

Modular forms and L -functions (Michaelmas 2019) — example sheet #4

Comments/corrections to a.j.scholl@dpmms.cam.ac.uk

1. (More on Dirichlet characters). Let $\chi: (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ be a Dirichlet character, where $N > 1$ with prime factorisation $N = \prod_{1 \leq i \leq k} p_i^{r_i}$, $r_i \geq 1$.
 - Show that there are unique characters $\chi_i: (\mathbb{Z}/p_i^{r_i}\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ such that $\chi(n) = \prod_i \chi_i(n \bmod p_i^{r_i})$.
 - Show that for each i there exists a minimal $0 \leq s_i \leq r_i$ and a unique $\chi'_i: (\mathbb{Z}/p_i^{s_i}\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ such that χ_i factors as $\chi_i(n) = \chi'_i(n \bmod p_i^{s_i})$.
 - Deduce that there exists a unique least positive divisor M of N such that χ factors as $\chi(n) = \chi'(n \bmod M)$, for some (necessarily unique) character χ' mod M . If $M = N$ we say that χ is *primitive of conductor* N . In general, we say that χ' is the primitive character attached to χ , and that M is the conductor of χ .
 - With the notation of (iii), show that

$$L(\chi, s) = \prod_{p|N, p \nmid M} (1 - \chi'(p)p^{-s})L(\chi', s).$$

1. (More on Dirichlet characters). Let $\chi: (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ be a Dirichlet character, where $N > 1$ with prime factorisation $N = \prod_{1 \leq i \leq k} p_i^{r_i}$, $r_i \geq 1$.
 - Determine all primitive Dirichlet characters that are quadratic (i.e. $\chi^2 = 1$), and their conductors. [First determine all quadratic characters of $(\mathbb{Z}/p^r\mathbb{Z})^\times$.]
 - Show that if χ is a primitive quadratic Dirichlet character mod N and N is even, then for all $x \in (\mathbb{Z}/N\mathbb{Z})^\times$, $\chi(x + N/2) = -\chi(x)$.
 - Recall that if K is a quadratic field, then χ_K is the unique quadratic Dirichlet character mod $|d_K|$ such that, if $(p, d_K) = 1$ then p splits in K iff $\chi_K(p) = +1$. Show that χ_K is primitive.
 - Show that if $\chi \neq 1$ is a primitive quadratic Dirichlet character of conductor N , then there is a unique quadratic field K , with $d_K = \pm N$, such that $\chi = \chi_K$.
2. Use parts (vi) and (vii) of the previous question to show that if K is an imaginary quadratic field with even discriminant $d_K \neq -4$, then

$$h_K = \frac{1}{2} \sum_{\substack{0 < n < |d_K|/2 \\ (n, d_K) = 1}} \chi_K(n).$$

3. Use the functional equation of the Epstein zeta function to show that if, for a quadratic field K , we define

$$Z_K(s) = \begin{cases} \pi^{-s} \Gamma(s/2)^2 \zeta_K(s) & (K \text{ real}) \\ 2(2\pi)^{-s} \Gamma(s) \zeta_K(s) & (K \text{ complex}), \end{cases}$$

then $Z_K(s) = |d_K|^{1/2-s} Z_K(1-s)$.

4. Let $E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n)q^n = (3/\pi^2)G_2(z)$ as in sheet 2, Q8. Use the infinite product for $\Delta(z)$ to prove that

$$E_2(-1/z) = z^2 E_2(z) + \frac{12z}{2\pi i}.$$

Deduce that the function $G_2^*(z) = G_2(z) - \pi/\text{Im}(z)$ is modular of weight 2.

5. Define, for $a, b \in \mathbb{R}$ and $t > 0$

$$\theta(t; a, b) = \sum_{n \in \mathbb{Z}} e^{-\pi(n+a)^2 t + 2\pi i(n+a/2)b}.$$

Use the Poisson summation formula to compute $\theta(1/t; a, b)$.