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Number theory

What do number theorists most like to do?
m (try to) solve Diophantine equations
x"4y"=2z" x,y,z>1, n>3

— no solutions in Z (Fermat — Wiles)

m For what integers d > 1 does the equation
y2 = x3 — d?x

have a solution (x,y) in Q?
m ( < there is a rational right-angled triangle with area d.)

m Congruent Number Problem (closely related to the
Birch—Swinnerton-Dyer conjecture)



Diophantine equations

Solving Diophantine equations is VERY HARD.

Hilbert's 10th Problem:

mf(xy,...,Xnt) € Z[x1,...,Xn, t] polynomial
mlet S(f)={a€Z|f(x1,...,xn,a)=0is soluble in Z}.

Theorem (Matiyasevich, 1970)

There exists f for which the set S(f) is undecidable

m In other words, given a € Z there is no algorithm to determine
whether or not f(x, a) = 0 has a solution in Z.

m Many problems (not necessarily from number theory) can be
reduced to Diophantine equations.



Congruences

m A much easier problem: let f € Z[xi, ..., x,| be a polynomial
and m > 1.

m Find solutions to the congruence
f(xt,-..,%x,) =0 (mod m)

i.e. solve f =0 with x; € Z/mZ.
For given f and m, just a finite computation

u
u
m f =0 soluble in Z = f =0 (mod m) soluble for all m
m But not always <= (even if there are solutions in R)

u

Example: for f = 3x3 4+ 4y3 + 523, congruence f =0
(mod m) has non-trivial solutions for all m.

m But f = 0 has only the trivial solution (0,0,0) in Z (or Q).



Congruences mod p

m Chinese Remainder Theorem:
f = 0 soluble mod m <= soluble mod p” for every prime
power p" dividing m.

m Often enough to consider just mod p.
r

m Hensel's Lemma = mod p solutions usually lift to mod p".
e.g. p=1 (mod 4). Can find x € Z with
x*= -1 (mod p) (Fermat!)
say x> = —1+ pa. Then find b with 2bx = a (mod p).
(x — pb)> = =1 + pa — 2pbx + p?b> = —1 (mod p?)

And so on.



Guiding principle — under suitable conditions:

If f =0 (mod p) has “enough” solutions for every p, and
f = 0 has solutions in R, then f = 0 is likely to have a
solution in Q.

m Hardy-Littlewood (circle) method
Waring's problem: for k > 1 find the smallest G = G(k) such
that all suff. large integers N can be represented

N:Xf—l—---—l—xé, xi >0

m [-functions (Birch—Swinnerton-Dyer conjecture).

m All good reasons to want to study congruences mod p.



Weil, Bull. AMS 1949

NUMBERS OF SOLUTIONS OF EQUATIONS
IN FINITE FIELDS

ANDRE WEIL

The equations to be considered here are those of the type

1) ao%’ + axi + -+ + @z = b.

Such equations have an interesting history. In art. 358 of the Disquisi-
tiones [1 a],! Gauss determines the Gaussian sums (the so-called
cyclotomic “periods”) of order 3, for a prime of the form p=3n-+1,
and at the same time obtains the numbers of solutions for all con-
gruences ax®*—by3=1(mod p). He draws attention himself to the ele-
gance of his method, as well as to its wide scope; it is only much
later, however, viz. in his first memoir on biquadratic residues [1b],
that he gave in print another application of the same method; there
he treats the next higher case, finds the number of solutions of any
congruence ax‘—by*=1 (mod p), for a prime of the form p=4n+-1,
and derives from this the biquadratic character of 2 mod p, this being
the ostensible purpose of the whole highly ingenious and intricate in-
vestigation. As an incidental consequence (“coronidis loco,” p. 89),



WEeil, the (merciless) historian

vestigation. As an incidental consequence (“coronidis loco,” p. 89),
he also gives in substance the number of solutions of any congruence
y*=ax*—b (mod p); this result includes as a special case the theorem
stated as a conjecture (“observatio per inductionem facta gravissima”)
in the last entry of his Tagebuch [1c];? and .... ‘

2 It is surprising that this should have been overlooked by Dedekind and other
authors who have discussed that conjecture (cf. M. Deuring, Abh. Math. Sem.
Hamburgischen Univ. vol. 14 (1941) pp. 197-198).



Weil 1949

Gauss: if p=1 (mod 4) is prime,

#{(xy) €F5 | y*=x>—x} =p—2u

=p—T—T
p=ut>+v?, u=1l+vmod4 v=0mod?2
=TT, m=u+iv=1mod2(1+/)

If p=3 (mod 4), then #{--- } =p



Weil 1949

Varying g = p*: (Hasse, Davenport-Hasse. . . )

#{(x,y) | x,y € Fpe, y* = x> —x}

pk — rrk

— 7k ifp=1mod4
=< pk if p=3 mod 4, r odd
pk —2(=p)¥/? if p=3 mod 4, r even

= pk ok — Gk

=1mod 4
where a = ﬂ (p mod 4) , |a| = pt/?
iy/p (p=3mod4)

10/21



3

m Equation y? = x3 — x defines a plane curve

m f(x1,...,Xp) defines a hypersurface V in affine n-space A":
{solutions of f=0in Fpk} = {points of V with coordinates in Fpk}
m In general for a variety V defined by polynomial equations over
Fp, write V/(IF ) = {points of V with coordinates in I}

m Want to understand number of points Ny = # V/(FF ) as k
varies

m e.g. affine space V = A" Ny = p"&

m projective space V = P” N =14 pk+---+ pk.

3

m projective plane curve E: y? = x3 — x, p odd

Ne=1+pF—ak—ak=(1-a"1-a"

(elliptic curve)

11/21



Zeta function

Generating function:

d
k _
,?1 N(V)T* = TdT log Z(V,T)

. 1
V=A Z(V,T)zl_pnT
Pr L
1-T)1-pT)---(1—-p"T)
PI(T) = -« -«
E AT pT) P (T)=(1—-aT)(1-aT)

Many other examples (Weil and others)
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Weil conjectures

Theorem (Weil Conjectures)

vV cPpPN/ F, nonsingular, dimension n, absolutely irreducible.

(1) Z(v,T)eQ(T)

— rationality
Pi...Pay1q
Z(V, T —_
V1) =55 . P
P():].—T Pgn—l—p T
) Pi(T) = H(l —a;T) € Z[T] (o2nij=p"/aij)

= (monom/al) X Pon_i(1/p"T) — functional equation

(3) || = p/? — “Riemann Hypothesis”" (RH)
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Weil conjectures: examples

Examples:
V=P
m V any nonsingular curve (Hasse, Weil):
P(T)
Z(V,T)= , degP; =2 x (genus of V
V= aTna e ( )

m Diagonal hypersurfaces (Weil 1949):
ax{ + o apxd =0

m In general, if V is obtained by reduction mod p of a variety V'
in characteristic 0, b; = deg P; should be Betti numbers of V'
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Weil conjectures

Rationality: Dwork 1960
Grothendieck, Artin... 1960s: f-adic cohomology
m Rationality, functional equation
m P;(T) = characteristic polynomial of operator (Frobenius)
acting on cohomology space H;(V) (depending on auxiliary
prime £)
Deligne 1974:

m P; € Z[T], independent of ¢
= |a;| = p'/? (Riemann hypothesis for eigenvalues of Frobenius)

Applications include estimation of exponential sums
Another proof by Laumon (1987)
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Hypersurfaces

V = {f(x0,...,%n+1) = 0} C P! nonsingular hypersurface:

Betti numbers, some geometry —-

1 ,
Z(V,T) = x P(T)Y)
VD= e 0
:>Nk:2j:tr(Fk):1+pk+ e Zand
#Pn(Fpk)
_ | '— pn/2
so that |—| = p"< by RH

(RH. for V) = [Nk — #P"(F )| < cp™/?
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Hypersurfaces

In elementary terms, RH for the hypersurface V: {f = 0} implies:

m f(X0,...,Xn+1) € Z[X0 . . . Xn+1] @ homogeneous polynomial.

m Assume f and {0f /Ox;} have no common zero over the
alg. closure of I, (“nonsingularity”).

m Then for some c, and every k > 1,
‘Nk — (1P +p”")‘ <ep™? (%)

m Conversely, inequality (x) for all k > 1, some ¢ = RH for
the zeta function of V.

m Because (x) says ‘E a,f’j‘ < cp"/?,

m This easily implies |a, j| < p"/2.

m Functional equation = |a,;| = p"/?
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So, for hypersurfaces, Riemann hypothesis is equivalent to an
entirely elementary Diophantine statement.

People have looked hard for an elementary proof.
Only known in dimension 1 (Stepanov, Bombieri, Schmidt)

For dimension n > 1 the only “elementary” result is the
Lang—Weil estimate: ‘Nk — p”k| < cp@n—1)k/2

If there was, then we get more:
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Hypersurfaces Il

Riemann hypothesis for hypersurfaces “implies” Riemann
hypothesis for all varieties (nonsingular, projective).

m “Implies” means that there is a proof that doesn’t use
monodromy of Lefschetz pencils (Deligne) or ¢-adic Fourier
transform (Laumon).

m Proof necessarily uses /-adic cohomology (as RH for a general
variety is not equivalent to an inequality on numbers of points)
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|dea of proof

m Project from a linear subspace:

74 c PN dimension n

1 | projection

hypersurface V' ={g=0} c P!
(singular)

Choose some nonsingular hypersurface {f = 0} c P"*!
Consider the hypersurface Hy = {g + tf = 0} as t varies
Hy is non-singular outside a finite set S of t € F, = [JF .
What one shows is:

RH.forall H;, t¢S = RH.forV
m There is no relation between Ny (V) and Ni(H;), though.
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Conclusions

m The proof is complicated but is mostly rather formal

m So if there was an easy proof of RH for hypersurfaces, we
would get Deligne's difficult theorem “for free”

m Maybe all this means is. ..

m ...that counting points on hypersurfaces really is hard.

THE END
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