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0. Introduction

In this paper we extend the results of [9] to two other subgroups of SL2(Z). Let
Γ ⊂ SL2(Z) be a subgroup of finite index. In [8] and [9] it is shown how to attach to the
space of cusp forms of weight w on Γ (whose dimension we denote by d) a strictly compatible
family {ρℓ} of 2d-dimensional ℓ-adic representations of Gal(Q/K), for a certain number
field, mildly generalising the representations constructed many years ago by Deligne [4]
for congruence subgroups.

If it happens that d = 1 and K = Q, then the representations ρℓ are 2-dimensional
representations of Gal(Q/Q). By the Langlands philosophy, ρℓ should then be the ℓ-adic
representation associated to a cusp form of weight w on a congruence subgroup, which is
a newform of some level. In [9] we verified this for a certain subgroup Γ7,1,1 and w = 4,
using Serre’s effective version of Faltings’ trick (see [10] and [6]).

In this paper we consider two further subgroups, Γ4,3 and Γ5,2 (see §§4–5 below) and
prove analogous results for weight 4 (here also d = 1 and K = Q). In theory the verification
is no different from that of [9]. However the case of Γ4,3 is complicated by the possibilidty
of ramification at the prime 3.

The machine computations in §§2, 4–5 were done over a long period of time, using a variety of com-

puter systems. They were completed using the invaluable package PARI-GP by C. Batut, D. Bernardi,

H. Cohen and M. Olivier.
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1. The ℓ-adic representations

1.1. Let Γ ⊂ SL2(Z) be a subgroup of finite index. Let H∗ = H∪ P
1(Q) be the extended

upper half-plane, on which Γ acts by linear fractional transformations. We assume that Γ
is defined over Q in the following sense: there is a projective curve XΓ over Q, together
with a finite morphism φ:XΓ → P

1
Q and an isomorphism Ξ: Γ\H∗ ∼−→ XΓ(C) such that

the following diagram commutes (j being the usual modular function):

Γ\H∗ Ξ−→ XΓ(C)




y





y

φC

SL2(Z)\H∗ j−→ P
1(C)

By abuse of notation we will use j to denote the rational function on XΓ determined by φ.

1.2. Let UΓ ⊂ XΓ be the complement of the points j = 0, 1728, ∞. Write g:UΓ →֒ XΓ

for the inclusion. Let
π: E → UΓ

be the elliptic curve with affine equation

y2 + xy = x3 − (36x+ 1)/(j − 1728)

and let F be the Qℓ-sheaf R1π∗Qℓ on UΓ. The parabolic cohomology groups attached to
Γ are the Gal(Q/Q)-modules

ΓWk
ℓ

def
=H1(XΓ ⊗ Q, g∗ Symk F)

for k ≥ 0. The Poincaré duality pairing F ⊗F → Qℓ(−1) induces a nondegenerate pairing

ΓWk
ℓ ⊗ ΓWk

ℓ → Qℓ(−k − 1)

which is alternating (resp. symmetric) if k is even (odd).

If k is even then dimQℓ ΓWk
ℓ is twice the dimension of Sk+2(Γ), the complex space of

cusp forms on Γ of weight (k + 2).

1.3. Assume that XΓ ≃ P
1
Q. Choose a generator t of the function field of XΓ, in such a way

that P (t) + jQ(t) = 0 for polynomials P , Q ∈ Z[t] where P is monic and degP > degQ.

Proposition 1.4. Let p be prime, and assume the following conditions are satisfied:

(i) P (t), Q(t) are p-integral, and their reductions P̃ (t), Q̃(t) modulo p are relatively
prime.

(ii) At least one of P̃ ′(t), Q̃′(t) is non-zero.

Then ΓWk
ℓ is unramified at p for every k ≥ 0 and every ℓ 6= p.

This is Proposition 2.7 of [9].
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2. The examples

2.1. Let Γ ⊂ SL2(Z) be one of the following subgroups:

(i) The subgroup Γ4,3 of index 7, generated by

(

1 4
0 1

)

,

(

2 1
1 1

)

,

(

1 −1
2 −1

)

.

(ii) The subgroup Γ5,2, also of index 7, generated by

(

1 5
0 1

)

,

(

0 −1
1 0

)

,

(

2 3
1 2

)

.

2.2. In both cases XΓ has genus zero, and can therefore be uniformised by an algebraic
function t of the modular function j. Methods going back to Klein and Fricke, and sys-
temised by Atkin and Swinnerton-Dyer [1], give a procedure to determine a defining rela-
tion of the form

j =
E3(t)F3(t)

3

Q(t)
= 1728 +

E2(t)F2(t)
2

Q(t)

for polynomials Eα(t), Fα(t), Q(t) with algebraic coefficients, which may (in theory) be
computed by the method of undetermined coefficients.

2.3. Here these polynomials have rational coefficients, and are given as follows:

(i) For Γ4,3:

j = −7−7 (t+ 432)(t2 + 80t− 3888)3

t3

= −7−7 (t− 16)(t3 + 344t2 + 1944t+ 1083)2

t3
+ 1728.

(ii) For Γ5,2:

j = 7−7 (t+ 125)(t2 + 5t− 1280)3

t2

= 7−7 (t− 64)(t3 + 102t2 + 381t+ 64000)2

t2
+ 1728.

Appying 1.4 to the above equations gives:

Corollary 2.4. (i) The representations Γ5,2
Wk

ℓ are unramified away from {2, 5, 7, ℓ}.
(ii) The representations Γ4,3

Wk
ℓ are unramified away from {2, 3, 7, ℓ}.

2.5. In §3 of [9] we gave a closed formula for tr ρℓ(Frp) for an unramified prime p > 3,
using the Lefschetz fixed point formula in ℓ-adic cohomology. Table 1 gives the values of
tr ρℓ(Frp) for k = 2 in the two cases under consideration.
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p 5 11 13 17 19 23 29 31 37 41 43 47 53 59

Γ5,2 − 12 −78 −94 40 32 −50 −248 −434 402 −68 536 22 −560

Γ4,3 6 −12 −82 −30 68 216 246 −112 110 −246 −172 192 558 540

61 67 71 73 79 83 89 97 101 103 107 109 113

−278 −164 672 82 −1000 −448 −870 1026 482 272 −444 −1170 −798

110 140 −840 −550 −208 516 −1398 1586 −1242 680 996 1382 −750

Table 1

3. The method of Faltings and Serre

3.1. The following theorem is due to Serre (see [6], Theorem 4.3 and [10]). It is an
effective version of Faltings’ trick ([5], proof of Satz 5).

Theorem 3.2. Let N be a positive integer, and let ρ, ρ′:G = Gal(Q/Q) → GL2(Q2) be
continuous homomorphisms, unramified at all primes not dividing N . Let ΣN ⊂ G be a
subset with the property that if χ1,. . . χr form a basis for the set of quadratic Dirichlet
characters of conductor dividing 8N , than

(χ1, . . . χr): ΣN −→ {±1}r

is surjective.

Assume the following two conditions are satisfied.

(i) Im ρ and Im ρ′ are pro-2-groups.

(ii) The characteristic polynomials of ρ(σ), ρ′(σ) are equal for all σ ∈ ΣN .

Then ρ and ρ′ are isomorphic.

3.3. To apply the theorem we need a method to check that Im ρ is a pro-2-group. Let
ρ̃:G→ GL2(F2) be any reduction of ρ modulo 2. Recall:

(i) If x ∈ GL2(F2) then x has order 3 if and only if trx = 1;

(ii) if x ∈ GL2(Z2) is congruent to the identity mod 2 then trx ≡ 1 + det x (mod 4).

So if there exists σ ∈ G with tr ρ(σ) odd, then Im ρ̃ ≃ A3 or S3. If there exists
σ ∈ G with tr ρ(σ) ≡ −1 + det ρ(σ) (mod 4) then Im ρ̃ ≃ Z/2 or S3. Conversely, by the
Tchebotarev density theorem, if Im ρ̃ ≃ A3 or S3 there exist infinitely many primes p such
that tr ρ(Frp) is odd.

3.4. We now assume given a 2-adic representation ρ, unramified away from primes dividing
N . We suppose that the characteristic polynomial of ρ(Frp) is explicitly given for a large
finite set of primes p, and that for each such p, tr ρ(Frp) is even. We wish to deduce
that Im ρ̃ is of even order. The example in [9] was sufficiently straightforward for the
calculations in class field theory to be left as a pleasant exercise. In the present cases the
calculations are considerably longer and a more detailed treatment is appropriate.
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3.5. If there exists σ ∈ G with tr ρ(σ) ≡ −1 + det ρ(σ) (mod 4), Im ρ̃ cannot be A3 by
the remarks above. Otherwise, we can eliminate the possibility that Im ρ̃ ≃ A3 in the
following way: such a ρ̃ cuts out a cyclic cubic extension F/Q, unramified outside primes
dividing N . It suffices for each possible F to find an inert prime p for which tr ρ(Frp) is
even. (The Tchebotarev density theorem assures that infinitely many such p must exist.)
As it is easy to write down all possibilities for F for any given N , the exclusion of A3 is
straightforward.

3.6. It is somewhat harder to eliminate the possibility that Im ρ̃ is isomorphic to S3.
Assume that this is the case; then the kernel of ρ̃ cuts out an S3-extension M/Q, which is
unramified away from N . Let E be its quadratic subfield. Since E/Q is unramified at all
p 6 |N , there is only a finite, and easily computable, set of possibilities for E. The extension
M/E determines a cubic idèle class character

ψ: JE/E
∗ −−−−→→ µ3

satisfying the two conditions:

(i) ψτ = ψ−1 for the non-trivial automorphism τ of E;

(ii) ψp = 1 for p|p whenever tr ρ(Frp) is even.

If ψ is not everywhere unramified, then its restriction to the unit idèles is non-trivial,
and therefore gives a homomorphism

θ = Πθp :
∏

p|N

o∗Ep
−−−−→→ µ3

satisfying θτ = θ−1.

3.7. If 3 6 |N then θ is tamely ramified and each θp factors through o∗E/(1+ p). Therefore:

(a) If (p) = p2 is ramified then τ acts trivially on o/p, so θp = 1.

(b) If (p) = ppτ is split and p 6≡ 1 (mod 3) then as 3 6 |#(oE/p)∗ we have θp = 1.

(c) If (p) = p is inert and p 6≡ −1 (mod 3) then θp must factor through the norm from
o/p to Z/p, so θτ

p = θp. So in this case θp = 1.

If 3 divides N we have to consider separately θ3 =
∏

p|3 θp and determine in each case
the maximal quotient of o∗Ep

of exponent 3.

(a′) If (3) = pp′ is split in E, then o∗Ep
= Z

∗
3, so that θ3 factors through (oE/9oE)∗ (which

is isomorphic to (Z/3)2 × (Z/2)2).

(b′) If (3) = p is inert in E, then oEp
≃ W (F9) and again θ3 factors through (oE/9oE)∗

(which is isomorphic to (Z/3)2 × (Z/8)).

(c′) If (3) = p2 is ramified in E, then Ep ≃ Q3(ω) for ω =
√
±3, and we distinguish two

cases:

(c′+) ω2 = 3. Then o∗Ep
≃ Z

2
3, generated by 1+ω and 4. In other words, if E = Q(

√
3d)

with d ≡ 1 (mod 3) then θp factors through (oE/3p)∗.
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(c′−) ω2 = −3. Then µ3 ⊂ Ep and so o∗Ep
≃ Z

2
3 × µ3, generated by 1 + 3ω, 4 and

(−1 + ω)/2. Therefore if E = Q(
√

3d) with d ≡ −1 (mod 3) then θp factors
through (oE/9oE)∗.

3.8. We conclude that we can write θ in the form

θ = Πθp:
∏

p|N

(oE/fp)
∗ −−−−→→ µ3

where:

• if p 6= 3 then

p ramified in E ⇒ fp = (1);

p split in E ⇒ fp = (p) if p ≡ 1 (mod 3), fp = (1) otherwise;

p inert in E ⇒ fp = (p) if p ≡ 2 (mod 3), fp = (1) otherwise;

• if p = 3 then

(p) = p2 ramified in E and Ep = Q3(
√

3) ⇒ fp = p3;

in other cases fp = (9).

Moreover θτ = θ−1, θ is trivial on the images of global units, and if (π) is a principal
ideal of E such that N((π)) = pr for which tr ρ(Frp) is even, then θ(π) = 1.

Write f = Πfp, and let Gf be the maximal quotient of (oE/f)
∗ of exponent 3 on which

τ acts as −1. The character θ then factors through Gf. To show that θ = 1 it is enough
to find a set of elements π ∈ oE prime to f whose residue classes generate Gf, and which
are either global units, or elements with prime power norm pr for which tr ρ(Frp) is even.

3.9. To show that the case of S3 does not occur a possible algorithm is therefore to consider
in turn each candidate field E, and show that θ = 1 by the above procedure. This shows
that M/E must be everywhere unramified, so given by a cubic character χ of the ideal
class group HE of E with χτ = χ−1. To exclude this possibility, let H ′ be the maximal
quotient of HE of exponent 3 on which τ acts by −1. It is enough to find a set of primes
p = pp′ which split in E for which tr(Frp) is even, such that the ideal classes of such p

generate H ′. Moreover Tchebotarev’s density theorem ensures that if the image of ρ̃ is not
S3, then this algorithm is guaranteed to eventually succeed.

6



4. Γ5,2

4.1. Write as usual

P (τ) = 1 − 24

∞
∑

n=1

σ1(n)qn, η(τ) = q1/24

∞
∏

n=1

(

1 − qn
)

where q = exp 2πiτ .

Proposition 4.2. Let

h1(τ) = η(τ)2η(35τ)2, h2(τ) = η(5τ)2η(7τ)2, h3(τ) = η(τ)η(5τ)η(7τ)η(35τ);

g(τ) =
1

24

(

35P (35τ)− 7P (7τ) − 5P (5τ) + P (τ)
)

.

Then the function

f35(τ) = g(τ)
(

−h1(τ) + h2(τ) + 2h3(τ)
)

=
∞
∑

n=1

anq
n

is a newform of weight 4 on Γ0(35).

Proof. From classical formulae it is simple to check that f35 is a cusp form of weight 4 on
Γ0(35). It suffices to check it is a newform. First observe that f35|W35 = −f35 from the
explicit description of f35 and the transformation formulae for η(τ) and P (τ). Therefore
f35 vanishes at the 8 fixed points of W35. The weight 2 modular form g(τ) also vanishes
at the fixed points of W35 since g|W35 = g. As X0(35) has genus 3 and 4 cusps, g has no
other zeroes, hence f35/g is a cusp form of weight 2 which transforms by -1 under W35.
One can then identify f35/g from the tables in [2].

4.3. We write ρℓ for the representation of Gal(Q/Q) on Γ5,2
W2

ℓ as in §1. By Deligne’s
original construction [4] there is a strictly compatible system {ρ′ℓ} of 2-dimensional ℓ-adic
representations of Gal(Q/Q), unramified away from 5, 7 and ℓ such that that det ρ′ℓ = χ3

cycl

and tr ρ′ℓ(Frp) = ap for all primes p /∈ {5, 7, ℓ}.

Theorem 4.4. ρℓ and ρ′ℓ are isomorphic for every ℓ.

Proof. Since it is easy to show that ρℓ and ρ′ℓ are irreducible (cf. [7] Theorem 2.3) and
both of the systems {ρℓ}, {ρ′ℓ} are compatible, it is enough to prove the theorem for ℓ = 2.
We apply the algorithm described in §3. Firstly, by calculation and comparing with Table
1 we find that tr ρℓ(Frp) = tr ρ′ℓ(Frp) for 11 ≤ p ≤ 113.

4.5. Since from the values of tr ρ2(Frp) there is no evidence of σ with tr ρ(σ) ≡ −1+det ρ(σ)
(mod 4), we consider the possible cyclic cubic fields F/Q occurring in 3.5. The only possible
extension is Q(ζ7)

+. But p = 11 is inert in Q(ζ7)
+, and a11 = 12. So ρ̃2 cannot have image

A3.

4.6. Now we eliminate the possibility that ρ̃2 is surjective. There are 15 possible candidate
fields E, namely Q(

√
d) where d ∈ {−1, ±2, ±5, ±7, ±10, ±14, ±35, ±70}. None of
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these have class number divisible by 3, so it suffices to show that the character θ is trivial.
For every p with 7 < p < 100 we have tr ρ̃2(Frp) = 0. From the discussion in 3.8 one
obtains Table 2. Here f is the positive integer such that f = foE is the maximal conductor
of θ, and ω =

√
d or (1 +

√
d)/2 as usual. The fourth column gives a list of elements

which are either global units or elements of prime power norm, whose classes generate Gf.
We can therefore conclude that the image of ρ2 is a pro-2-group, and the same argument
applies to ρ′2.

Bad primes: 2, 5, 7

d f #Gf generators for Gf

−1 1 1 —

2 35 9 1 + ω; 5 + 2ω

−2 5 3 3 + ω

5 2 3 ω

−5 7 3 22 + 3ω

10 1 1 —

−10 7 3 1 + ω

7 5 3 8 + 3ω

−7 5 3 1 + 2ω

14 1 1 —

−14 1 1 —

35 1 1 —

−35 2 3 1 + ω

70 1 1 —

−70 1 1 —

Table 2

4.7. The proof of the theorem is then finished once we exhibit a suitable set ΣN ; here
N = 70. There are four quadratic characters of conductor dividing 8 · 5 · 7, from which it
is easily checked that the Frobenius classes of the primes p with 11 ≤ p ≤ 113, together
with the identity element, suffice, by examining Table 3.
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p 11 13 17 19 23 29 31 41 43 47 53 61 71 83 113

(−1

p

)

− + + − − + − + − − + + − − +

(

2

p

)

− − + − + − + + − + − − + − +

(

5

p

)

+ − − + − + + + − − − + + − −
(

7

p

)

− − − + − + + − − + + − − + +

Table 3

5. Γ4,3

Proposition 5.1. Let

g(τ) = 14P (14τ) − 7P (7τ) + 2P (τ) − P (τ), h(τ) = η(τ)η(2τ)η(7τ)η(14τ).

Then the function

f28(τ) =
1

8

(

g(2τ)h(τ) + g(τ)h(2τ)
)

=

∞
∑

n=1

anq
n

is a newform of weight 4 on Γ0(28).

Proof. The usual transformation formulae show that it is a cusp form of weight 4 on
Γ0(28). There seems to be no way of checking that it is a newform without some brutal
calculation. The quickest way is to evaluate the first few Fourier coefficients and compare
with the tables of [3].

5.2. Let σℓ be the ℓ-adic representation Γ4,3
W2

ℓ , and let {σ′
ℓ} be the compatible system of

2-dimensional ℓ-adic representations of Gal(Q/Q) attached to f28.

Theorem 5.3. σℓ and σ′
ℓ are isomorphic.

Proof. We proceed as in §3, and only indicate the changes that have to be made to the
argument given there. Table 1 and the explicit formula for f28 shows that trσ2(Frp) =
trσ′

2(Frp) for p = 5, 11 ≤ p ≤ 113. Again the only candidate for a cyclic cubic extension
cut out by σ̃2 is Q(ζ7)

+, which is eliminated at once by considering p = 11 as before.

5.4. To eliminate the possibility that σ̃2 has image S3 we consider again candidate quadratic
fields E = Q(

√
d), where now d ∈ {−1, ±2, ±3, ±6, ±7, ±14, ±21, ±42}. Applying
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Bad primes: 2, 3, 7

d f #Gf generators for Gf

−1 9 3 2 + ω

2 63 9 1 + ω; 5 + ω

−2 9 3 3 + ω

3 9 3 2 + ω

−3 126 81 3 + ω; 3 + 2ω; 5 + ω; 4 + 3ω

6 9 9 5 + 2ω; 1 + ω

−6 63 9 1 + 2ω; 5 + 4ω

7 9 3 8 + 3ω

−7 9 3 1 + 2ω

14 9 3 15 + 4ω

−14 9 3 11 + 6ω

21 18 9 2 + ω; ω

−21 9 9 2 + ω; 10 + ω

42 9 9 13 + 2ω; 17 + 2ω

−42 9 3 1 + 2ω

Table 4

the algorithm of §3 we arrive at Table 4, in which the entries have the same meaning as in
Table 2. This shows that the images of σ2 and σ′

2 are pro-2-groups.

5.5. The final step is to exhibit a set ΣN ; here N = 42, and from Table 5 we see that it
is enough to take the Frobenius elements for primes p with p = 5 or 11 ≤ p ≤ 113. This
concludes the proof of the theorem.
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p 5 11 13 19 23 29 31 37 43 47 59 73 79 101 113

(−1

p

)

+ − + − − + − + − − − + − + +

(

2

p

)

+ − − − + − + − − + − + + − +

(

3

p

)

− + + − + − − + − + + + − − −
(

7

p

)

− − − + − + + + − + + − − − +

Table 5
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