5 Eisenstein series

The series Gy (1) are the simplest examples. The basic Eisenstein series is a non-
holomorphic modular form:

Definition. The real-analytic Eisenstein series is the function

Girs) =Y —L . Re(s)>1, Im(r) >0

~ |mT + n|2s

(The summation is over (m,n) € Z* — {(0,0}.) This is a function of two variables
T, S.

If we divide each pair by its HCF, we can write

Z = Z — 2((2s)E(7, s)

|mT +nf*

where

Proposition 5.1.

where

15 the stabiliser of co.
Proof. As Im~(7) = y/|er +d|* it’s enough to check that v — (c,d) defines a
bijection

Lo\ =5 {(m,n) € Z* | ged(m,n) = 1}/(m,n) ~ (—m, —n)
which is elementary. O]
Here are some basic properties of the Eisenstein series.

Proposition 5.2. (i) G(7,s) is holomorphic as a function of s for Re(s) > 1.
(ii) For every v € I' = SLy(Z), G(~(1),s) = G(7,s).
(iii) AG(1,s) = s(1 — s)G(1,s).
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Here
0? 0?

e .
A=y (axﬁayz)

is the hyperbolic Laplacian, or Laplace-Beltrami operator.

. . 82
Lemma. (i) A = —4y°55—.

(ii) A is SLy(Z)-invariant: for all v € SLy(Z), A(f(v(1)) = (Af)(y(7)).

Proof. (i) Follows from 0/0t = 1/2(0/0x —i0/0y).

(ii) Enough to check this for v: 7 — 74+ 1 = (z + 1) + ¢y, which is obvious, and
for v: 77— —1/7:

1o1\\ .11 0 (1 1

8 <f (‘?‘%)) =W g <—;’—%)
1\*> 8%f 1 1
=4l (—;) oror (—;,—;)

In fact A is invariant under SLy(R), since it is generated by the matrices

) (1) eem

Proof of 5.2. (i) follows from the uniform convergence of the series on sets Re(s) >
1+ € (Propn.1.2).

(i) This is obvious from the formula (5.1).

(iii) For fixed s with Re(s) > 1, the partial derivatives (of any order) of the series
defining G(r, s) are easily seen to be uniformly convergent on compact sets. So

differentiating termwise and using the I'-invariance of A and ([5.1)), it is enough to
check that AIm(7)® = s(1 — s) Im(7)® which is trivial. O

Let A, = y~/2(Z ® Z7) C C. Then evidently G(7,s) = Ex_(s). So we can apply
our results about Epstein zeta functions to G(7, s). First we note:

Lemma 5.3. The dual lattice of A, is iA;, and m(A,) = 1.

Proof. Let w1 = 1/y"2, wy = 7/y'/? be the basis for A,, and o} = it/y"/?,
wh =i/y'/?. Writing out in terms of the orthonormal basis (1,4) for C, it is simple
to check these are dual bases. The second statement follows from the first. O

Notice that if A C R™ and g € SO(n), then Ex(s) = Ey4u(s) by the definition. So
Eir.(s) = Ep (s) = G(T, ).
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Theorem 5.4. (i) Let £(1,s) = n*I'(s)G(7,s). Then E(,s) has a meromorphic
continuation to all s € C with two simple poles at s = 1,0 with residue 1, —1, and
satisfies E(1,1 —s) = (T, 5).

(ii)) G(1,s) — w/(s — 1) is a C* function of T for every s € C, and we have
AG = s(1 —s)G.

Proof. (i) This follows from applied to A, .

(ii) The Mellin transform gives

E(r,s) = oo + /1m(@AT(it) -1t + tls)%

1 TN pritmenf?fy s g1-sy O
— TIw|mT—+n tS t s\ 7
s(s—1) +/1 ; ‘ (#+7) t

and we can differentiate under the integral sign (with respect to z and y) arbitrarily
often and keep convergence. So AE — s(1 — s)€ is analytic for s € C — {0, 1} and
since it vanishes for Re(s) > 1, it vanishes for all s.

As G(r,s) = mT'(s)'&(7, s), the analogous results for G follow. O

Remark: In fact G is real analytic as a function of 7.

The constant term

As G(7, s) is invariant under 7 — 7 + 1 we can write it as a Fourier series:

G(r,s) = Z A, (y, s)e*™me

neL

(absolutely convergent since G is C*°) where

1
An(y,s) = / G(z + iy, s)e” 2™ dg.
0

The constant term Ay(y, s) is particularly important. Unlike the case of the holo-
morphic Gy, the constant term receives contributions both from the terms m = 0
and the terms m # 0 in the sum.

Theorem 5.5. The constant term of E(7,s) is
7T (s)Ao(y, s) = 26(2s)y" +26(2s — 1)y' ™

Ap must be invariant under s — 1 — s, which is compatible with the functional
equation for ((s).
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Proof. By analytic continuation we may assume Re(s) > 1, and then we have
1 1
T Aolys) = [ i s) o= [ MO ()~ 1) ds
0 0

1 00
, dt
N / / Z/ emitmTnl*tly s 2 gy
o Jo t
by the Mellin transform formula. First compute the sum of the terms with m = 0.
This is -
M (2 Y ety s) = 27 T(s)((25)y°
n=1

(we use z for the variable in the Mellin transform). Now consider terms with
m # 0. The sum is invariant under m +— —m so this is the Mellin transform of

) i /1 Zewi|mr+n\2z/y dr = 2 i Z /n/erl em’|m7’\22/y dr
m=1"0 n/m

nez m=1 neZ

=9 Z m/ emim2/y gy — 9 Z m/ emim? (@ 2/yt2y) o
m=1 -0 m=1 -0

9] 00
2 2.2
—9 § me™m yz/ emimie z/y dr.
m=1 —

When z = it the integral on the right hand side is m~'(y/t)"/?, so the Mellin
transform is

O rmutae 120t - 1 .
2y1/2/ Z e yty 1/2? _ 2y1/2 Z F(S . 5)(7_[_7,),L2y)1/2
0 m=1 m=1

25 — 1
- 2y1*sw*<28*l>/2r(87)g(25 1) = 26(25 — 1)yt

Corollary. G(7,s) — Ao(y, s) is an entire function of s.

Proof. From the analytic continuation of £(s) it is easy to see that Ag(y, s) has
simple poles at s = 1, 0 with residues 1, —1, and is analytic elsewhere. So the
result follows from [5.4 O

The nonconstant terms

One can compute the entire Fourier expansion in closed terms (see the notes from
2008) using Bessel functions. Here we’ll just compute some asymptotics which will
enable us to obtain nice formulae for G at s = 0 and 1.
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From the computation of the constant term, we have:

G(r,s) = 2£(2s)y° —ZZZ

m>1 nez ’mT + n|

For fixed m > 1, the inner sum is invariant under 7 +— 7+ 1/m, so its k-th Fourier
coefficient vanishes unless m|k. So if k£ # 0 and Re(s) > 1,

/ E E —27rzka: dr
1<mlk n€Z |mT +n[*

14+n/m —27rzkac

=2y Z Z/ dx (substituting x — = — %)

1<mlk neZ ‘mT‘

—2mikx

=2y 01_25(|k|)](—27rk‘y) (writing = = zy)

I(a,s):/oo(idz

BERNE

where

for Re(s) > 1

Lemma. Let « € R —{0}. Then I(«,s) extends to an entire function of s, and
for Im(s) in a compact subset K C R,

1I(a,s)| < ce /4
for a constant cx depending only on K.

Proof. Replacing z by —z we may assume « > 0. Since Re(s) > 1, by Jordan’s
Lemma, I(a,s) = [0 00, €%/ (2% +1)°dz where C) = [~1 + oo, —1 +i/2],
Cy=[-1+14/2,1+14/2], C3 = [1+1i/2,1+icc], and we take the branch of (22 +1)*
which is analytic outside {z =iy | |y| > 1}. The following calculation shows that,
for any compact K C R, the integral converges absolutely uniformly for Re(s) € K
(so defines an entire function of s) and satisfies the estimate of the lemma.

Let 0 = Re(s). Then
267a/2

/02 = By

/OO efay d 0o efay d
< . s ay = / AR R
12 (1 +1dy)* + 1] 12 (Yt +4)°/?

0 e—a/4
< / cle—ay/Q dy — = C//e—oz/4
1/2 /2

1o %1

(224+1)°

—a/2

< 2sup
Cy

= ce

and

J.
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for constants ¢, ¢, ¢’ depending continuously on o. H

It follows that
|Ar(y, 8)| < 2|y*o1_as(|k])| cxce ™ H/2

and the same argument applies to the derivatives of G(7,s) (with respect to any
of z, y, s).

Corollary. The function G(t,s) — Ao(y, s), along with its derivatives, is bounded
by e~ as y — oo, for some ¢ = c(s) > 0.

Application: the Kronecker Limit Formula (KLF)

We have £(7,s) = 7 °T'(s)G(1,s) ~ —1 at s = 0, so G(7,s) is analytic at s = 0
and G(7,0) = —1. The KLF computes the derivative G'(7,0) (here and below ’
denotes s-derivative).

Theorem 5.6. (KLF at s =0).
G'(r,0) = 4¢'(0) — log(y [A(n)]"°).
In fact one can show from the functional equation for (s) that ¢'(0) = —(1/2) log 2.

Proof. (cf. Cambridge Ph.D. thesis of C.Chen). We will prove some characterising
properties of each side, which will imply the equality. First, we have

§(2 — 2s)

Ao(y, s) = 2y°C(2s) +2y'~° T (s)

At s = 0, the first term has Taylor series

2¢(0) + s(21logy ¢(0) +4¢'(0)) + O(s*) = —1 4+ 5(4¢'(0) — logy) + O(s?)

since ((0) = —1/2. The second term vanishes at s = 0, and the leading term in
its Taylor series is 2y £(2)/(1/s) = mys/3 since ((2) = 7%/6. Therefore by the
Corollary above,

G'(,0) = %y “logy + 4¢'(0) + O(e™).

Next[| AG(r, s) = s(1 — s)G(, s), hence
AG'(1,0) = (s(1 — 5)G'(1,5) + (1 = 25)G(7,5))| _, = G(7,0) = —1.

Now look at the RHS. As A(7) is holomorphic, log|A(7)| = Relog A(7) is har-
monic, so A(log |A(7)|) = 0. Therefore

2

0
A(RHS) = A(—logy) = y2a—y2(10gy> =-L

®Here we use A for the Laplace-Beltrami oerator, to avoid confusion with the modular form A(T)...
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Asy — 00, A(T) = ¢+ O(¢*) = q(1 + O(q)), and so
log [A(7)[ = log |g| +log(1 + O(q)) = —2my + O(q)-

Therefore

/! 1 / ™
RHS = 4¢'(0) — logy — 6 log |A(7)| = 4¢'(0) — logy + ?y + O(q).

Both sides of the identity are invariant under SLo(Z) (for if f is modular of weight
k then y*/2 | f| is invariant under SLy(Z)). So the difference F(7) = G(7,0)—(RHS)
satisfies:

(i) F(7) is a harmonic function on H;
(ii) F(r) = F(y7) for every v € SLy(Z); and
(iii) |F(7)] — 0 as y — oo, uniformly in z.

Let D¢ be the closure of the standard modular fundamental domain (Thm. 2.2).
Then by (ii) and (iii)

supRe(F) =supRe(F) = sup Re(F)
H De Den{y<Y}

for Y sufficiently large. By continuity the supremum is attained at some 7y € D°.
So by the maximum principle for harmonic functions, Re(F') is constant, hence by
(iii) equals 0. The same argument holds for Im(F'), so F' = 0. O
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