
The analytic continuation of ζK(s) and the class

number formula

Let V be a real vector space of dimension n ≥ 1, (−,−) : V × V → R an inner
product with corresponding norm ‖−‖. Let {ei} be an ON basis for V , and µ (or
dv) the associated measure (for which µ(V/

∑
Zei) = 1) — it doesn’t depend on

the choice of ON basis. Write m(Λ) for the covolume of Λ (i.e., the volume of the
quotient V/Λ).

Recall that the Epstein zeta function of the quadratic lattice Λ is

G(Λ, s) =
∑

06=x∈Λ

1

‖x‖2s .

It converges absolutely for Re(s) > n/2, and:

Theorem. Z(Λ, s) = π−sΓ(s)G(Λ, s) has a meromorphic continuation to C, ana-
lytic apart from simple poles at s = 0, n/2 with residues −1, m(Λ)−1 respectively.
It satisfies the functional equation

Z(Λ, s) = m(Λ)−1Z(Λ′,
n

2
− s).

In particular, G(Λ, 0) = −1.

Let K be a number field. For a prime ideal P ⊂ oK , write qP = N(P ) for its
norm.

Definition. The Dedekind zeta function is the function

ζK(s) =
∑
I

1

N(I)s

the sum taken over non-0 ideals I ⊂ oK .

Proposition. ζK(s) =
∏

P (1 − q−sP )−1, and the product converges absolutely for
Re(s) > 1.

Proof. As formal series, the product follows from unique factorisation of ideals:
writing I =

∏
P nP gives N(I) =

∏
qnP
P , hence

ζK(s) =
∏
P

(1 + q−sP + q−2s
P + · · · )

Now #{P | p} ≤ n and qP ≥ p if P |p, so product converges by comparison with∏
p

(1− p−s)−n = (
∑
N≥1

N−s)n = ζ(s)n.
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Theorem. (i) ζK(s) has a meromorphic continuation to C whose only singularity
is a simple pole at s = 1. Moreover

lim
s→0

ζK(s)

sr1+r2−1
= −hKRK

wK
, Ress=1 ζK(s) =

2r1+r2πr2 hKRK

|dK |1/2wK
.

(ii) Write ZK(s) = ΓR(s)r1ΓC(s)r2ζK(s), where ΓR(s) = π−s/2Γ(s/2), ΓC(s) =
2(2π)−sΓ(s). Then

ZK(s) = |d|1/2−s ZK(1− s).

Here:

• hK = #Cl(K), the class number of K

• wK = #µ(K) the order of the group of roots of unity of K

• dK and RK are the discriminant and regulator of K.

We recall the definitions. Write r = r1 + r2, and let

σ1, . . . , σr1 : K ↪−→R
σr1+1 = σr+1, . . . , σr = σn : K ↪−→C

be the complex embeddings of K. Write σ = (σi, . . . σr1+r2) : K ↪−→Rr1 × Cr2 . If
{θ1, . . . , θn} is an integral basis for K, then by definition dK = det(σj(θk))

2.

Write the group of units of K as o×K = µK × 〈ε1, . . . , εr−1〉. Let ei = 1 if σi is real,
2 otherwise, so that

∣∣NK/Q(x)
∣∣ =

∏
i |σi(x)|ei .

Write
Rr,1
>0 =

{
(uj) ∈ Rr

∣∣∣ uj > 0,
∏
j

uj = 1
}
.

It is convenient to define, for ε ∈ o×K , ι(ε) = (|σj(ε)|ej)j, so that ι : o×K → Rr,1
>0.

The proof of the unit theorem shows that ker(ι) = µ(K), that ι(o×K) is a discrete
subgroup and that Rr,1

>0/ι(o
×
K) is compact. As measure on Rr,1

>0 we will always take

d×u :=
du1 · · · dur−1

u1 · · ·ur−1

.

This measure is invariant under multiplication uj 7→ bjuj, for any (bj) ∈ Rr,1
>0.

Consider the (r − 1)× r real matrix

(ej log |σk(εk)|) = (log ι(εk)j) (1 ≤ k ≤ r − 1, 1 ≤ j ≤ r).

The sum of the k-th row of this matrix is log
∣∣NK/Q(εk)

∣∣ = 0. So all of its (r −
1)× (r − 1) minors have the same absolute value, which is by definition RK . The
proof of the unit theorem shows that RK 6= 0.

Lemma. (i) The covolume of the lattice σ(oK) ⊂ Rr1×Cr2 with respect to Lebesgue

measure on Rr1 × Cr2 equals 2−r2 |dK |1/2.

(ii) The volume of Rr,1
>0/ι(o

×
K) with respect to the measure d×u equals RK.
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Proof. (i) We have det(σj(θk)) = (−2i)r2 det(∆kj), where the kth row of the matrix
(∆kj) is

(σ1(θk), . . . , σr1(θk),Reσr1+1(θk), Imσr1+1(θk), . . . , Imσr(θk))

and |det(∆kj)| = m(σ(oK)).

(ii) The isomorphism Rr,1
>0
∼−→ Rr−1, (uj) 7→ (log uj)1≤j≤r−1 transforms the mea-

sure d×u into Lebesgue measure dv1 · · · dvr−1. So the result follows from the defi-
nition of RK .

Proof of Theorem. We begin by breaking the sum up into ideal classes:

ζK(s) =
∑
C∈Cl(K)

ζK(C, s), where ζK(C, s) =
∑

I⊂oK , I∈C

N(I)−s.

Fix I0 ∈ C−1. Then C = {xI−1
0 | x ∈ I0} and

ζK(C, s) = N(I0)s
∑∗

x∈I0

∣∣NK/Q(x)
∣∣−s

where ∗ denotes the sum over a set of representatives of I0 r {0}q modulo o×K .

Recall that if K = Q then ζ(s) is the Epstein zeta function (1/2)G(Z, s/2). If
Q(
√
−D) is imaginary quadratic, then as oK is finite, the sum is just 1/wK times

the sum over all nonzero x ∈ I0, and NK/Q(x) = xx̄ is a positive definite quadratic
form. So ζK(C, s) is also an Epstein zeta function.

We saw in the lectures that, when K is real quadratic, ζK(C, s) can be written as a
1-dimensional integral of Epstein zeta functions. For general K, we will express it
as an (r− 1)-dimensional integral of Epstein zeta functions. The proof is not very
different, the main difficuly being notational. We begin with (a weighted version
of) the Hecke transform in r dimensions.

Lemma (The Hecke transform). Let aj > 0, zj ∈ C× (1 ≤ j ≤ r). Write
A =

∑
aj, B =

∏
aj. Then if Re(s) > 0,

B

A

r∏
j=1

Γ(ajs)

|zj|2ajs
= Γ(As)

∫
Rr,1
>0

1(∑r
j=1 u

1/aj
j |zj|2

)As d×u
Proof.

(RHS) =

∫ ∞
0

∫
Rr,1
>0

e−ttAs(∑r
j=1 u

1/aj
j |zj|2

)As d×u dtt
=

∫ ∞
0

∫
Rr,1
>0

exp
[
−
( r∑
j=1

u
1/aj
j |zj|2

)
t
]
tAs d×u

dt

t
.

Put yj = u
1/aj
j t. Then tA =

∏
y
aj
j and

dyj
yj

=
dt

t
+

1

aj

duj
uj

(1 ≤ j < r),
dyr
yr

=
dt

t
− 1

ar

(du1

u1

+ · · ·+ dur−1

ur−1

)
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so that
dy1

y1

· · · dyr
yr

= |J | dt
t
d×u

with

|J | =

∥∥∥∥∥∥∥∥∥
1 a−1

1 0 · · · 0
1 0 a−1

2 · · · 0
...

. . .
...

1 −a−1
r · · · · · · −a−1

r

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
1 a−1

1 0 · · · 0
1 0 a−1

2 · · · 0
...

. . .
...

A/ar 0 · · · · · · 0

∥∥∥∥∥∥∥∥∥ =
A

B

So

(RHS) =
B

A

∫
Rn
>0

exp
[
−

r∑
j=1

|zj|2 yj
] (∏

y
aj
j

)a dy1

y1

· · · dyr
yr

=
r∏
j=1

∫ ∞
0

e−|zj |
2yyajs

dy

y
=

r∏
j=1

|zj|−2ajs Γ(ajs).

For each u = (uj) ∈ Rr,1
>0, let Vu be the real vector space Rr1 × Cr2 together with

the inner product

(x, y)u =
∑

1≤j≤r1

u2
jxjyj + 2

∑
r1<j≤r

uj
(
Re(xj) Re(yj) + Im(xj) Im(yj)

)
=
∑

1≤j≤r1

u2
jxjyj +

∑
r1<j≤r

uj(xjyj + xjyj)

whose associated norm ‖−‖u is

‖(xj)‖2
u =

∑
1≤j≤r1

u2
j |xj|

2 + 2
∑

r1<j≤r

uj |xj|2 =
r∑
j=1

eju
1/ej
j |xj|2

If ε ∈ o×K then

‖σ(ε)(xj)‖2
u =

r∑
j=1

eju
2/ej
j |σj(ε)|2 |xj|2 = ‖(xj)‖2

ι(ε)u .

Because
∏
uj = 1 the measure on Vu associated to the inner product is independent

of u, and is

r1∏
j=1

dxj

r∏
j=r1+1

2dRe(xj) d Im(xj) = 2r2 × (Lebesgue measure on Rr1 × Cr2).

Let x ∈ K×. We compute the Hecke transform for

zj =

{
σj(x)√

2σj(x)
, aj =

{
1/2 (1 ≤ j ≤ r1)

1 (r1 < j ≤ r)

so that A = r1/2 + r2 = n/2, B = 2−r1 , and
∏
|zj|2ajs = 2r2s

∣∣NK/Q(x)
∣∣s, to get:
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Corollary. If x ∈ K× and Re(s) > 0 then

Γ(s/2)r1 Γ(s)r2
∣∣NK/Q(x)

∣∣−s = 2r1+r2s−1nΓ(ns/2)

∫
Rr,1
>0

1

‖σ(x)‖nsu
d×u.

Now let I0 ⊂ oK be an ideal, and let Λu = Λu(I0) be the lattice σ(I0) in the inner
product space Vu. If Re(s) > n/2 then the Epstein zeta function of Λu is

G(Λu, s) =
∑

06=x∈I0

1

‖σ(x)‖2s
u

=
∑∗

x∈I0

∑
ε∈o×K

1

‖σ(εx)‖2s
u

=
∑∗

x∈I0

∑
ε∈o×K

1

‖σ(x)‖2s
ι(ε)u

.

In particular, for every ε ∈ o×K , G(Λu, s) = G(Λι(ε)u, s), and so the integral∫
Rn,1
>0 /ι(o

×
K)

G
(

Λu,
ns

2

)
d×u

is well-defined and equals∑∗

x∈I0

∫
Rn,1
>0 /ι(o

×
K)

∑
ε∈o×K

1

‖σ(x)‖nsι(ε)u
d×u = wK

∑∗

x∈I0

∫
Rn,1
>0 /ι(o

×
K)

∑
δ∈ι(o×K)

1

‖σ(x)‖nsδu
d×u

= wK
∑∗

x∈I0

∫
Rn,1
>0

1

‖σ(x)‖nsu
d×u

using in the first equality the fact that ker(ι) = µ(K), and in the second the
invariance of d×u under multiplication u 7→ δu. If apply the Corollary to this
last expression we obtain the desired representation of ζK(C, s) as an integral of
Epstein zeta functions:

ζk(C, s) = N(I0)s
2r1+r2s−1nΓ(ns/2)

wKΓ(s/2)r1 Γ(s)rs

∫
Rr,1
>0/ι(o

×
K)

G
(

Λu,
ns

2

)
d×u.

=
2r−1nN(I0)s

wKΓR(s)r1ΓC(s)r2

∫
Rr,1
>0/ι(o

×
K)

Z
(

Λu,
ns

2

)
d×u.

As Z(Λu, s) has an analytic continuation to Cr {n/2, 0}, and Γ(s) has no zeroes,
this gives the desired analytic continuation of ζK(C, s) away from s = 1, 0.

At s = 0, G(Λu, s) is holomorphic and G(Λu, 0) = −1. So∫
Rr,1
>0/ι(o

×
K)

G
(

Λu,
ns

2

)
d×u

∣∣∣∣
s=0

= −
∫
Rr,1
>0/ι(o

×
K)

d×u = −RK .

Therefore

ζK(C, s) ∼
s=0

1× 2r1−1n(ns/2)−1

wK (s/2)−r1s−r2
(−RK) = −RK

wK
sr−1

as required.

Finally compute at s = 1. Recalling that the measure on Vu is 2r2 times Lebesgue
measure, we have m(Λu) = N(I0) |dK |1/2, and Z(Λu, ns/2) = m(Λu)

−1(ns/2 −
n/2)−1 + (analytic). Therefore∫

Rr,1
>0/ι(o

×
K)

Z
(

Λu,
ns

2

)
d×u =

2RK

N(I0) |dK |1/2 n(s− 1)
+ (analytic at s = 1).
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Using ΓR(1) = π−1/2Γ(1/2) = 1 and ΓC(1) = 2(2π)−1Γ(1) = π−1, this becomes

ζK(C, s) ∼
s=1

2rπr2

wk |dK |1/2 (s− 1)
.

Summing over ideal classes then gives the result.

To prove the functional equation, we have

ZK(C, s) := ΓR(s)r1ΓC(s)r2ζK(C, s) =
2r−1n

wK

∫
Rr,1
>0/ι(o

×
K)

N(I0)sZ
(

Λu(I0),
ns

2

)
d×u.

Recall the definition of the different ideal DK of K: it is the ideal whose inverse
is the dual of oK under the trace form:

D−1
K :={y ∈ K | ∀x ∈ K, trK/Q(xy) ∈ Z}.

The norm of DK is |dK |.

Proposition 0.1. Z(Λu(I0), s) = N(I0)−1 |dK |−1/2 Z(Λu−1(I1), n/2 − s), where
I1 = I−1

0 D−1
K .

Proof. We need to identify the dual lattice to Λu(I0). Define a map φu : Vu
∼−→ Vu−1

by φu(x)j = u
−1/ej
j xj. From the definition of the inner product on Vu, this map is

an isometry between Vu and Vu−1 , and for x ∈ Vu, y ∈ Vu−1 ,(
φu(x), y

)
u−1 =

r1∑
j=1

xjyj +
r∑

j=r1+1

xjyj + xjyj.

Claim: φu : Λu(I0) ∼−→ Λu−1(I1)′.

Granted this, we have (since φu is an isometry)

Z(Λu(I0), s) = Z(Λu−1(I1)′, s) = m(Λu−1(I1)′)−1Z(Λu−1(I1), n/2− s)
= m(Λu(I0))−1Z(Λu−1(I1), n/2− s)

so the Proposition follows from the formula above for m(Λu). To prove the claim,
let θi (1 ≤ i ≤ n) be a Z-basis for I0, and let (θ′i)i be the dual basis for K with
respect to the trace form — so it is a Z-basis for I−1

0 D−1
k = I1. We then have, for

i, k ∈ {1, . . . , n},(
φu(σ(θi)), σ(θ′k)

)
u−1 =

∑
1≤j≤r1

σj(θiθ
′
k) +

∑
r1<j≤r

σj(θiθ
′
k) + σj(θiθ

′
k)

= trK/Q(θiθ
′
k) = δik

so φu(σ(I0)) and σ(I1) are dual lattices in Vu−1 .

We then have

N(I0)sZ(Λu(I0), ns/2) = N(I0)s−1 |dK |−1/2 Z(Λu−1(I1), n(1− s)/2)

= |dK |1/2−sN(I1)1−sZ(Λu−1(I1)

since N(I1) = |dK |−1N(I0)−1. As the measure d×u is invariant under u 7→ u−1,

we obtain ZK(C, s) = |dK |1/2−s ZK(C ′, 1−s) where C ′ is the class of I−1
1 . Summing

over ideal classes gives the functional equation for ZK(s).
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