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Number theory

What do number theorists most like to do?

(try to) solve Diophantine equations

xn + yn = zn, x , y , z ≥ 1, n ≥ 3

— no solutions in Z (Fermat — Wiles)

For what integers d ≥ 1 does the equation

y2 = x3 − d2x

have a solution (x , y) in Q?

( ⇐⇒ there is a rational right-angled triangle with area d .)

Congruent Number Problem (closely related to the
Birch–Swinnerton-Dyer conjecture)
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Diophantine equations

Solving Diophantine equations is VERY HARD.

Hilbert’s 10th Problem:

f (x1, . . . , xn, t) ∈ Z[x1, . . . , xn, t] polynomial

Let S(f ) = {a ∈ Z | f (x1, . . . , xn, a) = 0 is soluble in Z}.

Theorem (Matiyasevich, 1970)

There exists f for which the set S(f ) is undecidable

In other words, given a ∈ Z there is no algorithm to determine
whether or not f (x, a) = 0 has a solution in Z.

Many problems (not necessarily from number theory) can be
reduced to Diophantine equations.
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Congruences

A much easier problem: let f ∈ Z[x1, . . . , xn] be a polynomial
and m ≥ 1.

Find solutions to the congruence

f (x1, . . . , xn) ≡ 0 (mod m)

i.e. solve f = 0 with xi ∈ Z/mZ.

For given f and m, just a finite computation

f = 0 soluble in Z =⇒ f ≡ 0 (mod m) soluble for all m

But not always ⇐= (even if there are solutions in R)

Example: for f = 3x3 + 4y3 + 5z3, congruence f ≡ 0
(mod m) has non-trivial solutions for all m.

But f = 0 has only the trivial solution (0, 0, 0) in Z (or Q).
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Congruences mod p

Chinese Remainder Theorem:
f ≡ 0 soluble mod m ⇐⇒ soluble mod pr for every prime
power pr dividing m.

Often enough to consider just mod p.

Hensel’s Lemma =⇒ mod p solutions usually lift to mod pr .

e.g. p ≡ 1 (mod 4). Can find x ∈ Z with

x2 ≡ −1 (mod p) (Fermat!)

say x2 = −1 + pa. Then find b with 2bx ≡ a (mod p).

(x − pb)2 = −1 + pa− 2pbx + p2b2 ≡ −1 (mod p2)

And so on.
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Guiding principle — under suitable conditions:

If f ≡ 0 (mod p) has “enough” solutions for every p, and
f = 0 has solutions in R, then f = 0 is likely to have a
solution in Q.

Hardy-Littlewood (circle) method
Waring’s problem: for k ≥ 1 find the smallest G = G (k) such
that all suff. large integers N can be represented

N = xk
1 + · · ·+ xk

G , xi ≥ 0

L-functions (Birch–Swinnerton-Dyer conjecture).

All good reasons to want to study congruences mod p.
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Weil, Bull. AMS 1949
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Weil, the (merciless) historian
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Weil 1949

Gauss: if p ≡ 1 (mod 4) is prime,

#
{

(x , y) ∈ F2
p

∣∣ y2 = x3 − x
}

= p − 2u

= p − π − π̄

p = u2 + v2, u ≡ 1 + v mod 4, v ≡ 0 mod 2

= ππ̄, π = u + iv ≡ 1 mod 2(1 + i)

If p ≡ 3 (mod 4), then #{ · · · } = p
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Weil 1949

Varying q = pk : (Hasse, Davenport–Hasse. . . )

#
{

(x , y)
∣∣ x , y ∈ Fpk , y2 = x3 − x

}
=


pk − πk − π̄k if p ≡ 1 mod 4

pk if p ≡ 3 mod 4, r odd

pk − 2(−p)k/2 if p ≡ 3 mod 4, r even

= pk − αk − ᾱk

where α =

{
π (p ≡ 1 mod 4)

i
√

p (p ≡ 3 mod 4)
, |α| = p1/2
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Varieties

Equation y2 = x3 − x defines a plane curve

f (x1, . . . , xn) defines a hypersurface V in affine n-space An:{
solutions of f = 0 in Fpk

}
=
{

points of V with coordinates in Fpk

}
In general for a variety V defined by polynomial equations over
Fp, write V (Fpk ) = {points of V with coordinates in Fpk}
Want to understand number of points Nk = #V (Fpk ) as k
varies

e.g. affine space V = An Nk = pnk

projective space V = Pn Nk = 1 + pk + · · ·+ pnk .

projective plane curve E : y2 = x3 − x , p odd

Nk = 1 + pk − αk − ᾱk = (1− αk)(1− ᾱk)

(elliptic curve)

11 / 21



Zeta function

Generating function:

∞∑
k=1

Nk(V )T k = T
d

dT
log Z (V ,T )

V = An Z (V ,T ) =
1

1− pnT

Pn 1

(1− T )(1− pT ) · · · (1− pnT )

E
P1(T )

(1− T )(1− pT )
, P1(T ) = (1− αT )(1− ᾱT )

Many other examples (Weil and others)
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Weil conjectures

Theorem (Weil Conjectures)

V ⊂ PN/Fp nonsingular, dimension n, absolutely irreducible.

(1) Z (V ,T ) ∈ Q(T ) — rationality

Z (V ,T ) =
P1 . . .P2n−1

P0P2 . . .P2n

P0 = 1− T, P2n = 1− pnT

(2) Pi (T ) =

bi∏
j=1

(1− αijT ) ∈ Z[T ] ( α2n−i ,j = pn/αi ,j )

= (monomial)× P2n−i (1/pnT ) — functional equation

(3) |αij | = pi/2 — “Riemann Hypothesis” (RH)
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Weil conjectures: examples

Examples:

V = Pn

V any nonsingular curve (Hasse, Weil):

Z (V ,T ) =
P1(T )

(1− T )(1− pT )
, deg P1 = 2× (genus of V )

Diagonal hypersurfaces (Weil 1949):

a1x
d
1 + · · ·+ amxd

m = 0

In general, if V is obtained by reduction mod p of a variety V ′

in characteristic 0, bi = deg Pi should be Betti numbers of V ′
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Weil conjectures

Rationality: Dwork 1960

Grothendieck, Artin. . . 1960s: `-adic cohomology

Rationality, functional equation
Pi (T ) = characteristic polynomial of operator (Frobenius)
acting on cohomology space H i

`(V ) (depending on auxiliary
prime `)

Deligne 1974:

Pi ∈ Z[T ], independent of `
|αij | = pi/2 (Riemann hypothesis for eigenvalues of Frobenius)

Applications include estimation of exponential sums

Another proof by Laumon (1987)
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Hypersurfaces

V = {f (x0, . . . , xn+1) = 0} ⊂ Pn+1 nonsingular hypersurface:

Betti numbers, some geometry =⇒

Z (V ,T ) =
1

(1− T )(1− pT ) · · · (1− pnT )
× Pn(T )(−1)n

=⇒ Nk =
∑
±tr(F k) = 1 + pk + · · ·+ pnk︸ ︷︷ ︸

#Pn(Fpk )

+(−1)n
∑

j

αn,j
k

so that
|−| −

−−
→

= pn/2 by RH

(R.H. for V ) =⇒
∣∣Nk −#Pn(Fpk )

∣∣ ≤ cpnk/2
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Hypersurfaces

In elementary terms, RH for the hypersurface V : {f = 0} implies:

f (x0, . . . , xn+1) ∈ Z[x0 . . . xn+1] a homogeneous polynomial.

Assume f and {∂f /∂xj} have no common zero over the
alg. closure of Fp (“nonsingularity”).

Then for some c , and every k ≥ 1,∣∣∣Nk − (1 + pk + · · ·+ pnk)
∣∣∣ ≤ cpnk/2 (∗)

Conversely, inequality (∗) for all k ≥ 1, some c =⇒ RH for
the zeta function of V .

Because (∗) says
∣∣∣∑αk

n,j

∣∣∣ ≤ cpnk/2.

This easily implies |αn,j | ≤ pn/2.

Functional equation =⇒ |αn,j | = pn/2
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So, for hypersurfaces, Riemann hypothesis is equivalent to an
entirely elementary Diophantine statement.

People have looked hard for an elementary proof.

Only known in dimension 1 (Stepanov, Bombieri, Schmidt)

For dimension n > 1 the only “elementary” result is the
Lang–Weil estimate:

∣∣Nk − pnk
∣∣ ≤ cp(2n−1)k/2

If there was, then we get more:
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Hypersurfaces II

Theorem

Riemann hypothesis for hypersurfaces “implies” Riemann
hypothesis for all varieties (nonsingular, projective).

“Implies” means that there is a proof that doesn’t use
monodromy of Lefschetz pencils (Deligne) or `-adic Fourier
transform (Laumon).

Proof necessarily uses `-adic cohomology (as RH for a general
variety is not equivalent to an inequality on numbers of points)
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Idea of proof

Project from a linear subspace:

V ⊂ PN dimension n

| |
↓ ↓ projection

hypersurface
(singular)

V ′ = {g = 0} ⊂ Pn+1

Choose some nonsingular hypersurface {f = 0} ⊂ Pn+1

Consider the hypersurface Ht = {g + tf = 0} as t varies

Ht is non-singular outside a finite set S of t ∈ Fp =
⋃

Fpk .

What one shows is:

R.H. for all Ht , t /∈ S =⇒ R.H. for V

There is no relation between Nk(V ) and Nk(Ht), though.
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Conclusions

The proof is complicated but is mostly rather formal

So if there was an easy proof of RH for hypersurfaces, we
would get Deligne’s difficult theorem “for free”

Maybe all this means is. . .

. . . that counting points on hypersurfaces really is hard.

THE END
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