

Modular forms part III — lecture notes

A J Scholl¹

These are the notes from 2008 with corrections and edited to reflect better the content and presentation of the course in 2016.

1 Elliptic functions

Generalities

Function theory on an elliptic curve E/\mathbb{C} ; since $E(\mathbb{C}) = \mathbb{C}/\Lambda$ for a lattice $\Lambda \subset \mathbb{C}$ this amounts to studying functions on \mathbb{C} which are invariant under Λ .

Definition. V a finite-dimensional real v.s.; then a *lattice* in V is a discrete subgroup $\Lambda \subset V$ of rank $\dim V$.

Interested mainly in case $V = \mathbb{C}$, then Λ is a discrete sgp of \mathbb{C} of rank 2, and so $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$, where ω_i are lin.ind. over \mathbb{R} . (See example sheet for proof of these and similar facts.) The basis $\{\omega_i\}$ then determines a *fundamental domain* which is the parallelogram $\mathcal{P} = \{x_1\omega_1 + x_2\omega_2 \mid x_i \in [0, 1]\}$, which is a set of coset representatives for $\Lambda \subset \mathbb{C}$. WLOG we can assume that

$$\omega_2/\omega_1 \in \mathcal{H} := \{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0\}.$$

This is equivalent to the natural orientation of the boundary $\partial\mathcal{P}$ of \mathcal{P} being given by taking the vertices in order $0, \omega_1, \omega_1 + \omega_2, \omega_2$. (Picture here.)

It's also convenient to write $\omega_3 = -\omega_1 - \omega_2$, so that the 3 elements of \mathbb{C}/Λ of order 2 are $(\omega_i/2) + \Lambda$.

The quotient \mathbb{C}/Λ is compact (for example, it is the continuous image of the closure \mathcal{P}^c).

Definition. An *elliptic function* w.r.t. Λ is a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{P}^1(\mathbb{C})$ which is Λ -invariant; i.e. $f(z + \omega) = f(z)$ for all $\omega \in \Lambda$.

First prove some general facts (which are special cases of general function theory on compact Riemann surfaces). Obvious remark: if f is an elliptic function then for $a \in \mathbb{C}$, the quantities $f(a)$, $\operatorname{ord}_{z=a} f(z)$, $\operatorname{res}_{z=a} f(z)$ depend only on the class of $a \bmod \Lambda$.

Theorem 1.1. *Let $0 \neq f: \mathbb{C}/\Lambda \rightarrow \mathbb{P}^1(\mathbb{C})$ be meromorphic.*

(i) *If f has no poles then f is constant. If $f \neq 0$ then f has only a finite number of poles and zeroes mod Λ .*

¹Comments and corrections to a.j.scholl@dpmms.cam.ac.uk

$$(ii) \sum_{a \in \mathbb{C}/\Lambda} \text{res}_{z=a} f(z) = 0.$$

$$(iii) \sum_{a \in \mathbb{C}/\Lambda} \text{ord}_{z=a}(f(z)) = 0.$$

$$(iv) \sum_{a \in \mathbb{C}/\Lambda} a \text{ord}_{z=a}(f(z)) \equiv 0 \pmod{\Lambda}.$$

Proof. (i) is Liouville's theorem; since \mathbb{C}/Λ is compact, f is bounded hence constant. (Or use maximum modulus principle, which shows that a holomorphic function on any compact RS is constant.)

(ii) Assume first there are no poles of f on the boundary $\partial\mathcal{P}$. Then

$$2\pi i \sum_{a \in \mathbb{C}/\Lambda} \text{res}_{z=a} f(z) = \int_{\partial\mathcal{P}} f(z) dz$$

and the integrals on the opposite sides of the parallelogram cancel in pairs, so this is 0. If f has poles on the boundary we can find some $b \in \mathbb{C}$ such that no poles lie on the translate $b + \partial\mathcal{P}$, and integrate around this curve instead.

(iii/iv) Same argument as (ii) applied to $f'(z)/f(z)$ and $zf'(z)/f(z)$. We just do the case (iv); we know that $\text{res}_{z=a} f'(z)/f(z) = \text{ord}_{z=a} f(z)$, and so

$$\sum_{a \in \mathbb{C}/\Lambda} a \text{ord}_{z=a}(f(z)) = \frac{1}{2\pi i} \int_{\partial\mathcal{P}} z \frac{f'(z)}{f(z)} dz.$$

Splitting the integral into its 4 parts, we have

$$\begin{aligned} \int_0^{\omega_1} + \int_{\omega_1 + \omega_2}^{\omega_2} z \frac{f'(z)}{f(z)} dz &= \int_0^{\omega_1} z \frac{f'(z)}{f(z)} - (z + \omega_2) \frac{f'(z + \omega_2)}{f(z + \omega_2)} dz \\ &= -\omega_2 \int_0^{\omega_1} \frac{f'(z)}{f(z)} dz = -2\pi i \omega_2 N_1 \end{aligned}$$

where $N_1 = (2\pi i)^{-1} \int_0^{\omega_1} f'(z)/f(z) dz \in \mathbb{Z}$. Likewise

$$\int_{\omega_1}^{\omega_1 + \omega_2} \omega_1 + \omega_2 + \int_{\omega_2}^{\omega_2 + \omega_1} \omega_2 + \omega_1 \frac{f'(z)}{f(z)} dz = 2\pi i \omega_1 N_2, \quad N_2 \in \mathbb{Z}$$

giving

$$\int_{\partial\mathcal{P}} z \frac{f'(z)}{f(z)} dz \in 2\pi i \Lambda.$$

□

1.1 Weierstraß theory

Notation: write

$$\sum'_{\omega \in \Lambda} := \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}}$$

Proposition 1.2. *Let $\Lambda \subset \mathbb{R}^d$ be a lattice and let $s \in \mathbb{R}$. Then:*

$$\sum'_{\omega \in \Lambda} \frac{1}{\|\omega\|^s} \text{ converges iff } s > d.$$

Proof. Let $\{\omega_i\}$ be a basis for Λ . Then there exist constants $0 < c < C$ such that for any $0 \neq x = (x_i) \in \mathbb{R}^d$

$$0 < c \|x\|_\infty < \left\| \sum x_i \omega_i \right\| < C \|x\|_\infty$$

where $\|x\|_\infty = \max |x_i|$ (since any two norms on a finite-dimensional real vector space are equivalent). Therefore $\sum'_{\omega \in \Lambda} \|\omega\|^{-s}$ converges iff $\sum'_{x \in \mathbb{Z}^d} \|x\|_\infty^{-s}$ does. But if $1 \leq n \in \mathbb{Z}$ then

$$\#\{x \in \mathbb{Z}^d \mid \|x\|_\infty = n\} = (2n+1)^d - (2n-1)^d \sim 2d(2n)^{d-1}$$

and therefore $\sum'_{x \in \mathbb{Z}^d} \|x\|_\infty^{-s}$ converges according as $\sum_{n \geq 1} n^{d-1-s}$ does. \square

Corollary. *If $\Lambda \subset \mathbb{C}$ is a lattice and $2 < k \in \mathbb{Z}$, then the series*

$$G_k(\Lambda) := \sum'_{\omega \in \Lambda} \frac{1}{\omega^k}$$

converges. If $k \geq 3$ is odd, then $G_k(\Lambda) = 0$.

Proof. The first part is the case $d = 2$ of the Proposition. For the last part, since $\Lambda \subset \mathbb{C}$ is a subgroup

$$G_k(\Lambda) = \sum'_{\omega \in \Lambda} \frac{1}{\omega^k} = \sum'_{-\omega \in \Lambda} \frac{1}{\omega^k} = (-1)^k G_k(\Lambda).$$

\square

To construct an elliptic function, the simplest thing would be to try to make a function which just one singularity, which needs to be at least a double pole by Thm.1.1(ii). The obvious try would be to consider the series $\sum_{\omega \in \Lambda} 1/(z - \omega)^2$ — but this is not convergent. But we can subtract off the divergences:²

²Analogous to the series $\pi \cot \pi z = 1/z + \sum_{n \neq 0} 1/(z + n) - 1/n$

Theorem 1.3 (Weierstraß \wp -function). *i) The series*

$$\wp(z) := \frac{1}{z^2} + \sum'_{\omega \in \Lambda} \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}$$

represents an elliptic function.

ii) \wp is even, and its only poles are at $\omega \in \Lambda$, of order 2. Moreover, for any $a \in \mathbb{C}$ the function $\wp(z) - a$ has either two simple zeroes $z, -z \not\equiv z \pmod{\Lambda}$ or one double zero $z \equiv \omega_i/2$ ($i \in \{1, 2, 3\}$).

iii) In a neighbourhood of zero.

$$\wp(z) = \frac{1}{z^2} + \sum_{r=1}^{\infty} (2r+1) G_{2r+2}(\Lambda) z^{2r}$$

iv) The function $\wp(z)$ satisfies the differential equation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

where $g_2 = 60G_4(\Lambda)$ and $g_3 = 140G_6(\Lambda)$.

Corollary 1.4. *(i) The mapping $\wp: \mathbb{C}/\Lambda \rightarrow \mathbb{P}^1(\mathbb{C})$ identifies $\mathbb{P}^1(\mathbb{C})$ with the quotient of \mathbb{C}/Λ by $z \mapsto -z$.*

(ii) The mapping $\mathbb{C}/\Lambda \rightarrow \mathbb{P}^2(\mathbb{C})$ given by $z \mapsto (\wp(z), \wp'(z), 1)$ is a biholomorphic equivalence between \mathbb{C}/Λ and the curve in $\mathbb{P}^2(\mathbb{C})$ with equation $Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3$.

(i) is just a restatement of (ii) above, and (ii) is an exercise.

Proof. (i,ii) If $|\omega| > 2|z|$ then

$$\left| \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right| = \left| \frac{z(2\omega - z)}{\omega^2(\omega - z)^2} \right| < \frac{(5/2)|\omega z|}{(1/4)|\omega|^4} = \frac{10|z|}{|\omega^3|}$$

which shows that the series converges uniformly on compact subsets of $\mathbb{C} \setminus \Lambda$, and so is holomorphic there. Clearly it has a double pole at every point of Λ . It is also obviously even. To show it is elliptic, consider the derivative:

$$\wp'(z) = -2 \sum_{\omega \in \Lambda} \frac{1}{(z - \omega)^3}$$

which is obviously elliptic, so $\wp'(z + \omega_i) = \wp'(z)$ for $i = 1, 2$. Therefore $\wp(z + \omega_i) - \wp(z) = c_i$ is constant. As \wp is even, putting $z = \omega_i/2$ gives $c_i = 0$, hence $\wp(z + \omega_i) = \wp(z)$ — i.e. \wp is elliptic.

Now Thm.1.1(iii) applied to $\wp(z) - a$ shows that it has exactly two zeroes z, z' in $\mathbb{C} \setminus \Lambda$, counted with multiplicity, and moreover that $z + z' \equiv 0 \pmod{\Lambda}$. Since $z \equiv -z$ iff $z \equiv 0$ or $z \equiv \omega_i/2$, (ii) follows.

(iii) For $|z|$ sufficiently small,

$$\frac{1}{(z - \omega)^2} = \sum_{n=0}^{\infty} (n+1) \frac{z^n}{\omega^{n+2}}$$

and therefore

$$\begin{aligned} \wp(z) &= \frac{1}{z^2} + \sum_{n=1}^{\infty} \sum'_{\omega} (n+1) \frac{z^n}{\omega^{n+2}} = \frac{1}{z^2} + \sum_{r=1}^{\infty} (2r+1) G_{2r+2} z^{2r} \\ &= \frac{1}{z^2} + 3G_4 z^2 + 5G_6 z^4 + O(z^6) \end{aligned}$$

with $G_k = G_k(\Lambda)$.

(iv) Consider the functions

$$\wp'(z)^2 = \left(\frac{-2}{z^3} + 6G_4 z + 20G_6 z^3 + O(z^5) \right)^2 = \frac{4}{z^6} - \frac{24G_4}{z^2} - 80G_6 + O(z^2)$$

and

$$\wp(z)^3 = \frac{1}{z^6} + \frac{9G_4}{z^2} + 15G_6 + O(z^2).$$

Then

$$\wp'(z)^2 - 4\wp(z)^3 + 60G_4\wp(z) + 140G_6 = O(z^2)$$

and so by Thm.1.1(i), this vanishes. \square

Write $e_i = \wp(\omega_i/2)$. Then the function $f_i(z) := \wp(z) - e_i$ has the double zero $z = \omega_i/2$. So \wp' vanishes at each $\omega_i/2$, and these must be all the zeros of \wp' in \mathbb{C}/Λ , by Thm.1.1(ii).

Therefore the function $(\wp')^2/f_1 f_2 f_3$ has no zeroes and poles, so by 1.1(i) is a constant. Comparing with the differential equation gives the constant value 4, and

$$4\wp(z)^3 - g_2\wp(z) - g_3 = 4 \prod_{i=1}^3 (\wp(z) - e_i), \quad e_i := \wp(\omega_i/2).$$

Also if $i \neq j$ then $e_i \neq e_j$ (since f_i cannot vanish at $\omega_j/2$) so we see:

Corollary 1.5. *The discriminant*

$$\Delta(\Lambda) := g_2^3 - 27g_3^2 = 16 \prod_{i < j} (e_i - e_j)^2$$

is non-zero.

Another easy consequence of the above is that the field of all elliptic functions for Λ is $\mathbb{C}(\wp, \wp')$.

2 Modular forms of level 1

Motivation. Let \mathcal{L} be the set of all lattices in \mathbb{C} . Then $G_k: \mathcal{L} \rightarrow \mathbb{C}$ satisfies

$$G_k(\alpha\Lambda) = \sum'_{\omega \in \Lambda} (\alpha\omega)^{-k} = \alpha^{-k} G_k(\Lambda).$$

More generally, let $F: \mathcal{L} \rightarrow \mathbb{C}$ be a function on lattices which satisfies $F(\alpha\Lambda) = \alpha^{-k} F(\Lambda)$ for some $k \in \mathbb{Z}$. Then

$$F(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2) = \omega_1^{-k} F(\mathbb{Z} + \mathbb{Z}\tau), \quad \tau = \omega_1/\omega_2.$$

Also, if

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}) \quad \text{and} \quad \begin{pmatrix} \omega'_2 \\ \omega'_1 \end{pmatrix} = \gamma \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}$$

so that

$$\tau' = \frac{\omega'_2}{\omega'_1} = \frac{a\tau + b}{c\tau + d}$$

then $\mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2 = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ so

$$F(\mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2) = F(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2), \quad F(\mathbb{Z} + \mathbb{Z}\tau') = (c\tau + d)^k F(\mathbb{Z} + \mathbb{Z}\tau).$$

Notation: take the usual left action of $GL_2(\mathbb{R})$ on $\mathbb{C} \setminus \mathbb{R}$ by

$$\gamma(\tau) = \frac{a\tau + b}{c\tau + d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \tau \in \mathbb{C} \setminus \mathbb{R}$$

Then

$$\text{Im } \gamma(\tau) = \det \gamma \frac{\text{Im } \tau}{|c\tau + d|^2}, \quad \gamma'(\tau) = \frac{\det \gamma}{(c\tau + d)^2}$$

so that $\text{Im } \tau, \text{Im } \gamma(\tau)$ have the same sign iff $\det \gamma > 0$. Write also

$$j(\gamma, \tau) = c\tau + d.$$

Then for $\gamma, \delta \in GL_2(\mathbb{R})$

$$j(\gamma\delta, \tau) = j(\gamma, \delta(\tau))j(\delta, \tau), \quad j(\gamma^{-1}, \tau) = j(\gamma, \gamma^{-1}(\tau))^{-1} \quad (1)$$

(the 2nd identity from the first taking $\delta = \gamma^{-1}$.)

Now for $\gamma \in GL_2(\mathbb{R})^+$, $f: \mathcal{H} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$ write

$$(f|_k \gamma)(\tau) := \det(\gamma)^{k/2} j(\gamma, \tau)^{-k} f(\gamma(\tau)).$$

Lemma. $\gamma: f \rightarrow f|_k \gamma$ is a (right) group action of $GL_2(\mathbb{R})^+$ on functions on \mathcal{H} .

Proof: follows from (1).

Definition. Let $f: \mathcal{H} \rightarrow \mathbb{P}^1(\mathbb{C})$ be meromorphic and $k \in \mathbb{Z}$. We say that f is *modular of weight k* if

$$f(\gamma(\tau)) = (c\tau + d)^k f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

Equivalently, $f|_k \gamma = f$ for all $\gamma \in SL_2(\mathbb{Z})$.

Suppose now that f is holomorphic for $\text{Im } \tau > R$, some $R > 0$. Then

$$\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Rightarrow f(\tau + 1) = f(\tau)$$

in other words,

$$f(\tau) = g(e^{2\pi i \tau}) = \sum_{n \in \mathbb{Z}} a_n(f) q^n, \quad q = e^{2\pi i \tau} \quad (2)$$

for some holomorphic function g on $\{q \in \mathbb{C} \mid 0 < |q| < r\}$, where $\log r = -2\pi R$. The series (2) is called the *q -expansion* (or Fourier expansion) of f at ∞ .

Definition. f is *meromorphic* (resp. *holomorphic*) at infinity if it is holomorphic for $\text{Im } \tau \gg 0$ and $a_n(f) = 0$ for $n \ll 0$ (resp. for all $n < 0$).

Definition. (i) A *modular form* of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ which is modular of weight k and holomorphic at infinity. It is a *cusp form* if moreover $a_0(f) = 0$.

(ii) A *modular function* is a meromorphic function $f: \mathcal{H} \rightarrow \mathbb{P}^1(\mathbb{C})$ which is meromorphic at infinity.

Examples

First note that if f is a modular form of weight k and k is odd, then by taking $\gamma = -1$ we see that $f(\tau) = -f(\tau)$. So any non-zero modular form has even weight.

Eisenstein series: For $k \geq 4$ even, set

$$G_k(\tau) = G_k(\mathbb{Z} + \mathbb{Z}\tau) = \sum'_{m,n \in \mathbb{Z}} \frac{1}{(m\tau + n)^k}$$

— here the prime means omit $(m, n) = (0, 0)$. By the convergence of the series this is holomorphic for $\tau \in \mathcal{H}$.

Proposition 2.1. $G_k(\tau)$ is a modular form of weight k , and has q -expansion

$$G_k(\tau) = 2\zeta(k) \left(1 - \frac{2k}{B_k} \sum_{n \geq 1} \sigma_{k-1}(n) q^n \right)$$

Here $\zeta(s) = \sum_{n \geq 1} n^{-s}$ is the Riemann zeta-function, and $\sigma_r(n) = \sum_{0 < d|n} d^r$. Finally, the B_k are the *Bernoulli numbers*, defined by the identity

$$\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}$$

Proof. That $G_k(\tau)$ is modular of weight k has already been noted. To show it is holomorphic at infinity we compute its q -expansion. Begin with

$$\pi \cot \pi z = \frac{1}{z} + \sum_{m=1}^{\infty} \left(\frac{1}{z-m} + \frac{1}{z+m} \right) \quad (3)$$

$$= \pi i \frac{e^{\pi iz} + e^{-\pi iz}}{e^{\pi iz} - e^{-\pi iz}} \quad (4)$$

$$= \pi i - \frac{2\pi i}{1 - e^{2\pi iz}} \quad (5)$$

$$= -\pi i - 2\pi i \sum_{d \geq 1} e^{2\pi idz} \quad (6)$$

Differentiating $(k-1)$ times, for $k > 1$:

$$(-1)^{k-1} (k-1)! \sum_{m=-\infty}^{\infty} \frac{1}{(z-m)^k} = -(2\pi i)^k \sum_{d \geq 1} d^{k-1} e^{2\pi idz}$$

or

$$\sum_{m \in \mathbb{Z}} \frac{1}{(z-m)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{d \geq 1} d^{k-1} e^{2\pi idz}$$

So if k is even

$$\begin{aligned} G_k(\tau) &= 2 \sum_{n=1}^{\infty} \frac{1}{n^k} + 2 \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{(m\tau + n)^k} \\ &= 2\zeta(k) + \sum_{m=1}^{\infty} \frac{2(2\pi i)^k}{(k-1)!} \sum_{d \geq 1} d^{k-1} e^{2\pi imd\tau} \\ &= 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sum_{d|n} d^{k-1} q^n \end{aligned}$$

Now (3) gives, setting $t = 2\pi iz$,

$$\frac{1}{2} + \frac{1}{e^t - 1} = \frac{1}{t} + \sum_{m=1}^{\infty} \frac{1}{t - 2\pi im} + \frac{1}{t + 2\pi im}$$

so

$$\begin{aligned}
\frac{t}{e^t - 1} &= 1 - \frac{t}{2} + \sum_{m=1}^{\infty} \frac{t}{t + 2\pi i m} + \frac{t}{t - 2\pi i m} \\
&= 1 - \frac{t}{2} - 2 \sum_{m,n \geq 1} \left(\frac{t}{2\pi i m} \right)^{2n} \\
&= 1 - \frac{t}{2} - \sum_{n=1}^{\infty} 2(2\pi i)^{-2n} \zeta(2n) t^{2n}
\end{aligned}$$

using the identity

$$\frac{t}{t \pm 2\pi i m} = - \sum_{n \geq 1} \left(\frac{\pm t}{2\pi i m} \right)^n$$

□

Definition. For $k \geq 4$ even, the *normalised Eisenstein series* is

$$E_k(\tau) = \frac{1}{2\zeta(k)} G_k(\tau) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

The first few nonzero Bernoulli numbers are

$$\begin{aligned}
B_0 &= 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \\
B_8 &= -\frac{1}{30}, \quad B_{10} = \frac{5}{66}, \quad B_{12} = -\frac{691}{2730}, \quad B_{14} = \frac{7}{6}
\end{aligned}$$

giving

$$\begin{aligned}
E_4(\tau) &= 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n \\
E_6(\tau) &= 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n \\
E_8(\tau) &= 1 + 480 \sum_{n=1}^{\infty} \sigma_7(n) q^n \\
E_{10}(\tau) &= 1 - 264 \sum_{n=1}^{\infty} \sigma_9(n) q^n \\
E_{12}(\tau) &= 1 + \frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^n \\
E_{14}(\tau) &= 1 - 24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^n
\end{aligned}$$

The modular group

We've already considered the action of $GL_2(\mathbb{R})^+$ on \mathcal{H} , which factors through $PGL_2(\mathbb{R})^+$. Note that since $GL_2(\mathbb{R})^+ = \mathbb{R}^*.SL_2(\mathbb{R})$ (\mathbb{R}^* embedded as diagonal matrices), we have $PGL_2(\mathbb{R})^+ = PSL_2(\mathbb{R})$. We'll see later why GL is needed.

Note the fact that $PSL_2(\mathbb{R})$ is the group of holomorphic automorphisms of \mathcal{H} (or equivalently of the unit disc). Moreover it acts transitively, and the stabiliser of i is $SO(2)/\pm 1$, which is a maximal compact subgroup. This can be assembled in the *Iwasawa decomposition* which I'll just write for SL_2 :

$$SL_2(\mathbb{R}) = KAN = NAK, \quad K = SO(2), \quad A = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}, \quad N = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$$

since

$$\tau = x + iy = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & 1/\sqrt{y} \end{pmatrix} (i)$$

If $\Gamma \subset SL_2(\mathbb{R})$ then we often write $\bar{\Gamma} \subset PSL_2(\mathbb{R})$ for its image, so that $\bar{\Gamma} = \Gamma / (\Gamma \cap \{\pm 1\})$. We are mainly interested in $\Gamma = SL_2(\mathbb{Z})$ and its subgroups. The quotient $\bar{\Gamma} = PSL_2(\mathbb{Z})$ is the *modular group*. First task is to describe its action on \mathcal{H} as explicitly as possible. Let $S, T \in \bar{\Gamma}$ denote the elements

$$S = \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T = \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Theorem 2.2. *Let $\Gamma = SL_2(\mathbb{Z})$, $\bar{\Gamma} = PSL_2(\mathbb{Z})$. Then the subset*

$$\mathcal{D} = \left\{ \tau \in \mathcal{H} \mid -\frac{1}{2} < \operatorname{Re}(\tau) \leq \frac{1}{2}, |\tau| \geq 1, |\tau| = 1 \implies \operatorname{Re}(\tau) \geq 0 \right\}$$

is a fundamental domain for Γ , i.e. $\mathcal{D} \xrightarrow{\sim} \Gamma \backslash \mathcal{H}$ is bijective. Moreover, if $\tau \in \mathcal{D}$ and $\bar{\Gamma}_\tau \neq 1$, then:

$$\begin{aligned} &\text{either } \tau = i, \quad \bar{\Gamma}_\tau = \langle S \rangle \simeq \mathbb{Z}/2 \\ &\text{or } \tau = \rho = e^{\pi i/3}, \quad \bar{\Gamma}_\tau = \langle TS \rangle \simeq \mathbb{Z}/3. \end{aligned}$$

Finally, $\bar{\Gamma} = \langle S, T \rangle$.

Proof. (i) Let $\bar{\Gamma}^* = \langle S, T \rangle$. First show that if $\tau \in \mathcal{H}$ then $\exists \gamma \in \bar{\Gamma}^*$ with $\gamma(\tau) \in \mathcal{D}$. Since $\mathbb{Z} + \mathbb{Z}\tau$ is a lattice, $\{|c\tau + d| \mid c, d \in \mathbb{Z}\}$ is a discrete subset of \mathbb{R} , so

$$\left\{ \operatorname{Im} \gamma(\tau) = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2} \mid \gamma \in \bar{\Gamma}^* \right\}$$

is a discrete subset of $\mathbb{R}_{>0}$, bounded above. So can choose $\gamma \in \bar{\Gamma}^*$ with $\operatorname{Im} \gamma(\tau)$ maximal, and (replacing γ with $T^m \gamma$ is necessary) may assume $|\operatorname{Re} \gamma(\tau)| \leq 1/2$.

If $|\gamma(\tau)| < 1$ then

$$\operatorname{Im}(S\gamma(\tau)) = \operatorname{Im}(-1/\gamma(\tau)) = \frac{\operatorname{Im}(\gamma(\tau))}{|\gamma(\tau)|^2} > \operatorname{Im}\gamma(\tau)$$

contradicting maximality. So $|\gamma(\tau)| \geq 1$ i.e. $\gamma(\tau) \in \mathcal{D}^c$. If $\operatorname{Re}\gamma(\tau) = -1/2$ then $T\gamma(\tau) \in \mathcal{D}$. If $-1/2 < \operatorname{Re}\gamma(\tau) < 0$ and $|\gamma(\tau)| = 1$ then $S\gamma(\tau) \in \mathcal{D}$.

Remark: This leads to the following simple algorithm to compute γ (explained in the lectures, where the proof of the theorem was not given): first find a power T^n such that $|\operatorname{Re}T^n\tau| \leq 1/2$. If $|T^n\tau| < 1$ then put $\tau_1 = ST^n\tau$, so that $\operatorname{Im}(\tau_1) = 1/\operatorname{Im}(\tau) > \operatorname{Im}(\tau)$. Replace τ by τ_1 and repeat; eventually the sequence of imaginary parts terminates, so we end up with a point τ' with $|\operatorname{Re}\tau'| \leq 1/2$ and $|\tau'| \geq 1$. Then one of τ' , $S\tau'$, $T\tau'$ is in \mathcal{D} .

(ii) Next show that if $t, \tau' \in \mathcal{D}$ and $\tau' = \gamma(\tau)$, $\gamma \in \overline{\Gamma}$ then $\tau = \tau'$ and γ is as in statement of theorem.

We can assume that

$$\operatorname{Im}\tau' = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2} \geq \operatorname{Im}\tau$$

i.e. that $|c\tau + d| \leq 1$. Then

$$1 \geq |\operatorname{Im}(c\tau + d)| = |c| \operatorname{Im}(\tau) \geq |c| \frac{\sqrt{3}}{2}$$

forcing $c \in \{0, \pm 1\}$.

$$c = 0 \implies \gamma = \pm \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \quad \tau' = \tau + m, \quad m \in \mathbb{Z} \implies m = 0, \quad \gamma = \pm 1, \quad \tau = \tau'.$$

If $c = 1$ then $|\tau| \geq 1$ and $|\tau + d| \leq 1$. Then 2 possibilities:

$$d = 0, \quad |\tau| = 1, \quad \gamma = \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}, \quad \tau' = a - 1/\tau.$$

Then $a = 0$ and $\tau = \tau' = i$ or $a = 1$, $\tau = \tau' = \rho$.

$$d = 1, \quad |\tau| \geq 1, \quad |\tau - 1| \leq 1, \quad \operatorname{Re}(\tau) \leq 1/2.$$

Then $\tau = \rho$, $|c\tau + d| = |\tau - 1| = 1$ so $\operatorname{Im}\tau' = \operatorname{Im}\tau = \sqrt{3}/2$, so $\tau = \tau' = \rho$. Then

$$\frac{a\tau + b}{\tau - d} = \tau = \rho \implies \rho^2 - (a + 1)\rho - b = 0 \implies b = -1, \quad a = 0.$$

□

Important consequence is that the quotient $\Gamma \backslash \mathcal{H}$ has finite invariant measure:

Proposition 2.3. (i) The measure $d\mu = y^{-2}dx dy$ on \mathcal{H} is invariant under $PSL_2(\mathbb{R})$.

(ii) If $\Gamma \subset SL_2(\mathbb{Z})$ is a subgroup of finite index, then $\mu(\overline{\Gamma} \setminus \mathcal{H}) < \infty$.

Proof. (i) Consider the associated 2-form

$$\eta = \frac{dx \wedge dy}{y^2} = \frac{i d\tau \wedge d\bar{\tau}}{2 \operatorname{Im}(\tau)^2}.$$

Then if $\gamma(\tau) = (a\tau + b)/(c\tau + d)$, $\gamma \in SL_2(\mathbb{R})$, the formulae $\gamma'(\tau) = 1/(c\tau + d)^2$, $\operatorname{Im} \gamma(\tau) = \operatorname{Im}(\tau)/|c\tau + d|^2$ show that η is invariant under γ .

(ii) If $(PSL_2(\mathbb{Z}) : \overline{\Gamma}) = M$ then

$$\begin{aligned} \mu(\overline{\Gamma} \setminus \mathcal{H}) &= M\mu(PSL_2(\mathbb{Z}) \setminus \mathcal{H}) \\ &= M\mu(\mathcal{D}) \\ &< M \int_{\substack{y \geq 1 \\ |x| \leq \sqrt{3}/2}} \frac{dx dy}{y^2} < \infty. \end{aligned}$$

(Exercise: show that $\mu(PSL_2(\mathbb{Z}) \setminus \mathcal{H}) = \pi/3$.) \square

Now return to modular forms. We let M_k and S_k denote the spaces of modular and cusp forms, respectively, of weight k . From the definition we have an exact sequence

$$0 \rightarrow S_k \rightarrow M_k \xrightarrow{f \mapsto a_0(f)} \mathbb{C} \tag{7}$$

so S_k either equals M_k or is a subspace of codimension 1. Let's first prove:

Proposition 2.4. $S_0 = 0$ and $M_0 = \mathbb{C}$.

Proof. Obviously $\mathbb{C} \subset M_0$, so enough to show $S_0 = 0$. If $f \in S_0$ the f is holomorphic on \mathcal{H} and satisfies $f(x + iy) \rightarrow 0$ as $y \rightarrow \infty$, uniformly in x . So on \mathcal{D}^c , f attains a maximum on the boundary (unit circle plus vertical lines). But as weight is modular of weight 0 it's invariant under $SL_2(\mathbb{Z})$, so since \mathcal{D} is a fundamental domain, this maximum must be the maximum of $|f|$ on \mathcal{H} , so f is constant by maximum modulus, hence in fact zero. \square

Now recall that we have, for every even $k \geq 4$, the normalised Eisenstein series; in particular the series of weights 4 and 6:

$$\begin{aligned} E_4 &= 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n \\ E_6 &= 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n. \end{aligned}$$

Define

$$\Delta = \frac{E_4^3 - E_6^2}{1728} = q - 24q^2 + \dots = \sum_{n=1}^{\infty} \tau(n)q^n$$

which is therefore a cusp form of weight 12.

Write in terms of the unnormalised series $G_4 = G_4(\mathbb{Z} + \mathbb{Z}\tau) = g_2/60$, $G_6 = g_3/140$. We have

$$2\zeta(4) = \frac{\pi^4}{45}, \quad 2\zeta(6) = \frac{2\pi^6}{945} \quad (8)$$

$$E_4 = \frac{3}{8\pi^4}g_2, \quad E_6 = \frac{27}{16\pi^6}g_3 \quad (9)$$

$$E_4^3 - E_6^2 = \frac{3^3}{2^9\pi^{12}}(g_2^3 - 27g_3^2) \quad (10)$$

and so comparing with Corollary 1.5 we see that Δ is nonvanishing on \mathcal{H} . Use this to determine the spaces M_k completely. Let's first note the simple fact:

Multiplication by Δ is an isomorphism $M_{k-12} \xrightarrow{\sim} S_k$ for every $k \in \mathbb{Z}$.

Indeed, we have $0 \neq \Delta \in S_{12}$, so $\Delta M_{k-12} \subset S_k$, and since $\Delta(\tau) \neq 0$ for $\tau \in \mathcal{H}$, if $f \in S_k$ the f/Δ is both holomorphic on \mathcal{H} and holomorphic at infinity.

Theorem 2.5. (i) If $k < 0$ then $M_k = 0$. If $k \geq 4$ then $M_k = S_k \oplus \mathbb{C} \cdot E_k$.

(ii) If $k \geq 0$ is even

$$\dim M_k = \begin{cases} 1 + \left[\frac{k}{12} \right] & \text{if } k \not\equiv 2 \pmod{12} \\ \frac{k-2}{12} & \text{if } k \equiv 2 \pmod{12} \end{cases}$$

(iii) A basis for M_k is $\{E_4^a E_6^b \Delta^c\}$ where $4a + 6b + 12c = k$, $a, b, c \geq 0$ and $b = 0$ if $k \equiv 0 \pmod{4}$, $b = 1$ if $k \equiv 2 \pmod{4}$. In particular,

$$\bigoplus_{k \in \mathbb{Z}} M_k = \mathbb{C}[E_4, E_6].$$

Proof. (i) If $f \in M_k$, $k < 0$ then $f^{12}\Delta^{(-k)} \in S_0 = \{0\}$, so $f = 0$. Since S_k is the kernel of the map $M_k \rightarrow \mathbb{C}$ given by $f \mapsto a_0(f)$ and $a_0(E_k) = 1$, the second part follows.

(ii) Assume k even. We have $S_k = \Delta M_{k-12}$, hence $S_k = 0$ for $k < 12$, and therefore $M_k = \mathbb{C} \cdot E_k$ for $4 \leq k \leq 10$. Let's show that $M_2 = 0$. If not, and $0 \neq f \in M_2$ then $f^2 \in M_4$ so $f^2 = aE_4$. Likewise $f^3 \in M_6$. But as $a_0(E_k) = 1$, this would imply that $E_4^3 = E_6^2$, whereas $E_4^3 - E_6^2 = 1728\Delta \neq 0$.

The dimension formula is therefore true for $0 \leq k \leq 10$. But if $k \geq 12$, $M_k = \mathbb{C} \cdot E_k + \Delta M_{k-12}$ so $\dim M_k = 1 + \dim M_{k-12}$, hence (by induction) the formula holds for all k .

(iii) Let $k \geq 4$ be even. Take b as in the first statement, and $a = (k - 6b)/4$. Then $M_k = \mathbb{C}.E_4^a E_6^b \oplus \Delta M_{k-12}$. So by induction on k the statement holds. For the second, as $\Delta = 12^{-3}(E_4^3 - E_6^2)$, every element of M_k is a linear combination of $\{E_4^a E_6^b \mid a, b \leq 0, 4a + 6b = k\}$. But it is easy to see that the number of such pairs (a, b) equals the right hand side of the dimension formula, so the mononomials are linearly independent. \square

Remark. The previous result shows there is no non-trivial homogeneous relation between E_4 and E_6 . It is not hard to see there is no inhomogeneous relation — in other words, E_4 and E_6 are algebraically dependent as functions on \mathcal{H} . It is enough to check that if f_1, \dots, f_r are modular forms of weights $k_1 < \dots < k_r$ with $\sum f_j = 0$ then each $f_j = 0$. But then $f_j(iy) = (iy)^{-k_j} f_j(i/y)$ and as $y \rightarrow 0$, $f(i/y) \rightarrow a_0(f_j)$, so as the weights are different we have $a_0(f_j) = 0$ for all j . But then dividing the relation by Δ gives one with smaller weights, so by induction all f_j are zero.

Rationality and integrality

Let $R \subset \mathbb{C}$ be a subring. Define $M_k(R) = M_k \cap R[[q]] = \{f \in M_k \mid a_n(f) \in R \forall n\}$, $S_k(R) = S_k \cap M_k(R)$.

We have $E_4 \in M_4(\mathbb{Z})$ and $E_6 \in M_6(\mathbb{Z})$. Also easy to see that $\Delta \in S_{12}(\mathbb{Z})$, since expanding $E_4^3 - E_6^2$ one easily reduces to checking that $\sigma_5(n) - \sigma_3(n)$ is always divisible by 12, which follows from the congruence $d^5 - d^3 \equiv 0 \pmod{12}$.

Proposition 2.6. *Let $d = \dim M_k$. There exists a basis $\{g_j \mid 0 \leq j < d\}$ for M_k such that $g_j \in M_k(\mathbb{Z})$ and*

$$a_n(g_j) = \delta_{nj} \quad \text{for all } j, n \in \{0, \dots, d-1\}.$$

Proof. Let $b = 0$ if $4|k$ and 1 otherwise, and consider the basis $h_j = E_4^{(k-6b-12j)/4} E_6^b \Delta^j \in M_k(\mathbb{Z})$ given in 2.5(iii). Then $a_n(h_j) = 0$ if $n < j$ and $a_j(h_j) = 1$, so by elementary operations we can replace $\{h_j\}$ by a basis with the desired properties. \square

Corollary. (i) *For every R , the map $f \mapsto (a_j(f))_{0 \leq j < d}$ is an isomorphism of R -modules $M_k(R) \xrightarrow{\sim} R^d$. Likewise, $f \mapsto (a_j(f))_{1 \leq j < d}$ is an isomorphism $S_k(R) \xrightarrow{\sim} R^{d-1}$.*

(ii) *If $1/6 \in R$ then $M_*(R) = \bigoplus M_k(R) = R[E_4, E_6]$, and in general*

$$M_*(R) = R[E_4, E_6, \Delta]/(E_4^3 - E_6^2 - 1728\Delta).$$

Proof. (i) The inverse map is $(r_j) \mapsto \sum r_j g_j$.

(ii) Since $g_j \in \mathbb{Z}[E_4, E_6, \Delta]$ this is clear. \square

Nice example: $\Delta = \sum_{n \geq 1} \tau(n)q^n$, $\tau(n) \in \mathbb{Z}$. Then we have

$$E_{12} = 1 + \frac{65520}{691} \sum \sigma_{11}(n)q^n = E_4^3 + c\Delta, \quad c \in \mathbb{Q}.$$

So for every $n \geq 1$,

$$\frac{65520}{691} \sum \sigma_{11}(n) \equiv c\tau(n) \pmod{\mathbb{Z}}.$$

Putting $n = 1$ shows that $c \equiv 65220/691 \pmod{\mathbb{Z}}$, giving Ramanujan's congruence

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}.$$

There is a very elegant explanation of these and similar congruences in terms of mod ℓ Galois representations, due to Serre and Swinnerton-Dyer (see papers by them in *Modular Forms of One Variable III*).

Finally, a useful estimate for the Fourier coefficients of a cusp form. First prove the following nice characterisation of cusp forms:

Proposition 2.7. *Let $f: \mathcal{H} \rightarrow \mathbb{C}$ be holomorphic and modular of weight $k > 0$. Then $f \in S_k$ if and only if $y^{k/2} |f(\tau)|$ is bounded on \mathcal{H} , $y = \text{Im}(\tau)$.*

Proof. The transformation law shows that $y^{k/2} |f(\tau)|$ is invariant under Γ , so it is bounded on \mathcal{H} iff it is bounded on Δ . But this holds iff it is bounded as $y \rightarrow \infty$, which implies that $|f| \rightarrow 0$ as $y \rightarrow \infty$. So the Fourier series $f = \sum a_n(f)q^n \rightarrow 0$ as $q \rightarrow 0$, meaning that $a_n = 0$ for all $n \leq 0$, i.e. f is a cusp form. Conversely if $f \in S_k$ then $|f/q|$ is bounded as $q \rightarrow 0$, so certainly $y^N |f|$ is bounded at $y \rightarrow \infty$ for any N . \square

Corollary 2.8. *If $f \in S_k$ then $|a_n(f)| \ll n^{k/2}$.*

Proof. Since $f(x + iy) = \sum a_n(f)e^{2\pi inx - 2\pi ny}$ we have, for any $y > 0$,

$$a_n(f) = \int_0^1 e^{2\pi ny - 2\pi inx} f(x + iy) dx$$

hence

$$\begin{aligned} |a_n(f)| &\leq \sup_{x \in [0,1]} |f(x + iy)| e^{2\pi ny} \\ &\ll y^{-k/2} e^{2\pi ny} \end{aligned}$$

by the previous result. Take $y = 1/n$. \square

Notice that for $k > 2$ this estimate is false for any $f \in M_k$ which isn't a cusp form. In fact, f is then the sum of a cusp form and a non-zero multiple of E_k , so $|a_n(f)| \gg \sigma_{k-1}(n) \geq n^{k-1}$.

Later will prove the better estimate $O(n^{k/2-1/4})$ for the Fourier coefficients of a cusp form. This is about the best one can do by analytic means, but using arithmetic geometry Deligne proved the best possible bound of $O(n^{(k-1)/2+\epsilon})$ (Ramanujan-Petersson conjecture).