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Introduction

Let X be a smooth and proper curve over the finite field k=F,. If IE is an F-
crystal [K] on X, then the g-power Frobenius acts on the crystalline cohomol-
ogy H*(X/W, IE), where W is the ring of Witt vectors of k. In this note we
show how the method of Monsky ([M1], [M2]) may be used to prove a
Lefchetz-type formula for the alternating sum of the traces of Frobenius,
provided that ¢ is odd.

For the application we have in mind [S] we need to consider a slightly
wider class of systems of coefficients; the underlying differential equation of IE
is permitted to have regular singular points. The formalism of such “F-crystals
with logarithmic singularities” (which were first considered by Dwork [Dw],
from a somewhat different point of view) is described in the first part of the
paper; the treatment largely parallels the exposition of Katz [K], with which
we assume some familiarity. To avoid later difficulties (cf. §4), we have as-
sumed that the divided powers which arise are topologically nilpotent - which
accounts for the restriction on the characteristic of k. The idea of using a chain
homotopy to define the action of Frobenius on the cohomology, as in §2, was
suggested by Deligne.

The principle of the proof of the trace formula is, roughly speaking, as
follows: one considers the rigid analytic space associated to a lifting of X, and
removes p-adic discs of radius 1—e¢ around each point of X (k). As ¢ tends to
zero, one is left with a “dagger space”, which has no points over W, and
therefore by a general result of Monsky ([M2], § 3) the alternating sum of the
traces of Frobenius on its cohomology vanishes. In order to express the trace
over the whole space as a sum of local terms, it therefore remains to calculate
the contribution from the excised discs. This can be done since IE, being an F-
crystal (and not merely a crystal), can be locally trivialised over an open disc
of radius one.

*  Present address: University of Durham, Dept. of Mathematical Sciences, Science Laboratories,
South Road, Durham DH1 3LE, England
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It is clear that some of the theory presented here could be developed
without the hypothesis that X be one-dimensional. We have not done this for
two reasons. Firstly, the construction of the chain homotopies of §2 becomes
more involved in the multi-dimensional case; secondly, the present approach
would require unattractive liftability hypotheses. A more intrinsic approach
would obviate both these difficulties.

The author wishes to thank Professors Deligne and Katz for helpful discussions, and the IHES
for their hospitality while this work was in progress.

§ 1. F-crystals

1.1. We fix the following notation:

a complete discrete valuation ring

the field of quotients of R, of characteristic 0

a uniformising parameter in R

the residue field R/(n), of characteristic p#+0
the absolute ramification degree of R

ord, the normalised ordinal function with ord (p)=1

p
o a lifting of the p-power Frobenius endomorphism of k to R.

o =3 xRx

We always assume e<p—1 (so that in particular, p=+2).
We often abbreviate the divided powers x"/n! by x".,

1.2 (X, Y) denotes one of the following:

i) X a smooth separated R-scheme of relative dimension one, and Y a
closed subscheme of X which is finite and étale over R;

ii) X=SpecR'[[t]], and Y either empty or the closed subscheme t=0,
where R’ is a finite étale R-algebra.

In either case, ¢t denotes a local parameter on X which, if Y is nonempty, is
also a local equation for Y.

Q4(log Y)=0Q; r(log Y) denotes the module of relative differentials with at
most simple poles along Y.

® (resp. ') denotes p-adic completion (resp. weak p-adic completion, in the
sense of [M — W], [Me]).

1.3 We say that a lifting ¢: X®*—>X* (or X'—>X") of the absolute Frobenius
endomorphism of X ®k is admissible if

a) ¢* is o-linear; and

b) ¢*(Fy)=FE, where £, is the ideal sheaf of Y.
In local coordinates, b) is equivalent to:

b’) ¢*(t)=t"-u, where uel+n0y (or 1+n0}).

1.4 Let & be an ¢5°-module, and

V: 8-8R®0x(log Y)*
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a connection with logarithmic singularities. If ¢, ¢’ are two o-linear liftings of
Frobenius to X, and Y is empty, then there is an isomorphism

2, 9): ¢*E——¢*&
given locally by the well-known formula
d n
14 s oera= 3 ¢ (7 (5] ©) @ —gror

If Y is nonempty, x(¢', @) is still defined provided that ¢, ¢’ are admissable,
as we may rewrite (1.4.1) as

(1.4.2) qua* (V (t %)" (e))- (log %:(%l)["].

Let us indicate a proof of the equality between (1.4.1) and (1.4.2). First note
that, from b’) above,

¢"*(1) .
&0 lenO%
whence we may define
(1)
4. = %
(1.4.3) n=Ilog ¢*(t)e7t(9x

The infinite sum (1.4.2) is therefore convergent. Substituting (1.4.3) into
(1.4.1), we are reduced to verifying the formal identity of differential operators

1 0" 1 oy

— X" Y1)y = —(X——) Y"
Lo X @ = 2 Xy

which is elementary (calculate the action of each side in turn on the mo-

nomials X for k=0, 1, ...).

1.5. We define an F-crystal with logarithmic singularities on (X, Y*) to be a
triple (&, V, F), where (&,V) is as above, and F is a rule which associates, to
each admissable lifting ¢ of Frobenius to an open U< X®, a horizontal
endomorphism F, of the restriction &, of & to U, satisfying:

i) F, is ¢*-linear, and the assignment (U, ¢)—F, is compatible with restric-
tion to open subsets; and

i) if F¢: ¢*6—& denotes the linearisation of F,, then if ¢’ is another
admissable lifting

Fy=Fyo1(9,9).

1.6 An F-crystal in the usual sense [K] on X gives an F-crystal in our sense,
with Y empty. (In fact the usual notion is somewhat stronger, as V is assumed
to satisfy a condition of nilpotence, which we have not needed as e<p—1.)
Because of condition ii), in order to give (&, V) the structure of an F-crystal
with logarithmic singularities, it suffices to specify F, locally for just one choice
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of lifting ¢. In particular, if (&, V) already defines an F-crystal (without singu-
larities) on the complement X*—Y*, it suffices to find an open neigh-
bourhood U of Y* and an admissible ¢ on U such that the endomorphism F,
over U— Y™ extends to the whole of U.

1.7. Let resy: Qy(log Y)— 0, denote the residue map

dt
resy ( —t—)——:a

and %, the residue map of V¥ along Y, which is the ¢, -linear endomorphism of
& ®0, which makes the diagram

& 5 ERx(log Y)™
(171) id®resy

commute (where the left-hand vertical arrow is the natural map).
We restrict from now on to (&, V, F) which satisfy the additional conditions
i) & is locally free of finite rank;
il) Ry is nilpotent; and
iij) F,®Q is an isomorphism.
For the rest of the paper, by “F-crystal” we shall mean “F-crystal with
logarithmic singularities, satisfying i), ii) and iii)”.

§2. Cohomology

2.1, Let (&,V,F) be an F-crystal on (X*,Y*), and ¢, ¢’ admissable liftings of
Frobenius on X*. Define a o-linear mapping

L(¢, ¢): ERQ5(log Y)*—&
by

el L@idedn= 3 F, (7 (1) ©) @ o-gor

nz0

if t is a local parameter away from Y, and

v () (2 ) (i)

n20

if t is a local equation for Y. The proof that these two formulae are compatible
parallels the argument of 1.4 above.

2.2. Proposition. i) L(¢', ¢) does not depend on the choice of parameter t (and is
therefore globally well-defined).
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ii) On the complex & ® Qy(log Y)>
Vo L(¢, §)+ (g, §)o ¥ =F, —F,.
iii) If @¢" is a third admissable lifting of Frobenius, then
L(¢’ ¢)+ L(¢", ¢") = L(¢", $)
and L(¢, ¢')= —L(¢’ ¢).
iv) L(¢,¢)=0 (mod n).

Proof. i) Suppose that u and t are two different local parameters. Since we need
only check the invariance of the definition of L(¢,¢) in a formal neigh-
bourhood of a closed point of X (the sheaves in question being locally free),
and since it is clearly invariant under a translation t+—t+a (where a is a
constant) we may assume that X =SpecR'[[t]] as in 1.2.ii), and u
=u(t)eR'[[t]], with du/dteR'[[t]]*. We then need to check

50
2 () ) ra-onar

nz0

(% e)) (@ *(R) — ()t !

This would follow from the formal identity of differential operators

2.2.1) T =g LA 5 e ey adu—

nz0 dtn dt n=0

If feR'[[t]], choose geR'® Q[[t]] such that dg/dt=fdu/dt. Then (2.2.1)
applied to f yields

> -0 LEo s () —utom. 28

'8
nz1 " 54 du”

which is indeed a valid identity - it is the Taylor expansion for g(u(t')) —g(u(t))
expressed in two different ways.
ii) We have

Lo =L619) (7 (3) (@)

=5 £ (7 (5) @) 60-¢rom

—F,(1(&', $)(€) — F,(e)
=F,(e)—F,(e)

and similarly for Vo L(¢’, ¢).
iii) Write V, for V'(d/dt), and s, s, s” for $*(z), etc.
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Then
(L(¢", ¢") + L(¢’, p))(e dt)

= 2 Fp(7(e) (" =)'t 5 Fy(F(e)- (s s+ !

n20 nz0

— F¢(V,”+'(e)) . (S' _S)[r] (S” _Sr)[n+ 1] + Z F¢(l7,”(e)) . (S' _ S)[n+ 1}
n>0 nz0
r20

n+1

Z F (7€) 3 (s —s))(s” —s)n+1-n
= T R7HE) " =" = L, e do).

The first part follows since clearly L(¢, ¢)=0.
iv) Since ¢'= ¢ (mod =), this is immediate.

2.3 As in [D] §7.4, the above allows us to define a canonical o-linear en-
domorphism F of the cohomology H*(X*, & ® Q2 (log Y)*). We recall the con-
struction: let W={U,} be an open covering of X*, and let ¢, be an admissable
lifting of Frobenius on U,, for each i. Then an endomorphism F of the Cech
complex

C'U, & Qi (log Y)™)
is defined as the sum u+ v+ w, where
u: @ I'(U;, 6@Q%(log Y)*)—® I'(U;, £ @y(log Y)*)

{e}—{F, (e)}
v: @ I'(U;nU;, 6@Q%(log Y)*)— @ I'(U; " U;, £ @25(log Y)™)

{eij}H{F e;)}
w: @ rv;, é®9x(log Y)°°)—+@ ri{u,nu;é)
{ej—{L(¢; ¢ )(elw,n u,)}

By 2.2.11i) and §7.5 of [D], F does not depend, up to homotopy, on the choice
of liftings {¢,}.

24. If (X,Y) is as in 1.2.i1), then of course we need only take the trivial
covering A ={X} above, and choose any admissable lifting ¢ on X, to define F.
If (X,Y) is as in 1.2.i), and if X is the formal completion of X about a closed
point, then there is a natural map

H*(X®, 8§ @25 (log Y)*)— H*(X,£ ®Q;(log Y))
with respect to which F is evidently functorial.
2.5 Let Q'(&) denote the subcomplex

[6—P(8)+E QL]
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of §®Q%(log Y)™. It may be characterised by
QY(&)=(id@resy) " (Im &y)

(cf. the diagram (1.7.1)). The procedure of 2.3 gives a canonical endomorphism
F of H*(X*, Q'(£)), which is functorial with respect to completion about a
closed point of X, as in the previous paragraph.

§3. Local structure

3.1. For this section we assume that (X, Y) is as in 1.2.ii) above, with R'=R.
Denote by K{t} the ring of power series in K[[t]] which converge on the
p-adic disc {z: ord(z) >0}. Let (&, ¥, F) be an F-crystal on (X, Y), and write &,
for the fibre & ® R Let F, denote the endomorphism of &, deduced from F,

by passage to the quotient (it is independent of ¢, cf. (1.4.1)), and write &, for
the residue map %, .

3.2. Proposition
1) pRGoFy=Fy o R,,.
\ii) There is a unique isomorphism of K{t}-modules

&R K{t}—¢&, ®K{t}

R[]}

which reduces to the identity mod(t), and for which the actions of V,F, on
o @ K {t} satisfy

V(e®1)=9?0(e)®%t-
(3.2.1)
Fy(e®1)=F,(e)®1.

Proof ([Dw], [K]). Let ¢*(t)=t?, and let {e,:1 <i<d} be a basis for &, with

V(e,.)=Z (Bij+t™"g)e;-dt,

Fyle)= ZAU J?

where
A, BijeR[[]],  gi€R.

We require a basis {e;} for §® K {t} such that

. dt
V(e:')=2_ 8ij€; T
J

If ;=) D,;e;, then the matrix D=(D,)) is to satisfy

(3.2.2) t g; (D)=[g,D]-tD-B.
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By hypothesis, g is nilpotent, whence there is a unique power series solution
DeM (K[[t]]) of (3.2.2) for which D(0)=1, and the entries of D have a non-
zero radius of convergence (cf. [C]).

If we write Fy(e))=) a;;€;, then

d
(3.2.3) ta—t—(a)ng ‘a—a-g

whence a is a constant matrix. The relation D?-A=a-D then shows firstly
that a;;=A4,;(0), whence by (3.2.3) we have i), and secondly that D converges
and is invertible on the whole open disc of radius 1 (compare [K], 3.1.2 and
[Dw], Theorem 6; note that a and A are invertible matrices, by 1.7.iii) above).

§ 4. Overconvergence

4.1. Assume that we are in case 1.2.1), with X proper over R. If (&,V,F) is an
F-crystal on (X, Y*°), then the differential equation (&, V) descends uniquely to
(X', Y") (indeed, even to (X,Y), by EGAIII5.1.4). Let USX be an open
subscheme, and ¢, ¢': U'— U' admissable liftings of Frobenius. Then there are
defined mappings

F¢Z éaww —>én|uco

L(¢', ¢): 6@Qx(log Y)yw—& y.
4.2. F, and L(¢', ¢) extend to mappings over U".

We reduce this to a local statement as follows. Let Z be a closed sub-
scheme of X, finite and étale over R, such that U*=X>*—Z>. Without loss of
generality we may assume that X is integral, U=X —Z, and Z 0. Let I'(Z,0,)
=R’; then the formal completion of X along Z is isomorphic to Spf R'[[z]]
for a local equation z for Z. Consider the commutative square

rU', 0))=— R'((2))'

| ]

(U=, 05)— R'((2))>.
(Recall that R'((z))™ is the ring of formal Laurent series

P(z)=) a,z"
neZ
where a,eR’ and ord,a_,—o as n—oo; and that R'((z))' is the subring
comprised of series P(z) such that for some a>0, depending on P,
ordp a_ =on—1

n

for every n20.)
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Viewing the modules in this diagram as submodules of R'((z))*, we claim
rUtoy)=rw>oy)nnR(z)".
To prove this, choose a finite flat morphism
f: X-Pg
such that f~!(c0),.,=Z. If x denotes the coordinate on P!, then
ru,o)=r(w, @x)® R[xT,

R((2)y=I(U, (9x)® R(x~Y)Y’

R([x]

where ? denotes either T or co. By faithful flatness we are reduced to showing
R[x]"=R[x]*nR((x~ ")

which is obvious from the definitions.

To prove 4.2, it now suffices to prove the following:

Let (&,V,F) be an F-crystal on (SpfR'[[t]], t=0), and let ¢, ¢’ be o-linear
liftings of Frobenius to R'((t))'. Then the mappings F,, L(¢',¢) (which are a
priori defined over R'((t))*) extend to mappings over R'((t))".

Let 0 be the o-linear lifting of Frobenius to R'[[t]] with 0*(t)=t” (extend-
ing o to R’ in the unique way). By the transitivity properties 1.5.i1) and 2.2.iii),
it suffices to show that L(¢,0) and y(¢, 0) are defined over R'((t))".

Since ¢*(t)eR'((t))' and ¢*(t)=t? (mod =),

£
iog ek oy
whence we may write
P* ()Y
42.1 lo (—-—) —7Y b ()¢
(4.2.1) g \gvo Zi 0]
where b, (l)eR’, and for some a>0
(4.2.2) ord, b,(l) 2 max(0, —al—n).

Then if eed and k=0, the formula (2.1.2) gives

423) L. 9)( M) Y F, ( ( ;t)" (ti)) A 1p ()L

nz0
leZ

Now write, for n>1,

F, (V (t %)"—1 (tik))=z—Pk Y Y alik)te,
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where {e;} is a basis for & and a,(i, k,s)eR’. Then (4.2.3) becomes

Y Y b00Y T et aiske

n21 * leZ s20 i

=Z e Y, ci,k,m)t™

meZ

where

we have

4.2.9) ord, c(i, k,m) 2 min (An+max (0, —a(m—s+pk) —n))
s20
n1

1
writing l=%—p—1, so that 0<Ai<1.
If n=a(s —pk —m), the expression in brackets in (4.2.4) is An=aA(—pk—m),
and if nZa(s—pk—m), it is
intoa(s—pk—m)—n=a(s—pk—m)—(1—2A)n
2a(s—pk—m)—(1—A)a(s—pk —m)
2 aA(—pk—m)
and thus (4.2.4) gives
ord , c(i, k,m) 2 max (0, x A(— pk —m)).
Now suppose that for each k=0 we have d,eR’, satisfying

ord, d, = Bk—1, p>0.

Then
dt )
(4.2.5) L(¢,0) (LZ d,e P‘—;T) =Z e; Y, dycli,k,m)t™
= T
and

(426) ord, (‘kl d, c(i,k,m)) = inzlg (ord,d, +ord , c(i, k,m))

=min (max(0, Bk — 1)+ max(0, x A(—m —pk))).
k20

Evaluating the bracketed expression at its changes of slope, k= —m/p and
k=1/p, we find that (4.2.6) is greater than or equal to
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max {O,min (ﬁ (—%)—1, 9! (—m—%))}
—max {o, (-%’”-1) min (1, 9‘%)}

Hence the right hand expression of (4.2.5) is an element of £®@R'((t))', and
since every element of #QR'((t))' is a finite linear combination of elements of

the form
Y det ke

k20

with eeé, d,eR’, and ord,d, = Bk —1, for some f>0, we have the desired result
for L(¢,0). An expression for y(¢,0), similar to (4.2.3), may be obtained from
(1.4.2) above, and the rest of the reasoning above then applies.

§5. Trace formula

5.1. In this section we assume that k=F, is finite, where g=p". For s21, write
k=K, and let R, denote the (unique) unramified extension of R with residue
field k,. Let (&,V, F) be an F-crystal on (X*, Y*). To each xeX(k,) we associate
an R-module &, and R linear endomorphisms F;*, Z_, as follows.

If x¢ Y(k,), define &, to be X*&, for any lifting Xe X (R,) of x. We take F* to
be the restriction of (F,)™ for a lifting ¢ of Frobenius for which ¢"*(X)=X, and
write £, =0. This assignment is independent of the choices of X and ¢ (cf. [K]
1.4).

If xeY(k), we let &, =%*&, where XeY(R,) is the unique lifting of x to Y
(Hensel’'s lemma). F}® is the restriction of (Fy)™* for an admissable lifting ¢ of
Frobenius to a neighbourhood of x in X*, and £, is the restriction of the
residue map #,.

In either case, the relation

(5.L.1) FRoF=Fo R,

holds (cf. 3.2 above), and F}® is injective (by 1.7.1ii)).
Assume now that (X,Y) is as in 1.2.1), and write U=X —Y. For a Z-module
M, abbreviate M®Q by M,,.

5.2. Theorem. Let X be proper over R.
i) F is bijective on H(X*, & @Q(log Y)®)q, and

Z (=1 Tr(F~": H'(X, 8 ®@8%(log Y)¥)e)

=q~° Z Tr(F™: &, o)
xeUf(ky)

ii) F is bijective on H'(X*, Q())q, and

Y (1 Te(F~: H(XSQ'(£)g)=q~° Y. Tr(F;™": coker(#,)o).

xeX(ks)
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5.3. Remark. Note that the complex Q'(&) does not change if Y is enlarged,
whereas £®€2%(log Y) does. If & is viewed as the analogue of a local system %
on U, then the cohomology of the first complex corresponds to H*(X,j. %),
and the second to H*(U, %), for j: U—X the inclusion.

5.4. Proof of 5.2. By Meredith’s comparison theorem ([Me], 5, Theorem 4) and
EGA I114.1.5, the natural map

H (X' 6®Q(log Y)H->H (X ERQ%(log Y)™)
is an isomorphism of R-modules of finite type. In §6 we shall prove:

The natural map
(5.4.1) HI(X&®0Q(log Y)*)Q~—+H‘(UT, E®Qyt)
is an isomorphism.

Granted this, we deduce 5.2 in a series of steps, following Monsky [M2].
By extension of scalars to R;, we may assume s=1.

5.5. Suppose that U(k) is empty, and that there is a o-linear lifting ¢ of
Frobenius on U'. Then 5.2.1) holds.

By 4.2, F, extends to a o-linear endomorphism of & ®€y+. Denoting by F,
the linearisation of F, as in 1.51i), there is a factorisation

ERL 5 ER* U —> P*(ER Q)

Fy
Fg

éﬂ@QU* .
By Theorem 8.5 of [M — W] there is a trace map

v d)* Q‘U* —> Q'U*
such that
Y(¢p*w)=pw

for weQys. Since OF is faithfully flat over O}, (cf. 5.8 below), the map F¢®Q is
an isomorphism (by 1.7.ii1)), and using the diagram above we may define an
endomorphism

Y=(id;®¥)ca" "o (F,®Q)*

of £®Q;» ®Q, which satisfies
Yo Fy=p.

Thus p~'Y induces a left inverse to F on H(U",&®Qyt)o. By (5.4.1) these
spaces have finite dimension over K, and hence F is bijective on them.
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Since the 0}-modules & ®Qy;+ are finitely generated, for some power p* of p
we have

PFY(ERQ)SERQ:;

it then remains to prove that

> (=D Tr(p Y™ H(U', 6 @Qy1)g) =0

)

if U(k) is empty. But the endomorphism p*" Y'" of £ ®Q+is a “Dwork operator”,
in the terminology of [M2], and so by Theorems 3.3 and 3.5 of loc. cit., the
alternating sum of the traces is zero.

5.6. The conclusions i) and ii) of Theorem 5.2 are equivalent.

By 2.4 above, there is an exact sequence
0—-QY&) > ERQx(log Y)*— coker #y—0
whence a long exact sequence of cohomology

(56.1) 0—HYX> Q) —HX R, (log Y)®)—0
0—H (X, Q'(6)—HY(X", £ @Q(log Y)*)
— coker Zy(—1)->H?*(X>, Q(&)) — H(X = & Q2 (log Y)*)—0

which we view as an exact sequence of R-modules with o-linear operators F.
Here coker #4(—1) is the Tate twist of coker #y; it has the same underlying R-
module, but the operator F (deduced from F, by passage to the quotient) is
replaced by pF. The compatibility of (5.6.1) with F is a consequence of 3.2.i),
or an obvious variant of it. Since F is bijective on (coker Zy)q (by the hypothe-
sis 1.7.iii)), the first assertions of 5.2.i) and 5.2.ii) are equivalent; for the rest, it
suffices to prove:

Tr(F~": (coker Zy)o)= Y. Tr(F ": (coker Z,)q)-

xeY (k)

Since both sides of this equation are additive in Y, it suffices to show that if Z
is a component of Y with Z(k) empty, then

Tr(F™": (coker Z;)q)=0.

But replacing F~" by p*F~" for some k>0, we obtain a Dwork operator on
(coker #,)/(n-torsion), and again the trace vanishes.

5.7. End of proof

By 5.6, it suffices to prove 5.2.ii), and the latter statement does not depend on
the subscheme Y (cf. 5.3 above). Enlarge Y so that the conditions of 5.5 are
satisfied. Applying 5.6 again, it suffices to prove 5.2.i) for this choice of Y,
which we have done in 5.5.

5.8. We finally fill the gap in 5.5. By Theorem 1.4 of [M — W], 0F is the n-adic
completion of O}; hence by Theorem 1.6 of loc. cit. and Theorem 56, page 172,
[Ma}], it is faithfully flat over 0O},
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§ 6. The isomorphism (5.4.1)

6.1. We retain the notations of the previous section. Let i,j denote the inclu-
sions
Ul Xt YT
Write ! l
A =6RQ(log Y)'.

The exact sequence
0 A", * A" (j, *A)/ A0
gives (since j is affine) a long exact sequence of cohomology
—HX,4)-H (U j*4A)->H(X(j, j*A)/A)—...

By Lemma 1.4 and Theorem 2.3 of [M1], we have an isomorphism

0L - (O
6.1.1) of Tl (@Y[[t]])'

(Note that, in the notation of [M1], we have Oy (T)>=0,[[T]] since Y has
dimension zero over R.)
Extending the differential of A" in the obvious way, (6.1.1) gives

B((1))! )
B[[t]]

where B=T(Y,0,). To prove that (5.4.1) is an isomorphism, it therefore suffices
to prove that the complex

H*(X',(j, j*A)/A)—> H* (A'@

B t
6.1.2) A® BE([’;);]

®Q

is acyclic.

6.2. Let K{t} be the ring of convergent power series in t, as in 3.1, and write
K{{t}} for the set of all formal Laurent series

(o]

P()= Y a,t", a,EK,

n
n= —0oo

such that, for all £>0,
ord (a,)+en—+0 as n—+o0
and such that for some constant « >0 (depending on P)
ord (a_,)—an—+00 as n— +oo.

Thus K{{t}} is the ring of formal Laurent series converging on some annulus
0<ord,(z)<é. From the definitions, we have

K{{}} . R
K{t} R[[]

®x K.
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6.3. Write B as a direct sum of domains B;, so that B ®K @—) K,, where K is
the field of fractions of B;. The complex (6.1.2) is, by the above isomorphic to

K. {{t}}
@ ‘® K.}

Write &; for §®B;, and #; for the restriction of #, to &;. The complex
A" ® K, {{t}}/K,{t} is then by Proposition 3.2 isomorphic to

Ki{{t}} » K {{t}}-dt
K@ C®k{naa

£®

where the differential V; is given by
V(e®y)=e®dy+Rle)®y-t~"dt.

This complex is acyclic; indeed, an explicit inverse to V; is the mapping

e® Y, a,0'tdts Y (—~DFRHO® T 0yt T

neZ k=20 n<0

which is well-defined since £, is nilpotent.

§7. Complements

7.1. Let (X,Y) and (X, Y’) be as in 1.2.1), and let f: X'— X be a (non-constant)
R-morphism, with f~!(Y)=Y". If (&,V,F) is an F-crystal without singularities
on X, then f*& defines an F-crystal on X' (by functoriality of Frobenius).
If & has singularities, we can at any rate give f*& the structure of an F-crystal
with singularities under the hypothesis:

S 1s étale away from a closed subscheme Z< X, whose intersection with Y
is finite and étale over R.

Indeed, since f* Qy r(log Y)QQ}(.,R(Iog Y’), there is a natural extension of V
to f*&. By the above, we have an F-crystal structure on f*& away from Y. It
therefore suffices to define the map F, for some admissable ¢’ in a neighbour-
hood of Y’; we may assume then that Z=Y.

If there are admissable liftings ¢, ¢’ of Frobenius to X, X’ with

fod'=¢of

we can take Fy,=f*(F;). So it suffices to find a pair (¢,¢). Choose ¢
arbitrarily. Since f is étale away from Y, and X' is separated, such a ¢, if it
exists, is uniquely determined; and the same is true if X' is replaced by any X"
étale over X'. It therefore suffices to construct ¢’ locally for the étale topology.
But by Abhyankar’s lemma X" is locally isomorphic to

X [s1/(s* 1),
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where ¢ is a local equation for Y, and (d, p)=1. Since ¢ is admissable,
o*t=tP-u

for some uel+=n-0%. Since pfd, we can solve

v=u, ov=1(modn)

for some ve(%, and then
¢'*: skosPev
is the required lifting.
7.2 Let H be a finite group of automorphisms of X which preserve Y. If ¢ is
an admissable lifting of Frobenius to X, then so is h='o@oh for any heH.

We may therefore define the notion of an action of H on an F-crystal (&, V, F)
on (X*, Y*) as the data: for each heH, a horizontal isomorphism

~

h: h*6 —¢&,

satisfying the usual compatibilities for a group action, and such that if ¢ is an
admissable lifting of Frobenius to an open U< X, and heH such that h=}(U)
= U, then the diagram of sheaves on U

h*(F )

h*¢p*& ——h*&

(ﬁ'*h*éﬂ ='h

~ | ¢ *h

)
P'*E —5 &
o
commutes, with ¢'=h"o g oh.

Let U={U,} be an open covering of X, where h~*(U)="U, for each i and
for a fixed heH. Choose admissable ¢, on each U,, and write F for the
endomorphism of the Cech complex €', Q'(€)) constructed in 2.3 from {¢,};
write F’ for the homotopic endomorphism constructed from {¢;}, where ¢;
=h~lo¢,oh. The pair (h* h) defines an endomorphism h of the Cech complex,
and by the diagram above, ho F = F'o h, whence the endomorphisms h and F of
cohomology commute.

7.3 In [S] a filtered form of the complex Q°(£) is employed. Write, for i 20,

{i>=min {ord,r G‘i) jgi}.

We consider F-crystals (&£, V, F) equipped with a decreasing filtration
&=Fil’62Fil'¢2...2FiF*1¢=0
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whose successive quotients are locally free, satisfying the conditions
V(Fil'* ") Fil @ Qy g(log Y)>
and
F,(Fil)sn®&
Write Fil'=0 for i>k and Fil'=& for i<0. We may then define a filtration on
E®Qyp(log Y)™ by
Fil'(¢ ® Q))=Fil' /(§)®Q’

and, by restriction, a filtration on Q°(¢£). Define
@R (&)=Y n*k+ 1D Fil(Q'(£)).
k

One checks, using (2.1.1) and the formula (i) + D> ={i+j>, that PQ(&) is a
complex, and that it is stable under the action of F, and L(¢,¢’). Thus its
cohomology has a canonical ¢-linear endomorphism F, which is compatible

with that defined in 2.3, and functorial with respect to formal completion at a
closed point.

7.4. As an example of the situation of the preceding section, let (&, V, F) be an
F-crystal on (X*, Y*), and assume that we have a filtration

(7.4.1) E2F 20

with Z, £/ locally free, such that Fy(#)=n-&. Let I'(&, %) denote the OF-
submodule of Sym*§ @ Q generated locally by sections of the form

¥ rm | 51 S
et em. frr fio

s;!...s,!

where e, fie#, and r, 5,20, ) r,+3 s;=k Then I''(§,#) has a natural
filtration

(7.4.2) r“&,#)=Fil°2Fil'... oFil** 1 =0
satisfying the conditions of §7.3, with successive quotients
Fil{/Fil' +! ~(#F)®Sym* (& /F).

Observe that if there is a pairing on & with respect to which (7.4.1) is autodual,
then it induces a natural pairing on I'*(&,#) for which (7.4.2) is autodual. (Of
course this is not true for either Sym*& or I'*(&), in general.)
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