
5 Eisenstein series

The series Gk(τ) are the simplest examples. The basic Eisenstein series is a non-
holomorphic modular form:

Definition. The real-analytic Eisenstein series is the function

G(τ, s) =
∑′

m,n

ys

|mτ + n|2s
, Re(s) > 1, Im(τ) > 0

(The summation is over (m,n) ∈ Z2−{(0, 0}.) This is a function of two variables
τ , s.

If we divide each pair by its HCF, we can write

G(τ, s) =
∞∑
d=1

1

d2s

∑
(m,n)=1

ys

|mτ + n|2s
= 2ζ(2s)E(τ, s)

where

E(τ, s) =
1

2

∑
(m,n)=1

ys

|mτ + n|2s

Proposition 5.1.

E(τ, s) =
∑

γ∈Γ∞\Γ

Im(γ(τ))s

where

Γ∞ =

{
±
(

1 b
0 1

) ∣∣∣∣ b ∈ Z
}
⊂ Γ

is the stabiliser of ∞.

Proof. As Im γ(τ) = y/ |cτ + d|2 it’s enough to check that γ 7→ (c, d) defines a
bijection

Γ∞\Γ ∼−→ {(m,n) ∈ Z2 | gcd(m,n) = 1}/(m,n) ∼ (−m,−n)

which is elementary.

Here are some basic properties of the Eisenstein series.

Proposition 5.2. (i) G(τ, s) is holomorphic as a function of s for Re(s) > 1.

(ii) For every γ ∈ Γ = SL2(Z), G(γ(τ), s) = G(τ, s).

(iii) ∆G(τ, s) = s(1− s)G(τ, s).
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Here

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
is the hyperbolic Laplacian, or Laplace-Beltrami operator.

Lemma. (i) ∆ = −4y2 ∂2

∂τ̄∂τ
.

(ii) ∆ is SL2(Z)-invariant: for all γ ∈ SL2(Z), ∆(f(γ(τ)) = (∆f)(γ(τ)).

Proof. (i) Follows from ∂/∂τ = 1/2(∂/∂x− i∂/∂y).

(ii) Enough to check this for γ : τ 7→ τ + 1 = (x + 1) + iy, which is obvious, and
for γ : τ 7→ −1/τ :

∆

(
f

(
−1

τ
,−1

τ̄

))
= −4y2 1

τ 2

1

τ̄ 2

∂2f

∂τ̄∂τ

(
−1

τ
,−1

τ̄

)
= −4 Im

(
−1

τ

)2
∂2f

∂τ̄∂τ

(
−1

τ
,−1

τ̄

)

In fact ∆ is invariant under SL2(R), since it is generated by the matrices(
0 −1
1 0

)
,

(
1 b
0 1

)
(b ∈ R)

Proof of 5.2. (i) follows from the uniform convergence of the series on sets Re(s) ≥
1 + ε (Propn.1.2).

(ii) This is obvious from the formula (5.1).

(iii) For fixed s with Re(s) > 1, the partial derivatives (of any order) of the series
defining G(τ, s) are easily seen to be uniformly convergent on compact sets. So
differentiating termwise and using the Γ-invariance of ∆ and (5.1), it is enough to
check that ∆ Im(τ)s = s(1− s) Im(τ)s which is trivial.

Let Λτ = y−1/2(Z⊕ Zτ) ⊂ C. Then evidently G(τ, s) = EΛτ (s). So we can apply
our results about Epstein zeta functions to G(τ, s). First we note:

Lemma 5.3. The dual lattice of Λτ is iΛτ , and m(Λτ ) = 1.

Proof. Let ω1 = 1/y1/2, ω2 = τ/y1/2 be the basis for Λτ , and ω′1 = iτ/y1/2,
ω′2 = i/y1/2. Writing out in terms of the orthonormal basis (1, i) for C, it is simple
to check these are dual bases. The second statement follows from the first.

Notice that if Λ ⊂ Rn and g ∈ SO(n), then EΛ(s) = EgΛ(s) by the definition. So
EiΛτ (s) = EΛτ (s) = G(τ, s).
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Theorem 5.4. (i) Let E(τ, s) = π−sΓ(s)G(τ, s). Then E(τ, s) has a meromorphic
continuation to all s ∈ C with two simple poles at s = 1, 0 with residue 1, −1, and
satisfies E(τ, 1− s) = E(τ, s).

(ii) G(τ, s) − π/(s − 1) is a C∞ function of τ for every s ∈ C, and we have
∆G = s(1− s)G.

Proof. (i) This follows from 4.5 applied to Λτ .

(ii) The Mellin transform gives

E(τ, s) =
1

s(s− 1)
+

∫ ∞
1

(ΘΛτ (it)− 1)(ts + t1−s)
dt

t

=
1

s(s− 1)
+

∫ ∞
1

∑′

m,n

e−πit|mτ+n|2/y(ts + t1−s)
dt

t

and we can differentiate under the integral sign (with respect to x and y) arbitrarily
often and keep convergence. So ∆E − s(1− s)E is analytic for s ∈ C− {0, 1} and
since it vanishes for Re(s) > 1, it vanishes for all s.

As G(τ, s) = πsΓ(s)−1E(τ, s), the analogous results for G follow.

Remark: In fact G is real analytic as a function of τ .

The constant term

As G(τ, s) is invariant under τ 7→ τ + 1 we can write it as a Fourier series:

G(τ, s) =
∑
n∈Z

An(y, s)e2πinx

(absolutely convergent since G is C∞) where

An(y, s) =

∫ 1

0

G(x+ iy, s)e−2πinx dx.

The constant term A0(y, s) is particularly important. Unlike the case of the holo-
morphic Gk, the constant term receives contributions both from the terms m = 0
and the terms m 6= 0 in the sum.

Theorem 5.5. The constant term of E(τ, s) is

π−sΓ(s)A0(y, s) = 2ξ(2s)ys + 2ξ(2s− 1)y1−s

A0 must be invariant under s 7→ 1 − s, which is compatible with the functional
equation for ζ(s).
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Proof. By analytic continuation we may assume Re(s) > 1, and then we have

π−sΓ(s)A0(y, s) =

∫ 1

0

E(x+ iy, s) dx =

∫ 1

0

M(ΘΛτ (z)− 1, s) dx

=

∫ 1

0

∫ ∞
0

∑′

m,n

eπi|mτ+n|2t/y ts
dt

t
dx

by the Mellin transform formula. First compute the sum of the terms with m = 0.
This is

M
(

2
∞∑
n=1

eπin
2z/y, s

)
= 2π−sΓ(s)ζ(2s)ys

(we use z for the variable in the Mellin transform). Now consider terms with
m 6= 0. The sum is invariant under m 7→ −m so this is the Mellin transform of

2
∞∑
m=1

∫ 1

0

∑
n∈Z

eπi|mτ+n|2z/y dx = 2
∞∑
m=1

∑
n∈Z

∫ n/m+1

n/m

eπi|mτ |
2z/y dx

= 2
∞∑
m=1

m

∫ ∞
−∞

eπi|mτ |
2z/y dx = 2

∞∑
m=1

m

∫ ∞
−∞

eπim
2(x2z/y+zy) dx

= 2
∞∑
m=1

meπim
2yz

∫ ∞
−∞

eπim
2x2z/y dx.

When z = it the integral on the right hand side is m−1(y/t)1/2, so the Mellin
transform is

2y1/2

∫ ∞
0

∞∑
m=1

e−πm
2ytts−1/2dt

t
= 2y1/2

∞∑
m=1

Γ(s− 1

2
)(πm2y)1/2−s

= 2y1−sπ−(2s−1)/2Γ(
2s− 1

2
)ζ(2s− 1) = 2ξ(2s− 1)y1−s.

Corollary. G(τ, s)− A0(y, s) is an entire function of s.

Proof. From the analytic continuation of ξ(s) it is easy to see that A0(y, s) has
simple poles at s = 1, 0 with residues 1, −1, and is analytic elsewhere. So the
result follows from 5.4.

The nonconstant terms

One can compute the entire Fourier expansion in closed terms (see the notes from
2008) using Bessel functions. Here we’ll just compute some asymptotics which will
enable us to obtain nice formulae for G at s = 0 and 1.
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From the computation of the constant term, we have:

G(τ, s) = 2ξ(2s)ys = 2
∑
m≥1

∑
n∈Z

ys

|mτ + n|2s

For fixed m ≥ 1, the inner sum is invariant under τ 7→ τ + 1/m, so its k-th Fourier
coefficient vanishes unless m|k. So if k 6= 0 and Re(s) > 1,

Ak(y, s) =

∫ 1

0

2
∑

1≤m|k

∑
n∈Z

ys

|mτ + n|2s
e−2πikx dx

= 2ys
∑

1≤m|k

∑
n∈Z

∫ 1+n/m

n/m

e−2πikx

|mτ |2s
dx (substituting x 7→ x− n

m
)

= 2ys
∑

1≤m|k

m1−2s

∫ ∞
−∞

e−2πikx

(x2 + y2)s
dx

= 2y1−sσ1−2s(|k|)I(−2πky) (writing x = zy)

where

I(α, s) =

∫ ∞
−∞

eiαz

(z2 + 1)s
dz

for Re(s) > 1.

Lemma. Let α ∈ R − {0}. Then I(α, s) extends to an entire function of s, and
for Im(s) in a compact subset K ⊂ R,

|I(α, s)| < cKe
−α/4

for a constant cK depending only on K.

Proof. Replacing z by −z we may assume α > 0. Since Re(s) > 1, by Jordan’s
Lemma, I(α, s) =

∫
C1+C2+C3

eiαz/(z2 + 1)s dz where C1 = [−1 + i∞,−1 + i/2],

C2 = [−1+ i/2, 1+ i/2], C3 = [1+ i/2, 1+ i∞], and we take the branch of (z2 +1)s

which is analytic outside {z = iy | |y| ≥ 1}. The following calculation shows that,
for any compact K ⊂ R, the integral converges absolutely uniformly for Re(s) ∈ K
(so defines an entire function of s) and satisfies the estimate of the lemma.

Let σ = Re(s). Then∣∣∣∣∫
C2

∣∣∣∣ ≤ 2 sup
C2

∣∣∣∣ eiαz

(z2 + 1)s

∣∣∣∣ ≤ 2e−α/2

(3/4)σ
= ce−α/2

and ∣∣∣∣∫
C1

∣∣∣∣ ≤ ∫ ∞
1/2

e−αy

|(1 + iy)2 + 1|σ
dy =

∫ ∞
1/2

e−αy

(y4 + 4)σ/2
dy

≤
∫ ∞

1/2

c′e−αy/2 dy = c′
e−α/4

α/2
= c′′e−α/4
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for constants c, c′, c′′ depending continuously on σ.

It follows that
|Ak(y, s)| ≤ 2 |ysσ1−2s(|k|)| cKe−π|k|y/2

and the same argument applies to the derivatives of G(τ, s) (with respect to any
of x, y, s).

Corollary. The function G(τ, s)−A0(y, s), along with its derivatives, is bounded
by e−cy as y →∞, for some c = c(s) > 0.

Application: the Kronecker Limit Formula (KLF)

We have E(τ, s) = π−sΓ(s)G(τ, s) ∼ −1
s

at s = 0, so G(τ, s) is analytic at s = 0
and G(τ, 0) = −1. The KLF computes the derivative G′(τ, 0) (here and below ′

denotes s-derivative).

Theorem 5.6. (KLF at s = 0).

G′(τ, 0) = 4ζ ′(0)− log
(
y |∆(τ)|1/6

)
.

In fact one can show from the functional equation for ζ(s) that ζ ′(0) = −(1/2) log 2π.

Proof. (cf. Cambridge Ph.D. thesis of C.Chen). We will prove some characterising
properties of each side, which will imply the equality. First, we have

A0(y, s) = 2ysζ(2s) + 2y1−s ξ(2− 2s)

π−sΓ(s)
.

At s = 0, the first term has Taylor series

2ζ(0) + s(2 log y ζ(0) + 4ζ ′(0)) +O(s2) = −1 + s(4ζ ′(0)− log y) +O(s2)

since ζ(0) = −1/2. The second term vanishes at s = 0, and the leading term in
its Taylor series is 2y ξ(2)/(1/s) = πys/3 since ζ(2) = π2/6. Therefore by the
Corollary above,

G′(τ, 0) =
πy

3
− log y + 4ζ ′(0) +O(e−cy).

Next,5 ∆G(τ, s) = s(1− s)G(τ, s), hence

∆G′(τ, 0) =
(
s(1− s)G′(τ, s) + (1− 2s)G(τ, s)

)∣∣
s=0

= G(τ, 0) = −1.

Now look at the RHS. As ∆(τ) is holomorphic, log |∆(τ)| = Re log ∆(τ) is har-
monic, so ∆(log |∆(τ)|) = 0. Therefore

∆(RHS) = ∆(− log y) = y2 ∂
2

∂y2
(log y) = −1.

5Here we use ∆ for the Laplace-Beltrami oerator, to avoid confusion with the modular form ∆(τ). . .
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As y →∞, ∆(τ) = q +O(q2) = q(1 +O(q)), and so

log |∆(τ)| = log |q|+ log(1 +O(q)) = −2πy +O(q).

Therefore

RHS = 4ζ ′(0)− log y − 1

6
log |∆(τ)| = 4ζ ′(0)− log y +

πy

3
+O(q).

Both sides of the identity are invariant under SL2(Z) (for if f is modular of weight
k then yk/2 |f | is invariant under SL2(Z)). So the difference F (τ) = G(τ, 0)−(RHS)
satisfies:

(i) F (τ) is a harmonic function on H;

(ii) F (τ) = F (γτ) for every γ ∈ SL2(Z); and

(iii) |F (τ)| → 0 as y →∞, uniformly in x.

Let Dc be the closure of the standard modular fundamental domain (Thm. 2.2).
Then by (ii) and (iii)

sup
H

Re(F ) = sup
Dc

Re(F ) = sup
Dc∩{y≤Y }

Re(F )

for Y sufficiently large. By continuity the supremum is attained at some τ0 ∈ Dc.
So by the maximum principle for harmonic functions, Re(F ) is constant, hence by
(iii) equals 0. The same argument holds for Im(F ), so F = 0.
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