
4 L-series

Γ-function and Mellin transform

Recall:

Γ(s) =

∫ ∞
0

e−tts
dt

t

converges on right half-plane Re(s) > 0, where it defines an analytic function.
Integration by parts gives sΓ(s) = Γ(s+ 1), which allows one to meromorphically
continue the function to C: if Re(s) > −N then

Γ(s) =
1

s(s+ 1) . . . (s+N − 1)
Γ(s+N).

Γ(n) = (n − 1)! for n ≥ 1; simple poles at each nonpositive integer, and residue
at s = 0 is 1. Moreover Γ(s) has no zeroes in C (this follows from either of the
infinite product expansions

Γ(s)−1 = s
∞∏
n=1

(
1 +

s

n

)(
1 +

1

n

)−s
(Euler)

= eγss
∞∏
n=1

(
1 +

s

n

)
e−s/n (Weierstrass)

see e.g. chapter 5 sect.2.4–5 of Ahlfors). Here γ = limn→∞(1+1/2+· · ·+1/n−log n)
is the Euler-Mascheroni constant.

Let f be a function on H. The Mellin transform of f is defined to be

M(f, s) =

∫ ∞
0

f(iy)ys
dy

y

(assuming that this converges). So Γ(s) is the Mellin transform of eiτ . From the
definition, if a > 0 then

M(f(aτ), s) = a−sM(f, s).

Suppose that f(τ) can be written as an absolutely convergent series
∑

α cαe
2πiατ ,

where α runs over some discrete subset of (0,∞). Then

M(f, s) =
∑
α

cαM(e2πiατ , s) =
∑
α

cα
(2πα)s

M(eiτ , s)

= (2π)−sΓ(s)
∑
α

cα
αs

(at least formally).
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Example: let f(τ) =
∑∞

n=1 e
πin2τ . Then

M(f, s) = (2π)−sΓ(s)
∞∑
n=1

1

(n2/2)s
= π−sΓ(s)ζ(2s).

L-series of cusp forms

Now suppose f =
∑∞

1 anq
n ∈ Sk is a cusp form. Then as f(iy) tends exponentially

to 0 as y →∞, and yk/2 |f(iy)| is bounded as y → 0. the integral defining M(f, s)
is absolutely convergent and represents an analytic function for Re(s) > k/2.

The above formula shows that M(f, s) = (2π)−sΓ(s)L(f, s) where L(f, s) =∑
ann

−s (strictly speaking we should only call it an L-function when f is a nor-
malised eigenform).

Theorem 4.1. If f ∈ Sk then M(f, s) has an analytic continuation to C, and
satisfies the functional equation

M(f, s) = (−1)k/2M(f, k − s).

Proof. Split the defining integral into the intervals [0, 1] and [1,∞), and use the
relation f(−1/τ) = τ kf(τ) :

M(f, s) =

∫ ∞
1

+

∫ 1

0

f(iy)ys
dy

y

=

∫ ∞
1

f(iy)ys
dy

y
+

∫ 1

0

(iy)−kf(i/y)ys
dy

y

=

∫ ∞
1

f(iy)ys
dy

y
+ (−1)k/2

∫ ∞
1

f(iy)yk−s
dy

y

using the substitution y 7→ 1/y in the second integral. As f(iy) decays exponen-
tially as y → ∞, the integrals over [1,∞) are analytic for all s, and their sum
obviously transforms in the desired way under s 7→ k − s.

Poisson summation and applications

Let 〈−,−〉 : Rn × Rn → R be the usual inner product, ‖−‖ the Euclidean length.

Let f : Rn → C be a nice3 function. The Fourier transform of f is

f̂ : Rn → C, f̂(u) =

∫
Rn
e−2πi〈u,v〉f(v) dv

The Fourier inversion formula for Rn says:
ˆ̂
f(v) = f(−v).

3 “Nice” here means that the derivatives f (m) (m ∈ Nn) satisfy: for every polynomial function P on
Rn, P (v)f (m)(v) is bounded.
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Theorem 4.2 (Poisson summation formula). Let Λ ⊂ Rn be a lattice, Λ′ = {y ∈
Rn|〈x, y〉 ∈ Z ∀x ∈ Λ} the dual lattice. Then∑

x∈Λ

f(x) = m(Λ)−1
∑
y∈Λ′

f̂(y)

where m(Λ) = vol(Rn/Λ) = m(Λ′)−1.

Proof. Let g(v) =
∑

x∈Λ f(v+x) : Rn/Λ→ C. Then g can be written as a Fourier
series:

g(v) =
∑
y∈Λ′

cy e
2πi〈y,v〉

with coefficients

cy = m(Λ)−1

∫
V/Λ

g(v)e−2πi〈y,v〉 dv

= m(Λ)−1

∫
V

f(v)e−2πi〈y,v〉 dv = m(Λ)−1f̂(y)

Then
∑

x∈Λ f(x) = g(0) =
∑

y∈Λ′ cy = m(Λ)−1
∑

y∈Λ′ f̂(y). The identitym(Λ′)m(Λ) =

1 is easy linear algebra (or Fourier inversion).

Now we define the theta function of Λ to be

ΘΛ(τ) =
∑
x∈Λ

eπi‖x‖
2τ (τ ∈ H).

The series converges absolutely (cf. Prop.1.2 but easier) to an analytic function on
H.

Theorem 4.3.
ΘΛ(τ) = (τ/i)−n/2m(Λ)−1ΘΛ′(−1/τ).

Proof. By analytic continuation it’s enough to prove this for τ = iy. We let
f(v) = e−π〈v,v〉 =

∏
i e
−πv2i . Then f̂ = f (standard result4 for n = 1, and follows

by separation of variables for general n).

Moreover as (cΛ)′ = c−1Λ′, by Poisson summation

ΘΛ(iy) =
∑

x∈y1/2Λ

f(x) = m(y1/2Λ)−1
∑

x∈y−1/2Λ′

f(x) = y−n/2m(Λ)−1ΘΛ′(i/y).

4Proof: if f(x) = exp(−πx2) then

f̂(y) =

∫ ∞
−∞

e−πx
2−2πixy dx = e−πy

2
∫ ∞
−∞

e−π(x+iy)
2

dx = f(y)

∫ ∞+iy

−∞+iy

e−πz
2

dz .

Now shift the path of integration to [−∞,∞] and use
∫∞
−∞ e

−πx2 dx = 1.
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As ΘΛ′(τ)→ 1 as Im τ →∞, deduce:

Corollary 4.4. ΘΛ(iy) ∼ m(Λ)−1y−n/2 as y → 0.

The (Epstein) zeta function of the lattice Λ is

EΛ(s) =
∑

06=x∈Λ

1

‖x‖2s .

It converges absolutely for Re(s) > n/2 by Propn.1.2.

Theorem 4.5. EΛ(s) = π−sΓ(s)EΛ(s) has a meromorphic continuation to C, an-
alytic apart from simple poles at s = 0, n/2 with residues −1, m(Λ)−1 respectively.
It satisfies the functional equation

EΛ(s) = m(Λ)−1EΛ′(
n

2
− s).

In particular, EΛ(0) = −1.

Proof. Consider the function∑
06=x∈Λ

eπiτ‖x‖
2

= ΘΛ(τ)− 1.

It decays exponentially as Im τ → ∞, and together with Cor.4.4 this shows that
the integral defining its Mellin transform converges for Re(s) > n/2, and equals
π−sΓ(s)EΛ(s).

As in the proof of Thm.4.1 we can break up the integral in the Mellin transform
as
∫ 1

0
+
∫∞

1
. Then if Re(s) > n/2∫ 1

0

=

∫ 1

0

ΘΛ(iy)ys
dy

y
− 1

s
= −1

s
+

∫ 1

0

m(Λ)−1ΘΛ′(i/y)ys−n/2
dy

y

= −1

s
+m(Λ)−1

∫ ∞
1

ΘΛ′(iy)yn/2−s
dy

y

= −
(

1

s
+
m(Λ)−1

n/2− s

)
+m(Λ)−1

∫ ∞
1

(ΘΛ′(iy)− 1) yn/2−s
dy

y

So E(Λ, s) equals

−
(

1

s
+
m(Λ)−1

n/2− s

)
+

∫ ∞
1

(ΘΛ(iy)− 1) ys +m(Λ)−1 (ΘΛ′(iy)− 1) yn/2−s · dy
y

and the integral is analytic for all s ∈ C. This gives the residues, and using the
FE for Θ and m(Λ)−1 = m(Λ′) we get the FE.
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Corollary 4.6. (Riemann ζ-function.) Let ξ(s) = π−s/2Γ(s/2)ζ(s). Then ξ(s) has
a meromorphic continuation to C with simple poles at s = 1 and 0 with residues 1,
−1, and ξ(s) = ξ(1− s). In particular, ζ(s) has a meromorphic continuation with
a simple pole at s = 1 as its only singularity, and ζ(−2k) = 0 for every positive
integer k.

Proof. Take Λ = Z ⊂ R, so that EΛ(s) = 2ζ(2s) and Z(s) = (1/2)EΛ(s/2). The
last part (zeroes of ζ(s)) follows from the description of the poles of Γ(s).

28


