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Weil 1949

Gauss: if p ≡ 1 (mod 4) is prime,

#
{

(x , y) ∈ F2
p

∣∣ y2 = x3 − x
}

= p − 2u

= p − π − π̄

p = u2 + v2, u ≡ 1 + v mod 4, v ≡ 0 mod 2

= ππ̄, π = u + iv ≡ 1 mod 2(1 + i)Z[i ]

If p ≡ 3 (mod 4), then #{ · · · } = p
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Weil 1949

Varying q = pr : (Hasse, Davenport–Hasse. . . )

#
{

(x , y)
∣∣ x , y ∈ Fpr , y2 = x3 − x

}

=


pr − πr − π̄r if p ≡ 1 mod 4

pr if p ≡ 3 mod 4, r odd

pr − 2(−p)r/2 if p ≡ 3 mod 4, r even

= pr − αr − ᾱr

where α =

{
π (p ≡ 1 mod 4)
√
−p (p ≡ 3 mod 4)

, |α| = p1/2
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Zeta function

q = pe , Fq, Fqr

V = variety defined over Fq

Nr = Nr (V ) = #V (Fqr )

Examples:

Nr (An) = qnr

Nr (Pn) = 1 + qr + q2r + · · ·+ qnr

V = projective plane curve E : y2 = x3 − x , q = p odd
Nr = 1 + pr − αr − ᾱr = (1− αr )(1− ᾱr )

V = {a0x
d
0 + · · ·+ an+1x

d
n+1 = 0} ⊂ Pn+1, ai ∈ F∗q

Explicit formula for Nr in terms of Jacobi sums
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Zeta function

Generating function:

∞∑
r=1

Nr (V )T r

= T
d

dT
log Z (V ,T )

V = An Z (V ,T ) =
1

1− qnT

Pn 1

(1− T )(1− qT ) · · · (1− qnT )

E
P1(T )

(1− T )(1− qT )
, P1(T ) = (1− αT )(1− ᾱT )
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Weil conjectures

Theorem (Weil Conjectures)

V ⊂ PN/Fq nonsingular, dimension n, absolutely irreducible.

(1) Z (V ,T ) ∈ Q(T ) — rationality

Z (V ,T ) =
P1 . . .P2n−1

P0P2 . . .P2n

P0 = 1− T, P2n = 1− qnT

(2) Pi (T ) =

bi∏
j=1

(1− αijT ) ∈ Z[T ]

( α2n−i ,j = qn/αi ,j )

= (monomial)× P2n−i (1/qnT ) — functional equation

(3) |αij | = qi/2 — “Riemann Hypothesis” (RH)
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Weil conjectures: examples

Examples:

V = Pn

V any nonsingular curve (Hasse, Weil):

Z (V ,T ) =
P1(T )

(1− T )(1− qT )
, deg P1 = 2× (genus of V )

Diagonal hypersurfaces (Weil 1949)

In general, if V is obtained by reduction mod p of a variety V ′

in characteristic 0, bi = deg Pi should be Betti numbers of V ′

Hypothesis V nonsingular is essential: e.g. singular curve
V = {y2 = x3 + x2} ⊂ P2 (over Fp, p 6= 2) has

Z (V ,T ) =
P1(T )

(1− T )(1− pT )
, P1(T ) =

{
1− T p ≡ 1 mod 4

1 + T p ≡ 3 mod 4
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Weil conjectures

Rationality: Dwork 1960

Grothendieck, Artin. . . 1960s: `-adic cohomology

Deligne 1974: Riemann hypothesis (Lefschetz pencils)
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`-adic cohomology

k field, algebraic closure k̄, ` 6= char(k)

Variety V /k −→ H i
`(V ), 0 ≤ i ≤ 2 dim(V )

finite-dimensional vector spaces /Q`.

Functorial: f : V →W =⇒ f ∗ : H i
`(W )→ H i

`(V )

Gal(k̄/k) acts on H i
`(V ).

k = Fq =⇒ Frobenius endomorphism Fq : V → V , x 7→ xq

=⇒ F = F ∗q : H i
`(V )→ H i

`(V )

‖
φ−1

q φq ∈ Gal(Fq/Fq)

{Fixed points of F r
q : V → V } = V (Fqr )
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`-adic cohomology, II

Lefschetz fixed point formula: (V projective)

#V (Fqr ) = #{fixed points of Fqr } =
∑

(−1)i tr
(
F r |H i

`(V )
)

=⇒ (rationality) with Pi = det
(
1− TF |H i

`(V )
)
∈ Q`[T ]

Poincaré duality (V nonsingular) =⇒ (functional equation)

13 / 25



`-adic cohomology, II

Lefschetz fixed point formula: (V projective)

#V (Fqr ) = #{fixed points of Fqr } =
∑

(−1)i tr
(
F r |H i

`(V )
)

=⇒ (rationality) with Pi = det
(
1− TF |H i

`(V )
)
∈ Q`[T ]
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Riemann hypothesis

Deligne 1974:

Pi ∈ Z[T ], independent of `

|αij | = qi/2 (Riemann hypothesis)

Monodromy of Lefschetz pencils

Laumon: proof using Fourier transform (Brylinski)
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Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:

outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q`

(F = qi/2)

i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr + (−1)n

∑
j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q`

(F = qi/2)

i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr + (−1)n

∑
j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr + (−1)n

∑
j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr + (−1)n

∑
j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr︸ ︷︷ ︸

#Pn(Fqr )

+(−1)n
∑

j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr︸ ︷︷ ︸

#Pn(Fqr )

+(−1)n
∑

j

αn,j
r

so that

|−| −
−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr︸ ︷︷ ︸

#Pn(Fqr )

+(−1)n
∑

j

αn,j
r

so that
|−| −

−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:
outside degree n, cohomology is very simple:

H i
`(V ) =

{
0 i odd 6= n

Q` (F = qi/2) i even 6= n

=⇒ Nr =
∑
±tr(F r ) = 1 + qr + · · ·+ qnr︸ ︷︷ ︸

#Pn(Fqr )

+(−1)n
∑

j

αn,j
r

so that
|−| −

−−
→

= qn/2 by RH

(R.H. for V ) =⇒ |Nr −#Pn(Fqr )| ≤ cqnr/2 (∗)

Conversely, inequality (∗) for all r ≥ 1 =⇒ RH for V

15 / 25



Hypersurfaces I

So, for hypersurfaces, Riemann hypothesis is equivalent to an
entirely elementary Diophantine statement.

Is there an elementary proof?

Only known in dimension 1 (Stepanov, Bombieri, Schmidt)

For dimension n > 1 the only “elementary” result is the
Lang–Weil estimate: |Nr − qnr | ≤ cq(2n−1)r/2

If there was, then we get more:
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Hypersurfaces II

Theorem

Riemann hypothesis for hypersurfaces “implies” Riemann
hypothesis for all varieties (nonsingular, projective).

“Implies” means that there is a proof that doesn’t use
monodromy of Lefschetz pencils (Deligne) or `-adic Fourier
transform (Laumon).

Proof necessarily uses `-adic cohomology (as RH for a general
variety is not equivalent to an inequality on numbers of points)
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Reduction steps

X/Fq smooth projective — want to prove RH for X .

Free to replace Fq by a finite extension

Induction on dimension

Can replace X by any birationally equivalent (projective
nonsingular) variety.

There exists birational map X−→ V0 = {f = 0} ⊂ Pn+1,
f ∈ Fq[x0, . . . , xn+1]

But V0 is almost always a singular hypersurface, to which RH
doesn’t apply.
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I: deformation to smooth hypersurfaces

X/Fq smooth and projective;

birational map X−→ V0 = {f = 0} ⊂ Pn+1

Deform V0 to a pencil

V −→ T ⊂ A1, Vt = {f + tg = 0}

whose fibre Vt is nonsingular for all 0 6= t ∈ T .

By hypothesis, RH holds for each Vt , t 6= 0

Want to somehow transfer this to X via V0
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I: passing to a semistable family

Suppose there exists a semistable model for the family
V → T , i.e. π : W → V which is

birational
an isomorphism away from V0 ⊂ V ; and
fibre W0 is a (reduced) normal crossings divisor (with smooth
components)

In char. 0, resolution of singularities would give this, after
replacing T by finite covering

If W exists, then X is birational to a component of W0

Enough to prove RH for this component.
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II: local monodromy

Let K = Fq((t)) (formal Laurent series)

Then WK = {f + tg = 0} ⊂ Pn+1 is a nonsingular
hypersurface over K

Hn
` (WK ) acted on by G = Gal(K̄/K ) ⊃ I = Gal(K̄/F̄q((t)) ),

inertia subgroup

I -invariants Hn
` (WK )I acted on by

G/I = Gal(F̄q/Fq)

3 F = φ−1
q

.

local monodromy: RH for all the Wt (t 6= 0) =⇒
eigenvalues α of F on Hn

` (WK )I have |α| ≤ qn/2.
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III: Rapoport–Zink spectral sequence

W0 = union of nonsingular components Yk , intersecting
transversally

∃ spectral sequence computing H∗` (WK ) in terms of
H∗` (Yk0 ∩ · · · ∩ Yks ), s ≥ 0

Induction on dimension implies that for s 6= 0, these
cohomology groups satisfy RH

Local monodromy estimate + analysis of spectral sequence
=⇒ RH also holds for s = 0 i.e. for each H∗` (Yk)

This is what we wanted to show
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Complications

Resolution of singularities not known in char. p

Without it, cannot construct birational W → V

Fortunately De Jong’s theory of alterations works here

Obtain W → V and finite group Γ acting on W such that
W /Γ→ V is birational, up to a morphism which is purely
inseparable (and after replacing T by a finite covering)

H∗` (Wt)Γ will then be essentially H∗` (Vt), hence satisfies RH.

Same argument with local monodromy and Rapoport–Zink
spectral sequence goes through.
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Conclusions

The proof is complicated but is mostly rather formal

So if there is an easy proof of RH for hypersurfaces, we get
RH for all varieties “for free”

Maybe all this means is. . .

. . . that counting points on hypersurfaces really is difficult.
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The end

THE END
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