

4 L-series

Γ-function and Mellin transform

Recall:

$$\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}$$

converges on right half-plane $\operatorname{Re}(s) > 0$, where it defines an analytic function. Integration by parts gives $s\Gamma(s) = \Gamma(s+1)$, which allows one to meromorphically continue the function to \mathbb{C} : if $\operatorname{Re}(s) > -N$ then

$$\Gamma(s) = \frac{1}{s(s+1)\dots(s+N-1)} \Gamma(s+N).$$

$\Gamma(n) = (n-1)!$ for $n \geq 1$; simple poles at each nonpositive integer, and residue at $s = 0$ is 1. Moreover $\Gamma(s)$ has no zeroes in \mathbb{C} (this follows from either of the infinite product expansions

$$\begin{aligned} \Gamma(s)^{-1} &= s \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) \left(1 + \frac{1}{n}\right)^{-s} && \text{(Euler)} \\ &= e^{\gamma s} s \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) e^{-s/n} && \text{(Weierstrass)} \end{aligned}$$

see e.g. chapter 5 sect.2.4–5 of Ahlfors). Here $\gamma = \lim_{n \rightarrow \infty} (1+1/2+\dots+1/n - \log n)$ is the *Euler-Mascheroni constant*.

Let f be a function on \mathcal{H} . The **Mellin transform** of f is defined to be

$$M(f, s) = \int_0^\infty f(iy) y^s \frac{dy}{y}$$

(assuming that this converges). So $\Gamma(s)$ is the Mellin transform of $e^{i\tau}$. From the definition, if $a > 0$ then

$$M(f(a\tau), s) = a^{-s} M(f, s).$$

Suppose that $f(\tau)$ can be written as an absolutely convergent series $\sum_\alpha c_\alpha e^{2\pi i \alpha \tau}$, where α runs over some discrete subset of $(0, \infty)$. Then

$$\begin{aligned} M(f, s) &= \sum_\alpha c_\alpha M(e^{2\pi i \alpha \tau}, s) = \sum_\alpha \frac{c_\alpha}{(2\pi \alpha)^s} M(e^{i\tau}, s) \\ &= (2\pi)^{-s} \Gamma(s) \sum_\alpha \frac{c_\alpha}{\alpha^s} \end{aligned}$$

(at least formally).

Example: let $f(\tau) = \sum_{n=1}^{\infty} e^{\pi i n^2 \tau}$. Then

$$M(f, s) = (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \frac{1}{(n^2/2)^s} = \pi^{-s} \Gamma(s) \zeta(2s).$$

L-series of cusp forms

Now suppose $f = \sum_{n=1}^{\infty} a_n q^n \in S_k$ is a cusp form. Then as $f(iy)$ tends exponentially to 0 as $y \rightarrow \infty$, and $y^{k/2} |f(iy)|$ is bounded as $y \rightarrow 0$. the integral defining $M(f, s)$ is absolutely convergent and represents an analytic function for $\operatorname{Re}(s) > k/2$.

The above formula shows that $M(f, s) = (2\pi)^{-s} \Gamma(s) L(f, s)$ where $L(f, s) = \sum a_n n^{-s}$ (strictly speaking we should only call it an *L*-function when f is a normalised eigenform).

Theorem 4.1. *If $f \in S_k$ then $M(f, s)$ has an analytic continuation to \mathbb{C} , and satisfies the **functional equation***

$$M(f, s) = (-1)^{k/2} M(f, k - s).$$

Proof. Split the defining integral into the intervals $[0, 1]$ and $[1, \infty)$, and use the relation $f(-1/\tau) = \tau^k f(\tau)$:

$$\begin{aligned} M(f, s) &= \int_1^{\infty} + \int_0^1 f(iy) y^s \frac{dy}{y} \\ &= \int_1^{\infty} f(iy) y^s \frac{dy}{y} + \int_0^1 (iy)^{-k} f(i/y) y^s \frac{dy}{y} \\ &= \int_1^{\infty} f(iy) y^s \frac{dy}{y} + (-1)^{k/2} \int_1^{\infty} f(iy) y^{k-s} \frac{dy}{y} \end{aligned}$$

using the substitution $y \mapsto 1/y$ in the second integral. As $f(iy)$ decays exponentially as $y \rightarrow \infty$, the integrals over $[1, \infty)$ are analytic for all s , and their sum obviously transforms in the desired way under $s \mapsto k - s$. \square

Poisson summation and applications

Let $\langle -, - \rangle: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be the usual inner product, $\| - \|$ the Euclidean length. Let $f: \mathbb{R}^n \rightarrow \mathbb{C}$ be a nice³ function. The **Fourier transform** of f is

$$\hat{f}: \mathbb{R}^n \rightarrow \mathbb{C}, \quad \hat{f}(u) = \int_{\mathbb{R}^n} e^{-2\pi i \langle u, v \rangle} f(v) dv$$

The **Fourier inversion formula** for \mathbb{R}^n says: $\hat{\hat{f}}(v) = f(-v)$.

³ “Nice” here means that the derivatives $f^{(m)}$ ($m \in \mathbb{N}^n$) satisfy: for every polynomial function P on \mathbb{R}^n , $P(v) f^{(m)}(v)$ is bounded.

Theorem 4.2 (Poisson summation formula). *Let $\Lambda \subset \mathbb{R}^n$ be a lattice, $\Lambda' = \{y \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z} \ \forall x \in \Lambda\}$ the dual lattice. Then*

$$\sum_{x \in \Lambda} f(x) = m(\Lambda)^{-1} \sum_{y \in \Lambda'} \hat{f}(y)$$

where $m(\Lambda) = \text{vol}(\mathbb{R}^n/\Lambda) = m(\Lambda')^{-1}$.

Proof. Let $g(v) = \sum_{x \in \Lambda} f(v+x) : \mathbb{R}^n/\Lambda \rightarrow \mathbb{C}$. Then g can be written as a Fourier series:

$$g(v) = \sum_{y \in \Lambda'} c_y e^{2\pi i \langle y, v \rangle}$$

with coefficients

$$\begin{aligned} c_y &= m(\Lambda)^{-1} \int_{V/\Lambda} g(v) e^{-2\pi i \langle y, v \rangle} dv \\ &= m(\Lambda)^{-1} \int_V f(v) e^{-2\pi i \langle y, v \rangle} dv = m(\Lambda)^{-1} \hat{f}(y) \end{aligned}$$

Then $\sum_{x \in \Lambda} f(x) = g(0) = \sum_{y \in \Lambda'} c_y = m(\Lambda)^{-1} \sum_{y \in \Lambda'} \hat{f}(y)$. The identity $m(\Lambda')m(\Lambda) = 1$ is easy linear algebra (or Fourier inversion). \square

Now we define the **theta function** of Λ to be

$$\Theta_\Lambda(\tau) = \sum_{x \in \Lambda} e^{\pi i \|x\|^2 \tau} \quad (\tau \in \mathcal{H}).$$

The series converges absolutely (cf. Prop.1.2 but easier) to an analytic function on \mathcal{H} .

Theorem 4.3.

$$\Theta_\Lambda(\tau) = (\tau/i)^{-n/2} m(\Lambda)^{-1} \Theta_{\Lambda'}(-1/\tau).$$

Proof. By analytic continuation it's enough to prove this for $\tau = iy$. We let $f(v) = e^{-\pi \langle v, v \rangle} = \prod_i e^{-\pi v_i^2}$. Then $\hat{f} = f$ (standard result⁴ for $n = 1$, and follows by separation of variables for general n).

Moreover as $(c\Lambda)' = c^{-1}\Lambda'$, by Poisson summation

$$\Theta_\Lambda(iy) = \sum_{x \in y^{1/2}\Lambda} f(x) = m(y^{1/2}\Lambda)^{-1} \sum_{x \in y^{-1/2}\Lambda'} f(x) = y^{-n/2} m(\Lambda)^{-1} \Theta_{\Lambda'}(i/y).$$

\square

⁴Proof: if $f(x) = \exp(-\pi x^2)$ then

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-\pi x^2 - 2\pi i xy} dx = e^{-\pi y^2} \int_{-\infty}^{\infty} e^{-\pi(x+iy)^2} dx = f(y) \int_{-\infty+iy}^{\infty+iy} e^{-\pi z^2} dz.$$

Now shift the path of integration to $[-\infty, \infty]$ and use $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$.

As $\Theta_{\Lambda'}(\tau) \rightarrow 1$ as $\text{Im } \tau \rightarrow \infty$, deduce:

Corollary 4.4. $\Theta_{\Lambda}(iy) \sim m(\Lambda)^{-1}y^{-n/2}$ as $y \rightarrow 0$.

The **(Epstein) zeta function of the lattice Λ** is

$$E_{\Lambda}(s) = \sum_{0 \neq x \in \Lambda} \frac{1}{\|x\|^{2s}}.$$

It converges absolutely for $\text{Re}(s) > n/2$ by Propn.1.2.

Theorem 4.5. $\mathcal{E}_{\Lambda}(s) = \pi^{-s}\Gamma(s)E_{\Lambda}(s)$ has a meromorphic continuation to \mathbb{C} , analytic apart from simple poles at $s = 0, n/2$ with residues $-1, m(\Lambda)^{-1}$ respectively. It satisfies the **functional equation**

$$\mathcal{E}_{\Lambda}(s) = m(\Lambda)^{-1}\mathcal{E}_{\Lambda'}\left(\frac{n}{2} - s\right).$$

In particular, $E_{\Lambda}(0) = -1$.

Proof. Consider the function

$$\sum_{0 \neq x \in \Lambda} e^{\pi i \tau \|x\|^2} = \Theta_{\Lambda}(\tau) - 1.$$

It decays exponentially as $\text{Im } \tau \rightarrow \infty$, and together with Cor.4.4 this shows that the integral defining its Mellin transform converges for $\text{Re}(s) > n/2$, and equals $\pi^{-s}\Gamma(s)E_{\Lambda}(s)$.

As in the proof of Thm.4.1 we can break up the integral in the Mellin transform as $\int_0^1 + \int_1^{\infty}$. Then if $\text{Re}(s) > n/2$

$$\begin{aligned} \int_0^1 &= \int_0^1 \Theta_{\Lambda}(iy) y^s \frac{dy}{y} - \frac{1}{s} = -\frac{1}{s} + \int_0^1 m(\Lambda)^{-1} \Theta_{\Lambda'}(i/y) y^{s-n/2} \frac{dy}{y} \\ &= -\frac{1}{s} + m(\Lambda)^{-1} \int_1^{\infty} \Theta_{\Lambda'}(iy) y^{n/2-s} \frac{dy}{y} \\ &= -\left(\frac{1}{s} + \frac{m(\Lambda)^{-1}}{n/2 - s}\right) + m(\Lambda)^{-1} \int_1^{\infty} (\Theta_{\Lambda'}(iy) - 1) y^{n/2-s} \frac{dy}{y} \end{aligned}$$

So $\mathcal{E}(\Lambda, s)$ equals

$$-\left(\frac{1}{s} + \frac{m(\Lambda)^{-1}}{n/2 - s}\right) + \int_1^{\infty} (\Theta_{\Lambda}(iy) - 1) y^s + m(\Lambda)^{-1} (\Theta_{\Lambda'}(iy) - 1) y^{n/2-s} \cdot \frac{dy}{y}$$

and the integral is analytic for all $s \in \mathbb{C}$. This gives the residues, and using the FE for Θ and $m(\Lambda)^{-1} = m(\Lambda')$ we get the FE. \square

Corollary 4.6. (*Riemann ζ -function.*) *Let $\xi(s) = \pi^{-s/2}\Gamma(s/2)\zeta(s)$. Then $\xi(s)$ has a meromorphic continuation to \mathbb{C} with simple poles at $s = 1$ and 0 with residues 1 , -1 , and $\xi(s) = \xi(1-s)$. In particular, $\zeta(s)$ has a meromorphic continuation with a simple pole at $s = 1$ as its only singularity, and $\zeta(-2k) = 0$ for every positive integer k .*

Proof. Take $\Lambda = \mathbb{Z} \subset \mathbb{R}$, so that $E_\Lambda(s) = 2\zeta(2s)$ and $Z(s) = (1/2)\mathcal{E}_\Lambda(s/2)$. The last part (zeroes of $\zeta(s)$) follows from the description of the poles of $\Gamma(s)$. \square