

Modular forms and L -functions (Michaelmas 2019) — example sheet #1

Comments/corrections to a.j.scholl@dpmms.cam.ac.uk

1. Prove that if $f(x) = e^{-\pi x^2}$ then $\widehat{f}(x) = f(x)$.
2. Let G be a finite abelian group, and χ, χ' characters of G . Show that
$$\sum_{g \in G} \overline{\chi(g)} \chi'(g) = \begin{cases} 0 & \text{if } \chi \neq \chi' \\ \#G & \text{if } \chi = \chi' \end{cases}$$
3. Determine all continuous homomorphisms from \mathbb{R} to \mathbb{C} , and show that $\widehat{\mathbb{R}} = \{\chi_y : x \mapsto e^{2\pi ixy} \mid y \in \mathbb{R}\}$. Show also that every continuous homomorphism $\chi : \mathbb{R}_{>0}^\times \rightarrow \mathbb{C}^\times$ is of the form $\chi(x) = x^s$ for some $s \in \mathbb{C}$.
4. Use the duplication and reflection formulae for $\Gamma(s)$ to show that the functional equation of the ζ -function may be written as

$$\zeta(1-s) = 2(2\pi)^{-s} \cos \frac{\pi s}{2} \Gamma(s) \zeta(s).$$

5. Recall that $\Gamma(s)\zeta(s)$ is the Mellin transform of $1/(e^y - 1)$.

(i) Let $Y > 0$. Show that at $s \rightarrow 1$,

$$\int_Y^\infty \frac{y^s}{e^y - 1} \frac{dy}{y} \rightarrow -\log(1 - e^{-Y}).$$

(ii) Writing $1/(e^y - 1) = 1/y + g(y)$, show that as $s \rightarrow 1$,

$$\int_0^Y \frac{y^s}{e^y - 1} \frac{dy}{y} = \frac{1}{s-1} + \log Y + \int_0^Y g(y) dy + O(s-1).$$

(iii) Letting $Y \rightarrow 0$, deduce that $\Gamma(s)\zeta(s) - 1/(s-1)$ vanishes at $s = 1$.

(iv) Now use the result of question 4 to show that $\zeta'(0) = -(1/2) \log 2\pi$.

6. Evaluate $\zeta(2k)$ in terms of Bernoulli numbers. Deduce that $(-1)^{k-1} B_{2k} > 0$ for every $k \geq 1$. (It is not easy to prove this directly from the generating function definition!)

7. Define for $c \in \mathbb{R}$ the functions

$$\theta(t; c) = \sum_{n \in \mathbb{Z}} e^{-\pi(n+c)^2 t}, \quad \theta^*(t; c) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t + 2\pi i n c}.$$

Use the Poisson summation formula to show that

$$\theta(t; c) = t^{-1/2} \theta^*(1/t; c).$$