On ℓ -adic representations attached to non-congruence subgroups II

A. J. Scholl¹

0. Introduction

In this paper we extend the results of [9] to two other subgroups of $SL_2(\mathbb{Z})$. Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index. In [8] and [9] it is shown how to attach to the space of cusp forms of weight w on Γ (whose dimension we denote by d) a strictly compatible family $\{\rho_\ell\}$ of 2*d*-dimensional ℓ -adic representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$, for a certain number field, mildly generalising the representations constructed many years ago by Deligne [4] for congruence subgroups.

If it happens that d = 1 and $K = \mathbb{Q}$, then the representations ρ_{ℓ} are 2-dimensional representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. By the Langlands philosophy, ρ_{ℓ} should then be the ℓ -adic representation associated to a cusp form of weight w on a congruence subgroup, which is a newform of some level. In [9] we verified this for a certain subgroup $\Gamma_{7,1,1}$ and w = 4, using Serre's effective version of Faltings' trick (see [10] and [6]).

In this paper we consider two further subgroups, $\Gamma_{4,3}$ and $\Gamma_{5,2}$ (see §§4–5 below) and prove analogous results for weight 4 (here also d = 1 and $K = \mathbb{Q}$). In theory the verification is no different from that of [9]. However the case of $\Gamma_{4,3}$ is complicated by the possibilidity of ramification at the prime 3.

The machine computations in §§2, 4–5 were done over a long period of time, using a variety of computer systems. They were completed using the invaluable package PARI-GP by C. Batut, D. Bernardi, H. Cohen and M. Olivier.

The author is pleased to thank the Institute for Advanced Study, Princeton, whose hospitality he enjoyed in the year 1989–90, when a large part of the work for this paper was done. This paper was completed while the author was a visiting fellow at the Isaac Newton Institute for Mathematical Sciences, Cambridge.

 $^{^1\,}$ Research partially funded by NSF grant $\# {\rm DMS-8610730}$

1. The ℓ -adic representations

1.1. Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index. Let $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ be the extended upper half-plane, on which Γ acts by linear fractional transformations. We assume that Γ is defined over \mathbb{Q} in the following sense: there is a projective curve X_{Γ} over \mathbb{Q} , together with a finite morphism $\phi: X_{\Gamma} \to \mathbb{P}^1_{\mathbb{Q}}$ and an isomorphism $\Xi: \Gamma \setminus \mathcal{H}^* \xrightarrow{\sim} X_{\Gamma}(\mathbb{C})$ such that the following diagram commutes (j being the usual modular function):

By abuse of notation we will use j to denote the rational function on X_{Γ} determined by ϕ . **1.2.** Let $U_{\Gamma} \subset X_{\Gamma}$ be the complement of the points $j = 0, 1728, \infty$. Write $g: U_{\Gamma} \hookrightarrow X_{\Gamma}$ for the inclusion. Let

$$\pi: \mathcal{E} \to U_{\Gamma}$$

be the elliptic curve with affine equation

$$y^{2} + xy = x^{3} - (36x + 1)/(j - 1728)$$

and let \mathcal{F} be the \mathbb{Q}_{ℓ} -sheaf $R^1\pi_*\mathbb{Q}_{\ell}$ on U_{Γ} . The parabolic cohomology groups attached to Γ are the $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -modules

$$_{\Gamma}\mathcal{W}^{k}_{\ell} \stackrel{\mathrm{def}}{=} H^{1}(X_{\Gamma} \otimes \overline{\mathbb{Q}}, g_{*}\operatorname{Sym}^{k}\mathcal{F})$$

for $k \geq 0$. The Poincaré duality pairing $\mathcal{F} \otimes \mathcal{F} \to \mathbb{Q}_{\ell}(-1)$ induces a nondegenerate pairing

$$_{\Gamma}\mathcal{W}^k_\ell \otimes _{\Gamma}\mathcal{W}^k_\ell \to \mathbb{Q}_\ell(-k-1)$$

which is alternating (resp. symmetric) if k is even (odd).

If k is even then $\dim_{\mathbb{Q}_{\ell}\Gamma} \mathcal{W}_{\ell}^k$ is twice the dimension of $S_{k+2}(\Gamma)$, the complex space of cusp forms on Γ of weight (k+2).

1.3. Assume that $X_{\Gamma} \simeq \mathbb{P}^{1}_{\mathbb{Q}}$. Choose a generator t of the function field of X_{Γ} , in such a way that P(t) + jQ(t) = 0 for polynomials $P, Q \in \mathbb{Z}[t]$ where P is monic and deg $P > \deg Q$.

Proposition 1.4. Let *p* be prime, and assume the following conditions are satisfied:

- (i) P(t), Q(t) are *p*-integral, and their reductions P(t), Q(t) modulo *p* are relatively prime.
- (ii) At least one of $\tilde{P}'(t)$, $\tilde{Q}'(t)$ is non-zero.

Then $_{\Gamma}\mathcal{W}_{\ell}^{k}$ is unramified at p for every $k \geq 0$ and every $\ell \neq p$.

This is Proposition 2.7 of [9].

2. The examples

2.1. Let $\Gamma \subset SL_2(\mathbb{Z})$ be one of the following subgroups:

(i) The subgroup $\Gamma_{4,3}$ of index 7, generated by

$$\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$$

(ii) The subgroup $\Gamma_{5,2}$, also of index 7, generated by

$$\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}.$$

2.2. In both cases X_{Γ} has genus zero, and can therefore be uniformised by an algebraic function t of the modular function j. Methods going back to Klein and Fricke, and systemised by Atkin and Swinnerton-Dyer [1], give a procedure to determine a defining relation of the form

$$j = \frac{E_3(t)F_3(t)^3}{Q(t)} = 1728 + \frac{E_2(t)F_2(t)^2}{Q(t)}$$

for polynomials $E_{\alpha}(t)$, $F_{\alpha}(t)$, Q(t) with algebraic coefficients, which may (in theory) be computed by the method of undetermined coefficients.

2.3. Here these polynomials have rational coefficients, and are given as follows:

(i) For $\Gamma_{4,3}$:

$$j = -7^{-7} \frac{(t+432)(t^2+80t-3888)^3}{t^3}$$

= $-7^{-7} \frac{(t-16)(t^3+344t^2+1944t+108^3)^2}{t^3} + 1728.$

(ii) For $\Gamma_{5,2}$:

$$j = 7^{-7} \frac{(t+125)(t^2+5t-1280)^3}{t^2}$$
$$= 7^{-7} \frac{(t-64)(t^3+102t^2+381t+64000)^2}{t^2} + 1728.$$

Appying 1.4 to the above equations gives:

Corollary 2.4. (i) The representations $_{\Gamma_{5,2}}\mathcal{W}_{\ell}^k$ are unramified away from $\{2, 5, 7, \ell\}$.

(ii) The representations $_{\Gamma_{4,3}}\mathcal{W}_{\ell}^k$ are unramified away from $\{2, 3, 7, \ell\}$.

2.5. In §3 of [9] we gave a closed formula for tr $\rho_{\ell}(\operatorname{Fr}_p)$ for an unramified prime p > 3, using the Lefschetz fixed point formula in ℓ -adic cohomology. Table 1 gives the values of tr $\rho_{\ell}(\operatorname{Fr}_p)$ for k = 2 in the two cases under consideration.

p	5	11 1	.3 17	19	23 29	31	37	41	43	47	53	59
$\Gamma_{5,2}$	_	12 -7	78 -94	40	32 - 50	-248	-434	402	-68	536	22 -	-560
$\Gamma_{4,3}$	6 –	-12 - 8	32 - 30	68 2	16 246	-112	110	-246	-172	192	558	540
61	67	71	73	79	83	89	97	101	103	107	10	9 113
												9 113 0 -798

Table	1

3. The method of Faltings and Serre

3.1. The following theorem is due to Serre (see [6], Theorem 4.3 and [10]). It is an effective version of Faltings' trick ([5], proof of Satz 5).

Theorem 3.2. Let N be a positive integer, and let ρ , $\rho': G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{Q}_2)$ be continuous homomorphisms, unramified at all primes not dividing N. Let $\Sigma_N \subset G$ be a subset with the property that if χ_1, \ldots, χ_r form a basis for the set of quadratic Dirichlet characters of conductor dividing N, than

$$(\chi_1,\ldots\chi_r):\Sigma_N\longrightarrow \{\pm 1\}^r$$

is surjective.

Assume the following two conditions are satisfied.

- (i) Im ρ and Im ρ' are pro-2-groups.
- (ii) The characteristic polynomials of $\rho(\sigma)$, $\rho'(\sigma)$ are equal for all $\sigma \in \Sigma_N$.

Then ρ and ρ' are isomorphic.

3.3. To apply the theorem we need a method to check that $\operatorname{Im} \rho$ is a pro-2-group. Let $\tilde{\rho}: G \to GL_2(\mathbb{F}_2)$ be any reduction of ρ modulo 2. Recall:

- (i) If $x \in GL_2(\mathbb{F}_2)$ then x has order 3 if and only if $\operatorname{tr} x = 1$;
- (ii) if $x \in GL_2(\mathbb{Z}_2)$ is congruent to the identity mod 2 then tr $x \equiv 1 + \det x \pmod{4}$.

So if there exists $\sigma \in G$ with $\operatorname{tr} \rho(\sigma)$ odd, then $\operatorname{Im} \tilde{\rho} \simeq A_3$ or S_3 . If there exists $\sigma \in G$ with $\operatorname{tr} \rho(\sigma) \equiv -1 + \operatorname{det} \rho(\sigma) \pmod{4}$ then $\operatorname{Im} \tilde{\rho} \simeq \mathbb{Z}/2$ or S_3 . Conversely, by the Tchebotarev density theorem, if $\operatorname{Im} \tilde{\rho} \simeq A_3$ or S_3 there exist infinitely many primes p such that $\operatorname{tr} \rho(\operatorname{Fr}_p)$ is odd.

3.4. We now assume given a 2-adic representation ρ , unramified away from primes dividing N. We suppose that the characteristic polynomial of $\rho(\operatorname{Fr}_p)$ is explicitly given for a large finite set of primes p, and that for each such p, $\operatorname{tr} \rho(\operatorname{Fr}_p)$ is even. We wish to deduce that $\operatorname{Im} \tilde{\rho}$ is of even order. The example in [9] was sufficiently straightforward for the calculations in class field theory to be left as a pleasant exercise. In the present cases the calculations are considerably longer and a more detailed treatment is appropriate.

3.5. If there exists $\sigma \in G$ with $\operatorname{tr} \rho(\sigma) \equiv -1 + \operatorname{det} \rho(\sigma) \pmod{4}$, $\operatorname{Im} \tilde{\rho} \operatorname{cannot} \operatorname{be} A_3$ by the remarks above. Otherwise, we can eliminate the possibility that $\operatorname{Im} \tilde{\rho} \simeq A_3$ in the following way: such a $\tilde{\rho}$ cuts out a cyclic cubic extension F/\mathbb{Q} , unramified outside primes dividing N. It suffices for each possible F to find an inert prime p for which $\operatorname{tr} \rho(\operatorname{Fr}_p)$ is even. (The Tchebotarev density theorem assures that infinitely many such p must exist.) As it is easy to write down all possibilities for F for any given N, the exclusion of A_3 is straightforward.

3.6. It is somewhat harder to eliminate the possibility that $\operatorname{Im} \tilde{\rho}$ is isomorphic to S_3 . Assume that this is the case; then the kernel of $\tilde{\rho}$ cuts out an S_3 -extension M/\mathbb{Q} , which is unramified away from N. Let E be its quadratic subfield. Since E/\mathbb{Q} is unramified at all $p \not| N$, there is only a finite, and easily computable, set of possibilities for E. The extension M/E determines a cubic idèle class character

$$\psi: J_E/E^* \longrightarrow \mu_3$$

satisfying the two conditions:

- (i) $\psi^{\tau} = \psi^{-1}$ for the non-trivial automorphism τ of E;
- (ii) $\psi_{\mathfrak{p}} = 1$ for $\mathfrak{p}|p$ whenever $\operatorname{tr} \rho(\operatorname{Fr}_p)$ is even.

If ψ is not everywhere unramified, then its restriction to the unit idèles is non-trivial, and therefore gives a homomorphism

$$\theta = \Pi \theta_{\mathfrak{p}} : \prod_{\mathfrak{p}|N} \mathfrak{o}_{E_{\mathfrak{p}}}^{*} \longrightarrow \mu_{3}$$

satisfying $\theta^{\tau} = \theta^{-1}$.

3.7. If 3 $\not|N$ then θ is tamely ramified and each $\theta_{\mathfrak{p}}$ factors through $\mathfrak{o}_E^*/(1+\mathfrak{p})$. Therefore: (a) If $(p) = \mathfrak{p}^2$ is ramified then τ acts trivially on $\mathfrak{o}/\mathfrak{p}$, so $\theta_{\mathfrak{p}} = 1$.

- (b) If $(p) = \mathfrak{p}\mathfrak{p}^{\tau}$ is split and $p \not\equiv 1 \pmod{3}$ then as $3 \not\mid \#(\mathfrak{o}_E/\mathfrak{p})^*$ we have $\theta_{\mathfrak{p}} = 1$.
- (c) If $(p) = \mathfrak{p}$ is inert and $p \not\equiv -1 \pmod{3}$ then θ_p must factor through the norm from $\mathfrak{o}/\mathfrak{p}$ to \mathbb{Z}/p , so $\theta_{\mathfrak{p}}^{\tau} = \theta_{\mathfrak{p}}$. So in this case $\theta_p = 1$.

If 3 divides N we have to consider separately $\theta_3 = \prod_{\mathfrak{p}|3} \theta_{\mathfrak{p}}$ and determine in each case the maximal quotient of $\mathfrak{o}_{E_{\mathfrak{p}}}^*$ of exponent 3.

- (a') If (3) = $\mathfrak{p}\mathfrak{p}'$ is split in E, then $\mathfrak{o}_{E_{\mathfrak{p}}}^* = \mathbb{Z}_3^*$, so that θ_3 factors through $(\mathfrak{o}_E/9\mathfrak{o}_E)^*$ (which is isomorphic to $(\mathbb{Z}/3)^2 \times (\mathbb{Z}/2)^2$).
- (b') If (3) = \mathfrak{p} is inert in E, then $\mathfrak{o}_{E_{\mathfrak{p}}} \simeq W(\mathbb{F}_9)$ and again θ_3 factors through $(\mathfrak{o}_E/9\mathfrak{o}_E)^*$ (which is isomorphic to $(\mathbb{Z}/3)^2 \times (\mathbb{Z}/8)$).
- (c') If (3) = \mathfrak{p}^2 is ramified in E, then $E_{\mathfrak{p}} \simeq \mathbb{Q}_3(\omega)$ for $\omega = \sqrt{\pm 3}$, and we distinguish two cases:
 - (c'+) $\omega^2 = 3$. Then $\mathfrak{o}_{E_{\mathfrak{p}}}^* \simeq \mathbb{Z}_3^2$, generated by $1 + \omega$ and 4. In other words, if $E = \mathbb{Q}(\sqrt{3}d)$ with $d \equiv 1 \pmod{3}$ then $\theta_{\mathfrak{p}}$ factors through $(\mathfrak{o}_E/3\mathfrak{p})^*$.

(c'-) $\omega^2 = -3$. Then $\mu_3 \subset E_{\mathfrak{p}}$ and so $\mathfrak{o}_{E_{\mathfrak{p}}}^* \simeq \mathbb{Z}_3^2 \times \mu_3$, generated by $1 + 3\omega$, 4 and $(-1 + \omega)/2$. Therefore if $E = \mathbb{Q}(\sqrt{3}d)$ with $d \equiv -1 \pmod{3}$ then $\theta_{\mathfrak{p}}$ factors through $(\mathfrak{o}_E/9\mathfrak{o}_E)^*$.

3.8. We conclude that we can write θ in the form

$$\theta = \Pi \theta_p \colon \prod_{p \mid N} (\mathfrak{o}_E/\mathfrak{f}_p)^* \longrightarrow \mathfrak{\mu}_3$$

where:

• if $p \neq 3$ then

 $\begin{array}{ll} p \mbox{ ramified in } E & \Rightarrow & \mathfrak{f}_p = (1); \\ p \mbox{ split in } E & \Rightarrow & \mathfrak{f}_p = (p) \mbox{ if } p \equiv 1 \mbox{ (mod 3)}, \mbox{ } \mathfrak{f}_p = (1) \mbox{ otherwise}; \\ p \mbox{ inert in } E & \Rightarrow & \mathfrak{f}_p = (p) \mbox{ if } p \equiv 2 \mbox{ (mod 3)}, \mbox{ } \mathfrak{f}_p = (1) \mbox{ otherwise}; \end{array}$

• if p = 3 then

 $(p) = \mathfrak{p}^2$ ramified in E and $E_{\mathfrak{p}} = \mathbb{Q}_3(\sqrt{3}) \quad \Rightarrow \quad \mathfrak{f}_p = \mathfrak{p}^3;$

in other cases $\mathfrak{f}_p = (9)$.

Moreover $\theta^{\tau} = \theta^{-1}$, θ is trivial on the images of global units, and if (π) is a principal ideal of E such that $N((\pi)) = p^r$ for which tr $\rho(\operatorname{Fr}_p)$ is even, then $\theta(\pi) = 1$.

Write $\mathfrak{f} = \Pi \mathfrak{f}_p$, and let $G_{\mathfrak{f}}$ be the maximal quotient of $(\mathfrak{o}_E/\mathfrak{f})^*$ of exponent 3 on which τ acts as -1. The character θ then factors through $G_{\mathfrak{f}}$. To show that $\theta = 1$ it is enough to find a set of elements $\pi \in \mathfrak{o}_E$ prime to \mathfrak{f} whose residue classes generate $G_{\mathfrak{f}}$, and which are either global units, or elements with prime power norm p^r for which tr $\rho(\operatorname{Fr}_p)$ is even.

3.9. To show that the case of S_3 does not occur a possible algorithm is therefore to consider in turn each candidate field E, and show that $\theta = 1$ by the above procedure. This shows that M/E must be everywhere unramified, so given by a cubic character χ of the ideal class group H_E of E with $\chi^{\tau} = \chi^{-1}$. To exclude this possibility, let H' be the maximal quotient of H_E of exponent 3 on which τ acts by -1. It is enough to find a set of primes $p = \mathfrak{p}\mathfrak{p}'$ which split in E for which $\operatorname{tr}(\operatorname{Fr}_p)$ is even, such that the ideal classes of such \mathfrak{p} generate H'. Moreover Tchebotarev's density theorem ensures that if the image of $\tilde{\rho}$ is not S_3 , then this algorithm is guaranteed to eventually succeed.

4. $\Gamma_{5,2}$

4.1. Write as usual

$$P(\tau) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n, \quad \eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} \left(1 - q^n\right)$$

where $q = \exp 2\pi i \tau$.

Proposition 4.2. Let

$$h_1(\tau) = \eta(\tau)^2 \eta(35\tau)^2, \quad h_2(\tau) = \eta(5\tau)^2 \eta(7\tau)^2, \quad h_3(\tau) = \eta(\tau)\eta(5\tau)\eta(7\tau)\eta(35\tau);$$
$$g(\tau) = \frac{1}{24} \big(35P(35\tau) - 7P(7\tau) - 5P(5\tau) + P(\tau)\big).$$

Then the function

$$f_{35}(\tau) = g(\tau) \left(-h_1(\tau) + h_2(\tau) + 2h_3(\tau) \right) = \sum_{n=1}^{\infty} a_n q^n$$

is a newform of weight 4 on $\Gamma_0(35)$.

Proof. From classical formulae it is simple to check that f_{35} is a cusp form of weight 4 on $\Gamma_0(35)$. It suffices to check it is a newform. First observe that $f_{35}|W_{35} = -f_{35}$ from the explicit description of f_{35} and the transformation formulae for $\eta(\tau)$ and $P(\tau)$. Therefore f_{35} vanishes at the 8 fixed points of W_{35} . The weight 2 modular form $g(\tau)$ also vanishes at the fixed points of W_{35} since $g|W_{35} = g$. As $X_0(35)$ has genus 3 and 4 cusps, g has no other zeroes, hence f_{35}/g is a cusp form of weight 2 which transforms by -1 under W_{35} . One can then identify f_{35}/g from the tables in [2].

4.3. We write ρ_{ℓ} for the representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $_{\Gamma_{5,2}}\mathcal{W}_{\ell}^2$ as in §1. By Deligne's original construction [4] there is a strictly compatible system $\{\rho_{\ell}'\}$ of 2-dimensional ℓ -adic representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, unramified away from 5, 7 and ℓ such that that $\det \rho_{\ell}' = \chi^3_{\text{cycl}}$ and $\operatorname{tr} \rho_{\ell}'(\operatorname{Fr}_p) = a_p$ for all primes $p \notin \{5, 7, \ell\}$.

Theorem 4.4. ρ_{ℓ} and ρ'_{ℓ} are isomorphic for every ℓ .

Proof. Since it is easy to show that ρ_{ℓ} and ρ'_{ℓ} are irreducible (cf. [7] Theorem 2.3) and both of the systems $\{\rho_{\ell}\}, \{\rho'_{\ell}\}$ are compatible, it is enough to prove the theorem for $\ell = 2$. We apply the algorithm described in §3. Firstly, by calculation and comparing with Table 1 we find that $\operatorname{tr} \rho_{\ell}(\operatorname{Fr}_p) = \operatorname{tr} \rho'_{\ell}(\operatorname{Fr}_p)$ for $11 \leq p \leq 113$.

4.5. Since from the values of tr $\rho_2(\operatorname{Fr}_p)$ there is no evidence of σ with tr $\rho(\sigma) \equiv -1 + \det \rho(\sigma)$ (mod 4), we consider the possible cyclic cubic fields F/\mathbb{Q} occurring in 3.5. The only possible extension is $\mathbb{Q}(\zeta_7)^+$. But p = 11 is inert in $\mathbb{Q}(\zeta_7)^+$, and $a_{11} = 12$. So $\tilde{\rho}_2$ cannot have image A_3 .

4.6. Now we eliminate the possibility that $\tilde{\rho}_2$ is surjective. There are 15 possible candidate fields E, namely $\mathbb{Q}(\sqrt{d})$ where $d \in \{-1, \pm 2, \pm 5, \pm 7, \pm 10, \pm 14, \pm 35, \pm 70\}$. None of

these have class number divisible by 3, so it suffices to show that the character θ is trivial. For every p with $7 we have tr <math>\tilde{\rho}_2(\operatorname{Fr}_p) = 0$. From the discussion in 3.8 one obtains Table 2. Here f is the positive integer such that $\mathfrak{f} = f\mathfrak{o}_E$ is the maximal conductor of θ , and $\omega = \sqrt{d}$ or $(1 + \sqrt{d})/2$ as usual. The fourth column gives a list of elements which are either global units or elements of prime power norm, whose classes generate $G_{\mathfrak{f}}$. We can therefore conclude that the image of ρ_2 is a pro-2-group, and the same argument applies to ρ'_2 .

Bad primes: 2, 5, 7											
d	f	$\#G_{\mathfrak{f}}$	generators for $G_{\mathfrak{f}}$								
-1	1	1									
2	35	9	$1+\omega; 5+2\omega$								
-2	5	3	$3 + \omega$								
5	2	3	ω								
-5	7	3	$22 + 3\omega$								
10	1	1									
-10	7	3	$1 + \omega$								
7	5	3	$8+3\omega$								
-7	5	3	$1+2\omega$								
14	1	1									
-14	1	1	—								
35	1	1	—								
-35	2	3	$1 + \omega$								
70	1	1	—								
-70	1	1	—								

Table	2
-------	----------

4.7. The proof of the theorem is then finished once we exhibit a suitable set Σ_N ; here N = 70. There are four quadratic characters of conductor dividing $8 \cdot 5 \cdot 7$, from which it is easily checked that the Frobenius classes of the primes p with $11 \le p \le 113$, together with the identity element, suffice, by examining Table 3.

p	11	13	17	19	23	29	31	41	43	47	53	61	71	83	113
$\left(\frac{-1}{p}\right)$	_	+	+	_	_	+	_	+	_	_	+	+	_	_	+
$\left(\frac{2}{p}\right)$	_	_	+	_	+	_	+	+	_	+	_	_	+	_	+
$\left(\frac{5}{p}\right)$	+	_	_	+	_	+	+	+	_	_	_	+	+	_	_
$\left(\frac{7}{p}\right)$	—	_	_	+	_	+	+	_	_	+	+	_	_	+	+

Table 3

5. $\Gamma_{4,3}$

Proposition 5.1. Let

 $g(\tau) = 14P(14\tau) - 7P(7\tau) + 2P(\tau) - P(\tau), \quad h(\tau) = \eta(\tau)\eta(2\tau)\eta(7\tau)\eta(14\tau).$

Then the function

$$f_{28}(\tau) = \frac{1}{8} \left(g(2\tau)h(\tau) + g(\tau)h(2\tau) \right) = \sum_{n=1}^{\infty} a_n q^n$$

is a newform of weight 4 on $\Gamma_0(28)$.

Proof. The usual transformation formulae show that it is a cusp form of weight 4 on $\Gamma_0(28)$. There seems to be no way of checking that it is a newform without some brutal calculation. The quickest way is to evaluate the first few Fourier coefficients and compare with the tables of [3].

5.2. Let σ_{ℓ} be the ℓ -adic representation $_{\Gamma_{4,3}}W_{\ell}^2$, and let $\{\sigma_{\ell}'\}$ be the compatible system of 2-dimensional ℓ -adic representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ attached to f_{28} .

Theorem 5.3. σ_{ℓ} and σ'_{ℓ} are isomorphic.

Proof. We proceed as in §3, and only indicate the changes that have to be made to the argument given there. Table 1 and the explicit formula for f_{28} shows that $\operatorname{tr} \sigma_2(\operatorname{Fr}_p) = \operatorname{tr} \sigma'_2(\operatorname{Fr}_p)$ for p = 5, $11 \le p \le 113$. Again the only candidate for a cyclic cubic extension cut out by $\tilde{\sigma}_2$ is $\mathbb{Q}(\zeta_7)^+$, which is eliminated at once by considering p = 11 as before.

5.4. To eliminate the possibility that $\tilde{\sigma}_2$ has image S_3 we consider again candidate quadratic fields $E = \mathbb{Q}(\sqrt{d})$, where now $d \in \{-1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}$. Applying

Bad primes: 2, 3, 7										
d	f	$\#G_{\mathfrak{f}}$	generators for $G_{\mathfrak{f}}$							
-1	9	3	$2 + \omega$							
2	63	9	$1 + \omega; 5 + \omega$							
-2	9	3	$3 + \omega$							
3	9	3	$2 + \omega$							
-3	126	81	$3+\omega; 3+2\omega; 5+\omega; 4+3\omega$							
6	9	9	$5+2\omega;1+\omega$							
-6	63	9	$1+2\omega;5+4\omega$							
7	9	3	$8+3\omega$							
-7	9	3	$1+2\omega$							
14	9	3	$15 + 4\omega$							
-14	9	3	$11 + 6\omega$							
21	18	9	$2 + \omega; \omega$							
-21	9	9	$2+\omega; 10+\omega$							
42	9	9	$13+2\omega;17+2\omega$							
-42	9	3	$1+2\omega$							

Table 4

the algorithm of §3 we arrive at Table 4, in which the entries have the same meaning as in Table 2. This shows that the images of σ_2 and σ'_2 are pro-2-groups.

5.5. The final step is to exhibit a set Σ_N ; here N = 42, and from Table 5 we see that it is enough to take the Frobenius elements for primes p with p = 5 or $11 \le p \le 113$. This concludes the proof of the theorem.

p	5	11	13	19	23	29	31	37	43	47	59	73	79	101	113
$\left(\frac{-1}{p}\right)$	+	_	+	_	_	+	_	+	_	_	_	+	_	+	+
$\left(\frac{2}{p}\right)$	+	_	_	_	+	_	+	_	_	+	_	+	+	_	+
$\left(\frac{3}{p}\right)$	_	+	+	_	+	_	_	+	_	+	+	+	_	_	_
$\left(\frac{7}{p}\right)$	_	_	_	+	_	+	+	+	_	+	+	_	_	_	+

Table 5

References

- 1 A. O. L. Atkin, H. P. F. Swinnerton-Dyer; *Modular forms on noncongruence subgroups*. AMS Proc. Symp. Pure Math. XIX (1971), 1–25
- 2 B. J. Birch, W. Kuyk; *Modular functions of one variable IV.* Lect. notes in mathematics 476 (Springer 1973)
- 3 H. Cohen, Skoruppa, D. Zagier; Tables of Hecke eigenvalues . Unpublished
- 4 P. Deligne; Formes modulaires et représentations ℓ-adiques. Sém. Bourbaki, éxposé 355. Lect. notes in mathematics 179, 139–172 (Springer, 1969)
- **5** G. Faltings; *Endlichkeitsättze für abelsche Varietäten über Zahlkörpern*. Inventiones math. **73** (1983), 349–366
- 6 R. Livné; Cubic exponential sums and Galois representations. Contemp. Math. 67 (1987), 247–261
- 7 K. Ribet; Galois representations attached to eigenforms with Nebentypus. Modular functions of one variable V. Lect. notes in mathematics **601**, 17–52 (Springer, 1977)
- 8 A. J. Scholl; Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences. Invent. math. **79** (1985), 49–77

- 9 A. J. Scholl; The *l*-adic representations associated to a certain noncongruence subgroup. J. fur die reine und ang. Math. **392** (1988), 1–15
- 10 J.-P. Serre; Résumé de cours 1984-5, Collège de France.

Department of Mathematical Sciences Science Laboratories University of Durham Durham DH1 3LE England e-mail: a.j.scholl@durham.ac.uk