Modular forms and L-functions (Michaelmas 2019) — example sheet #1

Comments/corrections to a . j.scholl@dpmms.cam.ac.uk
. Prove that if f(z) = e~™" then f(x) = f(x).

. Let G be a finite abelian group, and x, x’ characters of G. Show that
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. Determine all continuous homomorphisms from R to C, and show that R = {xy: z— eZmizy |
y € R}. Show also that every continuous homomorphism y: RZ, — C* is of the form
x(x) = x* for some s € C.

. Use the duplication and reflection formulae for I'(s) to show that the functional equation of the
(-function may be written as

C(1— s) = 2(2m)~* cos gf‘(s)((s).

. Recall that I'(s)((s) is the Mellin transform of 1/(e¥ — 1).
(1) Let Y > 0. Show that at s — 1,
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(ii) Writing 1/(e¥ — 1) = 1/y + g(y), show thatas s — 1,
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(iii) Letting Y — 0, deduce that I'(s)((s) — 1/(s — 1) vanishes at s = 1.
(iv) Now use the result of question 4 to show that ¢'(0) = —(1/2) log 2.

. Evaluate ((2k) is terms of Bernoulli numbers. Deduce that (—1)*~1 By, > 0 for every k > 1.
(It is not easy to prove this directly from the generating function definition!)

. Define for ¢ € R the functions
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Use the Poisson summation formula to show that

O(t;c) =t~ 120" (1/t; ¢).



