4 [-series

I'-function and Mellin transform

> dt
I'(s) = / e " —
0 t

converges on right half-plane Re(s) > 0, where it defines an analytic function.
Integration by parts gives sI'(s) = I'(s + 1), which allows one to meromorphically
continue the function to C: if Re(s) > —N then

1
s(s+1)...(s+N—-1)

Recall:

I'(s) = ['(s+ N).

['(n) = (n — 1)! for n > 1; simple poles at each nonpositive integer, and residue
at s = 0 is 1. Moreover I'(s) has no zeroes in C (this follows from either of the
infinite product expansions

o0 1 —8
TesTI () (1 Eul
sn:1 ( + - + - (Euler)
oo s
_ 8 1 _) —s/n : t
e snlzl1 ( + ~)e (Weierstrass)

see e.g. chapter 5 sect.2.4-5 of Ahlfors). Here v = lim,, oo (1+1/2+- - -+1/n—logn)
is the Fuler-Mascheroni constant.

Let f be a function on H. The Mellin transform of f is defined to be

/ fzyy—

(assuming that this converges). So I'(s) is the Mellin transform of €’”. From the
definition, if @ > 0 then

M(f(at),s) =a *M(f,s).

Suppose that f(7) can be written as an absolutely convergent series ) _ cqe )
where a runs over some discrete subset of (0,00). Then

an 27moz7—7 _ Z (Q;E)SM(GZ‘: S)

= (2m)T(s) ) =

(at least formally).
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Example: let f(7) = 32°°, ¢™*7. Then

M(f.s) = ()2 Gz /2 =1 T(s)¢(25).

n=1

L-series of cusp forms

Now suppose f = Y °a,q" € Sy is a cusp form. Then as f(iy) tends exponentially
to 0 as y — oo, and y*/2 | f(iy)| is bounded as y — 0. the integral defining M (f, s)
is absolutely convergent and represents an analytic function for Re(s) > k/2.

The above formula shows that M(f,s) = (2m)~°I'(s)L(f,s) where L(f,s) =
> apn~* (strictly speaking we should only call it an L-function when f is a nor-
malised eigenform).

Theorem 4.1. If f € Sy then M(f,s) has an analytic continuation to C, and
satisfies the functional equation

M(f75> = (_1)k/2M(f7 k— S)‘

Proof. Split the defining integral into the intervals [0, 1] and [1,00), and use the
relation f(—1/7) = 7Ff(7) :

:/100+/01f(iy)ys?
= [ s @+ [yt srw®
/fzyy—+ 1k/2/f oy

using the substitution y — 1/y in the second integral. As f(iy) decays exponen-
tially as y — oo, the integrals over [1,00) are analytic for all s, and their sum
obviously transforms in the desired way under s — k — s. O]

Poisson summation and applications

Let (—, —): R” x R" — R be the usual inner product, ||—|| the Euclidean length.
Let f: R* — C be a nicd’| function. The Fourier transform of f is

f: R" — C, f(u) = / e’2m<"’”>f(v) dv

The Fourier inversion formula for R” says: f(v) = f(—v).

3 “Nice” here means that the derivatives f(™ (m € N") satisfy: for every polynomial function P on
P(v)f™ (v) is bounded.
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Theorem 4.2 (Poisson summation formula). Let A C R™ be a lattice, N' = {y €
R"|(z,y) € Z Yz € A} the dual lattice. Then

Y f@)=m@) Y fy)
e yeN’
where m(A) = vol(R"/A) = m(N)~!
Proof. Let g(v) = > . f(v4+2): R"/A = C. Then g can be written as a Fourier

series:
_ 2mi(y,v)
g(v) = § cye
yeN

with coeflicients
cy = m(A)l/ g(v)e W) dy
V/A
[ rwe o do = m(a) i)
1%

Then -, cp f(x) =9(0) =3 cprcy = m(A)~! D e f(y). The identity m(A")m(A) =
1 is easy linear algebra (or Fourier inversion). O

Now we define the theta function of A to be

On(r) =Y el (r e ).

TEA

The series converges absolutely (cf. Prop.1.2 but easier) to an analytic function on

H.

Theorem 4.3.
OA(7) = (/i) " *m(N) ' On(—1/7).

Proof. By analytlc Contlnuatlon it’s enough to prove this for 7 = iy. We let
fw) = e ™) =T e ™. Then f = f (standard resul for n = 1, and follows
by separation of variables for general n).

Moreover as (cA)’ = ¢ A/, by Poisson summation

Yo @) =m@ PN > fl 2m(A) O (i/y).

xEyl/ZA €Y~ 1/2 A1

“Proof: if f(z) = exp(—mz?) then

A o . oo ) co-Hiy
f(y) = / e—?r:):2—27ma.y dx = e—wy2 / e_ﬂ(x-Hy)Z dx = f(y)/ 6—7722 dz.

—oo+1iy

Now shift the path of integration to [—oco, co] and use [ e dr = 1.
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As Op/(1) = 1 as Im 7 — oo, deduce:
Corollary 4.4. O, (iy) ~ m(A)~"'y™/2 as y — 0.
The (Epstein) zeta function of the lattice A is
1
Ex(s)= Y —
0#zEA ]
It converges absolutely for Re(s) > n/2 by Propn.1.2.

Theorem 4.5. Ez(s) = 7 °I'(s)Ex(s) has a meromorphic continuation to C, an-
alytic apart from simple poles at s = 0, n/2 with residues —1, m(A)~! respectively.
It satisfies the functional equation

En(s) = m(A)_ISA/(g — ).

In particular, Ex(0) = —1.

Proof. Consider the function

Z emillzl® = Oa(T) — 1.

0#zEN

It decays exponentially as Im7 — oo, and together with Cor.4.4 this shows that

the integral defining its Mellin transform converges for Re(s) > n/2, and equals
T T (s)Ea(s).

As in the proof of Thm.4.1 we can break up the integral in the Mellin transform

as fo + J°. Then if Re(s) > n/2

d
/ /@Aiyy_——:———l-/m 1@/\/ /y)sn/Q Y
:——_|_m / @A’ Zy n/2 S_

- (l * n/2 - ) +m(A)_1/I (O (iy) — 1)3/"/2‘56;—‘1/

So E(A, s) equals

(242 ) + [ @ati) — 0 () @)~ 1)y 2

and the integral is analytic for all s € C. This gives the residues, and using the
FE for © and m(A)~! = m(A’) we get the FE. O
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Corollary 4.6. (Riemann (-function.) Let £(s) = n=%/?T'(s/2)((s). Then &(s) has
a meromorphic continuation to C with simple poles at s = 1 and 0 with residues 1,
—1, and &(s) = £(1 — s). In particular, ((s) has a meromorphic continuation with
a simple pole at s = 1 as its only singularity, and ((—2k) = 0 for every positive
integer k.

Proof. Take A = Z C R, so that Ex(s) = 2¢(2s) and Z(s) = (1/2)Ex(s/2). The
last part (zeroes of ((s)) follows from the description of the poles of I'(s). O
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