Modular forms part III — lecture notes

A J Scholll

These are the notes from 2008 with corrections and edited to reflect better the
content and presentation of the course in 2016.

1 Elliptic functions

Generalities

Function theory on an elliptic curve E/C; since F(C) = C/A for a lattice A C C
this amounts to studying functions on C which are invariant under A.

Definition. V a finite-dimensional real v.s.; then a lattice in V is a discrete sub-
group A C V of rank dim V.

Interested mainly in case V = C, then A is a discrete sgp of C of rank 2, and so
A = Zwy + Zwy C C, where w; are lin.ind. over R. (See example sheet for proof
of these and similar facts.) The basis {w;} then determines a fundamental domain
which is the parallelogram P = {xjw; + zows | z; € [0,1)}, which is a set of coset
representatives for A C C. WLOG we can assume that

wo/wy € H:={r € C|Im(7) > 0}.
This is equivalent to the natural orientation of the boundary 9P of P being given
by taking the vertices in order 0,w;,w; + wy,wy. (Picture here.)
It’s also convenient to write wy = —w; — wa, so that the 3 elements of C/A of order
2 are (w;/2) + A.
The quotient C/A is compact (for example, it is the continuous image of the closure
Pe).
Definition. An elliptic function w.r.t. A is a meromorphic function f: C — P!(C)
which is A-invariant; i.e. f(z +w) = f(z) for all w € A.

First prove some general facts (which are special cases of general function theory
on compact Riemann surfaces). Obvious remark: if f is an elliptic function then
for a € C, the quantities f(a), ord,—, f(2), res,—, f(z) depend only on the class of
a mod A.

Theorem 1.1. Let 0 # f: C/A — PY(C) be meromorphic.

(i) If f has no poles then f is constant. If f # 0 then f has only a finite number
of poles and zeroes mod A.

!Comments and corrections to a.j.scholl@dpmms.cam.ac.uk



(i) D aec/ateS:=a [(2) = 0.
(i18) 3 4ec/n Ords=a(f(2)) = 0.
() D pec/n @ord.—o(f(2)) = 0 mod A.

Proof. (i) is Liouville’s theorem; since C/A is compact, f is bounded hence con-
stant. (Or use maximum modulus principle, which shows that a holomorphic
function on any compact RS is constant.)

(ii) Assume first there are no poles of f on the boundary 0P. Then

271 Z res,—, f(z) = f(z)dz
op

acC/A

and the integrals on the opposite sides of the parallelogram cancel in pairs, so this
is 0. If f has poles on the boundary we can find some b € C such that no poles lie
on the translate b + 9P, and integrate around this curve instead.
(iii/iv) Same argument as (ii) applied to f'(2)/f(z) and zf'(2)/f(z). We just do
the case (iv); we know that res,—, f'(z)/f(z) = ord,—, f(2), and so
1 /
Z aord,—.(f(2)) = zf (2) dz.

ey 2w Jap f(2)

Splitting the integral into its 4 parts, we have

N L C P N O BN (e
/o +/m+wng(2) dz‘/o 7oy~ C e )
w1 f/(z)
0 f(z)

where Ny = (2mi) ="' [ f'(2)/f(2) dz € Z. Likewise

= —Woy dz = —27m'w2N1

[z, .
w1 +wy + | welz dz = 2miw1 Ny, Ny €7
o f(2)
giving
/
)

mi\.
o 12 &




1.1 Weierstrafl theory

Notation: write Z , Z
wEA wEA
w#0
Proposition 1.2. Let A C R? be a lattice and let s € R. Then:
ro1
Z —— converges iff s > d.
2 ol
Proof. Let {w;} be a basis for A. Then there exist constants 0 < ¢ < C such that
for any 0 # z = (x;) € R?

where ||z]| = max |z;| (since any two norms on a finite-dimensional real vector

< Clzfl

/ s / —s
space are equivalent). Therefore E R lw||”" converges iff Z - |z]|. does.

we €
Butif 1 <n € Z then

#{r e Z| |zl =n}=2n+ 1% — (2n — 1)* ~ 2d(2n)*"!
!/
and therefore Z e ||| converges according as y -, n®"'~* does. O

Corollary. If A C C is a lattice and 2 < k € Z, then the series

GrA):=Y é

wEA
converges. If k > 3 is odd, then Gi(A) = 0.

Proof. The first part is the case d = 2 of the Proposition. For the last part, since
A C C is a subgroup

Gr(A) = Z/ ﬁ = Z/ 5 = (=1 Gx(A).

wEA —weA

]

To construct an elliptic function, the simplest thing would be to try to make a
function which just one singularity, which needs to be at least a double pole by
Thm(ii). The obvious try would be to consider the series > _, 1/(z — w)? —
but this is not convergent. But we can subtract off the divergences

2 Analogous to the series wcot 7z = 1/2 + Y osnez 1/ (z+mn) —1/n
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Theorem 1.3 (Weierstrafl p-function). i) The series
1 / 1 1
et L eop

represents an elliptic function.

i) g is even, and its only poles are at w € A, of order 2. Moreover, for any a € C
the function p(z)—a has either two simple zeroes z, —z % z (mod A) or one double

zero z = w; /2 (i € {1,2,3}).

iii) In a neighbourhood of zero.
1 o
pz) = 5+ 2_;<2r + 1)Garaa(A)2%

iv) The function o(z) satisfies the differential equation

¢ (2)" = 4p(2)° = g20(2) — g5
where go = 60G4(A) and g3 = 140Gg(A).
Corollary 1.4. (i) The mapping p: C/A — P(C) identifies P'(C) with the quo-
tient of C/A by z +— —z.
(1i) The mapping C/A — P?(C) given by z — (p(z2),9'(2),1) is a biholomorphic

equivalence betwen C/A and the curve in P*(C) with equation Y?Z = 4X3 —
92X 77 — g3 7°.

(i) is just a restatement of (ii) above, and (ii) is an exercise.
Proof. (i,ii) If |w| > 2|z| then

1 1

(—w)

22w — 2)

(5/2) |wz[ _ 10]z]
(L/4) |l o]

w2

w?(w — 2)

which shows that the series converges uniformly on compact subsets of C\ A, and
so is holomorphic there. Clearly it has a double pole at every point of A. It is also
obviously even. To show it is elliptic, consider the derivative:

o' (2) = —22 (Z_;w)g

which is obviously elliptic, so ¢'(z + w;) = ¢'(2) for i = 1, 2. Therefore p(z +
w;) — p(z) = ¢; is constant. As @ is even, putting z = w;/2 gives ¢; = 0, hence
o(z +w;) = p(z) — i.e. p is elliptic.



Now Thm/I.1|(iii) applied to p(z) — a shows that it has exactly two zeroes z,
Z'inC \ A, counted with multiplicity, and moreover that z + z/ = 0 mod A. Since
z=—ziff z=0or 2z = w;/2, (ii) follows.

(iii) For |z| sufficiently small,

1 > 2"
EEmE Z(” Uom

and therefore

o0
_|_Z Z n4+1 = Z (2r + 1)Gopypz™
—1

1
=2 + 3G42% 4+ 5Gez* + O(2%)

with Gy = G, (A).
(iv) Consider the functions

—2 424G
¢'(2)* = (? + 6G4z + 20Gg2° + 0(25)> =% 2 1 _80Gs + O(z?)
and L e
3 _ 4 2
p(z) = ; + ? + 15G6 + O(Z )
Then
©'(2)? — 4p(2)® + 60G40(2) + 140G = O(2?)
and so by Thm/[L.1|(i), this vanishes. O

Write e; = p(w;/2). Then the function f;(z):=p(z) — e; has the double zero
z = w;/2. So ¢ vanishes at each w;/2, and these must be all the zeros of ¢ in
C/A, by Thm[TL.1|ii).

Therefore the function (p)?/fif2fs has no zeroes and poles, so by [L1[i) is a
constant. Comparing with the differential equation gives the constant value 4,
and

4p(2)° — gop (= —93—41_[ ) =€), €=p(wi/2).

Also if i # j then e; # e; (since f; Cannot vanish at w;/2) so we see:
Corollary 1.5. The discriminant
A(A):=g3 —27g5 =16 | [ (e: — €;)”
i<j
18 non-zero.

Another easy consequence of the above is that the field of all elliptic functions for
Ais C(p, ¢').



2 Modular forms of level 1
Motivation. Let £ be the set of all lattices in C. Then G : £ — C satisfies

Gr(al) = Z/(aw)_k = a "GL(N).

wEA

More generally, let F': £ — C be a function on lattices which satisfies F(aA) =
a *F(A) for some k € Z. Then

F(Zwy + Zws) = wi*F(Z +Z7), T=w/ws.

a b W w
v= (c d) € GLy(Z) and (w?) =7 <wi)

, wh ar+b
wy et +d

Also, if

so that

then Zw!| + Zwh = Zw, + Zws s0
F(ZW, + Z) = F(Zw, + Zws), F(Z+Z7') = (er + d)FF(Z + Zr).

Notation: take the usual left action of GLy(R) on C\ R by

ar +b a b
’Y<T>_CT+d7 ’y_<c d)? TEC\R

Then
Im~ ~ dety

leT +d|27 () = (et + d)?

so that Im 7, Im v(7) have the same sign iff dety > 0. Write also

Im~(7) = dety

Jj(vy, 1) =cT +d.
Then for v, § € GLy(R)
J(0,7) = j(v,0(r)j(6,7), GOy T) =i(v T () (1)

(the 2nd identity from the first taking § = v~ 1.)
Now for v € GLy(R)", f: H — C and k € Z write

(flen)(7) := det (1)*% (7, 7) 7 F((7)).
Lemma. v: f — f|if is a (right) group action of GLy(R)* on functions on H.



Proof: follows from ().

Definition. Let f: H — P!(C) be meromorphic and k¥ € Z. We say that f is
modular of weight k if

Fam) = e+ atin) = (4 )) e Sh@,

Equivalently, f|xy = f for all v € SLy(Z).
Suppose now that f is holomorphic for Im7 > R, some R > 0. Then

1=(p 1) = fern=10)

in other words,
f(r)=g(e™) =) au(f)g". q=e"" (2)
nez
for some holomorphic function g on {¢ € C | 0 < |¢| < r}, where logr = —27R.
The series is called the g-expansion (or Fourier expanson) of f at oc.

Definition. f is meromorphic (resp. holomorphic) at infinity if it is holomorphic
for Im7 > 0 and a,(f) =0 for n < 0 (resp. for all n < 0).

Definition. (i) A modular form of weight k € Z is a holomorphic function f: H —
C which is modular of weight k£ and holomorphic at infinity. It is a cusp form if
moreover ag(f) = 0.

(ii) A modular function is a meromorphic function f: H — P!(C) which is mero-
morphic at infinity.

Examples

First note that if f is a modular form of weight £ and k is odd, then by taking
v = —1 we see that f(7) = — f(7). So any non-zero modular form has even weight.

Eisenstein series: For k > 4 even, set

1

Gu(r) = GuZ +Zr)= Y o

mne”

— here the prime means omit (m,n) = (0,0). By the convergence of the series
this is holomorphic for 7 € H.

Proposition 2.1. G(7) is a modular form of weight k, and has q-expansion

Gi(7) = 2¢(k) <1 — %IZ > Uk_l(n)q">



Here ((s) = >_,.,n~° is the Riemann zeta-function, and o,(n) = >y, d".
Finally, the By are the Bernoulli numbers, defined by the identity

o0

:ZB’fﬁ

k=0

Proof. That G(7) is modular of weight k& has already been noted. To show it is
holomorphic at infinity we compute its g-expansion. Begin with

 — 1 1
tmy = — 3
mcot e z+;<z—m+z+m) (3)
eﬂ'iz _|_ effriz
Trzeﬂ"LZ _ 6—7TZZ ( )
. 21
=T — 1 — 6271'1'2 (5)
= —mi — 27 Z e?midz (6)
a>1

Differentiating (k — 1) times, for k > 1:

(_1)1971(]{ - 1)| Z 1 27_[.2 de 1 2midz
m=—00 (Z N m d>1
or
Z 1 de 1 2midz
(z — m)k B k 1)!

mEZ d>1

So if k£ is even

T):2Z +2ZZ (mT +n)F

m=1neZ
_ 2C _|_ Z 27” Z k: 1 27r1md7'
d>1
. 2C 27TZ 'szk 1 n
n=1 djn

Now gives, setting t = 2miz,

o0

1+ 1 _1"‘2 1 N 1
2 et—1 t mzlt—2m'm t+ 2mim



SO

t t — t t
=1--+ —
et — 1 2 Zt—l—Qmm t — 2mim

m=1
2n

t t
=1—-=--2

2 m;1 (27m'm>

t oo
=1-5- ; 2(27i) 3¢ (2n) "

using the identity

t =+ 2mim 27rzm T <2mm)

Definition. For k > 4 even, the normalised Eisenstein series is

1
FE ——G(
k(T) 2<( ) Zak 1
The first few nonzero Bernoulli numbers are
1 1 1 1
Bo=1 B=—=-By—=- By———. Bs = —
0 ) 1 2a 2 67 4 307 6 427
1 5 691 7
By =——, Bjg=— =—— = —
8 307 10 667 12 27307 14 6
giving
Ey(m) =1+240) o3(n)q"
n=1
Eg(1) =1—504 Z os(n)q"
n=1
Eg(1) =1+ 480 Z o7(n)q"
n=1
Ei(7) =1-264) ay(n)q"
n=1
65520 —
E12(7') =1 W : 11(”)9”
E14(T) =1- 242013(’”)(]
n=1



The modular group

We've already considered the action of GLy(R)* on H, which factors through
PGLy(R)*. Note that since GLy(R)T = R*.SLy(R) (R* embedded as diagonal
matrices), we have PGLy(R)T = PSLy(R). We'll see later why GL is needed.
Note the fact that PSLy(R) is the group of holomorphic automorphisms of ‘H (or
equivalently of the unit disc). Moreover it acts transitively, and the stabiliser of 4
is SO(2)/ £ 1, which is a maximal compact subgroup. The can be assembled in
the Twasawa decomposition which I'll just write for SLs:

SLy(R) = KAN = NAK, K = SO(2), A:(g S) N:((l) D

v 3 ) (4 )0

If I C SLy(R) then we often write I C PSLy(R) for its image, so that [ =
I'/(T'Nn{£1l}). We are mainly interested in I' = SLy(Z) and its subgroups. The
quotient I' = PSLy(Z) is the modular group. First task is to describe its action
on H as explicitly as possible. Let S, T € T denote the elements

0 —1 11
see(® ), res (1 ).

Theorem 2.2. Let I' = SLy(Z), T = PSLy(Z). Then the subset

since

T =1 =1 = Re(7‘)20}

1 1
D:{T€H|—§<Re(7—)§§

is a fundamental domain for ', i.e. D = T\H is bijective. Moreover, if 7 € D
and ', # 1, then:
either 7 =i, I, =(S)~7Z/2
M3 T, =(TS)~17/3.

orT=p=e¢€""",

Finally, I' = (S,T).

Proof. (i) Let T = (S, T). First show that if 7 € # then 3y € T with v(7) € D.
Since Z + Zt is a lattice, {|cT +d| | ¢, d € Z} is a discrete subset of R, so

{Imm:%weﬁ‘}

is a discrete subset or Ry, bounded above. So can choose y € T with Im~(7)
maximal, and (replacing v with 7" is necessary) may assume |Re~y(7)| < 1/2.

10



If |y(7)] <1 then

tm($3(r)) = Im(~1/7(r)) = ") 5
()l

contradicting maximality. So |y(7)| > 1ie. v(r) € D° If Rey(r) = —1/2 then
T~(t) € D. If —1/2 < Re~y(7) <0 and |y(7)| = 1 then Sy(7) € D.
Remark: This leads to the following simple algorithm to compute v (explained
in the lectures, where the proof of the theorem was not given): first find a power
T"™ such that |[ReT"r| < 1/2. If |T"7| < 1 then put m = ST"7, so that
Im(7y) = 1/Im(7) > Im(7). Replace 7 by 7 and repeat; eventually the sequence
of imaginary parts terminates, so we end up with a point 7" with |Re 7’| < 1/2 and
|7'| > 1. Then one of 7/, ST/, T't" is in D.
(ii) Next show that if £, 7/ € D and 7" = (), ¥ € T then 7 = 7/ and 7 is as in
statement of theorem.

We can assume that
Im(7)

——— >Im7
leT + d|

Im7 =

i.e. that |cr +d| < 1. Then

S

1> |Im(er + d)| = |e| Im(7) > |¢] 5
forcing ¢ € {0, £1}.

1 m

c=0 = fyz:l:(o 1

), =74+m meZ = m=0, y==+1, T=71".
If c=1 then |7| > 1 and |7+ d| < 1. Then 2 possibilities:

d:o, |T|:]_, 7:(? _01>, T/:CL—l/T.

Thena=0and T=7"=diora=1,7=17 =p.
d=1, |7| > 1,7 = 1] <1, Re(r) <1/2.
Then 7 =p, et +d|=|r —1|=1soIm7 =Im7 = /3/2, s0 7 = 7/ = p. Then

ar +b
T—d

=7=p = p*—(a+1)p—-b=0 = b=—1, a=0.

Important consequence is that the quotient I'\’H has finite invariant measure:

11



Proposition 2.3. (i) The measure dy = y~?dx dy on H is invariant under PSLy(R).
(ii) If T C SLy(Z) is a subgroup of finite index, then uw(I\H) < oo.

Proof. (i) Consider the associated 2-form

_dxANdy  idr ANdT
= y2  2Im(7)?’
Then if v(7) = (a7 +b)/(cT + d), v € SLy(R), the formulae 7/(1) = 1/(c7 + d)?,
Im~(7) = Im(7)/ |er + d|” show that 7 is invariant under ~.

(ii) If (PSLy(Z) : T) = M then

p(T\H) = Mu(PSLa(Z)\H)

= Mpu(D)
<M d dy < 00.
y>1 g2
l21<V/3/2
(Exercise: show that pu(PSLy(Z)\H) =7/3.) O

Now return to modular forms. We let M; and S, denote the spaces of modular
and cusp forms, respectively, of weight k. From the definition we have an exact

sequence
f=ao(f)

0= S, — M, =5"C (7)
so S either equals M}, or is a subspace of codimension 1. Let’s first prove:
Proposition 2.4. Sy, =0 and My = C.

Proof. Obviously C C M, so enought to show Sy = 0. If f € Sy the f is
holomorphic on H and satisfies f(z + 1y) — 0 as y — oo, uniformly in z. So
on D¢ f attains a maximum on the boundary (unit circle plus vertical lines).
But as weight is modular of weight 0 it’s invariant under SLy(Z), so since D is a
fundamental domain, this maximum must be the maximum of |f| on H, so f is
constant by maximum modulus, hence in fact zero. O]

Now recall that we have, for every even k£ > 4, the normalised Eisenstein series; in
particular the series of weights 4 and 6:

E,=1+4240 Z as(n)q"

n=1

Eg=1-— 5042 os5(n)q".

n=1
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Define
_ B} - ER

753 q q°+ ;T(n)q

which is therefore a cusp form of weight 12.

Write in terms of the unnormalised series G4 = G4(Z+Z1) = ¢2/60, G = g3/140.
We have

d 276
20(4) = —. 2((6) = — 8
3 27
E, = 5192 FE¢ = 1669 (9)
33

and so comparing with Corollary we see that A is nonvanishing on H. Use this
to determine the spaces M, completely. Let’s first note the simple fact:

Multiplication by A is an isomorphism Mj;_1o — S}, for every k € Z.

Indeed, we have 0 # A € Sis, so AMj_15 C Sk, and since A(7) # 0 for 7 € H, if
f € Sk the f/A is both holomorphic on H and holomorphic at infinity.

Theorem 2.5. (i) If k <0 then My = 0. If k > 4 then My, = Sy, ® C.E.
(i1) If k > 0 is even

1+ [£] i 2 12
dim M, — k_t [12] z'fk;—é mod
TR if k=2 mod 12
(iii) A basis for My is { ESESA°} where 4a+ 6b+ 12¢ =k, a,b,c > 0 and b =0 if
k=0 (mod4),b=11if k=2 (mod 4). In particular,

& M = C[E,, Ey].

keZ

Proof. (i) If f € My, k < 0 then f12A% € S5 = {0}, so f = 0. Since Sj, is the
kernel of the map M) — C given by f +— ao(f) and ag(Ey) = 1, the second part
follows.

(ii) Assume k even. We have Sy = AMj,_12, hence S, = 0 for £ < 12, and therefore
My, = C.E) for 4 < k < 10. Let’s show that My = 0. If not, and 0 # f € M, then
f? € My so f? = aFE,. Likewise f3FEg. But as ag(Ey) = 1, this would imply that
E} = E2, whereas Fi — EZ = 1728A +# 0.

The dimension formula is therefore true for 0 < £ < 10. But if & > 12, M, =
C.Ey + AMjy_12 so dim My = 1 + dim My_12, hence (by induction) the formula
holds for all k.

13



(iii) Let & > 4 be even. Take b as in the first statement, and a = (k — 6b)/4.
Then M, = CEZEg @ AMy_15. So by induction on k the statement holds. For
the second, as A = 1273(E} — EZ), every element of Mj, is a linear combination of
{EYES | a,b <0, 4a+6b = k}. But it is easy to see that the number of such pairs
(a,b) equals the right hand side of the dimension formula, so the mononomials are
linearly independent. [

Remark. The previous result shows there is no non-trivial homogeneous relation
between F, and Eg. It is not hard to see there is no inhomogeneous relation —
in other words, F,; and Fjy are algebraically dependent as functions on H. It is
enough to check that if fi,..., f. are modular forms of weights ky < --- < k,
with > f; = 0 then each f; = 0. But then f;(iy) = (iy) ™" f;(i/y) and as y — 0,
f(i/y) = ao(f;), so as the weights are different we have ao(f;) = 0 for all j. But
then dividing the relation by A gives one with smaller weights, so by induction all
f; are zero.

Rationality and integrality

Let R C C be a subring. Define My(R) = My N R[[q]] = {f € Mila,(f) € RVn},
We have Ey € My(Z) and Eg € Mg(Z). Also easy to see that A € S15(Z), since
expanding Fj — EZ? one easily reduces to checking that os5(n) — o3(n) is always
divisible by 12, which follows from the congruence d®> — d®> = 0 (mod 12).

Proposition 2.6. Let d = dim My. There exists a basis {g; | 0 < j < d} for M,
such that g; € My(Z) and

an(gj) = 6n; foralljyne{0,...,d—1}.

Proof. Let b = 01if 4|k and 1 otherwise, and consider the basis h; = Eik_ﬁb_uj)MEgAj €
M, (Z) given in 2.5(iii). Then a,(h;) = 0if n < j and a;(h;) = 1, so by elementary
operations we can replace {h;} by a basis with the desired properties. ]

Corollary. (i) For every R, the map f — (a;(f))o<j<a is an isomorphism of R-

modules My,(R) —» R?. Likewise, f — (a;(f))1<j<a is an isomorphism Sy(R) —
R,
(i) If 1/6 € R then M.(R) = @ My(R) = R|Ey, Eg], and in general

M.(R) = RIEy, Eg, AlJ(E{ — E — 1728).

Proof. (i) The inverse map is (r;) — > r;g;.
(ii) Since g; € Z[Ey, Eg, A] this is clear. O

14



Nice example: A =37, 7(n)¢", 7(n) € Z. Then we have

65520
E12:1+W2011(n)qn: 2+CA, CGQ.

So for every n > 1,

65520
ol 2-u= ct(n) (mod Z).

Putting n = 1 shows that ¢ = 65220/691 (mod Z), giving Ramnujan’s congruence
7(n) = o11(n) (mod 691).

There is a very elagant explanation of these and similar congruences in terms of
mod ¢ Galois representations, due to Serre and Swinnerton-Dyer (see papers by
them in Modular Forms of One Variable III).

Finally, a useful estimate for the Fourier coefficients of a cusp form. First prove
the following nice characterisation of cusp forms:

Proposition 2.7. Let f: H — C be holomorphic and modular of weight k > 0.
Then f € Sy, if and only if y*/% | f(7)| is bounded on H, y = Im(7).

Proof. The transformation law shows that y*/2 |f(7)| is invariant under T', so it is
bounded on H iff it is bounded on A. But this holds iff it is bounded as y — oo,
which implies that |f| — 0 as y — oo. So the Fourier series f = > a,(f)¢" — 0
as ¢ — 0, meaning that a,, = 0 for all n < 0, i.e. f is a cusp form. Conversely if
f € Sk then |f/q| is bounded as ¢ — 0, so certainly y” |f| is bnounded at y — co
for any N. O]

Corollary 2.8. If f € Sy then |a,(f)| < n*/2.
Proof. Since f(z +iy) = >_ a,(f)e*™* 2™ we have, for any y > 0,

1
an(f) _ /0 627rny—27rinzf(m + Zy) dx

hence
lan ()] < sup |f(z +iy)| ™
z€]0,1]
< y—k/2€27my
by the previous result. Take y = 1/n. O

Notice that for k£ > 2 this estimate is false for any f € Mj which isn’t a cusp
form. In fact, f is then the sum of a cusp form and a non-zero multiple of Ej, so
|an(f)] > op-1(n) > n*t

Later will prove the better estimate O(n*/271/4) for the Fourier coefficients of a cusp
form. This is about the best one can do by analytic means, but using arithmetic
geometry Deligne proved the best possible bound of O(n*~1/2+¢) (Ramanujan-
Petersson conjecture).
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