
3 Hecke operators

Let L be the free abelian group on symbols [Λ], where Λ is a lattice.

Define operators T (n), R(n) ∈ EndZ L for n ≥ 1 by

R(n) : [Λ] 7→ [nΛ]

T (n) : [Λ] 7→
∑
Λ′⊂

n
Λ

[Λ′]

Theorem 3.1. (i) R(m)R(n) = R(mn), R(m)T (n) = T (n)R(m) for all m, n,
and R(1) = 1 = T (1).

(ii) If (m,n) = 1 then T (mn) = T (m)T (n).

(iii) For p primte and r ≥ 1,

T (pr+1) = T (pr)T (p)− pR(p)T (pr−1).

Corollary. The subalgebra of EndZ L generated by {R(n), T (n)}n≥1 is commuta-
tive, and is generated by T (p), R(p) for p primes.

Proof. (i) is clear. For (ii), we have

T (m)T (n) : [L] 7→
∑
Λ′⊂

n
Λ

∑
Λ′′⊂

m
Λ′

[Λ′′] =
∑
L′′ ⊂

mn
Λ

#{Λ′ | Λ′′ ⊂
m

Λ′ ⊂
n

Λ} · [Λ′′]

But as (m,n) = 1 the abelian group Λ/Λ′′ has exactly one subgroup of index n,
so #{Λ′ | Λ′′ ⊂

m
Λ′ ⊂

n
Λ = 1.

(iii) Have

T (pr)T (p(([Λ]) =
∑

L′′ ⊂
pr+1

Λ

#{Λ′ | Λ′′ ⊂
pr

Λ′ ⊂
p

Λ} · [Λ′′]

and

Λ′′ ⊂ pΛ =⇒ p+ 1 possible Λ′ (⇔ subgps of Λ/pΛ ' (Z/p)2)

Λ′′ 6⊂ pΛ =⇒ Λ/Λ′′ cyclic and Λ′ = Λ′′ + pΛ unique
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hence

T (pr)T (p)([Λ]) =
∑

Λ′′ ⊂
pr+1

Λ

Λ′′⊂pΛ

(p+ 1)[Λ′′] +
∑

Λ′′ ⊂
pr+1

Λ

Λ′′ 6⊂pΛ

[Λ′′]

=
∑

Λ′′ ⊂
pr+1

Λ

Λ′′⊂pΛ

p[Λ′′] +
∑

Λ′′ ⊂
pr+1

Λ

[Λ′′]

=
∑

Λ′′ ⊂
pr−1

pΛ

p[Λ′′] +
∑

Λ′′ ⊂
pr+1

Λ

[Λ′′]

= pR(p)T (pr−1)([Λ]) + T (pr+1([Λ]).

If R is any ring with 1, by a formal Dirichlet series we mean a formal expression∑
n≥1

An n
−s, An ∈ R

Two such series are added and multiplied in the obvious way, using the formal

relation m−sn−s = (mn)−s. If A(i) = 1 +
∑

n≥ni
A

(i)
n n−s are formal Dirichlet series

with ni →∞ then the infinite product
∏
A(i) makes sense, and if R is commutative

we can also define the inverted Dirichlet series if A1 = 1 by

1

A
=
∑
k≥0

(1− A)k

We apply this with R the subring of EndZ L generated by Hecke operators.

Theorem 3.2 (Euler product).∑
n≥1

T (n)n−s =
∏
p

(
1 + T (p)p−s + T (p2)p−2s + · · ·

)
=
∏
p

1

1− T (p)p−s +R(p)p1−2s
.

Proof. (ii) implies that T (n) =
∏
T (prii ) if n =

∏
prii , from which the first equality

follows. For the second, multiply both sides by (1− T (p)p−s +R(p)p1−2s) and use
(iii).

Next define the operators on modular forms.

f ∈Mk ⇔ F : (lattices)→ C, F (αΛ) = α−kF (Λ)

and extend F by linearity to a function on L.
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Definition. T knF = nk−1F ◦ Tn, so that

(T knF )(Λ) = nk−1
∑
Λ′⊂

n
Λ

F (Λ′)

Notice that L′ ⊂
n

Λ ⇐⇒ Λ ⊂
n
n−1Λ′, so that Tn and Fourier expansions.

(T knF )(Λ) = n−1
∑

Λ′′⊃
n

Λ

F (Λ′′)

Restating the previous results:

Theorem 3.3. {T kn}n≥1 generates a commutative algebra of operators on the space
of (−k)-homogeneous functions on lattices, satisfying:

T kmn = T kmT
k
n if (m,n) = 1

T kpr+1 = T kp T
k
pr − pk−1T kpr−1 , p prime, r ≥ 1∑

n≥1

T kn n
−s =

∏
p

1

1− T kp p−s + pk−1−2s

Example: Eisenstein series Gk(Λ) =
∑′

ω
ω−k, k ≥ 4.

Theorem 3.4. T knGk = σk−1(n)Gk for every n ≥ 1.

Proof. First consider n = p. Then Λ has (p+ 1) sublattices Λ′ of index p. If ω ∈ Λ
then:

ω ∈ pΛ =⇒ ω ∈ every Λ′

ω /∈ pΛ =⇒ ω ∈ Λ′ = Zω + pΛ only.

So:

(T kpGk)(Λ) =
∑
Λ′⊂

p
Λ

∑′

ω∈Λ′

pk−1

ωk

=
∑′

ω∈pΛ

(p+ 1)pk−1

ωk
+
∑

ω∈Λ\pΛ

pk−1

ωk

=
∑′

ω∈pΛ

1

(ω/p)k
+ pk−1

∑′

ω∈Λ

1

ωk

= (1 + pk−1)Gk(Λ) = σk−1(p)Gk(Λ).
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In general, we have the formal identity:∑
n≥1

σr(n)n−s =
∏
p

1

(1− p−s)(1− pr−s)
=
∏
p

1

1− (1 + pr)p−2 + pr−2s
(11)

Proof: we have

RHS = ζ(s)ζ(s− r) =
∑
m,d≥1

m−sdr−s =
∑
m,d≥1

dr(md)−s

=
∑
n≥1

∑
d|n

drn−s =
∑
n≥1

σr(n)n−s (n = md)

This gives(∑
T knn

−s
)
Gk =

(∏
p

1

1− T kp p−s + pk−1−2s

)
Gk

=

(∏
p

1

1− (1 + pk−1)p−s + pk−1−2s

)
Gk =

(∑
n≥1

σk−1(n)n−s

)
Gk

Now translate all this into the language of functions on H.

Let Λ = Zω1 + Zω2 be a lattice with ω1/ω2 ∈ H. Suppose Λ′ ⊂
n

Λ. Then

Λ′ ∩ Zω2 = Zω′2 where ω′2 = dω2 for some d ≥ 1.

Now Λ′/Zω′2 ⊂ Λ/Zω2 ' Z so Λ′ = Zω′1 + Zω′2 for some ω′1 = aω1 + bω2, with
|ad| = (Λ; Λ′) = n.

Fixing ω′1/ω
′
2 ∈ H =⇒ a ≥ 1; then ω′1 is unique mod Zω′2, and is unique if we

require 0 ≤ b < d. Putting this together,

T (n) : [Zω1 + Zω2] 7→
∑
a,d≥1
ad=n

0≤b<d

[Z(aω1 + bω2) + Z(dω2)]

Equivalently:

Λ′ ⊂
n

Λ ⇐⇒ Λ′ = Zω′1 + Zω′2,
(
ω′1
ω′2

)
= γ

(
ω1

ω2

)
, det γ = n

and

SL2(Z)\{γ | det γ = n} =

{(
a b
0 d

)
| a, d ≥ 1, ad = n, b mod d

}
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Either way,

(T knf)(τ) :=(T knF )(Zτ + Z)

= nk−1
∑
a,b,d

F ((aτ + b)Z + dZ)

giving

Proposition 3.5.

(T knf)(τ) = nk−1
∑
a,d≥1
ad=n

0≤b<d

d−kf

(
aτ + b

d

)
= nk/2−1

∑
a,b,d

f
∣∣∣
k

(
a b
0 d

)

Effect of Tn on q-expansion:

Theorem 3.6. Let f =
∑

n≥0 anq
n ∈Mk. Then

T kmf =
∑
n≥0

bnq
n ∈Mk

b0 = σk−1(n)a0, bn =
∑
d|(m,n)

dk−1amn/d2

In particular, T km(Sk) ⊂ Sk.

Remark. For m = p prime it’s convenient to write the formula as

bn = anp + pk−1an/p

with the convention that an/p = 0 if n/p /∈ Z.

Proof.

(T kmf)(τ) = mk−1
∑
n≥0
d|m

b mod d

d−kane
2πin((m/d)τ+b)/d

and since ∑
b mod d

e2πibn/d =

{
0 if n 6≡ 0 (mod d)

d if n ≡ 0

the sum becomes

mk−1
∑

n≥0, d|(m,n)

and
−k+1e2πimnτ/d2

=
∑

n≥0, d|(m,n)

(m/d)k−1anq
mn/d2

=
∑

n′≥0, e|(m,n′)

ek−1amn′/e2q
n
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writing n′ = mn/d2, e = m/d. Since T kmf is modular of weight k, this shows it is
in Mk, and then clearly T km(Sk) ⊂ Sk as well.

Corollary 3.7. Suppose 0 6= f =
∑

n≥0 anq
n ∈ Mk is an eigenfunction for all

{T kn}n≥1 with T knf = λnf . Then:

(i) f ∈ Sk =⇒ a1 6= 0 and an/a1 = λn.

(ii) f /∈ Sk =⇒ f = a0Ek.

Such an f is called a Hecke eigenform, or simply eigenform.

Proof. (i) Coefficient of q in T knf = λnf is

λna1 =
∑
d|(n,1)

dk−1an/d = am.

So if a1 = 0 then an = 0 ∀n ≥ 1 =⇒ f = 0.

(ii) Constant coefficient of T knf is

λna0 = σk−1(n)a0

sp a0 6= 0 (i.e. f /∈ Sk) =⇒ λn = σk−1(n). Put g = f − a0E
k =

∑
n≥1 bnq

n ∈ Sk.
Then

T knEk = σk−1Ek =⇒ T kg = σk−1(n)g =⇒ bn = σk−1b1

But |bn| � nk/2 and σk−1(n) > nk−1 =⇒ g = 0 (since k ≥ 4).

Next show T kn can be simultaneously diagonalised. Need:

Definition. let f, g ∈ Mk, at least one in Sk. The Petersson inner product of f
and g is

〈f, g〉 =

∫
D
f(τ)g(τ)yk−2 dx dy, τ = x+ iy

Remarks. (i) Since fg is a cusp form, |fg| � e−2πy as y → ∞ so the integral
converges.

(ii) Since 〈f, f〉 =
∫
D |f |

2 yk−2 dx dy it’s clear that 〈−,−〉 is an inner product on
Sk.

(iii) Note that the differential form f(τ)g(τ)yk−2 dx dy is invariant under Γ, so this
is a reasonable definition.

Theorem 3.8. 〈T knf, g〉 = 〈f, T kng〉, i.e. the Hecke operators are self-adjoint wrt
〈−,−〉.

Proof maybe to be given (time permitting) later.
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Theorem 3.9. (i) There exists a basis of Sk comsisting of Hecke eigenforms.

(ii) The eigenvalues of T kn on Sk are totally real algebraic, and the characteristic
polynomial of T kn has rational integer coefficients.

Proof. (i) since {T kn} commute and are self-adjoint. This also shows that the
eigenvalues are real.

(ii) Recall that Mk(Z) = Mk ∩ Z[[q]] is a Z-lattice in Mk, which by the corollary
to Thm.3.6 is stable under the T kn . So the characteristic polynomial of T kn has
integer coefficients, so the eigenvalues of T kn are algebraic integers, closed under
Aut(C/Q). So as they are real they are totally real.

We also get:

Corollary 3.10 (Multiplicity one). The representations of the algebra generated
by the {T kn} acting on Sk occur with multiplicity one.

Proof. Since Sk is completely reducible as a module for the Hecke algebra, it’s
enough to show that if f, g ∈ Sk \ {0} and

T knf = λnf, T
k
ng = λng ∀n ≥ 1

then f = cg.But since an(f) = λna1(f) and an(g) = λna1(g), up to a scalar f , g
have the same q-expansions.

Remark. A stronger result holds: if f ∈ Sk, g ∈ Sl and for all but finitely many p,
T kp f = λpf and T lpg = λp then k = l and f , g are linearly dependent. This is the
“strong multiplicity one” theorem.

Worked example: S24 = C∆2 + CE3
4∆. Have q-expansions:

∆ = q − 24q2 + 252q3 − · · ·
E3

4 = 1 + 720q + 179280q2 + 16954560q3 − . . .
∆2 = q2 − 48q3 + 1080q4 − . . .

E3
4∆ = q + 696q2 + 162252q3 + 12831808q4 + . . .

and T k2 f =
∑
bnq

n with bn = a2n + 2k−1an/2, hence

T2(E3
4∆) = 696q + 21220416q2 + . . . = 696E3

4∆ + 20736000∆2

T2(∆2) = q + 1080q2 + . . . = E3
4∆ + 384∆2

so matrix of T2 is

T 23
2 =

(
696 1

20736000 384

)
which has characteristic polynomial

x2 − 1080x− 20468736 = (x− 540 + 12
√

144169)(x− 540− 12
√

144169)
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(144169 is prime). In particular we see that the Hecke eigenforms of weight 24 do
not have rational coefficients. In fact, there are no known counterexamples to the
following:

Conjecture. If f ∈ Sk is a Hecke eigenform with rational coefficients then k < 24
or k = 26.

Corollary 3.11. Let f =
∑

n≥1 anq
n be a Hecke eigenform. Then∑

n≥1

an n
−s =

∏
p

1

1− app−s + pk−1−2s

As a formal identity this follows from the Euler product for the T kn . Since |an| �
nk/2 both sides are actually convergent for Re(s) > k/2 + 1.
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