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The [-adic representations
attached to a certain noncongruence subgroup

By A. J. Scholl at Durham

Introduction

In this paper we elaborate on a result which was proved in [S], following the
extensive computations of [A-SwD]. Let I be the unique subgroup of the modular
group PSL,(Z) of index 9 which has a cusp of width 7 at c0 and inequivalent cusps of
width 1 at + 2. (This subgroup is denoted I';;;, in [A-SwD].) Let

f@=) ame*™™, ameR

nz21

be the unique cusp form of weight 4 on I" with a(1)=1.

Theorem A. (i) For every n=1, we have

a(n)=64""V7p(n) with bn)e Z[1/14].

(i) For each prime p+2,7 there is an integer A,, with |A,|<2p*? such that if
n=0 (mod p%) then

mod p3(az+1) lf p4= 3;

_ 3 =
a(np)—A,a(n) +p a(n/p)—O{m0d33a+z if p=3.

Here the congruences are to be interpreted as in § 5.2 of [A-SwD] or § 5. 4 of [S].
It is clear that (ii) uniquely determines A,, except possibly for p= 3. In fact more can be
said about {4,}; there exists a strictly compatible system of l-adic representations

0:: Gal(@/@) — GL, (@),

such that if p ¢ {2, 7, I} then g, is unramified at p, and the characteristic polynomial of a
Frobenius element at pis T>—A4, T +p°.
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This theorem (first conjectured in [A-SwD]) was proved in [S], apart from the
determination of the exceptional set of “bad” primes {2, 7}. In §§ 1, 2 below we show
how this set may be obtained. The representations g, occur in the [-adic cohomology of
certain algebraic varieties, and using the Lefschetz fixed-point formula it is relatively
easy to find a closed formula for the numbers A4,; this is described in § 3 below. The
formula is similar to those of Thara [I], although we have to take care of the singular
values j=0,1728 as well here. (In contrast, the computation of the Fourier coefficients
a(n) seems rather difficult.)

Now let

F(‘L’)=—;— n(@)n2t)n(7r)n(147) {14P(147)—7P(71)+2P(27)— P(1)}

_ 2nint
=) B,e*™™,

nz1

where

P(t)=1-24 ) o(n)e*™™

nx1

is the Ramanujan series, and 7(r) denotes Dedekind’s #-function. Then B,=1, B,€Z
for all n, and F(7) is a newform of weight 4 on I';(14); see § 4 below. Our main result is:

Theorem B. A4,=B, for p+2,7.

By Deligne’s construction [D 1], associated to F is a strictly compatible system of
2-dimensional l-adic representations {g;}, such that for p ¢ {2, 7,1} the characteristic
polynomial of a Frobenius element at p is T?> — B, T + p>. We accordingly prove that g,
and g; are isomorphic. By the strict compatibility it suffices to prove this for one prime
I. In §5 we describe how a method due to Serre (making explicit a special case of
Faltings’ result on l-adic representations, [F], Satz 5) can be used to prove that g, =5,
knowing only the values of 4,, B, for a small number of primes p. We are particularly
grateful to Serre for explaining how to apply his method in this situation.

In the first three sections of this paper, we have described a considerably more
general setting than we actually require. This requires little extra effort, and should be
useful in future applications. We have particularly tried to avoid restricting to the case
in which the “field of definition” is @.

We view our result as follows. Associated to the cusp form f is a certain motive
M, (in the sense of absolute Hodge cycles, see [D4]) whose l-adic realisations are {g,}.
(For the construction of M, see forthcoming work of U. Jannsen.) The standard con-
jectures on L-functions of motives, together with Weil’s characterisation of Dirichlet
series attached to modular forms, would imply that the L-series L(M/, s) was the Mellin
transform of a newform of weight 4 on I',(2* 7%} for some «, .

Theorem B is thus a verification of this conjectured relationship in this special
case. (In general the representations associated to cusp forms on noncongruence
subgroups will not decompose into two-dimensional pieces, and one must expect other
automorphic L-series to arise.)
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§ 1. The l-adic representations associated to cusp forms

1.1. Let N be a natural number. We denote by X (N) the moduli scheme over @
parameterising generalised elliptic curves with arithmetic level N structure (& ® @ in
the notations of [D-R], V. 4.4). Thus X(N) is a smooth, proper and geometrically
irreducible curve over @. The j-function identifies X (1) with the projective line; we write

X1y =X(1)—{j=0,1728, oo}

and for any morphism p:Y — X (1) we set Y°=p 1(X(1)°). Let f: E— X(1)° be the
elliptic curve with affine equation

(1. 1) y2+xy=x>—36x+1)/(j—1728),
whose j-invariant is j (see [T]). We write
F1= le* Q.

1.2. We consider the following situation: V is a smooth and proper curve over
@, connected (but not necessarily geometrically connected), and n:V — X (1) is a finite
morphism, étale over X (1)°. Assume further that the ramification degrees of n at points
over j=0 (respectively j =1728) divide 3 (respectively 2).

The typical example of this situation is the following: Let I be a subgroup of
PSL, (Z) of finite index, and X a model for the modular curve I'\$* defined over an
algebraic number field K, such that the modular function j belongs to K(X). We may
then take V to be the curve obtained from X by restriction of scalars to @, and
n:V — X (1) the map induced by the inclusion of I in PSL, (2).

Write =, for the restriction of n to V°, and i for the inclusion V° ¢, V. For an even
integer k =0, define

W =H'(V® @, i, n§ Sym* 7),

which is a finite-dimensional l-adic representation of Gal (Q/@).

1. 3. Proposition. If I' is a subgroup of PSL,(Z) defined over @Q, and (V, n) is a
model for I' (as in § 5.1 of [S]) then W, , is isomorphic to the representation g, of § 5.3 of
loc. cit.

Proof. We recall the definition of g,;. Let
G(N)=SL(pyxZ/N)
(a finite group scheme over @). Assuming N = 3, let

funiv . Euniv — X(N)O
be the restriction of the universal elliptic curve to X (N)°. Then G(N) acts on X(N),
E"™ and on the @-sheaf

univ 1 puniv
Fi =R f, Q.
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Let V(N) denote the normalisation of the fibre product

v X X(N),

XQa)

on which G(N) acts via the second factor. We have a commutative diagram:

V(N) — V(NY ., Ve
X(N) « X (N)° _ . X(1)°

in which the right-hand square is Cartesian (since n, is étale). Then g, is the
representation of Gal(Q/@Q) on

H'(V(N)® @, iysng* Sym* g7""")o™.
To identify this space with W, , is suffices to demonstrate the following claim:
Claim.  Sym*(g* %)=~ Sym* %"™" as G(N)-sheaves, if k is even.

(Note that k must be even here, since —1e€ G(N) acts trivially on g*#, but non-
trivially on #,""".)

To see this, consider the pullback

E'=E X X(N)y

Xy

on which G(N) acts via the second factor.

Write
Z = ISOI’IIX(N)o (EI, Euniv).

By Proposition 5. 3 of [D2] the structural morphism q: Z — X (N)° is an étale covering
of degree 2. We therefore have q, @, =Q, ® ¥ wh_ere % is a rank one G(N)-sheaf on
X (N)° with #®2? = @),. Then since q* g* %, = q* #,"™" we have

g*%cy-luniv (“B tg-'luniv ® g
As "™ is irreducible, the remark immediately following the claim implies that
g* g;l ~ g(—luniv ® g

and the claim follows.

1.4. We recall here that the Atkin-Swinnerton-Dyer congruences relate W, , to
the Fourier coefficients of cusp forms of weight k+2; and in particular, that the
dimension of W, , is twice the dimension of the space of such cusp forms.
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§ 2. The ramified primes

2.1. We keep the notations of the previous section, and write g, for the
representation of Gal(@Q/@) on W, ,; by 1.3 this does not conflict with our earlier
notation. Let o, denote the localisation of the ring Z[j] at the prime ideal (p); it is a
valuation ring of the function field @(j) of X (1). Denote by O, the integral closure of
o, in @(V), the function field of V. We say that a prime p is good if O, is unramified
OVer o,,.

2. 2. Proposition. If p is good and p 1, then g, is unramified at p.

We give two proofs; the first, although only valid for p>3, will be useful in the
next section. Fix p and ! with [ = p.

2.3. Denote by R the localisation of Z at (p). Then X (1) extends to a smooth
and proper R-scheme % (1)= [P; (the isomorphism being given by the j-function). Let
Z (1)° denote the open subscheme.

Z(1)° =Spec R[j, 1/j(j —1728)].

The elliptic curve E extends to an elliptic curve /: & — Z'(1)° (given by the same affine
equation (1. 1)), and the sheaf %, extends to a smooth @-sheaf on %Z'(1)°, which we
continue to denote #, =R'Y, @Q,.

If p>3 then Z(1)° is the complement of disjoint sections of Z'(1) over R, and
hence %, is tamely ramified.

2.4. Let ¥, ¥° be the normalisations of Z'(1), £ (1)° in @ (V). Then if p is good,
the finite morphism " ® F, — # (1) ® [, is generically étale. Hence by the theorem of
purity ([G], X 3.2) ¥ is étale over Z°(1)°.

If moreover p>3, then ¥ is tamely ramified over % (1) along the sections
j=0,1728, co and therefore by Abhyankar’s lemma ([G], XIII 5. 5) ¥~ is smooth over R,
and ¥° is the complement in ¥~ of a closed subscheme which is finite and étale over R.
In a standard way (see [D 1], p. 161 for a similar situation) one deduces, using the base-
changing theorems in étale cohomology, that g, is unramified at p, and moreover that

2.1 det(1—t Frob,: W, )=det(1—tF,: H' (V" ® F,, i, n§ Sym* %)).

(Here by abuse of notation we use i, m, to denote the reductions modulo p of the mor-
phisms in 1. 2 above.) This concludes the proof if p>3.

2.5. In general we must use the other description of W, , to avoid wild
ramification. Choose an integer N = 3, prime to p. Let Z(N) denote the modular curve
of level N over R (which is the normalisation of # (1) in the function field of X (N)).
Normalisation defines schemes ¥"(N) and ¥ (N)°, and by the same argument as above,
¥ (N)° is étale over Z(N)°. Now at each geometric point x of X(N) for which j(x)=0
(respectively 1728) the covering X (N)— X (1) has ramification index exactly 3 (respec-
tively 2). Then by Abhyankar’s lemma and the purity theorem, one sees that the
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covering ¥ (N) — Z (N) is étale away from the cuspidal subscheme j=o00 of Z(N). But
the cuspidal subscheme is finite and étale over R (cf. [D-R], IV. 2.5), and so #"(N) is
tamely ramified over & (N). This is essentially the same setting as §4 of [S], and g, is
unramified at p. This concludes the proof for all good primes.

2. 5. Remark. Note that by Abhyankar’s lemma the ramification indices of the
coverings V(N) — X (N) are prime to p if p is good. We can conclude that if V comes
from a subgroup I' < PSL,(Z) as in 1. 2, and if p divides the width of the cusp oo, then
p cannot be good.

2.6. We can make 2.2 more explicit when V has genus zero, using the “j-
equations” of Klein-Fricke, exploited systematically by Atkin and Swinnerton-Dyer (see
[A-SwD], §2.3 for details). Let K be the field of constants of V. Then there is a
“Hauptmodul” ¢ (that is, a rational function on V such that @ (V)= K(t)) satisfying
equations of the form

jC@t)=A(t) B(t)’,

(2.2)
(j—1728) C(t) = D(t) E(t)?

for certain polynomials 4, B, C, D, E with coefficients in K. In what follows, we shall
only assume that ¢ satisfies an equation

(2.3) P(t)+jQ(t)=0

with P, Q € K[t], deg P =d >degQ and P monic.

2.7. Proposition. Let p be a prime which is unramified in K. Suppose that for each
prime p of K dividing p the following conditions are satisfied:

(i) P(t), Q(t) are p-integral, and their reductions P(t), O(t) modulo p are relative
prime;

(ii) at least one of P'(t), Q'(t) is nonzero.

Then p is good.

(Note that (ii) is automatic unless p|d.)

Proof. Let Intg be the ring of integers of K, and let o, denote the localisation of
Intg [j] at p; it is a semilocal domain. Write S =0,[t]/(P(t)+;Q(t)), which makes sense
by condition (i). P being monic, S is free of rank d over o,. Since the field of fractions
of § is @ (V), it suffices to prove that S is unramified over o,. By condition (i), we have

S®F,= GI-) (Intg/p) () [L)/(P(6)+j O (1) = GI—) (Intg/p) (¢).

It therefore suffices to prove that for each p, (Intg/p) (t) is separable over [F,(j), which is
condition (ii).

2.8. We apply this criterion in the case of the modular curve for the subgroup
I,.; £PSL,(Z). From § 2. 4 of [A-SwD] we have, with K =@,

1 13
2. 4) (t3+4¢2+10t+6)3—a<t2+7t+8)j=o.
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Suppose p>2 (so that the polynomials are p-integral). Then if P,J have a
common root o € [F,, one calculates at once that 7a=0. Since §(0)+0 for p odd,
(1) holds if p=%2, 7. For (ii), we need only check p =3 since d =9.

2.9. Corollary. If V is the model for the modular curve I',;,\\H* given by (2. 4),
then g, is unramified away from {2,7, 1}.

2.10. Taken in conjunction with the main results of [S], this implies Theorem A.
We indicate here why f may be chosen such that b(n) € Z[1/14] and b(1)=1; indeed, if
this is not the case then for some choice of f we will have b(n)e Z[1/14],
b(1)=0(modp) and some other b(n)%0(modp), for a prime p=2,7. Then the
reduction modulo p of f is not identically zero, but vanishes to order =1 at each cusp,
and to order =2 at the cusp co. But the divisor of a modular form of weight 4 on I';,,
has degree 3, so this is impossible.

§ 3. Explicit trace formula

3.1. Here we calculate explicitly Tr g,(Frob,) when p is a good prime, different
from 2, 3 and [. To avoid complicating the notation we assume that k> 0. In this case

H (V" Q@F,,i,n§ Sym*#)=0 if i+1
and hence by the Lefschetz formula ([D 3], Rapport 3. 2) and (2. 1) we have, with g =p",
Tro,(Froby)=-— Y Tr(x)
xeV (Fq)

where

Tr (0) = Tr(F, : (i, 7 Sym* 7,),).

In the next four paragraphs we give explicit expressions for Tr(x). The proofs are
outlined afterwards.

3.2. Here we consider x € ¥"°(F,). Let &, be the fibre of the elliptic curve
& — X (1)° at n(x), and write

#gn(x)(ﬂrq)=1+q_ax_&x

with a,d&,=gq. Then

k
Tr)= Y ¢’ (@/a).
~3sist

17

3.3. Now suppose n(x) is the point j=oc0 of Z (1) ® F,. Then Tr(x)=1.

3.4. Suppose 7n(x) is the point j=0, and let e(x)e {1, 3} be the ramification
degree of V" @ F,— Z(1) ® [, at x.
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If p=1(mod3), write p=pF in Z[]/1] with f=1 (mod3). Then for e(x)=1, we
have

k
G.-1) Tr(x)= Y  a*(B/By*";

k
-6

fIA

isk

for e(x) =3 we can write (ﬁ,f@,Fq,x =, [[3|/j/b]] for some b € [}, and

AN
(3.2) Trx)= Y 4 (B/B)" (El

-3sisy

If p=2 (mod 3), then

k
(—q)? if risodd,

k
(1 +2 |:ke6(x)]> g> if ris even.

3.5. Finally suppose n(x) is the point j =1728, so e(x) € {1, 2}.

(3.3) Tr(x)=

If p=1 (mod 4), write p=y7 in Z [i] with y=1 (mod 2(1 +i)). Then for e(x)=1,

k
Tr(x)= Y q>@/PH*;
~¥sisk

A

for e(x) =2, we have

Oyor,=F,[)/(j—1728)/c]

for some c € F and

k ir
Tr)= Y  @0H)" (f;) .

k k 2
-7 2

1

A
A

If p=3 (mod 4), then

K
(—q)? if ris odd,

k
(1 +[ke4(x)]> q> if ris even.

3.6. The proof of 3. 2 is clear; indeed, if x € ¥"°([F,) we have

Tr(x)=

(i* 7!?; Symk '%)x = Symk '9?1, n(x)

=Sym*H'(&,,, ® F,, Q).
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For the remaining points, we must analyse the local Galois representations attached to
the elliptic curve & ® F, — Z (1)° ® F, at the points j=0,1728, co.

3.7. We first introduce some notation. If x € ¥"(fF)), let £ be the function field of
the connected component of ¥~ ® [F, containing x. (Recall that by 2. 4 above ¥" ® [, is
smooth, since p>3.) Thus £ is a finite extension of [ (j). Let v be the discrete valuation
of £ corresponding to x, and £, the completion. Let G, be the absolute Galois group
Gal(£;°/4,), I, the inertia group, and F, a geometric Frobenius.

Finally write A, for the elliptic curve & ® £,, and H,=H'(§ ® £,*, @,). Then H,
is a G,-module, and

Tr(x)=Tr(F,: (Sym* H)").

3.8. The model (1.1) of the elliptic curve A, has j-invariant je £,, and
discriminant 4 =j*(j—1728)>. The behaviour of the Néron model of 4, can be read off
from the table in § 6 of [T]. If v(j)=v(j—1728)=0 then x € ¥"°(FF,) and the position is
described in 3. 6 above.

3.9. If v(j)<O then n(x)=o0. Tate’s algorithm shows that the identity com-
ponent of the special fibre of the Néron model is G,, (untwisted). The image of I, in
GL(H,) is a non-trivial group of unipotent matrices, and F, acts trivially on H!* and by
multiplication by q on H,/H!*. Therefore (Sym* H,)! is a 1-dimensional space with a
trivial G,-action, and 3. 3 follows.

3.10. If v(j)>0, there are various cases to consider, according as whether p=1
or 2 (mod 3) and whether £/, (j) is ramified at v. We first consider the unramified case
v(j)=1; then £,=F,((j)). As v(4)=2 in this case, Tate’s algorithm and the criterion of
Néron-Ogg-Shafarevich imply that the image of I, in GL(H,) has order 6. Since
A*H, = @,(—1) is unramified, in terms of a suitable basis {X, Y} for H, ® @, the image

of I, becomes
0 _
{(g c-l) Le us(@,)}.

Therefore (Sym* H,)" is spanned by the monomials (X Y)*? (X/Y)*" with i € Z,
—(k/6) = i = (k/6).

Now if p=1(mod3), then pg=£¥, and the image of G, in GL(H,) is therefore
abelian. We must have

F,(X)=8'X, F(Y)=FY
for an algebraic integer B with S8 =p. (Recall that g=p".) Since j=0 (modv) we have

ez []3/1]. Formula (3. 4. 1) follows immediately (note that the choice of f is irrelevant
at this point).
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3.11. In ghe ramified case, v(j)=3. Then if p=1 (mod 3), we have by Kummer
theogy £,=F,((}/j/b)) for some unit be F,((j). Clearly we may take be F} Let
@ =|/j/b; then writing u=o" "' (x + 1/12), z=w"2(y+ x/2), equation (1. 1) becomes

wbu N b
48(j—1728) 864(j—1728)°

wzl=u’—

This acquires good reduction over £, (]/E), with special fibre of the form
(3.4) wr=u>—-2-127°b.

Thus I, has image { +1} < GL(H,), and the eigenvalues of F, on H, are +«’, + & where
1+ p—(x+a) is the number of points on the elliptic curve (3. 4) over F,. By [D-H] this

implies
—8b
=5(5);
6

where B is chosen as in 3. 4. Since k is even, Sym* H, is unramified, so

Tr(o= ¥ (£ (22

i=0
= Y 4 (/ay
kg
and (3. 4) results.

3.12. Now suppose that v(j)>0 and p=2 (mod 3). Then A4, has potentially good
and supersingular reduction. In the unramified case, since pg & £, the image of G, in
GL(H,) is a semi-direct product:

0 _
L {(g le):Ceuﬁ(@l)},

In the ramified case, I, maps to {+1} and F, acts as above. The formulae (3. 3) follow
at once.

3.13. For v¢j—1728)>0 the proofs are completely analogous, and we omit them.

3.14. It is now a simple matter to calculate Trg,(Frob},) in a given case, if we
have a set of equations defining V. In the case in which V has genus zero, given by j-
equations (2.2), the computation is particularly easy; for each te f,u {0} one
calculates the corresponding j, and then computes the local term using 3.2—3. 5 above.
The constants b, ¢ of 3.4, 3. 5 can be read off from the j-equations.
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We have carried out this computation for the modular curve corresponding to
I';;, given by (2.4) and k=2, for which g, is two-dimensional (corresponding to the
one-dimensional space of cusp forms of weight 4). Here it suffices to compute
Tr g,(Frob}) for r=1, since we know from § 4.2 of [S] that det g;(Frob,)=p> For p=5
and 11 < p <100 the numbers 4,=Trg,(Frob,) are given below.

p | 5 11 13 17 19 23 29 31
A, | —12 48 56 —114 2 —120 —54 236

37 41 43 47 53 59 el
146 126 -—-376 —12 174 138 380

67 N 73 79 83 89 97
—484 576 —1150 776 378 —390 —1330

§ 4. Modular forms on I, (14)

4.1. Write M, (N), S,,(N) for the spaces of modular and cusp forms of weight w
on I',(N). Recall the Ramanujan series

o 12
P@O=1-24 3. otq"= %(%)

where
1 ©
n(@W=¢>* [] 1—¢"
n=1

is Dedekind’s n-function.

4.2.Lemma. For any a(d) € C, d|N such that ) d~'a(d)=0, the function

dIN

G(1)= ) a(d) P(d7)

d|N

belongs to M,(N), and if p|N,

G(@)IW,=3 p 'a(d) P(p~'d1)+ }, pa(d) P(pd).

pld prd

Proof. The first part is classical. One has ([H], pp. 413, 474)

P(t)=E,(t)+

7 Im (1)

where

| 1
Ez(r)=§31_{r(1) ,;,, (mt+n)? |mt+nf

(m,n)=1
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and

E, (“”b) —(ct+d) E,(0)

ct+d

a b
(c d)eSLZ(Z).

The lemma then follows from calculating the action of the W,-operators on E,(d1).

if

4. 3. Corollary. If (o, B)=(+1, —1), (=1, +1) or (—1, —1) then
G, p(1)=14P(147)+TaP(77)+2BP(27) + a B P (1)
belongs to M,(14), and
Ga,ﬁlWZ = “Ga,p; Ga,ﬂ|W7 = ﬂGa,ﬂ'

4.4. The space M,(14) is four-dimensional, and the forms G, ; span a comple-
ment to the one-dimensional subspace S,(14). A non-zero element of S,(14) is

K(t)=n(r) n(27) n(77) n(147)
(cf. [N]). From the Fourier expansion one finds that
K|W,=K, K|W,=-K.

4.5. The space S,(14) has dimension four, and is therefore spanned by K? and
the forms KG, ;. They are eigenfunctions for W,, W, with eigenvalues (+1, +1) and
(o, — ) respectively.

1
4. 6. Proposition. F(7) =3 K (1) G_1 +,(7) is a newform in S,(14).

Proof. From the above F(7) is the unique element of S,(14) whose coefficient of ¢
is 1 and for which F|W, = F|W,= —F. 1t suffices to show that it is not an oldform. But
S,4(2)=0 and thus the oldforms are spanned by H(t)+2H(27), where H is a non-zero
element of S,(7), a one-dimensional space. The corresponding W,, W, eigenvalues for
these forms are (41, &) where H|W, =¢H. By 4. 5 the eigenvalues (+ 1, — 1) do not occur
in S,(14), hence ¢= +1, the oldforms have W-eigenvalues (+1, +1), and F 1s a
newform.

4.7. Write
F(1)=} B.q",

nz1

so that B, =1 and B, € Z for every n=1. A simple calculation verifies that for p=5 and
11<p<100 the numbers A, (from 3. 14 above) and B, are equal. (In fact we only need
to verify equality for p <30; see 5. 8 below.)
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§ 5. Application of the method of Faltings and Serre

S.1. We have considered the representations g, associated to the cusp form of
weight 4 on I';;;, and calculated the numbers 4, =Tr g,(Frob,) for various primes p in
3. 14. By [D1], associated to the cuspform F(r) of the preceding section is a system {g;}
of 2-dimensional [-adic representations of Gal(Q/@), such that if p ¢ {2, 7, [} then g; is
unramified at p and

Tr;(Frob,)=B,, detg;(Frob,)=p>.

D

By Theorem 2. 3 of [R] the representations g,, o; are irreducible.
5. 2. Theorem. g, and g; are isomorphic for every .

Theorem B is an immediate corollary. By Cebotarev’s density theorem and the
irreducibility, it suffices to prove 5.2 for !=2. For this we shall use the following
theorem of Serre. Let K be a number field, and S a finite set of primes of K. Let
X1>---» X, De a maximal independent set of quadratic characters of G = Gal(K/K)
unramified away from S, and let 2 be a subset of G such that the map

(Xls"'a Xr):z—‘) (Z/z)r

is surjective.

5. 3. Theorem. Let g, 0 : G — GL,(@Q,) be continuous semisimple representations,
unramified away from S, whose images are pro-2-groups. If for every c € £

Tro(e)=Treo'(6) and detgo(o)=detg (o)

then g, @' are isomorphic.
(For the proof and a generalisation see § 4 of [L]; see also [Se].)

5.4. Proof of 5.2 for I=2. Write ¢ =9,, ¢'=05. Taking K=@ and S={2, 7},
we shall show that the conditions of 5. 3 are satisfied for a certain X. Assuming without
loss of generality that the images of g, ¢’ lie in GL,(Z,), let us denote by

0,0 :G— GL,(F,)
their reductions modulo 2.

5.5.Lemma. If p=13 or 19, then g(Frob,) and ¢'(Frob,) have order two.

Proof. If g € GL,(Z,) satisfies

g= ((1) (1)) (mod 2)

then by a simple calculation

Tr(g)=det(g)+ 1 (mod 4).
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Hence

d(Frob,)=1= A,=p*+1 (mod4).

Now for p=13, 19 we have from 3.14 that 4,=p>—1 (mod4), whence g(Frob,)=+1;
and g(Frob,)> =1 since 4, =0 (mod 2). The same applies to ¢'.

5. 6. Proposition. The images of g, @' have order exactly 2.
Proof. Consider the composite homomorphism 6 below:

~

G—4+—> GL,(F,)= S,

7

By the preceding lemma 6 is surjective. It therefore cuts out a quadratic extension
M/Q, unramified away from 2 and 7, in which 13 and 19 are inert. The only possibilities

are then M = @(]/5) or Q(}/ —7). If the image of ¢ was not of order 2 then g would be
surjective, which is impossible in view of the following lemma.

5.7. Lemma. There is no Ss-extension L/Q), unramified away from 2 and 7, whose

quadratic subfield M is @(‘/2) or @(]/——7)
Proof. One must show that there is no ide¢le class character
v Jy/M* —> pj,
unramified away from {v:v|14 00}, which satisfies y* =1y~ for the non-trivial automor-
phism ¢ of M. Since M has class number one in either case this is a simple exercise in

class field theory, which we leave to the reader.

5.8. By 5. 6 the images of ¢ and ¢’ are pro-2-groups. We may take
—1 2 p
X1 =<’"")’ Xz—_‘(“) and st(_‘)-
p p 7

2={1,c} u{Frob,: 11<p <29}

Then

(where ¢ denotes complex conjugation) satisfies the condition of 5. 2. Since
detg=deto : G — ZF

is the cube of the cyclotomic character, we have Tro(c)=Tro'(c)=0, and by 4.7
the remaining conditions of 5.3 are satisfied. This concludes the proof of 5.2 and
Theorem B.
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