,_ | X®k,
K X®o0, - KU®F, = K, | X®Fk,

we see that

i (U® F,,n)
Hj/0(U,n) = ker H,(U,n) HHZ (U ® Fyon)
v M/U vy

(cf. [18, 1.3.5-6]). Since by definition the corresponding identity holds for
H pp,nr, the comparison between H /. and H gy, is reduced to the local case.

We also recall that both the integrality and the unramified conditions
are stable under finite extensions F’/F: under the inclusion H%,(U,n) C
H (U ® F’',n) one has

H}'V,/O(U, n) = H'(U,n)N Hj\,,/o(U ® F'.n)
Hjy e (U.n) = Hy (U,n) N Hy (U @ F' )

which for Hy,, is clear from the definition, and for Hy/, follows from [18,
§1].

For the rest of the paper we will assume that we are in the local case
(ii): thus F' is local, with valuation ring o and finite residue field &, and
write S = Speco = {n, s} as usual. Let f: X — S be proper and flat, with
special fibre g: Y = X; — Speck and generic fibre U = X \ Y = X,. Let
d = dim U, and write G = Gal(F/F), I for the inertia subgroup of G' and
I = Gal(k/k) = G/I.

We consider the analogue of AJ, on X itself. By the proper base-change
theorem

H°(S, R £.Qu(n)) = H (s, R'9.Qe(n)) = H'(Y, Qu(n))" =0

since by Deligne [6], the weights of H'(Y', Q,(n) are < (i—2n), hence nonzero.
So from the Hochschild-Serre spectral sequence we obtain an edge homomor-
phism

H'(X,Qq(n)) — H(S,F) where F = R £,Qu(n).



Composing with the Chern character ch: K,X — H'(X,Qq(n)), we obtain
a commutative diagram, in which the bottom row is exact:

KX ———— K,U

ejoch lAJg
~

HY(S,F) —— H'(n. Fy)

~-

HY(S, j.F) (3)

HY (s, i Fy)

0 —— Hl(r,f,’-{) — HI(G7F77) — Hl(lafﬁ)r

This shows that Hj,,(X,n) C Hj,, ;(X,n) whenever { # char(k), as
mentioned in the introduction.

We next review when the obstruction group H'(I, F;)" can be non-zero.
First recall:

Conjecture 2.1 (Monodromy-weight conjecture). Let W, denote the weight
filtration on H’(U,Qy), and let N: H(U,Q,) — H'(U,Qy)(—1) denote the
“logarithm of monodromy” operator. Then for each r > 0, N" induces an
1somorphism

N": gril H(U,Q¢) — gr¥ .H (U, Q) (—r).

Assume that X is regular, and that Y is a reduced strict normal crossings
divisor in X. Then the weight spectral sequence of Rapoport-Zink [15, |
controls the weights of H7(U,Qy); let h = h(X) be the least positive integer
such that no set of more than A components of Y has non-trivial intersection.
Then

grV HI(U,Qp) #0 = max{0,j — h,2d — j} <w < min{2j, j + h, 2d}.

In general we may replace U by an alteration U’ for which such a model
U' C X' exists, and take h = h(X’).



Therefore if H'(I, F;)' = Homp(Qy(1—n), H=Y(U,Qy);) is non-zero, the
pair (i,n) must satisfy the inequalities

n<d+1, n<i<2d and i>2n—h-—1.

We also have the obvious inequality ¢ < 2n. So far we have not used
the monodromy-weight conjecture; if we assume it, then the weights of
HI(U,Qy); are all > j, whence we have an additional inequality i < 2n — 1,
which just excludes the case i = 2n already considered at the beginning of
this section.

For U a product of curves, Theorem 1.1 therefore shows that:

e in the region n > d + 1, one has H},(U,n) = Hy,(U,n) (for this the
compatibility 4.1 is not needed, only the computations on the special
fibre at the end of this section); and

e along the lines n = d and n = d + 1 the integrality conditions (which
are in general non-trivial) coincide.

Notice also that over a number field one expects H(U,n) = 0 as soon as
i >2d+ 1.

i=n Az i=2d+1

To go further we want to enlarge the diagram (3) to

KX ——— KU ——— K,_|Y

LI e

0 —_— Hl(F,f%) B Hl(G,Fﬁ) B Hl(I,fﬁ)F — O



for a suitable vertical map ¢, where the top row is the localisation sequence
in K’-theory, so as to compare the kernels of a and 5. We recall (see §3)

that under the boundary map 9, the subspace Ké")U C KU ® Q maps

into the subspace K ;(fl_ Ny c K o—1Y ® Q, and that the Riemann-Roch

transformation 7 maps K;(ff Y to the space of [-invariants of the (-adic

homology group

Hygis1(Y,Quld —n+1)) = H27YY, Rf\Qu(n — d — 1))
~ H*HH(Y, Qu(d —n+ 1))

(the isomorphism being given by Grothendieck-Verdier duality). In the bot-
tom row, we have

H'(I,Fy) = H™NU, Qq(n — 1))y ~ [H*#T, Qu(d — n+1))"]"
by Poincaré duality. Finally we have the specialisation map
sp: HXU(Y,Q,) — H¥ (T, Q,)!
and we can therefore formulate the desired compatibility as:

Proposition 2.2. The following diagram is commutative up to sign:

Kén)U N K(/l(izl—d—l)Y
ATy H72YY Rf\Qun —d—1))
Y (G, H(U,Qu(n))) Y, Qu(d — n + 1))
spY

HY(I,HH U, Qo(n)))" > (H*7 YU, Qu(d = n+1))");

This will be reformulated in a more general setting in the next section.
First, we draw some consequences from it. We recall that the monodromy-
weight conjecture implies:

Conjecture 2.3 (Local invariant cycle “theorem”). Suppose that X is reg-
ular. Then for every j the specialisation map

sp: H(Y,Q,) — H? (U, Q)"

1S a surjection.



From 2.2 one then obtains immediately:

Corollary 2.4 (Jannsen). Suppose that the Riemann-Roch transformation

T K VY 9 — Hoq 2p1q11(Y,Qu(d — n + 1))

q—1
is injective, and that the local invariant cycle theorem 2.3 holds for (X,1—1).
Then Hj\/[/o(U, n) = Hj,,,.(Un).

The hypothesis that 7 is injective would be a consequence of Jannsen’s
generalisation of the Tate conjecture:

Conjecture 2.5 (Jannsen (9, 12.4(a)]). IfY is proper over a finite field k,
of dimension d, then Frobenius acts semisimply on the (-adic homology of Y,
and for every q and m the Riemann-Roch transformation is an isomorphism

T: K(/l(m)Y ®Q = quZm(?a @2(—m))r'

As is shown in [9, 12.7], this is equivalent to standard conjectures for
K-theory of nonsingular varieties over finite fields:

Conjecture 2.6 (Tate, Parshin). Let Y be proper and smooth over a finite
field k.

o The action of Gal(k/k) on H*(Y,Qy) is semisimple.

e The cycle class map CH*(Y) ® Q — H>* (Y, Qq(x))%* /%) s an iso-
morphism.

o Ifqg>0, then K,Y ® Q= 0.

(Jannsen’s proof that 2.6 implies 2.5 assumes resolution of singularities,
but one can remove this by appealing instead to De Jong’s alterations theo-
rem [10].)

We now analyze the proof in more detail to obtain Theorem 1.1. Granted
Proposition 2.2, It suffices to prove the following two Propositions.

Proposition 2.7. Let U = Cy x --- x Cy be a product of smooth proper
curves. Then for all j, the monodromy-weight conjecture holds for H’(U).

Proof. The monodromy-weight conjecture is stable under products (by the
Kiinneth formula and [6, (1.6.9)]), so in particular it holds if U is a product
of curves (even for products of varieties of dimension at most 2, by [15]). [

Proposition 2.8. Let U = Cy x --- x Cy be a product of smooth proper
curves. Then after replacing F by a finite extension, U admits a proper
reqular model X /o for which:



(1) Y is a strict normal crossings divisor on X, and for every intersection
Z of components of Y, the I'-module H*(Z,Qy) is semisimple.

(ii) the Riemann-Roch transformation on the homology of the special fibre

T Hyt (Y,m) @ Qp — Hopm (Y, Qe(m))"

2m—j
s an isomorphism for m < 1.

Proof. We first need to construct a suitable regular model for U. After
passing to a finite extension of F' we may assume that each factor C), has
semistable reduction, and further has a semistable model D, whose special
fibre is a reduced strict normal crossing divisor, whose components and sin-
gular points are all rational over the residue field. Let X' = [[ D,. Then X’
is regular apart from singularities which are locally smooth over a product
of double points; that is, locally isomorphic, for the étale topology, to

SPECO[T1, Yty -« s Yrs Yry 215 - - -5 2] [ (X1Y1 — TR,y oo, X0 Y — TR).

Take X — X’ to be the resolution given in [5, Lemme 5.5]. The special fibre
Y = UY,, is a normal crossings divisor in X. Write as usual

YJ:ﬂYa for J C {a}
acJ

Yo= [ ¥ for ¢ > 0
#J=q+1

Then the description of the desingularisation as an iterated blowup [16, §2]
shows that each Y belongs to Cg, the smallest class of smooth and proper
schemes over k£ such that

(i) Cx contains all products of smooth proper geometrically connected
curves;

(ii) If Wis in C; and P — W is a projective bundle, then P is in Cy;

(iii) If Z ¢ W with W and Z both in Cy, then the blowup of W along Z is
in Ck

If Wis in C and dim W = d, then the Chow motive of W can be computed
using the fomulae for the Chow motives of projective bundles and blowups,
and it is a sum of Chow motives of the form ®i<;<;h'(D;) ® L® for curves
D; and some t > 0 with s +¢ < d. From this it follows that the (-adic
cohomology of Y is semisimple.
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Together with the inclusion maps Y, C Y for J' O J', the Y}, form a
strict simplicial scheme

— —

and the homology, both ¢-adic and motivic, of Y is computed by a spectral
sequence:

MEIS = HZAn/lz—s(Yr(fr%m) = Hé/\r/tn—r—s(}/’ m)
EE{S = HZm—s(}/(—r)a m) = HQm_”_S(Y’m) <5)

In the /-adic spectral sequence, since the Y are smooth and proper we can
rewrite the F; terms as

@Evl"s _ H2d+2r72m+s(}7<_w>, d+r— m)

which is pure of weight s, and semisimple by (i). So the term (‘E7*)! vanishes
unless s = 0, and so we may conclude that, after passing to I'-invariants, the
spectral sequence degenerates to an identity

Hom (Y, Qe(m))" = Hj [Ham(Yiay, Qe(m))"] .

Consider now the motivic spectral sequence. Its Ei-terms may be computed
as K-theory:

ME;S _ H/Q\iit+2rf2m+s(}/<_r>7 d+r— m) _ K(d—i—r—m) <

We can then apply the following trivial extension of [19, Theorem 4].
Theorem 2.9 (Soulé). Let Z be in Cy, of dimension < d. Then
(i) for every a >0 and every b>d — 1, K7 = 0; and

(ii) for m =0, 1 the cycle class map CH,,(Z) ® Qy — H* ™) (Z Qq(d —
m)) is an isomorphism.

Proof. As observed above, the Chow motive of Z is a submotive of the motive
of the product of d curves, to which Soulé’s result applies. n

In the present case, since dimY;_,, = d + r, part (i) gives ME7* = 0 for
all s # 0, provided m < 1. Therefore the spectral sequence also reduces to
an identity

Hyp;(Y.m) = Hy [Hyp (Yo, m)] = H; [CHu(Yiey) ® Q).

2m—j
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By (ii) we also have for every m < 1 an isomorphism of homological com-

plexes _
CHm(Y7<.>) ® Qé - HQm(}/(-)a @€<m))r

(for m < 0 both complexes are obviously zero). Therefore by comparing
homology we get that 7 is an isomorphism. Il
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3 Homological setting

In this section, S = Speco is to be any Henselian trait (the spectrum of
a Henselian discrete valuation ring), with generic and closed points 7, s, of
residue characteristic different from ¢, and f: X — S any quasi-projective
and flat morphism of relative dimension d. Label the morphisms:

YC > X < )U
fSl J{f l'?
C N Z D
S P /S\ J ’r]

We will replace K-theory by K’-theory and étale cohomology by homology.
We review some facts from [20]. Recall that when U is smooth, the ~-
filtration F3 on K,U satisfies

(FrEU) Q= KU
m>n

In general one has an increasing filtration F, on K'U ® Q (defined by em-
bedding U in a smooth scheme Z and taking a shift of the y-filtration on
K?U = K'U). There are modified Adams operators ¢* on K’-theory and, if

K;(n)U C K;U ® Q denotes the (¢* = k™)-eigenspace, then

FL(K,U®Q) =P K, ™U.

m>n

When U is smooth the isomorphism K,U — KU carries FI'(K,U ® Q) to

Fy_n(K\U ® Q) and therefore induces isomorphisms K,(n)U — K" U,
In [7] there are defined ¢-adic Riemann-Roch transformations

7: K[U — Hy 20 (U, Qe(—m))
whose target is f-adic homology, defined as
H_j(U,Qi(—m)) = H’ (U, Rf,Q¢(m)).

When U is smooth, the Riemann-Roch theorem shows that for the Adams
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eigenspaces there is a commutative diagram

K ——"—— H?9(U,Qy(n))

(P.D.)lN

H*=24=2(U, RfQy(n — d))

Kq D —"— Hysa-20(U, Qe(d — 1))

1

where the isomorphism labelled (P.D.) is the “Poincaré duality” isomorphism

given by Rf,Q; = Q(d)[2d].
All this apphes equally to Y. In étale homology there is a boundary map

Oot H_ (U, Qu(—m)) — H_i1(Y,Qu(—m + 1))
defined as the composite
H_i(U,Qu(~m)) = H'(U, Rf,Qe(m)) —=Hy (X, Rf'Qu(m))
=H"(Y, Rg'Rf,Qi(m))
=H" (Y, Rf:Ri'Qq(m))

=H"'(Y,Rf,Qi(m — 1))
=H_i1(Y,Qi(—m + 1))

using the purity Ri'Q, = Q;(—1)[—2] on S. The boundary maps 9y and 9,
in K’'-theory and étale homology are compatible: the square

K(;(m)U % Hq—2m(U7 Qf(_m)) (6)

m

K;(_Wi_l)Y — = Hy9m1 (Y, Qe(—m + 1))

is commutative, cf. [9, end of §8.1]. (The strange numbering of the homolog-
ical boundary map comes from the equality of the dimensions of U and Y;
by considering U as having dimension (d + 1) — as for example is done in
[11] — would lead to a more natural numbering).

We have a Hochschild-Serre spectral sequence in homology:

B3’ = H*(G, H-y(U,Qu(e))) = H_o—(U, Qc(s))
and therefore, if Fil" is the abutment filtration, so that
Fil' H,(U,Q(e)) = ker [H,(U,Qq(e)) — H.(U,Qq(e))]

14



there is an edge homomorphism
er: Fil' H;(U, Qo)) — HY(G, Hj11 (U, Qq(e))).

Let (K™ U)" = 77 Y(Fil' Hy_om (U, Q(—m))) C K, "™ U. We can then state
the homological generalisation of 2.2. Let

sp': Ho(U, Qe())1 — H.(Y,Qu(e))
be the transpose, for Grothendieck-Verdier duality, of the specialisation map
sp: HZ (Y, Q(e)) — H; (U, Qu(e))".

Proposition 3.1. The following diagram is commutative up to sign:

0 m—
(K™ U)o M >y Ky
Fﬂl Hq—?m(Ua QZ(_m)) Hq72m+1 (Y7 Qé(l - m))

€1

~ ~-

HYG, Hyis 0. Qe(—m)))  Hyos (V, Qe(1 — m))

Sp

~

HY(I, Hy et (U, Qe =) ot (U, Qe(1 — ),

The compatibility of boundary maps (6) means that we can get rid of the
K'-theory and express 3.1 as a purely cohomological compatibility. We shall
state and prove this in the next section.

4 (-adic compatibility
Since the target space in the diagram is the homology H, am,.1(Y, Q¢(1—m))

of the geometric special fibre, we may replace S by its strict Henselisation.
Then we can remove the twists, and Proposition 3.1 will follow from the
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commutativity of the following diagram, for any r € Z:

Fil' H (U, Rf\Qp) —— HY(I, H"(U, Rf,Qy))

H™ (U, Rf)Qu) H'(U, Rf;Q)1(-1)
H™2(Y, Rg' Rf'Qy) [H (U, Q) (1)]"

= sp¥

~ ~

H™(Y,RfIQu(—1)) — [H"(Y,Q))(1)]"

We may push this down onto S, where it becomes the case K = Rf.Rf'Qy,
L = RfiQy of the following statement.

Proposition 4.1. Let S be a strictly Henselian trait, with generic and closed
points 1, s, whose residue characteristic is different from (. Let K, L €
D (S,Qy) together with a pairing K ® L — Qy(1), inducing a cohomological
paring

B: HZ(S,K) ® H'(s, Ls) — H(S, Qu(1)) = Q

Then the following diagram is commutative up to sign:

Fil' H'(n, K,) —— H'(n, H'(K,))

H' (1, ) HO(K;)1(~1)
B
o [H(Ly)"]"
spY

H2(S,K) —"— H(s, L)Y

Proof. We can check this by pairing the whole diagram with H°(S, L), and
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are therefore reduced to the commutativity of the diagram:

Fill B (n, K,) © HO(S. L) —""— H'(y, H'(k,)) ® H°(S, L)

M

~ ~

H'(n, Ky) ® H°(S, L) HO(Ky)r @ H°(Lyp)'(—1)
O®id B

H?(S,K)® H°(S, L)

’ HS2(S7 @K(l)) = @E

To prove this we enlarge it to the enormous diagram below:
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31

Fil' H'(n, K,)) ® H°(S, L)
id®j*

Flll Hl (7]7 Kﬂ) ® H0<n7 Lﬁ)

e1®eo

~

H' (n, H(K,)) @ HO(n, H°(Ly)

@]

~-

Hl(n, HO<K77) ® HO(Ln))

H1<777 HO(KW ® Ln))

B

~-

Fil' H'(n, K,y ® L,)) —— H'(»,

] / ﬁl

Fil' /' (n, A(1)) =

\

Kummer

~

B

~

~

H%(s, Ri'(K ® L))




The commutativity of the various parts of this diagram are as follows:
Parts (1), (4) and (5) obviously commute, and (6) commutes by functo-
riality.
Part (2) commutes up to sign by [17, 0.1], and part (3) commutes by [17,
0.4]. The remaining compatibility is (7), which is anti-commutative by [22,
“Cycle”, 2.1.3]. O
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