The analytic continuation of (x(s) and the class
number formula

Let V' be a real vector space of dimension n > 1, (—,—): V. x V — R an inner
product with corresponding norm ||—||. Let {e;} be an ON basis for V', and pu (or
dv) the associated measure (for which u(V/ > Ze;) = 1) — it doesn’t depend on
the choice of ON basis. Write m(A) for the covolume of A (i.e., the volume of the
quotient V/A).

Recall that the Epstein zeta function of the quadratic lattice A is
1
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It converges absolutely for Re(s) > n/2, and:

Theorem. Z(A,s) = n°T'(s) G(A, s) has a meromorphic continuation to C, ana-
lytic apart from simple poles at s =0, n/2 with residues —1, m(A)™! respectively.
It satisfies the functional equation

Z(A, s) = m(A) " Z (N, g — ).

In particular, G(A,0) = —1.

Let K be a number field. For a prime ideal P C og, write gp = N(P) for its
norm.

Definition. The Dedekind zeta function is the function

1
CK(S) = Z]: N(I)s

the sum taken over non-0 ideals I C og.

Proposition. (x(s) = [[p(1 — ¢5°) ", and the product converges absolutely for
Re(s) > 1.

Proof. As formal series, the product follows from unique factorisation of ideals:
writing I = [[ P"? gives N(I) =[] ¢3", hence

Cel(s) =[]0 +ap" + 5™ +-+)
P

Now #{P | p} <n and gp > p if P|p, so product converges by comparison with

[[a-p) = N =

P N>1



Theorem. (i) (x(s) has a meromorphic continuation to C whose only singularity
18 a simple pole at s = 1. Moreover
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(i1) Write Zg(s) = Tr(s)"Tc(s)2Ck(s), where Tr(s) = 77°/?I'(5/2), Tc(s) =
2(2m)~*T'(s). Then
Zc(s) = |d)"*° Z (1 — s).

Here:

o hi = #CI(K), the class number of K
o wx = #u(K) the order of the group of roots of unity of K

e di and Ry are the discriminant and requlator of K.

We recall the definitions. Write » = r; + r9, and let

1,0 K—R
Opy41 = Opilyeney0p = 0p: K——C
be the complex embeddings of K. Write 0 = (0y,... 0 4r,): K ——R™ x C™2. If
{61,...,60,} is an integral basis for K, then by definition dy = det(c;(6;))>.

Write the group of units of K as o = ux X (e1,...,&,-1). Let e; = 1 if o; is real,
2 otherwise, so that | N q(z)| = [T, |os(z)|”

;> 0, [[u; = 1}.
J

It is convenient to define, for ¢ € 0}, 1(¢) = (|o;(¢)|);, so that ¢: 0} — RZy.
The proof of the unit theorem shows that ker(:) = p(K), that ¢(o)) is a discrete
subgroup and that R7g/1(0}) is compact. As measure on RZ{ we will always take

Write
RY, = {(Uj) S

qu L du1 cee d'LLT,1
u]_ ... urf]_

This measure is invariant under multiplication u; — bju;, for any (b;) € RZ.
Consider the (r — 1) x r real matrix
(ejloglon(er)]) = (loge(er);) (I <k<r—1,1<j<r).

The sum of the k-th row of this matrix is log |NK/Q(€]€)‘ = 0. So all of its (r —
1) x (r — 1) minors have the same absolute value, which is by definition Rx. The
proof of the unit theorem shows that Ry # 0.

Lemma. (i) The covolume of the lattice o(0x) C R™ xC™ with respect to Lebesgue

- 1/2
measure on R™ x C™ equals 2772 |dg| "2

(i) The volume of RL4 /(o) with respect to the measure d*u equals Ri.
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Proof. (i) We have det(c;(0;)) = (—2i)" det(Ayg;), where the k™ row of the matrix
(Ak]) is

(01(0k), ..., 00, (0k), Rec +1(0k), Im oy, 11(0k), ..., Imo,.(0k))
and |det(Ay;)| = m(o(ok)).

(ii) The isomorphism Ry 2 R™1, (u;) = (logu;)1<j<,_1 transforms the mea-
sure d*u into Lebesgue measure dv; - - - dv,_1. So the result follows from the defi-
nition of Rg. ]

Proof of Theorem. We begin by breaking the sum up into ideal classes:

= Y (x(Cs), where (x(C.s)= Y N(I)"

CeCl(K) ICok, I€C

Fix Iy € C7'. Then C = {zI;' | x € I} and

Ck(C.os) = N(1)* Y | Nipola)|

AT
where * denotes the sum over a set of representatives of Iy \ {0}¢ modulo oj.

Recall that if K = Q then ((s) is the Epstein zeta function (1/2)G(Z,s/2). 1If
Q(v/—D) is imaginary quadratic, then as o is finite, the sum is just 1/wg times
the sum over all nonzero z € Iy, and Ng,o(x) = 27 is a positive definite quadratic
form. So (x(C, s) is also an Epstein zeta function.

We saw in the lectures that, when K is real quadratic, (x(C, s) can be written as a
1-dimensional integral of Epstein zeta functions. For general K, we will express it
as an (r — 1)-dimensional integral of Epstein zeta functions. The proof is not very
different, the main difficuly being notational. We begin with (a weighted version
of) the Hecke transform in r dimensions.

Lemma (The Hecke transform). Let a; > 0, z; € C* (1 < 5 < r). Write
A=>"a;, B=]]a;. Then if Re(s) > 0,

1
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so that
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For each u = (u;) € R, let V,, be the real vector space R x C™ together with
the inner product

(Z,Y)u = Z u?a:jyj +2 Z U, (Re(xj) Re(y;) + Im(z;) Im(yj))

1<j<r r1<j<r

S wnyi+ > u(ay; 4+ Ty;)

1<j<r r<j<r
whose associated norm ||—||, is
_ 2 9 1/33
H(x])H Z ‘:Uj‘ + Z U ‘xj‘ = Zej ‘:U]‘
1<5<rm r1<j<r

If € € 0 then

r

2/e;
lo(@) @I =" eul o) o = ll(2))]17,

i=1

Because [[ u; = 1 the measure on V,, associated to the inner product is independent
of u, and is

r1 r
dej H 2dRe(z;) dIm(x;) = 2™ x (Lebesgue measure on R™ x C™).

j=1 j=r1+1

Let z € K*. We compute the Hecke transform for

o;(x) u - 1/2 (1<j<nr)
V20;(x) ’ 1 (rm<j<r)

so that A =17,/24ry =n/2, B=2"" and []|z]*¥® = 22 |Nijo(@)|", to get:

Zj =
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Corollary. If x € K* and Re(s) > 0 then

r T - ri+ras— 1
F(S/Q) ! F(S) 2 |NK/Q(7JE)| =2 +r2 1nF(n5/2) /Rr,l deu ]
>0

u

Now let Iy C ox be an ideal, and let A, = A, () be the lattice o(1y) in the inner
product space V,,. If Re(s) > n/2 then the Epstein zeta function of Au is

6= ¥ =3 Y = Y

0#£z€ly z€lo ccoX z€lo ceok H (e)u

In particular, for every € € oy, G(Ay, 5) = G(Aye)u; ), and so the integral

/ G(Au, E) d*u
R /1(0}) 2

is well-defined and equals

1
S b
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using in the first equality the fact that ker(t) = p(K), and in the second the
invariance of d*u under multiplication v — du. If apply the Corollary to this
last expression we obtain the desired representation of (x(C,s) as an integral of
Epstein zeta functions:

B J2rtresln Pns /2) ns\
() = N T || oy L g )

_ 2T_17’LN([Q)S / Z(A E) u
wilr(s)1 Te(s)" RZg/u(05) T2

As Z(A,, s) has an analytic continuation to C \ {n/2,0}, and I'(s) has no zeroes,
this gives the desired analytic continuation of (x(C,s) away from s = 1, 0.

At s =0, G(Ay, s) is holomorphic and G(A,,0) = —1. So

/ G(Au, @) Pyl = —/ d*u = —Ry.
RYL/4(0%) 2 6=0 R7L /(0

(K(C, S) ~ 1 x 27117171(718/2)71 (_RK> _ _&Sr—l

s=0 wg ($/2) s Wk

Therefore

as required.

Finally compute at s = 1. Recalling that the measure on V,, is 2™ times Lebesgue
measure, we have m(A,) = N(Io)|dx|"?, and Z(Ay,ns/2) = m(Ay) " (ns/2 —
n/2)~! + (analytic). Therefore

/R;(l)/L(U

2R
Z<Au7 E) d*u = 1;; + (analytic at s = 1).
) 2 N(lo) dre[ " n(s —1)

X
K
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Using T'r(1) = 77 Y20(1/2) = 1 and T'¢(1) = 2(27)7'T(1) = 71, this becomes

T T2
CK(C7S) a

=1y |dg | (s — 1)

Summing over ideal classes then gives the result.

To prove the functional equation, we have

P ns
Zx(C. ) =Ta(s) " Te(s)*Ci(C,5) = = /R . N(1o)*Z (Aullo), 57) d*u.

Recall the definition of the different ideal Dy of K: it is the ideal whose inverse
is the dual of ox under the trace form:

D' ={y € K |Vz € K, trgg(zy) € Z}.
The norm of Dy is |dg|.

Proposition 0.1. Z(Au(Iy),s) = N(Io) ™ |dx|™* Z(Ay-1(11),n/2 — ), where
I = I;'Dy

Proof. We need to identify the dual lattice to A, (). Define amap ¢, : Vi, — V-1

by ¢u(z); = uj_l/ K 7;. From the definition of the inner product on V,, this map is

an isometry between V,, and V,,-1, and for z € V,,, y € V-1,

T1 T
(du(z),y), .+ = Zl’jyj + Z Ty + Ty
j=1

j=r1+1
Claim: ¢,: A, (o) —= A1 ()"
Granted this, we have (since ¢, is an isometry)
Z(A(Lo), 8) = Z(Ay-1 (1), 8) = m(Ay1 (1)) Z(Ay-1 (1), n/2 — 5)
— m(Au(l0)) " Z(Au s (1), 02 — 5)

so the Proposition follows from the formula above for m(A,). To prove the claim,
let 6; (1 < i < n) be a Z-basis for Iy, and let (0}); be the dual basis for K with
respect to the trace form — so it is a Z-basis for I;'D, ' = I;. We then have, for
i, ke{l,...,n},

(Gu(a(0),0(01)) o = D a5(000) + Y 0;(0:6,) +75(6:6%)

1<j<r r1<j<r
= trr/Q(0if)) = dun
so ¢u(0(1lp)) and o(I;) are dual lattices in V1. O

We then have
N(Io)*Z(Au(Io), ns/2) = N(Io)* " di| " Z(Ay=1 (1), n(1 — 5)/2)
= |dp | N(1) " Z (Mg (L)

since N(I1) = |dg| ' N(Ip)~'. As the measure d*u is invariant under u — u ™!,

we obtain Zg (C, s) = |dx|"*™* Zx(C',1— s) where C' is the class of I;'. Summing
over ideal classes gives the functional equation for Zg(s). O



