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What—are-the Weil conjectures?



Weil, Bull. AMS 1949

NUMBERS OF SOLUTIONS OF EQUATIONS
IN FINITE FIELDS

ANDRE WEIL

The equations to be considered here are those of the type

1) ao%’ + axi + -+ + @z = b.

Such equations have an interesting history. In art. 358 of the Disquisi-
tiones [1 a],! Gauss determines the Gaussian sums (the so-called
cyclotomic “periods”) of order 3, for a prime of the form p=3n-+1,
and at the same time obtains the numbers of solutions for all con-
gruences ax®*—by3=1(mod p). He draws attention himself to the ele-
gance of his method, as well as to its wide scope; it is only much
later, however, viz. in his first memoir on biquadratic residues [1b],
that he gave in print another application of the same method; there
he treats the next higher case, finds the number of solutions of any
congruence ax‘—by*=1 (mod p), for a prime of the form p=4n+-1,
and derives from this the biquadratic character of 2 mod p, this being
the ostensible purpose of the whole highly ingenious and intricate in-
vestigation. As an incidental consequence (“coronidis loco,” p. 89),
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vestigation. As an incidental consequence (“coronidis loco,” p. 89),
he also gives in substance the number of solutions of any congruence
y*=ax*—b (mod p); this result includes as a special case the theorem
stated as a conjecture (“observatio per inductionem facta gravissima”)
in the last entry of his Tagebuch [1c];? and .... ‘



WEeil, the (merciless) historian

vestigation. As an incidental consequence (“coronidis loco,” p. 89),
he also gives in substance the number of solutions of any congruence
y*=ax*—b (mod p); this result includes as a special case the theorem
stated as a conjecture (“observatio per inductionem facta gravissima”)
in the last entry of his Tagebuch [1c];? and .... ‘

2 It is surprising that this should have been overlooked by Dedekind and other
authors who have discussed that conjecture (cf. M. Deuring, Abh. Math. Sem.
Hamburgischen Univ. vol. 14 (1941) pp. 197-198).
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Weil 1949

Gauss: if p=1 (mod 4) is prime,

#{(xy) €F5 | y*=x>—x} =p—2u

=p-—T—T
p=uv>+v?, u=1+vmod4, v=0mod?2
=TT, m=u+iv=1mod 2(1+ /)Z[i]

If p=3 (mod 4), then #{--- } =p
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Weil 1949

Varying g = p": (Hasse, Davenport—Hasse. . .)

#{(va) } X,y EFpr7 y2 :X3_X}

pr—n"—7" ifp=1mod4
=<p if p=3 mod 4, r odd
p"—2(—p)/? if p=3mod 4, r even

:pr_ar_ar

=1 mod 4
where a={" (p mod 4) , |a| = pt/?
V=P (p=3mod4)
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m V = variety defined over I

m Ny =N (V)=#V(Fy)
Examples:

m N (A7) =q"™

B N(P)=14¢ +¢* +--+q"

m V = projective plane curve E: y?> = x3 — x, g = p odd
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Zeta function

mqg=p° Fg Fgr
m V = variety defined over I
m Ny =N (V)=#V(Fy)
Examples:
m N (A") = g™
B N(P)=14¢ +¢* +--+q"
m V = projective plane curve E: y?> = x3 — x, g = p odd
N=14p —a"—a"=(1-a")(1-a")

BV = {aoxg + -+ a,,+1x,‘,j+1 =0} c Pl 5 ¢ Fg
Explicit formula for N, in terms of Jacobi sums
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Generating function:

}:IV(V T4i4ogZ(V T)

1
1—qg" 1-g"T

1
(1-T)1—-qgT)---(1—q"T)

V=A" Z(V,T)=

]P)n




Zeta function

Generating function:

ZN(V Ti log Z(V, T)
V=A" Z(V,T !
N ( )= 1-q"T
P" !
(1-T)1-qT)---(1—q"T)
E AT) Pi(T)=(1—aT)(1-aT)

(1-T)1—qT)
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Theorem (Weil Conjectures)

vV cPpPN/ Fq nonsingular, dimension n, absolutely irreducible.

(1) Z(v,T)eQ(T)

— rationality
Pi...Pon
Z(V,T)= =———"—
( )= PoPs ... Py,
P():].—T Pg,,—l—q T
) Pi(T) = H(l_au ) € Z[T] (a2n-ij=q"/aij)
= (monom/al) X Po,—i(1/q"T) — functional equation
(3) layl = '/

— “Riemann Hypothesis” (RH)
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Weil conjectures: examples

Examples:
VvV =P"
m V any nonsingular curve (Hasse, Weil):
Pi(T)
Z(V,T)= , degP; =2 x (genus of V
VD= e ( )

m Diagonal hypersurfaces (Weil 1949)

m In general, if V is obtained by reduction mod p of a variety V'
in characteristic 0, b; = deg P; should be Betti numbers of V’

m Hypothesis V nonsingular is essential: e.g. singular curve
V = {y? = x3+ x?} C P? (over Fp, p # 2) has

2v. 7y = P PI(T)_{l—T p=1mod 4

(1-T)(1-pT) 1+T p=3mod4

10/25



Weil conjectures

m Rationality: Dwork 1960
m Grothendieck, Artin... 1960s: ¢-adic cohomology
m Deligne 1974: Riemann hypothesis (Lefschetz pencils)
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k field, algebraic closure k, ¢ # char(k)
Variety V/k — Hj(V), 0 <i < 2dim(V)
finite-dimensional vector spaces /Qy.
Functorial: f: V — W = f*: Hi(W) — Hj(V)
Gal(k/k) acts on Hj(V).
k =, = Frobenius endomorphism Fg: V — V, x — x9
= F=F;: Hé'(V) — Hlf(V)
| _

gzﬁgl ¢q € Gal(Fq/Fyg)

{Fixed points of F/: V — V} = V(Fy)

12 /25
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(-adic cohomology, Il

m Lefschetz fixed point formula: (V projective)
#V (Fqr) = #{fixed points of For} = (—1)'tr (F7|H{(V))

m = (rationality) with P; = det(1 — TF|H}(V)) € Q[T]

m Poincaré duality (V nonsingular) = (functional equation)

13/25
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Riemann hypothesis

Deligne 1974:
P; € Z[T], independent of ¢
laj| = q'/? (Riemann hypothesis)

Monodromy of Lefschetz pencils

Laumon: proof using Fourier transform (Brylinski)

14 /25
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i o iodd # n
Hy (V) = {Qe (F = qi/2) i even # n

= Ny=> *tr(F)=1+q+ - +q" +(- Z n )"
#P" (qu)

_ | '— 4n/2
so that =l'=q by RH

(RH. for V) = |N, — #P"(Fy)| < cg"’/? (%)
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Hypersurfaces |

V = {f(x0,---,Xn+1) = 0} C P"*! nonsingular hypersurface:
outside degree n, cohomology is very simple:
. 0 i odd
Hi(v) = PR
Q¢ (F=4q"?) ieven#n

= = ) = L Y o
#P (qu)

so that [~ = q"/% by RH
(RH. for V) = |N, — #P"(Fy)| < cg"’/? (%)

Conversely, inequality (*) for all r >1 = RH for V

15/25
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Hypersurfaces |

So, for hypersurfaces, Riemann hypothesis is equivalent to an
entirely elementary Diophantine statement.

Is there an elementary proof?

Only known in dimension 1 (Stepanov, Bombieri, Schmidt)

m For dimension n > 1 the only “elementary” result is the
Lang-Weil estimate: [N, — g"| < cq(?n—1)r/2

If there was, then we get more:

16/25
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Hypersurfaces Il

Riemann hypothesis for hypersurfaces “implies” Riemann
hypothesis for all varieties (nonsingular, projective).

m “Implies” means that there is a proof that doesn’t use
monodromy of Lefschetz pencils (Deligne) or ¢-adic Fourier
transform (Laumon).

m Proof necessarily uses /-adic cohomology (as RH for a general
variety is not equivalent to an inequality on numbers of points)

17/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.

18/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.

m Free to replace IF; by a finite extension

18/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.

m Free to replace IF; by a finite extension

m Induction on dimension

18/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.
m Free to replace IF; by a finite extension
m Induction on dimension

m Can replace X by any birationally equivalent (projective
nonsingular) variety.

18/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.

m Free to replace IF; by a finite extension
m Induction on dimension

m Can replace X by any birationally equivalent (projective
nonsingular) variety.

m There exists birational map X—— V = {f =0} c P,
feFqlx,... Xns1]

18/25



Reduction steps

X /Fq smooth projective — want to prove RH for X.

m Free to replace IF; by a finite extension

m Induction on dimension

m Can replace X by any birationally equivalent (projective
nonsingular) variety.

m There exists birational map X—— Vg = {f = 0} c P"*1,

feFqlx,... Xns1]

But Vj is almost always a singular hypersurface, to which RH

doesn't apply.

18/25
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|: deformation to smooth hypersurfaces

X /Fq smooth and projective;
birational map X—— V, = {f =0} c P!
Deform Vj to a pencil

V — T cCAl Ve = {f + tg =0}

whose fibre V4 is nonsingular for all 0 At € T.
By hypothesis, RH holds for each V;, t #0

Want to somehow transfer this to X via Vj

19/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is

m birational

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is

m birational
® an isomorphism away from Vy C V/; and

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is
m birational
® an isomorphism away from Vy C V/; and
m fibre Wy is a (reduced) normal crossings divisor (with smooth
components)

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is
m birational
® an isomorphism away from Vy C V/; and
m fibre Wy is a (reduced) normal crossings divisor (with smooth
components)

m In char. 0, resolution of singularities would give this, after
replacing T by finite covering

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is
m birational
® an isomorphism away from Vy C V/; and

m fibre Wy is a (reduced) normal crossings divisor (with smooth
components)

m In char. 0, resolution of singularities would give this, after
replacing T by finite covering

m If W exists, then X is birational to a component of W

20/25



|: passing to a semistable family

m Suppose there exists a semistable model for the family
V—T,ie m: W — V which is

m birational

® an isomorphism away from Vy C V/; and

m fibre Wy is a (reduced) normal crossings divisor (with smooth
components)

m In char. 0, resolution of singularities would give this, after
replacing T by finite covering
m If W exists, then X is birational to a component of W

m Enough to prove RH for this component.
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II: local monodromy

Let K = Fq4((t)) (formal Laurent series)

Then Wy = {f + tg = 0} C P! is a nonsingular
hypersurface over K

HJ(Wk) acted on by G = Gal(K/K) D | = Gal(K/F4((t))).
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II: local monodromy

m Let K =Fg4((t)) (formal Laurent series)

m Then Wk = {f + tg = 0} C P"*! is a nonsingular
hypersurface over K

m HJ(Wk) acted on by G = Gal(K/K) D | = Gal(K/F,((t))),
inertia subgroup

L] I-invariants_Hlf’(WK)’ acted on by
G/l = Gal(Fq/Fq) > F = ¢, *.

m local monodromy: RH for all the W; (t #0) =
eigenvalues a of F on HJ(Wk)' have |a| < ¢"/2.
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I1l: Rapoport—Zink spectral sequence

Wo = union of nonsingular components Y, intersecting
transversally

3 spectral sequence computing H; (W) in terms of
Hi (Yo N---NYy) s>0

m Induction on dimension implies that for s # 0, these
cohomology groups satisfy RH

m Local monodromy estimate + analysis of spectral sequence
—> RH also holds for s = 0 i.e. for each H;( Yx)

m This is what we wanted to show
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Without it, cannot construct birational W — V
Fortunately De Jong's theory of alterations works here

Obtain W — V and finite group I acting on W such that
W/I' — V is birational, up to a morphism which is purely
inseparable (and after replacing T by a finite covering)

H; (We)" will then be essentially H;(V;), hence satisfies RH.
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Complications

Resolution of singularities not known in char. p
Without it, cannot construct birational W — V
Fortunately De Jong's theory of alterations works here

Obtain W — V and finite group I acting on W such that
W/I' — V is birational, up to a morphism which is purely
inseparable (and after replacing T by a finite covering)

m H}(W;)" will then be essentially H;(V;), hence satisfies RH.

m Same argument with local monodromy and Rapoport—Zink
spectral sequence goes through.
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Conclusions

The proof is complicated but is mostly rather formal

m So if there is an easy proof of RH for hypersurfaces, we get
RH for all varieties “for free”

Maybe all this means is. ..

...that counting points on hypersurfaces really is difficult.
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THE END
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