3 Hecke operators

Let £ be the free abelian group on symbols [A], where A is a lattice.
Define operators T'(n), R(n) € Endy £ for n > 1 by

R(n): [A] — [nA]

Theorem 3.1. (i) R(m)R(n) = R(mn), R(m)T(n) = T'(n)R(m) for all m, n,
and R(1) =1=T(1).

(i) If (m,n) =1 then T'(mn) = T(m)T(n).

(iii) For p primte and r > 1,

T+ =T@)T(p) — pRp)T(p" ).

Corollary. The subalgebra of Endy L generated by {R(n), T (n)}n>1 is commuta-
tive, and is generated by T(p), R(p) for p primes.

Proof. (i) is clear. For (ii), we have

T(m)T(n): [£] > 30 37 (W)= 3 #{N[A"C A C A} [A]

ANCAAN'CN L'" CA
n m mn

But as (m,n) = 1 the abelian group A/A” has exactly one subgroup of index n,
so #{N |A"CNCA=1.

(iii) Have
TOOTO([A) = Y2 #{NATC X C A} V]
L’ c A
and

A" € pA = p+ 1 possible A’ (< subgps of A/pA ~ (Z/p)?)
N ¢ pA = A/A” cyclic and A" = A” + pA unique
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hence

TENTE)(A) = > (p+DAT+ > [A]

A c A A c A
p’r‘+1 p'r+1
A" CpA A ZpA
I "
= D> PN+ Y ]
A C A A C A
p1‘+1 pT‘+1
A//CpA
" "
= > PN+ D [
A" C pA A C A
pr—1 pr+1

=pR(p)T (" )([A]) + T(p" ([A)).
O

If R is any ring with 1, by a formal Dirichlet series we mean a formal expression
d Ant, A, €R
n>1

Two such series are added and multiplied in the obvious way, using the formal
relation m=*n=° = (mn)~*. If A® =1+ '
with n; — oo then the infinite product [ A®) makes sense, and if R is commutative
we can also define the inverted Dirichlet series if A; =1 by

%: > (- AF

k>0

n>n; A n=s are formal Dirichlet series

We apply this with R the subring of Endz £ generated by Hecke operators.
Theorem 3.2 (Euler product).

S Tm)n =[O+ TEp =+ TP >+ )

n>1

p
11 ]
L 1=T(p)p~* + R(p)p' >

Proof. (ii) implies that T'(n) = [[T'(p;") if n = [[ p;*, from which the first equality
follows. For the second, multiply both sides by (1 —T(p)p~* + R(p)p'~2*) and use
(ii). O

Next define the operators on modular forms.
feM, < F:(lattices) » C, F(ah) = a *F(A)

and extend F' by linearity to a function on L.
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Definition. TFF = n*"1F o T,,, so that

(TrF) (M) =n""t Y F)

AN CA

n

Notice that L/ ¢ A <= A C n~'A’, so that T}, and Fourier expansions.
n n

(TiF)(A) =n"" ) F(A)

A'DA

Restating the previous results:

Theorem 3.3. {T*},>1 generates a commutative algebra of operators on the space
of (—k)-homogeneous functions on lattices, satisfying:
Ty = Ty Ty if (myn) =1

T;TH = T;T; —pk’ler,l, p prime, v > 1

. 1
jg:fﬂf7l ::I]:l__.TgpS%_kaQS

n>1 p

/
Example: Eisenstein series G(A) = Z w k>4

Theorem 3.4. T*G}, = o4_1(n)G}, for every n > 1.

Proof. First consider n = p. Then A has (p+ 1) sublattices A’ of index p. If w € A
then:

weEpN = w € every A
wé¢ph = we N =Zw+ pA only.

So:

AV g e

NCA wel
p

o (p+1)pt P
- 2 : I E— k
w w

wepA wEA\pA

/ 1 h1 r]
"L

wEPA
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In general, we have the formal identity:

s 1 B 1
2o =l ma— - U W

n>1 P

Proof: we have

RHS = ((s)((s —r)= Y m~*d" =Y d'(md)™*

m,d>1 m,d>1
= Z Z d'n™% = Z o-(n)n™* (n = md)
n>1 dn n>1

This gives

s 1
(Z Trlfn ) Gk; = (];[ 11— Té“p*s _|_pk12s) Gk
! -8
B (H 1—(1+p-t)ps +p’€—1—28> G = <Z Tp—1(n)n ) G
p

Now translate all this into the language of functions on H.

Let A = Zwi 4+ Zws be a lattice with wy/wy € H. Suppose A’ C A. Then
N N Zwy = Zw!ly, where wh = dws for some d > 1. !

Now A'/Zwy C N/Zws ~ Z so N' = Zw] + Zw} for some w| = aw; + bwsy, with
lad| = (A;A') = n.

Fixing w|/wh € H = a > 1; then w] is unique mod Zwj, and is unique if we
require 0 < b < d. Putting this together,

T(n): [Zw) + Zuws) — Y [Z(aw + bwy) + Z(dw,)]

a,d>1
ad=n
0<b<d

Equivalently:
/
N C A <= N =7+ Zwy, (w,l) = <w1> , dety=n
n Wo w2

and

SLy(Z)\{7y | dety=n}= {(8 Z) |a,d > 1, ad =n, b mod d}
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Either way,
(T f)(r):=(T3 F)(Z7 + Z)
= nh! Z F((at +b)Z + dZ)
ab,d
giving
Proposition 3.5.

1 k(o +D 91 a b
e = 30t () = (G )

a,d>1
ad=n
0<b<d

Effect of T, on g-expansion:
Theorem 3.6. Let f = ano anq™ € M. Then
Thf =) bug" € M,
n>0

bo = ok_1(n)ag, by= Y d" auue
d|(m,n)
In particular, T (Sy) C Sy.
Remark. For m = p prime it’s convenient to write the formula as
by, = anp —|—pk_1an/p

with the convention that a,,, = 0if n/p ¢ Z.

Proof.
(Trlfy,f)(T) _ mk—l Z d—kan€27rin((m/d)7'+b)/d
n>0
djm
b mod d
and since

Z J2ibn/d _ 0 ifn#0 (modd)
)d ifn=0

b mod d
the sum becomes

_ _ ; 2
mk 1 E and k+162mmn7'/d

n>0, d|(m,n)

— Z (Tn/d)k:—lanqmn/d2

n>0, d|(m,n)

k—1 n
= § € Qmp/e2q

n’'>0, e|(m,n’)
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writing n’ = mn/d?, e = m/d. Since TF f is modular of weight k, this shows it is
in My, and then clearly T% (S;) C Sy as well. O

Corollary 3.7. Suppose 0 # f = ano anq" € My 1s an eigenfunction for all
{T*} 51 with TFf = N\, f. Then:

(i) f €Sy = a1 #0 and ap/a; = \,.

(i) f &S, = f=aoky.
Such an f is called a Hecke eigenform, or simply eigenform.
Proof. (i) Coefficient of ¢ in TFf = A, f is

Ay = Z dkflan/d = Q.
d|(n,1)

Soifa; =0thena,=0Vn>1 = f=0.
(ii) Constant coefficient of T f is

Anao = 0k_1(n)ag

spag#0 (ie. f&Sy) = M\ =o0r_1(n). Put g=f—aoE* = Zn21 b.q™ € Sk.
Then
TfEk =o0,1F, = T; = ak_l(n)g = b, = 0r_1b1

But |b,| < n*/? and o_1(n) > n*~! = g =0 (since k > 4). O
Next show T¥ can be simultaneously diagonalised. Need:

Definition. let f, g € M, at least one in Sg. The Petersson inner product of f
and g is

(f,9) I/Df(T)my“drdy, T=1x41y

Remarks. (i) Since fg is a cusp form, |fg| < ™™ as y — oo so the integral
converges.

(ii) Since (f, f) = [, |fI?y* 2 dxdy it’s clear that (—,—) is an inner product on
Sk

(iii) Note that the differential form f(7)g(7)y*~2 dz dy is invariant under T', so this
is a reasonable definition.

Theorem 3.8. (T¥f,g) = (f,TFg), i.e. the Hecke operators are self-adjoint wrt

<_7_>'

Proof maybe to be given (time permitting) later.
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Theorem 3.9. (i) There exists a basis of Sy comsisting of Hecke eigenforms.

(ii) The eigenvalues of T* on Sy are totally real algebraic, and the characteristic
polynomial of T has rational integer coefficients.

Proof. (i) since {T*} commute and are self-adjoint. This also shows that the
eigenvalues are real.

(i) Recall that My (Z) = My N Z[[q]] is a Z-lattice in M}, which by the corollary
to T hm. is stable under the T*. So the characteristic polynomial of T* has
integer coefficients, so the eigenvalues of T¥ are algebraic integers, closed under
Aut(C/Q). So as they are real they are totally real. O

We also get:

Corollary 3.10 (Multiplicity one). The representations of the algebra generated
by the {T*} acting on Sy occur with multiplicity one.

Proof. Since S is completely reducible as a module for the Hecke algebra, it’s
enough to show that if f,g € S, \ {0} and

TEf=of, TFg=Ag¥n > 1

then f = cg.But since a,(f) = A\a1(f) and a,(g) = A\a1(g), up to a scalar f, g
have the same g-expansions. O

Remark. A stronger result holds: if f € Si, g € S; and for all but finitely many p,
T zf f=Xfand T Zl)g = Ap then k = [ and f, g are linearly dependent. This is the
“strong multiplicity one” theorem.

Worked example: Syy = CA? + CE;A. Have g-expansions:
A =q—24¢* +252¢° — - - -
E3 =1+ 720q + 1792804 + 169545604¢° — . ..
A? = ¢? — 48¢> + 1080¢" — . ..
E3A = g+ 6964 + 162252¢° + 12831808¢™ + . ..
and TQkf = > bnq" with b, = ag, + 2k_1an/2, hence

To(E;A) = 696q + 21220416¢° + . . . = 696 E; A + 20736000A>
To(A?) = g+ 1080¢* + . .. = E]A + 384A°

so matrix of 75 is

s _ (696 1
2 20736000 384

which has characteristic polynomial

2% — 1080z — 20468736 = (x — 540 + 121/144169)(x — 540 — 121/144169)
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(144169 is prime). In particular we see that the Hecke eigenforms of weight 24 do
not have rational coefficients. In fact, there are no known counterexamples to the
following;:

Conjecture. If f € S is a Hecke eigenform with rational coefficients then k < 24
or k = 26.

Corollary 3.11. Let f = Zn21 a,q" be a Hecke eigenform. Then

s 1
Z Qn TV - H 1— app—s +pk—1—25

n>1 p

As a formal identity this follows from the Euler product for the T*. Since |a,| <
nk/2 both sides are actually convergent for Re(s) > k/2 + 1.
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