

The analytic continuation of $\zeta_K(s)$ and the class number formula

Let V be a real vector space of dimension $n \geq 1$, $(-, -): V \times V \rightarrow \mathbb{R}$ an inner product with corresponding norm $\|-\|$. Let $\{e_i\}$ be an ON basis for V , and μ (or dv) the associated measure (for which $\mu(V/\sum \mathbb{Z}e_i) = 1$) — it doesn't depend on the choice of ON basis. Write $m(\Lambda)$ for the covolume of Λ (i.e., the volume of the quotient V/Λ).

Recall that the **Epstein zeta function** of the quadratic lattice Λ is

$$G(\Lambda, s) = \sum_{0 \neq x \in \Lambda} \frac{1}{\|x\|^{2s}}.$$

It converges absolutely for $\operatorname{Re}(s) > n/2$, and:

Theorem. $Z(\Lambda, s) = \pi^{-s} \Gamma(s) G(\Lambda, s)$ has a meromorphic continuation to \mathbb{C} , analytic apart from simple poles at $s = 0, n/2$ with residues $-1, m(\Lambda)^{-1}$ respectively. It satisfies the **functional equation**

$$Z(\Lambda, s) = m(\Lambda)^{-1} Z(\Lambda', \frac{n}{2} - s).$$

In particular, $G(\Lambda, 0) = -1$.

Let K be a number field. For a prime ideal $P \subset \mathfrak{o}_K$, write $q_P = N(P)$ for its norm.

Definition. The *Dedekind zeta function* is the function

$$\zeta_K(s) = \sum_I \frac{1}{N(I)^s}$$

the sum taken over non-0 ideals $I \subset \mathfrak{o}_K$.

Proposition. $\zeta_K(s) = \prod_P (1 - q_P^{-s})^{-1}$, and the product converges absolutely for $\operatorname{Re}(s) > 1$.

Proof. As formal series, the product follows from unique factorisation of ideals: writing $I = \prod P^{n_P}$ gives $N(I) = \prod q_P^{n_P}$, hence

$$\zeta_K(s) = \prod_P (1 + q_P^{-s} + q_P^{-2s} + \dots)$$

Now $\#\{P \mid p\} \leq n$ and $q_P \geq p$ if $P|p$, so product converges by comparison with

$$\prod_p (1 - p^{-s})^{-n} = \left(\sum_{N \geq 1} N^{-s} \right)^n = \zeta(s)^n.$$

□

Theorem. (i) $\zeta_K(s)$ has a meromorphic continuation to \mathbb{C} whose only singularity is a simple pole at $s = 1$. Moreover

$$\lim_{s \rightarrow 0} \frac{\zeta_K(s)}{s^{r_1+r_2-1}} = -\frac{h_K R_K}{w_K}, \quad \text{Res}_{s=1} \zeta_K(s) = \frac{2^{r_1+r_2} \pi^{r_2} h_K R_K}{|d_K|^{1/2} w_K}.$$

(ii) Write $Z_K(s) = \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$, where $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2)$, $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$. Then

$$Z_K(s) = |d|^{1/2-s} Z_K(1-s).$$

Here:

- $h_K = \#Cl(K)$, the *class number* of K
- $w_K = \#\mu(K)$ the order of the group of roots of unity of K
- d_K and R_K are the *discriminant* and *regulator* of K .

We recall the definitions. Write $r = r_1 + r_2$, and let

$$\begin{aligned} \sigma_1, \dots, \sigma_{r_1} : K &\hookrightarrow \mathbb{R} \\ \sigma_{r_1+1} = \bar{\sigma}_{r_1+1}, \dots, \sigma_r = \bar{\sigma}_r : K &\hookrightarrow \mathbb{C} \end{aligned}$$

be the complex embeddings of K . Write $\sigma = (\sigma_i, \dots, \sigma_{r_1+r_2}) : K \hookrightarrow \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$. If $\{\theta_1, \dots, \theta_n\}$ is an integral basis for K , then by definition $d_K = \det(\sigma_j(\theta_k))^2$.

Write the group of units of K as $\mathfrak{o}_K^\times = \mu_K \times \langle \varepsilon_1, \dots, \varepsilon_{r-1} \rangle$. Let $e_i = 1$ if σ_i is real, 2 otherwise, so that $|N_{K/\mathbb{Q}}(x)| = \prod_i |\sigma_i(x)|^{e_i}$.

Write

$$\mathbb{R}_{>0}^{r,1} = \left\{ (u_j) \in \mathbb{R}^r \mid u_j > 0, \prod_j u_j = 1 \right\}.$$

It is convenient to define, for $\varepsilon \in \mathfrak{o}_K^\times$, $\iota(\varepsilon) = (|\sigma_j(\varepsilon)|^{e_j})_j$, so that $\iota : \mathfrak{o}_K^\times \rightarrow \mathbb{R}_{>0}^{r,1}$. The proof of the unit theorem shows that $\ker(\iota) = \mu(K)$, that $\iota(\mathfrak{o}_K^\times)$ is a discrete subgroup and that $\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)$ is compact. As measure on $\mathbb{R}_{>0}^{r,1}$ we will always take

$$d^\times u := \frac{du_1 \cdots du_{r-1}}{u_1 \cdots u_{r-1}}.$$

This measure is invariant under multiplication $u_j \mapsto b_j u_j$, for any $(b_j) \in \mathbb{R}_{>0}^{r,1}$.

Consider the $(r-1) \times r$ real matrix

$$(e_j \log |\sigma_k(\varepsilon_k)|) = (\log \iota(\varepsilon_k))_j \quad (1 \leq k \leq r-1, 1 \leq j \leq r).$$

The sum of the k -th row of this matrix is $\log |N_{K/\mathbb{Q}}(\varepsilon_k)| = 0$. So all of its $(r-1) \times (r-1)$ minors have the same absolute value, which is by definition R_K . The proof of the unit theorem shows that $R_K \neq 0$.

Lemma. (i) The covolume of the lattice $\sigma(\mathfrak{o}_K) \subset \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ with respect to Lebesgue measure on $\mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ equals $2^{-r_2} |d_K|^{1/2}$.

(ii) The volume of $\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)$ with respect to the measure $d^\times u$ equals R_K .

Proof. (i) We have $\det(\sigma_j(\theta_k)) = (-2i)^{r_2} \det(\Delta_{kj})$, where the k^{th} row of the matrix (Δ_{kj}) is

$$(\sigma_1(\theta_k), \dots, \sigma_{r_1}(\theta_k), \operatorname{Re} \sigma_{r_1+1}(\theta_k), \operatorname{Im} \sigma_{r_1+1}(\theta_k), \dots, \operatorname{Im} \sigma_r(\theta_k))$$

and $|\det(\Delta_{kj})| = m(\sigma(\mathfrak{o}_K))$.

(ii) The isomorphism $\mathbb{R}_{>0}^{r,1} \xrightarrow{\sim} \mathbb{R}^{r-1}$, $(u_j) \mapsto (\log u_j)_{1 \leq j \leq r-1}$ transforms the measure $d^\times u$ into Lebesgue measure $dv_1 \cdots dv_{r-1}$. So the result follows from the definition of R_K . \square

Proof of Theorem. We begin by breaking the sum up into ideal classes:

$$\zeta_K(s) = \sum_{\mathcal{C} \in Cl(K)} \zeta_K(\mathcal{C}, s), \quad \text{where } \zeta_K(\mathcal{C}, s) = \sum_{I \subset \mathfrak{o}_K, I \in \mathcal{C}} N(I)^{-s}.$$

Fix $I_0 \in \mathcal{C}^{-1}$. Then $\mathcal{C} = \{xI_0^{-1} \mid x \in I_0\}$ and

$$\zeta_K(\mathcal{C}, s) = N(I_0)^s \sum_{x \in I_0}^* |N_{K/\mathbb{Q}}(x)|^{-s}$$

where * denotes the sum over a set of representatives of $I_0 \setminus \{0\}q$ modulo \mathfrak{o}_K^\times .

Recall that if $K = \mathbb{Q}$ then $\zeta(s)$ is the Epstein zeta function $(1/2)G(\mathbb{Z}, s/2)$. If $\mathbb{Q}(\sqrt{-D})$ is imaginary quadratic, then as \mathfrak{o}_K is finite, the sum is just $1/w_K$ times the sum over all nonzero $x \in I_0$, and $N_{K/\mathbb{Q}}(x) = x\bar{x}$ is a positive definite quadratic form. So $\zeta_K(\mathcal{C}, s)$ is also an Epstein zeta function.

We saw in the lectures that, when K is real quadratic, $\zeta_K(\mathcal{C}, s)$ can be written as a 1-dimensional integral of Epstein zeta functions. For general K , we will express it as an $(r-1)$ -dimensional integral of Epstein zeta functions. The proof is not very different, the main difficulty being notational. We begin with (a weighted version of) the Hecke transform in r dimensions.

Lemma (The Hecke transform). *Let $a_j > 0$, $z_j \in \mathbb{C}^\times$ ($1 \leq j \leq r$). Write $A = \sum a_j$, $B = \prod a_j$. Then if $\operatorname{Re}(s) > 0$,*

$$\frac{B}{A} \prod_{j=1}^r \frac{\Gamma(a_j s)}{|z_j|^{2a_j s}} = \Gamma(As) \int_{\mathbb{R}_{>0}^{r,1}} \frac{1}{\left(\sum_{j=1}^r u_j^{1/a_j} |z_j|^2\right)^{As}} d^\times u$$

Proof.

$$\begin{aligned} (\text{RHS}) &= \int_0^\infty \int_{\mathbb{R}_{>0}^{r,1}} \frac{e^{-t} t^{As}}{\left(\sum_{j=1}^r u_j^{1/a_j} |z_j|^2\right)^{As}} d^\times u \frac{dt}{t} \\ &= \int_0^\infty \int_{\mathbb{R}_{>0}^{r,1}} \exp\left[-\left(\sum_{j=1}^r u_j^{1/a_j} |z_j|^2\right)t\right] t^{As} d^\times u \frac{dt}{t}. \end{aligned}$$

Put $y_j = u_j^{1/a_j} t$. Then $t^A = \prod y_j^{a_j}$ and

$$\frac{dy_j}{y_j} = \frac{dt}{t} + \frac{1}{a_j} \frac{du_j}{u_j} \quad (1 \leq j < r), \quad \frac{dy_r}{y_r} = \frac{dt}{t} - \frac{1}{a_r} \left(\frac{du_1}{u_1} + \cdots + \frac{du_{r-1}}{u_{r-1}} \right)$$

so that

$$\frac{dy_1}{y_1} \dots \frac{dy_r}{y_r} = |J| \frac{dt}{t} d^\times u$$

with

$$|J| = \begin{vmatrix} 1 & a_1^{-1} & 0 & \dots & 0 \\ 1 & 0 & a_2^{-1} & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 1 & -a_r^{-1} & \dots & \dots & -a_r^{-1} \end{vmatrix} = \begin{vmatrix} 1 & a_1^{-1} & 0 & \dots & 0 \\ 1 & 0 & a_2^{-1} & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ A/a_r & 0 & \dots & \dots & 0 \end{vmatrix} = \frac{A}{B}$$

So

$$\begin{aligned} (\text{RHS}) &= \frac{B}{A} \int_{\mathbb{R}_{>0}^n} \exp \left[- \sum_{j=1}^r |z_j|^2 y_j \right] \left(\prod y_j^{a_j} \right)^a \frac{dy_1}{y_1} \dots \frac{dy_r}{y_r} \\ &= \prod_{j=1}^r \int_0^\infty e^{-|z_j|^2 y_j} y_j^{a_j s} \frac{dy}{y} = \prod_{j=1}^r |z_j|^{-2a_j s} \Gamma(a_j s). \end{aligned} \quad \square$$

For each $u = (u_j) \in \mathbb{R}_{>0}^{r_1}$, let V_u be the real vector space $\mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ together with the inner product

$$\begin{aligned} (\underline{x}, \underline{y})_u &= \sum_{1 \leq j \leq r_1} u_j^2 x_j y_j + 2 \sum_{r_1 < j \leq r} u_j (\operatorname{Re}(x_j) \operatorname{Re}(y_j) + \operatorname{Im}(x_j) \operatorname{Im}(y_j)) \\ &= \sum_{1 \leq j \leq r_1} u_j^2 x_j y_j + \sum_{r_1 < j \leq r} u_j (x_j \bar{y}_j + \bar{x}_j y_j) \end{aligned}$$

whose associated norm $\|-\|_u$ is

$$\|(x_j)\|_u^2 = \sum_{1 \leq j \leq r_1} u_j^2 |x_j|^2 + 2 \sum_{r_1 < j \leq r} u_j |x_j|^2 = \sum_{j=1}^r e_j u_j^{1/e_j} |x_j|^2$$

If $\varepsilon \in \mathfrak{o}_K^\times$ then

$$\|\sigma(\varepsilon)(x_j)\|_u^2 = \sum_{j=1}^r e_j u_j^{2/e_j} |\sigma_j(\varepsilon)|^2 |x_j|^2 = \|(x_j)\|_{\iota(\varepsilon)u}^2.$$

Because $\prod u_j = 1$ the measure on V_u associated to the inner product is independent of u , and is

$$\prod_{j=1}^{r_1} dx_j \prod_{j=r_1+1}^r 2d \operatorname{Re}(x_j) d \operatorname{Im}(x_j) = 2^{r_2} \times (\text{Lebesgue measure on } \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}).$$

Let $x \in K^\times$. We compute the Hecke transform for

$$z_j = \begin{cases} \sigma_j(x) \\ \sqrt{2} \sigma_j(x) \end{cases}, \quad a_j = \begin{cases} 1/2 & (1 \leq j \leq r_1) \\ 1 & (r_1 < j \leq r) \end{cases}$$

so that $A = r_1/2 + r_2 = n/2$, $B = 2^{-r_1}$, and $\prod |z_j|^{2a_j s} = 2^{r_2 s} |N_{K/\mathbb{Q}}(x)|^s$, to get:

Corollary. *If $x \in K^\times$ and $\operatorname{Re}(s) > 0$ then*

$$\Gamma(s/2)^{r_1} \Gamma(s)^{r_2} |N_{K/\mathbb{Q}}(x)|^{-s} = 2^{r_1+r_2s-1} n \Gamma(ns/2) \int_{\mathbb{R}_{>0}^{r,1}} \frac{1}{\|\sigma(x)\|_u^{ns}} d^\times u. \quad \square$$

Now let $I_0 \subset \mathfrak{o}_K$ be an ideal, and let $\Lambda_u = \Lambda_u(I_0)$ be the lattice $\sigma(I_0)$ in the inner product space V_u . If $\operatorname{Re}(s) > n/2$ then the Epstein zeta function of Λ_u is

$$G(\Lambda_u, s) = \sum_{0 \neq x \in I_0} \frac{1}{\|\sigma(x)\|_u^{2s}} = \sum_{x \in I_0}^* \sum_{\varepsilon \in \mathfrak{o}_K^\times} \frac{1}{\|\sigma(\varepsilon x)\|_u^{2s}} = \sum_{x \in I_0}^* \sum_{\varepsilon \in \mathfrak{o}_K^\times} \frac{1}{\|\sigma(x)\|_{\iota(\varepsilon)u}^{2s}}.$$

In particular, for every $\varepsilon \in \mathfrak{o}_K^\times$, $G(\Lambda_u, s) = G(\Lambda_{\iota(\varepsilon)u}, s)$, and so the integral

$$\int_{\mathbb{R}_{>0}^{n,1}/\iota(\mathfrak{o}_K^\times)} G\left(\Lambda_u, \frac{ns}{2}\right) d^\times u$$

is well-defined and equals

$$\begin{aligned} \sum_{x \in I_0}^* \int_{\mathbb{R}_{>0}^{n,1}/\iota(\mathfrak{o}_K^\times)} \sum_{\varepsilon \in \mathfrak{o}_K^\times} \frac{1}{\|\sigma(x)\|_{\iota(\varepsilon)u}^{ns}} d^\times u &= w_K \sum_{x \in I_0}^* \int_{\mathbb{R}_{>0}^{n,1}/\iota(\mathfrak{o}_K^\times)} \sum_{\delta \in \iota(\mathfrak{o}_K^\times)} \frac{1}{\|\sigma(x)\|_{\delta u}^{ns}} d^\times u \\ &= w_K \sum_{x \in I_0}^* \int_{\mathbb{R}_{>0}^{n,1}} \frac{1}{\|\sigma(x)\|_u^{ns}} d^\times u \end{aligned}$$

using in the first equality the fact that $\ker(\iota) = \mu(K)$, and in the second the invariance of $d^\times u$ under multiplication $u \mapsto \delta u$. If apply the Corollary to this last expression we obtain the desired representation of $\zeta_K(\mathcal{C}, s)$ as an integral of Epstein zeta functions:

$$\begin{aligned} \zeta_k(\mathcal{C}, s) &= N(I_0)^s \frac{2^{r_1+r_2s-1} n \Gamma(ns/2)}{w_K \Gamma(s/2)^{r_1} \Gamma(s)^{r_2}} \int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} G\left(\Lambda_u, \frac{ns}{2}\right) d^\times u. \\ &= \frac{2^{r-1} n N(I_0)^s}{w_K \Gamma(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2}} \int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} Z\left(\Lambda_u, \frac{ns}{2}\right) d^\times u. \end{aligned}$$

As $Z(\Lambda_u, s)$ has an analytic continuation to $\mathbb{C} \setminus \{n/2, 0\}$, and $\Gamma(s)$ has no zeroes, this gives the desired analytic continuation of $\zeta_K(\mathcal{C}, s)$ away from $s = 1, 0$.

At $s = 0$, $G(\Lambda_u, s)$ is holomorphic and $G(\Lambda_u, 0) = -1$. So

$$\int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} G\left(\Lambda_u, \frac{ns}{2}\right) d^\times u \Big|_{s=0} = - \int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} d^\times u = -R_K.$$

Therefore

$$\zeta_K(\mathcal{C}, s) \underset{s=0}{\sim} 1 \times \frac{2^{r_1-1} n (ns/2)^{-1}}{w_K (s/2)^{-r_1} s^{-r_2}} (-R_K) = -\frac{R_K}{w_K} s^{r-1}$$

as required.

Finally compute at $s = 1$. Recalling that the measure on V_u is 2^{r_2} times Lebesgue measure, we have $m(\Lambda_u) = N(I_0) |d_K|^{1/2}$, and $Z(\Lambda_u, ns/2) = m(\Lambda_u)^{-1} (ns/2 - n/2)^{-1} + (\text{analytic})$. Therefore

$$\int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} Z\left(\Lambda_u, \frac{ns}{2}\right) d^\times u = \frac{2R_K}{N(I_0) |d_K|^{1/2} n(s-1)} + (\text{analytic at } s = 1).$$

Using $\Gamma_{\mathbb{R}}(1) = \pi^{-1/2}\Gamma(1/2) = 1$ and $\Gamma_{\mathbb{C}}(1) = 2(2\pi)^{-1}\Gamma(1) = \pi^{-1}$, this becomes

$$\zeta_K(\mathcal{C}, s) \underset{s=1}{\sim} \frac{2^r \pi^{r^2}}{w_K |d_K|^{1/2} (s-1)}.$$

Summing over ideal classes then gives the result.

To prove the functional equation, we have

$$Z_K(\mathcal{C}, s) := \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(\mathcal{C}, s) = \frac{2^{r-1} n}{w_K} \int_{\mathbb{R}_{>0}^{r,1}/\iota(\mathfrak{o}_K^\times)} N(I_0)^s Z\left(\Lambda_u(I_0), \frac{ns}{2}\right) d^\times u.$$

Recall the definition of the *different* ideal \mathcal{D}_K of K : it is the ideal whose inverse is the dual of \mathfrak{o}_K under the trace form:

$$\mathcal{D}_K^{-1} := \{y \in K \mid \forall x \in K, \text{tr}_{K/\mathbb{Q}}(xy) \in \mathbb{Z}\}.$$

The norm of \mathcal{D}_K is $|d_K|$.

Proposition 0.1. $Z(\Lambda_u(I_0), s) = N(I_0)^{-1} |d_K|^{-1/2} Z(\Lambda_{u^{-1}}(I_1), n/2 - s)$, where $I_1 = I_0^{-1} \mathcal{D}_K^{-1}$.

Proof. We need to identify the dual lattice to $\Lambda_u(I_0)$. Define a map $\phi_u: V_u \xrightarrow{\sim} V_{u^{-1}}$ by $\phi_u(\underline{x})_j = u_j^{-1/e_j} \bar{x}_j$. From the definition of the inner product on V_u , this map is an isometry between V_u and $V_{u^{-1}}$, and for $\underline{x} \in V_u$, $\underline{y} \in V_{u^{-1}}$,

$$(\phi_u(\underline{x}), \underline{y})_{u^{-1}} = \sum_{j=1}^{r_1} x_j y_j + \sum_{j=r_1+1}^r x_j y_j + \overline{x_j y_j}.$$

Claim: $\phi_u: \Lambda_u(I_0) \xrightarrow{\sim} \Lambda_{u^{-1}}(I_1)'$.

Granted this, we have (since ϕ_u is an isometry)

$$\begin{aligned} Z(\Lambda_u(I_0), s) &= Z(\Lambda_{u^{-1}}(I_1)', s) = m(\Lambda_{u^{-1}}(I_1)')^{-1} Z(\Lambda_{u^{-1}}(I_1), n/2 - s) \\ &= m(\Lambda_u(I_0))^{-1} Z(\Lambda_{u^{-1}}(I_1), n/2 - s) \end{aligned}$$

so the Proposition follows from the formula above for $m(\Lambda_u)$. To prove the claim, let θ_i ($1 \leq i \leq n$) be a \mathbb{Z} -basis for I_0 , and let $(\theta'_i)_i$ be the dual basis for K with respect to the trace form — so it is a \mathbb{Z} -basis for $I_0^{-1} \mathcal{D}_K^{-1} = I_1$. We then have, for $i, k \in \{1, \dots, n\}$,

$$\begin{aligned} (\phi_u(\sigma(\theta_i)), \sigma(\theta'_k))_{u^{-1}} &= \sum_{1 \leq j \leq r_1} \sigma_j(\theta_i \theta'_k) + \sum_{r_1 < j \leq r} \sigma_j(\theta_i \theta'_k) + \overline{\sigma_j(\theta_i \theta'_k)} \\ &= \text{tr}_{K/\mathbb{Q}}(\theta_i \theta'_k) = \delta_{ik} \end{aligned}$$

so $\phi_u(\sigma(I_0))$ and $\sigma(I_1)$ are dual lattices in $V_{u^{-1}}$. \square

We then have

$$\begin{aligned} N(I_0)^s Z(\Lambda_u(I_0), ns/2) &= N(I_0)^{s-1} |d_K|^{-1/2} Z(\Lambda_{u^{-1}}(I_1), n(1-s)/2) \\ &= |d_K|^{1/2-s} N(I_1)^{1-s} Z(\Lambda_{u^{-1}}(I_1) \end{aligned}$$

since $N(I_1) = |d_K|^{-1} N(I_0)^{-1}$. As the measure $d^\times u$ is invariant under $u \mapsto u^{-1}$, we obtain $Z_K(\mathcal{C}, s) = |d_K|^{1/2-s} Z_K(\mathcal{C}', 1-s)$ where \mathcal{C}' is the class of I_1^{-1} . Summing over ideal classes gives the functional equation for $Z_K(s)$. \square