Classical motives

A. J. Scholl

Introduction

This paper is based on a talk given on the first day of the conference, entitled “Examples”.
Its purpose was to give an elementary survey of some examples of classical motives from
a purely geometric standpoint (that is, without recourse to any cohomological methods).
This report has the same aims and consequent shortcomings. There are four main parts:

(i) An account of the definitions and basic properties of motives. This is included for
completeness; it can all be found, in a somewhat different form but in greater detail,
in the definitive accounts of Kleiman [12] and Manin [19].

(ii) The relation between the motive of a curve and its Jacobian variety, due in essence to
Weil.

(iii) The motives h*(X) and h2?~1(X) for a variety X of dimension d. Here we follow
Murre [23], with minor modifications.

(iv) An elementary proof of the canonical decomposition of the motive of an abelian variety,
inspired by the work of Deninger and Murre [6] and Kiinnemann [15, 16].

There is therefore little which is original contained in these pages. I have given a more
or less complete proof of Murre’s result in §4, so as to make the comparison between the
different decompositions in 5.3. Also included is a proof (3.5) of the unsurprising fact that
the category of motives constructed using rational equivalence of cycles is in general not
an abelian category. Otherwise proofs have been sketched or omitted.

A word about the notion of motive used in this paper is appropriate. Grothendieck’s
definition of a motive involves replacing the category of varieties by a category with the
same objects, but whose morphisms are correspondences, modulo a suitable equivalence
relation. Depending on the equivalence relation chosen, one gets rather different theories
(see 6.2 below for a discussion).

It is usual to take numerical or homological equivalence, obtaining motive categories
MM and M}gom, but in this report we concentrate more on M}2t, the category of motives
for rational equivalence (sometimes called Chow motives). One reason to do this is that
rational equivalence is the finest adequate equivalence on cycles, so that M}*" is in some
sense universal.

Another reason is that many interesting cohomology-like functors factor through M32¢
but not in general through MU or MEom  Examples of such functors include absolute
(-adic cohomology H*(X /1, Q¢(n)), Deligne-Beilinson (absolute Hodge) cohomology, and
motivic cohomology (see Nekovai’s paper in these Proceedings for details of both of these).
In particular, to formulate Beilinson’s conjectures for motives it is at present necessary to
work in M2t



The obvious disadvantage of using rational equivalence is that of not being in an
abelian (or even conjecturally abelian) category. Arguments that are trivial when one uses
numerical or homological equivalence can become cumbersome. Philosophically, one has to
study M3t as well as ME°™ for the same reasons that in cohomology it is often necessary
to work with complexes (i.e., in the derived category) rather than simply with cohomology
groups. Unfortunately we do not yet have the whole derived category of motives to play
with.

The author is grateful to J. Murre for pointing out an error in an earlier version of section 4 of this paper.

1. Formal properties of motives

1.1. We fix a base field k. Let V) denote the category of smooth and projective k-schemes.
We refer to the objects of Vi as simply warieties—note that they are not necessarily
irreducible or even equidimensional. However we will only consider connected varieties
from §3 onwards. If ¢:Y — X is a morphism in V., we denote by I'y C X x Y its graph.

1.2. For a variety X and an integer d, the cycle group Z¢(X) is the free abelian group
generated by irreducible subvarieties of X of codimension d. Central to the definition
of motives is the choice of an adequate equivalence relation ~ on cycles. For a precise
definition of what that entails we refer to [12]; there are three important examples of
adequate equivalence relations:

(i) rational equivalence;
(ii) homological equivalence, with respect to a (fixed) Weil cohomology theory H*;
(iii) numerical equivalence.

We write (with apologies for the notation) A%(X) = Z4(X)®Q/ ~, where ~ is a fixed
adequate equivalence relation. If Z is a cycle on X we write [Z] for its class in A¢(X).
The definition of adequate implies that the groups A%(X) enjoy a number of functorial
properties:—

e For a morphism ¢: X — Y there are pullback and push-forward maps ¢*: A*(Y) —

A*(X), gb*:A*(X)—>A*+dimy_dimX(Y).

e There is a product structure A%(X)® A¢(X) — A9+¢(X) given by intersection theory.

In this report we will be mostly concerned with the case when ~ is rational equivalence, in
which case A4(X) is the usual codimension d Chow group tensored with Q. The motives
arising from this choice are sometimes called Chow motives. For further comments on the
effect of choosing a different equivalence relation, see §§3.5, 6.2 below.

1.3. Let X, Y be in Vk. Define Corr"(X,Y), the group of correspondences of degree r
from X to Y, as follows. If X is purely d-dimensional, then

Corr” (X,Y) = A" (X xY).
In general, let X =][X; where each X; is a connected variety, and set
Corr"(X,Y) = @ Corr"(X;,Y) CA* (X xY).
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For varieties X, Y and Z there is a composition of correspondences
Corr” (X,Y)® Corr®(Y, Z) — Corr’ t*(X, Z)

defined by
f®g—gof=pis.(pisf P539)
where p;; are the projections of X xY x Z onto products of factors.

1.4. The category My of k-motives is now defined as follows: an object of My is a triple
(X,p,m) where X is a k-variety, m is an integer and p = p? € Corr’ (X, X) is an idempotent.
If (X,p,m) and (Y,q,n) are motives, then

HOI’Ile ((X,p,m), <Y7Q7n)) :pCOI’rn_m(X,Y)q C COI'I'>'< (X,Y)

and composition is given by composition of correspondences.

This is the definition of the category of motives as given, for example, in [9]. It is
equivalent to the definition found in other places (for example [19] and [12]) because of
the following elementary fact:

Lemma 1.5. Let p, ¢ be commuting endomorphisms of an abelian group B, which are
idempotents. Then the map x +— pgx gives an isomorphism

k - ~
er(p—q) -~ B,
ker pnkergq

Theorem 1.6. M, is an additive, Q-linear category, which is pseudoabelian.

If (X,p,m) and (Y,q,n) are motives with m =n then their direct sum is defined to be

def
(X,p,m)®(Y,q,m)=(X][Y,p®q,m).

It is immediate that this satisfies the necessary properties. The general construction of the
direct sum is given in §1.14 below; the reader can check that the proof is not circular.

Now recall that an additive category such as M, is pseudoabelian if every projector
f € End M has an image, and the canonical map Im(f)®Im(1— f) — M is an isomorphism.
In this case it follows formally from the definition that there is a decomposition

M= (X,pfp,m)®(X,p—pfp,m)

if M =(X,p,m) is a motive and f=pfp € End M is a projector.

1.7. Remark. One should bear in mind that the category My is in general not abelian
(see 3.5 below), and some caution must therefore be exercised when discussing kernels of
arbitrary morphisms. In view of this it is worth making the following trivial observation:

If f: M — N is a morphism in M, (or any pseudoabelian category) which has a
left inverse, then it has an image, which is (non-canonically!) a direct factor of
N, and M — Im f is an isomorphism.



In fact if ¢ is any such retract of f, then fg is an idempotent, so fgN C N exists, and
f:M = fgN. Dually, if f has a section, then N is canonically a quotient object of M,
and non-canonically a direct factor of M.

1.8. There is a functor
h: V,?pp — My,

which on objects is given by h(X)=(X,id,0), and on morphisms ¢:Y — X by
h(¢) = [[4] € Corr®(X,Y) = Hom(h(X),h(Y))

(usually one writes ¢* for h(¢)).
1.9. There is a tensor product on My, defined on objects by

(X,p,m)®(Y,q,n) = (X XY,p&q,m+n)
and on morphisms by

P1f1g1 ®@p2 fagz =(p1 @p2)(f1® f2)(q1 ®g2) € Corr™ (X1 x X5, Y1 X Y2)
if pifigi: (X, pi,mi) — (Yi,qi,ni).
One writes 1 = (Speck,id,0) (the unit motive) and L. = (Speck,id, —1) (the Lefschetz
motive). Then 1 is the identity for the tensor product, and every motive is a direct factor
of h(X)®L®" for suitable X and n; in fact, if p € Corr’(X, X)=Endh(X) is a projector,
then
(X,p,m) =ph(X)@L® " Ch(X)0L® ™.

In future we write simply L™ for L®", and for a morphism f: M — N of motives we will
write f also for the tensor product M ®@L®" — N @L®".

The diagonal A: X — X x X defines a product structure on h(X), given by the

composite .
mxh(X)@h(X) = h(X x X)25h(X).

1.10. If ¢:Y — X and X and Y are purely d- and e-dimensional, respectively, then the
transpose ['T'y] € A%(Y x X) is a correspondence of degree d—e from Y to X, and so defines
a morphism

hu:h(Y) — h(X) QL™

Suppose that d = e and that ¢ is generically finite, of degree r. Then the composite
¢.0¢* € Endh(X) is multiplication by r. In fact,

¢« 09" =134 (P13 [Tl P34 Tg]) = P134(¢,1d, 8)[Y] = 7[Ax]

where Ax C X x X is the diagonal.
If f€ Corr’(X,Y) =Hom(h(X),h(Y)) and ¢: X — X', 4:Y — Y’ are morphisms in
V). then the formula for the composite map of motives is

Yo fod" =(pxv).f.
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Similarly if ¢: X' — X and ¢:Y’ —Y then
YProfod.=(px )" f.

Because of the inherent confusion in formulae of this type, we will attempt to distinguish
between operations on cycles (direct and inverse image and intersection) and on correspon-
dences by frequent use of the usual symbols - and o. In particular, the notation ¢? will
generally denote c-c and not coc.

1.11. Suppose that X is irreducible of dimension d, and that there is a k-rational point
x € X (k). Denote by a: X — Speck the structural morphism. Then z*oa* =id, so by the
remark in 1.7, the map

a*:1— h(X)

is a subobject of h(X). Similarly, as a, oz, =id, the map
o h(X) — 1LY

is a quotient object.

More generally, let X be irreducible, and write £’ =T'(X,Ox), and a: X — Speck’ for
the structural morphism. Let k£”/k’ be a finite separable extension such that there exists
x € X (K"). Write v:Speck” — Speck’ for the natural map. Then by 1.10, the composite

h(Spec k’)ﬁh(X)x—*>h(Spec k") h(Spec (k')
is multiplication by [k”:k’]. Therefore
a*:h(Speck’) — h(X)

defines a subobject of A(X), denoted h°(X). It is well-defined as a subobject up to unique
isomorphism.

We denote the quotient of h(X) by h%(X) as h=1(X). The quotient exists because
h°(X) is (non-canonically) a direct factor of A(X). The choice of a point x determines a
splitting h(X) =h%(X)®h=1(X).

Remark: When ~ is homological or numerical equivalence, the class of 'y, in A*(X ®y k")
is independent of x, and so the splitting is in this case canonical.

In particular, if X is absolutely irreducible, then h°(X) =1 is a direct summand of
h(X). We can use this to eliminate the nuisance of dealing with varieties with components
of different dimension as follows:

Proposition 1.12. Any motive M can be expressed as a direct factor of some h(X")QL",
with X’ equidimensional.

Proof. 1t is enough to show this for M =h(X). Let X =]]X; be the decomposition of X
into its components. Choose integers d; > 0 such that dim X; + d; does not depend on .

We then have
h(X) =EPnX:) =P (X)) ©n’ (P™))
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and we have seen that this is a direct factor of @ h(X; @ P%) = h([[X; x P%).
1.13. Continuing with the assumptions of 1.11, let d =dim X. Then the composite

h(Speck')®Ldm*—7*>h(X)$>h(Speck') QLY
is multiplication by [£”:k'], and so
- h(X) — h(Speck’) @ L

is a quotient object of h(X), denoted h2¢(X).
If X is irreducible and has a rational point x € X (k) then

RO(X)~ (X, {2} x X,0)~1
R2(X) ~ (X, X x {z},0) ~ L%

Assuming only that X is irreducible, let Z be any zero-cycle on X whose degree d is
positive. Then py = (1/d)[Z x X] € A4(X x X) is an idempotent, and gives rise to canonical
isomorphisms

hO(X) ~(X,po,0), h2**(X)=~(X,p2q,0) where pag="po.

For example, consider X = P1. Since the cycles P! x {z}, {z} x P! on P! x P! do not
depend on the choice of a rational point z € P!(k), and since their sum is rationally
equivalent to the diagonal, we have canonically

h(PH=r"PHaor*(PH=10L.

In most treatments this is taken as the definition of L.

1.14. We can now construct arbitrary direct sums in My. Let M = (X,p,m) and N =
(Y,q,n) be motives. Assume that m <n. Then

M=(X,p,n)@L" ™= (X,p,n)@h*(P)" "= (X x (P)" " p n)
for a suitable projector p’, and the direct sum of M and N is then
(X x (P ™ ]IY,p' ®q,n)

as in 1.6 above.
1.15. There is an involution V: MP” — My, defined on objects by

(X,p,m)" =(X,'p,d—m) if X is purely d-dimensional

and on morphisms as the transpose of correspondences. In particular h(X)Y = h(X)QL ™
(“Poincaré duality”). Clearly MY = M for every M, and the standard formula

Hom(M ® N, P) =Hom(M,N" @ P)
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is trivially seen to hold. Then one can define an internal Hom in Mj by the formula
Hom(M,N) = MY ® N. These constructions give My, the structure of a rigid additive
tensor category, once commutativity and associativity constraints are defined. (This ten-
sor structure gives what in the Tannakian setting is usually called the false category of
motives—see [5], p.200ff.)

1.16. It is sometimes convenient to construct a decomposition of motives over an extension
field (this is needed in §4, for instance). Because of what was said in 1.10, the groups A*
satisfy Galois descent: if k’'/k is a finite Galois extension then A*(X) is the subspace of
invariants of A*(X ® k') under Gal(k’/k). Therefore Galois-invariant decompositions of
motives descend to the ground field: more precisely, we have the following easy result.

Lemma 1.17. Let X € Vi be purely d-dimensional, and let k'/k be a finite Ga-
lois extension of degree m. Write X' = X ®y k', and denote by 3 the canonical map
X' x4 X" — X x X. Suppose that p),..., pl. € AYX' xp» X') is a complete system of
orthogonal idempotents, which are invariant under Gal(k’/k). Then the correspondences
pi = (1/m)B«(p}) form a complete system of orthogonal idempotents in A%(X x; X).

2. Cycles and Manin’s identity principle

2.1. An immediate consequence of the definition of motives is that the cycle class groups
A* can be interpreted in terms of My: in fact

AY(X)=Hom(L% h(X)).

If £ € A%(X), then we write &,:L% — h(X) for the corresponding mapping of motives, and
£*:h(X) — LY X =4 for its transpose. (If € is the class of a rational point = € X (k), this
then agrees with the notations z, and z*.) There is then defined a morphism &: h(X)QL? —
h(X) (“cup-product with £”) by

h(X) @L* 25 B (X) @ h(X) -2 h(X).
The morphism ¢ is represented by the cycle class
A, (€) € Corr (X, X) C A*(X x X).
If n is another cycle class then
fonf=&-n and Eomu=(£1).. (2.1.1)
In possible conflict with the convention of 1.10 the notation £’ will mean the correspondence

induced by &¢, which is the i-th iterate of £ and not the i-fold intersection. We define for
any motive M and d € Z the cycle groups of M by

AY(M)E Hom (LY, M).
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Then A*(—) is a Z-graded additive functor from My, to Vectq, the category of Q-vector
spaces. For M = h(X) this therefore agrees with the previous notation.

2.2. If M and N € M}, then
Hom(N, M) =Hom(1,M ®N")=A°(MaNV).

Therefore by the Yoneda lemma the functor which attaches to M € Mj the functor
AY(M ®—): My, — Vectq is fully faithful.

Now any N € My is a direct factor of some h(Y)®L"™ with Y € Vi and n € Z, and
AYM@h(Y)®L")=A"""(M ®h(Y)). Therefore if we denote by wys: V"’ — Vectq the
functor

wm(Y)=A"(M®h(Y))
then M +— wyy is fully faithful. From this one can deduce (using for example [20], I1.7.1):

2.3 (Manin’s identity principle). (i) Let f, g:M — N be morphisms of motives.
Then f is an isomorphism if and only if the induced map

wp (YV): A (MBR(Y)) — A*(N@h(Y))

is an isomorphism for every Y € Vi; and f =g if and only if ws(Y) =w,(Y) for every Y.

(ii) A sequence 0—M' LM 2”0 in My, is exact if and only if, for every Y € Vy,
the sequence

0—A* (M @h(Y) LD A* (M @ h(Y)*2S A* (M @ h(Y))—0

1s exact.

2.4. As a first example we calculate the motive of a projective bundle following Manin
[19]. Let S € Vi and let £ be a locally free sheaf on S of constant rank r+1 > 1. Let
X = Pg[€]-"=S be the associated projective bundle, and ¢ = ¢;(Ox (1)) € A*(X) be the
divisor class of the tautological line bundle on X.

Recall that A*(X) is a free module over A*(S) (via 7*) with basis 1, ,...,£", and that
the multiplication is given by

s

=N (1) e (6)¢

=0

where ¢;(€) € AY(S) are the Chern classes of £. For any integer n > 0, write " =
> i—00n,;&7. Then 6, ; € A"~I(S) are given by certain universal polynomials in the Chern
classes.



Theorem 2.5. The map
> or:PHnS)@L — h(X)
i=0 i=0

is an isomorphism of motives. In terms of this isomorphism, the product structure on
h(X) is given by

(h(S)®L") @ (h(S)@L" ") —Z=h(S) ®L”Méh(5) QL
j=0

Proof. Manin’s identity principle implies that it is equivalent to know that the correspond-
ing mapping at the level of cycle class groups

éaA*_i(SxY) — A (X xY)

(Zi)HZé’i-(WXidY)*(Zi)

is a ring isomorphism for every Y € Vi. But since the Chern classes of pri€ on S xY are
simply pric;(€), this follows from the facts recalled in 2.4 (replacing X/S by X xY/SxY).

2.6. Similar results hold for other varieties which admit cellular decompositions relative
to a base (grassmanians, etc...). Suppose that m: X — S is a flat morphism of pure relative
dimension n, and that X admits a filtration by closed subschemes X = Xy D X; D... such
that X; — X;41 is S-isomorphic to the affine space Ag_di, for some d; € Z. Then there is
an isomorphism
P A4 (S) — A*(X) (2.6.1)
3

which is functorial with respect to cartesian squares

X — X
B
S — S

and so by Manin’s identity principle h(X) ~ @ h(S) ® L%. See [14], particularly the
appendix, for a proof of (2.6.1) and further examples. Calculations for many of the classical
varieties of this type can be found already in SGA6.

2.7. The identity principle can also be used to calculate the motive of a blowup. Let
Y C X be a non-singular subvariety which is purely of codimension r+1 > 1, and let

/7

Y/L)X/
vy <% X



be the blowup of X along Y. Then Y’ — Y is a projective bundle; let £ € A*(Y”) be the
class of the tautological line bundle. Consider the sequence of motives:

0— h(Y) oL (X & (h(Y) 9 L) 2 h(X7) — 0. (1)

There is a retract of the first arrow given by 0@ m,: h(X) @ (h(Y)®L) — h(Y)@L .
Theorem 2.8 (Manin). The sequence (1) is split exact.

The proof relies on the identity principle and the behaviour of A* under blowups. For
details we refer the reader to [19]. This result was used there by Manin to prove the Weil
conjectures for unirational varieties of dimension three.

3. Curves and abelian varieties (I)

3.1. One reason for Grothendieck’s introduction of motives was to serve as analogues of
the Jacobian of a curve in higher dimensions. Here we explain the precise relationship
between the motive of a curve and its Jacobian. For the rest of the paper all varieties will
be assumed connected.

3.2. Let X €V, be a curve, with field of constants &’. As explained in §1.11-1.13 there
is a submotive h°(X) ~ h(Speck’) and a quotient motive h*(X) ~ h(Speck’) ® L of
h(X). The choice of a zero-cycle Z on X of positive degree determines projectors po,
p2 € Corr’ (X, X) =Endh(X) with h*(X) ~ (X,p;,0) for i =0, 2 as in 1.13.

Let p; =1 —po —p2 € Corr’(X, X), and write h'(X) = (X,p1,0) € My. Then there is
a direct sum decomposition

h(X)=hr"(X)®h'(X)®h*(X)

which in general depends on the choice of Z (more specifically, its class in A*(X)). However
h'(X) is well-defined up to unique isomorphism; in fact, it is the kernel of the composite
map h=H(X) — h(X) — h%(X), so is well-defined as a subquotient of A(X). The theory of
the motives h!(X) is essentially that of Jacobian varieties:

Proposition 3.3. If X, X' are curves with Jacobian varieties J, J', then
Hom(h!(X),h' (X)) =Hom(J,J ) ®Q
and

1 _J0 if ~ is numerical (or homological) equivalence
Hom(L,h'(X)) = { J(k)®Q if ~ is rational equivalence.

(Some explanation for the dichotomy will be given at the end of the paper.)

Proof. By [27] we have A'(X x X’) = AY(X)® AY(X')® Hom(J,J') ® Q giving the first
formula. For the second, we have Hom(L,h(X)) = A'(X) and Hom(L,h°(X)) = 0,
while Hom(L,h?(X)) = Q is generated by the class of a closed point in A*(X). Hence
Hom(L,h'(X))=ker(deg: A*(X) — Q), giving the second formula.
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Corollary 3.4. Let Ci be the full subcategory of Mj, whose objects are direct summands
of motives of the form h'(X), where X is of dimension one. Then Cy is equivalent to the
category of abelian varieties over k up to isogeny.

This follows from the fact that every abelian variety is an abelian subvariety of a Jacobian,
and Poincaré’s complete reducibility theorem. (Note that the result is independent of the
particular equivalence relation chosen to define My.)

Corollary 3.5. Assume that k is not contained in the algebraic closure of a finite field,
and that ~ is rational equivalence. Then M}?* is not an abelian category.

Proof. . Under the hypothesis on k, one can find an elliptic curve E/k and a point P € E(k)
of infinite order. Let &£ € A(E) be the class of the divisor (P)— (0). Then the morphism
£.:IL — h(E) is non-zero by 3.3. The composite &, 0&*:h!(E)®L — hl(E) is represented
by the class of the zero-cycle n(P,P)+ (0,0) — (P,0) — (0,P) on E x E. If P =2Q for
Q € E(k), then in CH?(E x E ;) we can write

n=[(P,P)+(0,0)-2(Q, Q)] +[2(Q,Q) — (P,0) — (0, P)]
and this is rationally equivalent to zero. Therefore 7 is a torsion class in CH?(E x E),
whence &, 0&* = 0. Thus &, is not a monomorphism. If M}?* were abelian then kerg,
would be a proper subobject of L. Tensoring by L' this would imply that 1 had a
nontrivial subobject. But the unit object in a rigid abelian tensor category is completely
decomposable, by [5] Prop. 1.17, so as End 1 = Q this is impossible.

3.6. In the next section we will give a generalisation of the above to higher dimensional
varieties. First we recall the bare essentials of the theory of Albanese and Picard varieties
(see for example [17]).

3.7. Let X be a variety over k. The Albanese variety Jx is an abelian variety over k
equipped with a morphism v: X x X — Jx, satisfying the following universal property:
any morphism ¢: X x X — A to an abelian variety such that ¢(x,y)+ ¢(y, z) = ¢(x, z) (or
equivalently, ¢(z,z)=0) factors uniquely as ¢ = for for some homomorphism (:.Jx — A.

If X has a k-rational point 2y and v: X — Jx is the morphism ~y(z) =v(x,x), then ~
satisfies the usual universal property for morphisms from X to abelian varieties. If ¢: X —

Y is a morphism, then the universal property defines a homomorphism Jy:Jx — Jy, so
that J is a covariant functor.

3.8. Let Px be the functor on varieties given by

isomorphism classes of line bundles £ on X x .S such that
[,‘ x . 18 algebraically equivalent to 0 for all s € S(k)
Px(5) =

{pr%‘g for G PicS}
Recall that the Picard variety Px is an abelian variety over k such that there are functorial
injections
Px (5) — Px(5)
for varieties S, which are bijections whenever X (5) is non-empty. (See for example §5(d)

in chapter 0 of [22].) Px is contravariant in X, and is (functorially) isomorphic to the
dual abelian variety of Jx.
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Theorem 3.9. Let X and Y €V, be varieties of dimensions d and e. Then:

. N AL(X xY)
(i) Hom(JX’PY>®Q_prfAl(X)—i—pr;Al(Y)

(i) Let £ € A4(X), n€ A°(Y) be O-cycles of positive degree. Then there is an isomorphism

Q:Hom(Jx,Py)®Q > {ce AH(X xY)|co¢,=0 and n*oc=0.}

Recall the proof: first assume that X (k) and Y (k) are nonempty, and let 2o € X (k). Then
by the universal properties we have

Hom(Jx,Py)={¢: X — Py | ¢(z¢) =0}
isomorphism classes of line bundles £ on
{ X xY such that E}{mo}xy:(’)y }
{prfg for G € PicX}
B PicX xY
~ priPicX +priPicY

by the seesaw theorem. In general this will hold when k is replaced by a finite Galois
extension k’'/k. Tensoring with Q and taking invariants under Gal(k’/k) then yields (i).
The isomorphism (ii) is obtained by combining (i) and seesaw.

The following easy proposition gives the functorial behaviour of €2:
Proposition 3.10. Let ¢: X' — X, ¢:Y’ — Y be morphisms of varieties. Choose

positive zero-cycles &', n' on X', Y’ with direct images £, n on X and Y. If 3: Jx — Py is
a homomorphism, then

Q(Pyof)=1"0Q(f) and Q(oJy) =Q(B)od

(where € denotes the isomorphism of 3.9(ii) with respect to the chosen 0-cycles.)
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4. The motives h!(X) and h??~1(X)

4.1. Let X/k be a variety of dimension d, and fix a projective embedding of X of degree
m. Let £ € AY(X) be the class of a hyperplane section. Following Murre [23] we will define
projectors pi, pag—1 € A%(X x X) such that the corresponding motives h*(X) = (X,p;,0)
satisfy the analogue of the hard Lefschetz theorem:

Ed—l: hl (X) l) h2d—1(X) ®L1_d

and are closely related to the Picard and Albanese varieties of X. This generalises work of
Grothendieck, Kleiman and Lieberman, who proved this when ~ is homological equivalence
(see [11], Appendix to §2).
4.2. Assume from now on that there is a 1-dimensional linear section C' of X which is
a smooth (and connected) curve. This does not involve loss of generality, since one can
always find such a section after a finite base extension k’/k. Then the projectors p; may
be constructed over k' and descended to k by Lemma 1.17.

Let Z be a 0-cycle on C which is cut out by a hyperplane, and let ¢ € A%(X) be the
class of Z. Write i:C —— X for the embedding. Then

471 =i, 00" h(X) — h(X) L4

4.3. The functoriality of the Picard and Albanese varieties defines a composite homomor-
phism b, J
Oz:P)(—i>PC = JC%J)(.

The construction relies upon the theorem of Weil ([28], cor. 1 to thm. 7) that « is an
isogeny, and does not depend on the choice of section C'. Choose n>1 and (:Jx — Px
such that oo S = [xn]. Since duality interchanges the functors P and J, one has a = «

and B: 0.

By 3.9, 8 corresponds to a cycle 3= Q(B) e AL(X x X) = Hom(h(X) QL™ h(X))
satisfying Bo(, =0 and (*o3=0. Since 3= we have ! = 3. Normalise the projectors
Do, p2q of section 1.13 above by py = %[Z X X] ="'pyg, and define

1~ - 1~ 1~
pl=—pB0€4 1 =_3.][Cx X]=—poi,0i*, and

n n n

1 ~
? _t, )t -k
Prg—1= P1= nz*oz of3.

Define p; = p o (1 — %p;d_l) and pog_1 = ‘p1. (We will show that p; = p} if d > 2; see the
proof of (i) below.) Let h*(X) = (X,p;,0) € M.
Theorem 4.4. (i) po, p1, P2d—1, P2q4 are orthogonal idempotents.
(ii) The composite morphism
cd—1

(X)) — h(X) —— h(X) QL% — p2 1 (X)L
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is an isomorphism.

(iii) Assume ~ is rational equivalence. Let A"(X)? C A"(X) be the subgroup of cycle
classes numerically equivalent to zero, and let Alb: A%(X)° — Jx (k) ® Q be the Al-
banese map. The cycle class groups of hi(X) are given as follows:

2w ={lnxp il

) ~ 0 ifr#d
A7 (h? 1(X)>:{Ad(X)0/ker(A1b) ifr=d.

Proof. (i) We first consider the p;. We have
n?piopl = foi, 0i* o foi, 0.

Now if f=1i*0f0i, € AY(CxC) and g=Boi, € AY(C x X) then Q~1(f) = P,080J; and
Q~1(g) =BoJ;, by 3.10. Therefore

QY (go f)=BoJ;oPiofoJ;=[xn]ofo.J; € Hom(Jo, Px).
Since (*of=(*ogof=0and fol,=go fo(, =0, from 3.9 we deduce that go f = ng.
Therefore
? 9 ?
p1op1 =p1- (4.4.1)
Next, go(’* :O:C*oﬁ implies prg*(g- [Z x X]) :prl*(g-[Xx Z]) =0, and so we get
p1opaa=0=poop;. (4.4.2)

Also piopg = (1/mn)[Z] X pra.(p}) = apg for some a € Q. Squaring gives a?pg = (pjopg)? =
0, so a=0, and

piopo=0. (4.4.3)
A similar argument shows that
p2aop; =0 (4.4.4)
and by transposition
? ? .
P2d—1°Pi =Pi°oPyg—1 =0 (i=0, 2d) (4.4.5)

Now consider
? ? . . = x5 . .
n2phy_yop} =i.0i*0fofoi, 0",

We have BOB € A2~4(X x X). So if d > 2 then Bog vanishes, and if d = 2 then
Bof=alX x X] for some a € Q. Now Jo(, =0, whereas [X x X]o(, =m[X], so in fact
a=0. Thus in every case o =0, and

P3a_10p; =0 (4.4.6)
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Combining (4.4.1-4.4.6) with the definition of p; and p2g_1 we get all the required orthog-
onalities after a series of trivial computations.

For completeness we finally calculate p} o p; d—1- We have

n’p} ophg_y = Bo(inoi*)o(i,oi*)of.
If d>2 then (i,0i*)o(i,0i*) =0 since [C]?> =0 in A*(X). But if d =2 then we have
(ix0i")o(ix0i”) = [Au(Z)].

If it happens that
n[A(2)]=[ZxZ] € A*(X xX)

then we will have p} opj = n_35 o(yo0(*o 3 = (0. However in general it appears that this
need not hold (the situation is rather similar to Remark (iv) below), and the correcting
terms in the definition of p; and p3 are needed.

(ii) Consider the morphisms

p2a—10&3 oy

h1<X) th_l(X)(XJ]Ll_d.

b1 Ogopzd—l
Now . .
profopag_1=pio(l— §P;d—1) ofBo(1- 5?1) OPay_1-

As Bo3=0 (cf. the proof of (i) above) we get Pod_1 0o3=0=fop] and so
= ? 37 O S S
profopaa—1=piofopy 1 =piof=LFopy ;-
Therefore
l Fd—1 . _ 7 3 Fd-1__ _
p1ofBopaa—10£" op1=piofol”  opi=npi.

Similarly,
paa—10& L oproBopag 1 =pas_10E4 0 Bopl, 1 =npai1

and thus the arrows are isomorphisms.
(iii) See [23] for details of this part.

Proposition 4.5. Let X, X' €V, with chosen projective embeddings. Then

Hom(h'(X),h' (X)) = Hom(Px, Px/ ) ®Q
and Hom(h??~1(X),h?"1(X")) =Hom(Jx:, Jx) @ Q.
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Proof. Use ’ to denote the corresponding objects in the construction above when applied
to X'. By 4.4(ii) we have

Hom(h'(X),h'(X")) ~Hom(h?¥~ 1 (X)®@L' ™4, hl(X")
= {CGAI(X x X")|plocopag_1 :C}

and the isogeny ( gives an isomorphism
Hom(Px, Px/)®Q~Hom(Jx,Px)®Q=~{ce AH(X x X')[(*oc=0=co(,}.

SInce ("*op) =0=pay_10C(s by 4.4(i) the first subspace of A'(X x X') is contained in the
second. To get an inclusion in the other direction, suppose that ("*oc=0=co(,, so that
c=Q(v) for some v € Hom(Jx,Px/)®Q. Then

cophu1 = Q)i 01" 00(H)

—Lawesyoa(rop)

n

= %Q(yo]ioPioﬂ) = %Q([xn]ou) =c

and by transposition pi’oc=c also. This settles the case d > 2 completely. If d =2, then
consider cop? =cofBoi,0i*. We have cofBoi, € A%(C x X'), so cofBoi, =a[C x X'] for
some a € Q. Since (*oc=0 we have a =0. Thus cop] =0, hence cops = cop; = c and
likewise p1oc=c.

The second equality in the proposition follows from the first by duality.
4.6. By 4.4(i) we can write

MX)=hr"(X)er (X)oMohr* (X))o h*(X)

for some M. Suppose now that X has dimension 2. We can then define po =1—py —p1 —
p3—ps4 and h2(X) = (X,p2,0) = M, and there is a decomposition

h(X)= @hi(X).

When ~ is rational equivalence the cycle groups A7(hi(X)) are given by the following
table:

M = RO (X) h(X) h2(X) h3(X) h*(X)
AO(M) = A(X) 0 0 0 0
AY (M) = 0 AYX) | NS(X)®Q 0 0
AX(M) = 0 0 ker(Alb) A%(X)%/ker(Alb) Q
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Remarks. (i) Murre calls the motives h'(X) and h2?~1(X) the Picard and Albanese motives
of X, respectively, in view of the previous result. Observe that p; factors through h(C),
and in fact h'(X) is a direct summand of h!(C).

(ii) The minor differences between the construction we give and that in [23] are in slightly
different normalisations of the projectors p;; we use the zero-cycle ¢ rather than an auxiliary
rational point to normalise py and psg, and in the case d = 2 we have made a different
choice of p; and p3 to preserve Poincaré duality and the analogue of the hard Lefschetz
theorem.

(iii) To complete the picture in 4.5 one would like to know for surfaces X, X’ the nature
of the group Hom(h?*(X),h?(X’)), and in particular that it did not depend on the choice
of equivalence relation on cycles. This would be answered by enough knowledge about the
conjectural filtration on Chow groups; see §6.2 and Jannsen’s paper in these proceedings
[10] for more information.

(iv) The reader is warned against reading too much into 4.4(ii). In particular, in M}2* it
will not generally be the case that h(X) has a decomposition into primitive pieces which
satisfy a naive analogue of the hard Lefschetz theorem. The analogous situation in the
derived category of Q-sheaves is considered in [3] and especially [4]; here we give a simple
example.

Consider a curve X of genus g over an algebraically closed field embedded in pro-
jective space by a multiple of P + @), where P, () are points on X. We take ~ to be
rational equivalence. Then cup-product with the hyperplane section £ does of course give
an isomorphism

RO(X) = hA( X)Lt

where the projectors are taken to be

(P+Q)xX]="pa, p1=1—po—pa.

N =

Po =
However it also induces a morphism
RHX) — M (X)@L ™t
which is represented by a non-zero multiple of the cycle
n=(P,P)+(Q.Q)~(P.Q)~ (Q.P).

Using arguments of Bloch, Mumford and Roitman one sees that for ¢ > 1 and P, @
sufficiently generic, 7 does not vanish. (This can be deduced fairly easily from Theorem
3.1(a) of [2], for instance.) So h'(X) is not killed by £ in general.
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5. Abelian varieties (II)

5.1. In this section we will consider an abelian variety X over k£ of dimension g. For an
integer n, write [xn]: X — X for multiplication by n. Also let u: X x X — X be the group
law, € € X (k) the identity element and o: X — X multiplication by —1.

Theorem 5.2.

(i) There is a unique decomposition in M,

h(X)= @hi(){)can

which is stable under [xn]*, and such that [xn]* is multiplication by the scalar

. hi(X)
n*, for every n € Z.

(ii) The iterated product maps
h(X)®...0h(X)=h(X x...x X) 28 h(X)

induce for every i > (0 isomorphisms
/\Z Bl (X)can -~ hi(X)can'

(iii) Let € € AL(X) be the class of an ample symmetric line bundle on X. Then there is a
commutative diagram

hi(X) — h(X)

‘2 e

h29H(X)@L"™Y — Rh(X)®L"Y
in which the horizontal arrows are the obvious inclusions.

(Recall that & € A*(X) is symmetric if 0*¢ =¢.) There is also a relation between (i) and
the decomposition of the previous section. Let p§*"* € Endh(X) be the projectors for which
h{(X)ean = (X, psan 0), and for i =0, 1, 29 — 1, 2g let p; be the projectors defined in §4,
using the class £ of a very ample line bundle on X.

can

Theorem 5.3. If ¢ is symmetric, then pS

(2

=p; fori1=0, 1, 29—1 and 2g.

5.4. For numerical (or homological) equivalence, Theorem 5.2 was proved by Grothendieck,
Kleiman and Lieberman; see the appendix to §2 in [11]. For rational equivalence, the ex-
istence of a decomposition h(X) = ®h*(X) in M satisfying (ii) was first proved by
Manin and Shermenev [26], using Jacobians. An elegant proof of (i) was recently found by
Deninger and Murre [6], who used the Fourier transform on Chow groups [1]. Kiinnemann
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extended their ideas to prove (ii); see his paper [15] in these proceedings, where he gives
an elegant explicit formula for the projectors p§*" using the Pontryagin product on the
Chow groups of X. The work of Deninger-Murre and Kiinnemann applies more generally
to abelian schemes over any smooth variety. Finally, in his 1992 Ph.D. thesis Kiinnemann
not only proves (iii), but also obtains a complete Lefschetz decomposition of h(X), just as
one has in cohomology. For details see [16].

Rather than reproduce any of these arguments here, we will give an elementary proof
of 5.2(i) from which 5.2(iii) and 5.3 will be easy consequences, and which uses Fourier
theory at just one point (5.7 below).

5.5. We first introduce some simple notations. If i € Z then write A*(X ) for the subspace
comprising all ¢ € A*(X) such

[xn]*(c)=n'c for every n€Z.

Likewise if X’ is a second abelian variety, of dimension ¢’, write A*(X x X’)() for the set
of all ce A*(X x X') such that

([xm] x [xn])*(c) =m'nIc for all m, n € Z.

From 1.10 it follows that ¢ € A*(X x X")(%) if and only if, for every n € Z, one has identities

of correspondences

2g—1

[xn]% oc=nic and co[xn]i=n?""c.

Therefore if ¢ € A*(X x X')(#9) and d € A*(X’ x X"")("*) one has doc =0 unless j =2g’ —7.
5.6. Recall ([21], §I1.6) that if £ is any line bundle on X then

[XTL]*,C ~ £®n(n—|—1)/2 ® (U*£)®n(n—1)/2.
Therefore £ € AY(X) is symmetric if and only if £ € A(X)®), or equivalently [xn]* o€ =
n?€o[xn]*. Likewise, ¢ is antisymmetric if and only if &€ € AY(X)(") (which holds if and
only if ¢ is algebraically equivalent to zero).

5.7. If £ € AY(X) is the class of an ample line bundle we have the usual formula

deg(£9) =gld

where d? is the degree of the polarisation determined by &. Using Fourier theory one can
show that if £ is symmetric then

7 =ygldle] € A%(X)

(see for example [1], middle of page 249).

5.8. Now pick a symmetric £ which is the class of an ample line bundle, and write A =
pré—prié—pri¢ e AY(X x X). Then

Ae AN X x x)D),
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Indeed, the restrictions of A to the fibres of pri; and pry are algebraically equivalent to
zero, so ([xXm] x [xn])*A—mnA has zero restriction to the fibres by 5.6, hence is zero.

Remark. If ¢: X — X is the usual homomorphism z — TXL®LY attached to a line bundle
L and £ = c1(L), then X is the pullback by id x¢, of the class of the Poincaré bundle on

X x X. This is the link between the formulae given below and Fourier theory.

5.9. Proof of 5.2(i), (iii). Firstly, it is obvious that the decomposition (i) is unique if it
exists. This shows in particular that the choice of £ is unimportant.

If 0 <i<2g define

fi - " - - - . pr*g‘] -p'r*gj ) )\2—2]
max(Oi_g)<j<i/2]!(g—Z+])!(Z_2])! 1 2
E 1
q; = ' 1 |
i1(g—i+4)'(i—24)!

max(0,i—g)<j<i/2

If 0<i<g then

G =pri¢?T fi=f097" and gy, =pryfd Tt f;=E9""0 fi. (5.9.1)

Also we have
fi S AZ(X X X)(i’i) and ¢q; € AQ(X X X)(Zg—i,i)'

In particular ¢;o0q; =0 if i #4’. Now

29
1 L L o
_ * rg—i+j * ] 1—27
VETED DI SIS R
paar s, Mg E—2))!

max(0,i—g)<j<i/2

1 * *
= orig+prie+ )
]' * *
= a/i ¢ =dp*[e] =d[I's].

(=1)’
d

Dopft=1 and Y pflopi™=(> pi")*=1.

This forces p§a op$a® = p¢a8  and then h(X )" = (X,p$®, 0) satisfies (i).

By 5.6 and (i) the cup-product €9~ maps h*(X)%" into h29~%(X)** @ L'"9. Then
the formulae (5.9.1) show that it is an isomorphism, giving (iii).

can __

Define p{*" = EJ* oq; =

q; € A9(X x X)(29=%9)  Then by the above,

Corollary 5.10. The natural map Hom(X, X') ® Q — Hom(h!(X')®* Al (X)) is an
isomorphism.
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Proof. Composition with €971 gives

Hom(hl (X/>can’ hl (X>can> ~ Hom(th—l (X/>can ®L1—g, hl (X>can>
= ANX' x X))
~ AN X x X)) /pri AN X ) 4+priAN(X)
~NS(X'xX)2Q
~Hom(X', X)®Q
the last isomorphism coming from the polarisation £. It is easily checked that this is inverse
to the map of the corollary.

5.11. A formal consequence of 5.2(i) is the eigenspace decomposition of the Chow groups:
we have

A4 X)=Hom(L h(X)) = éﬂom(ﬂﬁ, hH(X)om) = éAd(X)“).

Since composition with £9=° gives an isomorphism A%(X)®) =5 A9T4=¢(X) (2979 one gets
by dimensional considerations that A%(X )(i) =0 unless d <i < g-+d. Similarly, we have

AN X x X') =P A% (X x X))
(4,9)
where the sum is over pairs (i,7) € Z2 such that d—¢' <i<d+g, d—g<j<d+g and

d<i+j<d+g+g'. These decompositions are of course direct consequences of Fourier
theory [1, 6], and it was using them that Deninger and Murre proved 5.2(i).

The interpretation of motives for rational equivalence as complexes (see 6.2 below)
suggests that a stronger vanishing result

AYX) D =Hom (L h' (X)) =0 for i >2d

holds. See [10], where the conjectural filtration on Chow groups (of which this vanishing
is a part) is explained.

Proof of 5.3. We have p57" , = tpsa and pog_; ="'p;, so it is enough to treat py and p;. We
1
have pg = 1 (&9 x [X]), so by 5.7 this is the same as p§*".
g!

For p; we first observe that the difficulties arising in the previous section in dimension
2 disappear here; for by 5.7 we have £9 =dlg[e] so that (4.4.7) obviously holds. So in every
case we have p; =p] (in the notations of 4.3).

Lemma 5.12. [xn|*op; =np; =pjo[xn]*

Proof. By definition p; = (1/m)5059_1 for a certain isogeny 3: X — X. We therefore have,
using 3.10

[xn]* 0 3= Q(Pryn o B) = Q([xn]o ) =nQ(B).
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This gives the first equality. For the second we have

pro[xn]* = %ﬁoff’_lo[xn]* = nm gﬂo[xn]*ogg_l.

Now [xn]* o [xn], = n? € Endh(X), so if we write 3o [xn]* = Q(3') for some 3 €
Hom(X, X)®Q then

n*B=Fo[xn]*o[xnl. = QB 0 Jjun) = UB o [xn]) =nQ(B).

Therefore Bo [xn]*= n29—1§ and thus p; o[xn]* =npy, proving the lemma.

Now from 5.12 we see that p;, p{®" commute and that p; o p{® = p;. Therefore

hl(X) = (X,p1,0) is a direct factor of h'(X)" = (X,p{",0). But by 4.5 and 5.10,
End h!(X) =Endh!(X)®" =End X ® Q. Therefore h'(X)=h!(X)cn.

Remark. One can also check that 3 can be chosen to be the isogeny ¢, : X — X determined
by £ =c¢1(L£). This gives an alternative verification of 5.3.

6. Further topics

6.1. (Relative motives.) Let S be a smooth (not necessarily projective) variety, and let
Vs be the category of smooth projective S-schemes. Then one can introduce the notion of
a relative correspondence between two objects X, Y of Vg as a cycle class of codimension
dim(X/S) on X xgY. In [6] this is used to define the category Mg of motives over the base
S. Deninger and Murre show there that if X/S is an abelian scheme of relative dimension d,
then the relative motive h(X/S) has a canonical decomposition h(X/S) = @?io hi(X/S).

If S itself is projective, then the functor Vg — Vy induces a functor h(S, —): Mg — M.
In other words, relative motives should be thought of as (complexes of) sheaves on S. For
an abelian scheme X/S one can then form various motives h(S,h*(X/S)).

In an ideal world one would like a more general notion of relative motive: for example,
if j: S —— S’ is the smooth compactification of a curve S, and X /S € Vg, then one would like
to be able to give a meaning to j.h(X/S), and define motives such as h?(S’,j.h%(X/S5)).

There is one simple case in which it is possible to do this. Let S/Q be the standard
modular curve of level n > 3 (which parameterises elliptic curves together with a chosen
basis for the subgroup of n-division points), and let 7: E — S be the universal elliptic
curve. Let j:S — S’ be the smooth compactification of S. Write M = h!'(E/S), a relative
motive over S, and let M, be the corresponding ¢-adic sheaf R'7, Qg on S. The parabolic
cohomology groups

WWe=HY(S'"®Q,j. Sym" M)

are representations of Gal(Q/Q) which are pure of weight k + 1. Since Sym” M is a
submotive of h(X), where X is the k-fold fibre product of E over S, W, is in fact a
subquotient of the cohomology of X', a smooth compactification of X. One can in this case
prove [25] by brutal construction that there is a submotive ;W C h(X’) (in the category
of Chow motives) such that the ¢-adic cohomology of W is the parabolic cohomology. It
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is tempting to write this motive as h'(S’, j, Sym” M), but there is as yet no way to make
similar constructions in a general situation. We do not give any details as the proof uses
arguments which are rather dissimilar to what has gone before.

6.2. In this final section we will try to give some vague hints of how the results described
above fit in to a general (mainly conjectural) picture. To begin with we discuss the effect
of choosing different equivalence relations on cycles.

e Numerical equivalence. This is the coarsest adequate equivalence relation. In [9]
Jannsen proves, without using the standard conjectures, that the category of motives over
a field is abelian and semisimple if and only if the equivalence relation used is numerical
equivalence.

e Homological equivalence (with respect to a fixed Weil cohomology theory H*). Ac-
cording to the standard conjectures (see [11] and [13]) MI"™ and ME™ should coincide.
At present, it is only for MB°™ that we can define the realisation functors—but see also
remark (4) in [9].

The standard conjectures also predict that in MB°™ the motive h(X) has a direct

sum decomposition
2dim X

hX)= @ r(X) (6.2.1)

such that the cohomology functor H' factors through the projection h(X) — h*(X). Now
in the usual cohomology theories any homomorphism H*(X) — H’(Y) induced by an
algebraic cycle is zero unless i = j—in the f-adic theory this is by Deligne’s proof of the
Weil conjectures. Therefore the decomposition (6.2.1) is unique.

e Rational equivalence. In general M}?* is not abelian, by 3.5 above. One expects
however (for reasons explained below) that every h(X) has in M}?* a direct sum decom-
position (6.2.1) in which the motives h*(X) are well defined up to unique isomorphism.
Moreover the filtration on h(X) by subobjects

h=H(X) =P (X)

J<i

should be uniquely determined and functorial with respect to inverse image and dual-
ity. The direct sum decomposition itself will not however be uniquely determined. The
corresponding filtration on the Chow groups A%(X) = Hom(L% h(X)) by the subgroups
Hom (L%, h=/(X)) would be the conjectural filtration discussed in [10]. See [24], where the
idea of using such a “Chow-Kiinneth” decomposition to study the filtration is introduced
and elaborated in detail.

If ¢ € A1(X) is the class of an ample divisor, then the hard Lefschetz theorem should
hold in the following sense: £°:h(X)®L’ — h(X) respects the filtration up to a shift by 23,
and induces an isomorphism between the subquotients h4™X—#(X)@L" and hdimX+i(X),

In (say) f-adic cohomology the ring of correspondences Corr’(X, X) acts not only on
H*(X,Qq) but also on the object RT'(X,Qy) in the derived category D°(Speck, Q) of
complexes of /-adic representations of Gal(k/k). In this category there is the canonical
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filtration by truncation. Moreover a theorem of Deligne ([3], Prop. 2.4; see also [4]) states
that there is an isomorphism (which is not unique) in D°(Speck, Q)

2dim X

RI(X, Qi) = P H'(X.Qu)[-].

=0

One should therefore think of the object h*(X) in M} as a complex concentrated in
degree i, and of Hom(h*(X),h?(Y)) as an analogue of

Hom(H" (X, Qe)[~i], H’ (Y, Q¢)[j]) = Ext'™ (H'(X, Qu), H (Y, Qu)).

The image of the Lefschetz motive L in the f-adic setting is Qg(—1)[—2], so A4(h}(X)) =
Hom (L%, h#(X)) should be analogous to

Hom(Qe(—d)[~2d], H'(X, Q¢)[~i]) = Ext**™"(Q¢(~d), H' (X, Qy)).

This fits in well with the formalism of mixed motives, and suggests that there exists a
“derived category of mixed motives”. It would contain M}"™ as the (abelian, semisimple!)
subcategory formed of direct sums of “pure complexes” (of any weight) concentrated in
degree zero, and would contain M}?* as the subcategory of “pure complexes of weight
zero”. In particular this would imply that Hom(h*(X),h*(Y)) was the same in MP"™ and
M3t For further indications along these lines we refer to the papers of Jannsen [10] and
Levine [18], as well as other papers in these Proceedings.
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