
Modular forms part III — lecture notes

A J Scholl1

These are the notes from 2008 with corrections and edited to reflect better the
content and presentation of the course in 2016.

1 Elliptic functions

Generalities

Function theory on an elliptic curve E/C; since E(C) = C/Λ for a lattice Λ ⊂ C
this amounts to studying functions on C which are invariant under Λ.

Definition. V a finite-dimensional real v.s.; then a lattice in V is a discrete sub-
group Λ ⊂ V of rank dimV .

Interested mainly in case V = C, then Λ is a discrete sgp of C of rank 2, and so
Λ = Zω1 + Zω2 ⊂ C, where ωi are lin.ind. over R. (See example sheet for proof
of these and similar facts.) The basis {ωi} then determines a fundamental domain
which is the parallelogram P = {x1ω1 + x2ω2 | xi ∈ [0, 1)}, which is a set of coset
representatives for Λ ⊂ C. WLOG we can assume that

ω2/ω1 ∈ H :={τ ∈ C | Im(τ) > 0}.

This is equivalent to the natural orientation of the boundary ∂P of P being given
by taking the vertices in order 0, ω1, ω1 + ω2, ω2. (Picture here.)

It’s also convenient to write ω3 = −ω1−ω2, so that the 3 elements of C/Λ of order
2 are (ωi/2) + Λ.

The quotient C/Λ is compact (for example, it is the continuous image of the closure
Pc).

Definition. An elliptic function w.r.t. Λ is a meromorphic function f : C→ P1(C)
which is Λ-invariant; i.e. f(z + ω) = f(z) for all ω ∈ Λ.

First prove some general facts (which are special cases of general function theory
on compact Riemann surfaces). Obvious remark: if f is an elliptic function then
for a ∈ C, the quantities f(a), ordz=a f(z), resz=a f(z) depend only on the class of
a mod Λ.

Theorem 1.1. Let 0 6= f : C/Λ→ P1(C) be meromorphic.

(i) If f has no poles then f is constant. If f 6= 0 then f has only a finite number
of poles and zeroes mod Λ.

1Comments and corrections to a.j.scholl@dpmms.cam.ac.uk
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(ii)
∑

a∈C/Λ resz=a f(z) = 0.

(iii)
∑

a∈C/Λ ordz=a(f(z)) = 0.

(iv)
∑

a∈C/Λ a ordz=a(f(z)) ≡ 0 mod Λ.

Proof. (i) is Liouville’s theorem; since C/Λ is compact, f is bounded hence con-
stant. (Or use maximum modulus principle, which shows that a holomorphic
function on any compact RS is constant.)

(ii) Assume first there are no poles of f on the boundary ∂P . Then

2πi
∑
a∈C/Λ

resz=a f(z) =

∫
∂P
f(z) dz

and the integrals on the opposite sides of the parallelogram cancel in pairs, so this
is 0. If f has poles on the boundary we can find some b ∈ C such that no poles lie
on the translate b+ ∂P , and integrate around this curve instead.

(iii/iv) Same argument as (ii) applied to f ′(z)/f(z) and zf ′(z)/f(z). We just do
the case (iv); we know that resz=a f

′(z)/f(z) = ordz=a f(z), and so∑
a∈C/Λ

a ordz=a(f(z)) =
1

2πi

∫
∂P
z
f ′(z)

f(z)
dz.

Splitting the integral into its 4 parts, we have∫ ω1

0

+

∫ ω2

ω1+ω2

z
f ′(z)

f(z)
dz =

∫ ω1

0

z
f ′(z)

f(z)
− (z + ω2)

f ′(z + ω2)

f(z + ω2)
dz

= −ω2

∫ ω1

0

f ′(z)

f(z)
dz = −2πiω2N1

where N1 = (2πi)−1
∫ ω1

0
f ′(z)/f(z) dz ∈ Z. Likewise∫

ω1

ω1 + ω2 +

∫
ω20z

f ′(z)

f(z)
dz = 2πiω1N2, N2 ∈ Z

giving ∫
∂P
z
f ′(z)

f(z)
∈ 2πiΛ.
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1.1 Weierstraß theory

Notation: write ∑′

ω∈Λ

:=
∑
ω∈Λ
ω 6=0

Proposition 1.2. Let Λ ⊂ Rd be a lattice and let s ∈ R. Then:∑′

ω∈Λ

1

‖ω‖s
converges iff s > d.

Proof. Let {ωi} be a basis for Λ. Then there exist constants 0 < c < C such that
for any 0 6= x = (xi) ∈ Rd

0 < c ‖x‖∞ <
∥∥∥∑xiωi

∥∥∥ < C ‖x‖∞

where ‖x‖∞ = max |xi| (since any two norms on a finite-dimensional real vector

space are equivalent). Therefore
∑′

ω∈Λ
‖ω‖−s converges iff

∑′

x∈Zd
‖x‖−s∞ does.

But if 1 ≤ n ∈ Z then

#{x ∈ Zd | ‖x‖∞ = n} = (2n+ 1)d − (2n− 1)d ∼ 2d(2n)d−1

and therefore
∑′

x∈Zd
‖x‖−s∞ converges according as

∑
n≥1 n

d−1−s does.

Corollary. If Λ ⊂ C is a lattice and 2 < k ∈ Z, then the series

Gk(Λ) :=
∑′

ω∈Λ

1

ωk

converges. If k ≥ 3 is odd, then Gk(Λ) = 0.

Proof. The first part is the case d = 2 of the Proposition. For the last part, since
Λ ⊂ C is a subgroup

Gk(Λ) =
∑′

ω∈Λ

1

ωk
=
∑′

−ω∈Λ

1

ωk
= (−1)kGk(Λ).

To construct an elliptic function, the simplest thing would be to try to make a
function which just one singularity, which needs to be at least a double pole by
Thm.1.1(ii). The obvious try would be to consider the series

∑
ω∈Λ 1/(z − ω)2 —

but this is not convergent. But we can subtract off the divergences:2

2Analogous to the series π cotπz = 1/z +
∑

0 6=n∈Z 1/(z + n)− 1/n
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Theorem 1.3 (Weierstraß ℘-function). i) The series

℘(z) :=
1

z2
+
∑′

ω∈Λ

1

(z − ω)2
− 1

ω2

represents an elliptic function.

ii) ℘ is even, and its only poles are at ω ∈ Λ, of order 2. Moreover, for any a ∈ C
the function ℘(z)−a has either two simple zeroes z, −z 6≡ z (mod Λ) or one double
zero z ≡ ωi/2 (i ∈ {1, 2, 3}).

iii) In a neighbourhood of zero.

℘(z) =
1

z2
+
∞∑
r=1

(2r + 1)G2r+2(Λ)z2r

iv) The function ℘(z) satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4(Λ) and g3 = 140G6(Λ).

Corollary 1.4. (i) The mapping ℘ : C/Λ→ P1(C) identifies P1(C) with the quo-
tient of C/Λ by z 7→ −z.

(ii) The mapping C/Λ → P2(C) given by z 7→ (℘(z), ℘′(z), 1) is a biholomorphic
equivalence betwen C/Λ and the curve in P2(C) with equation Y 2Z = 4X3 −
g2XZ

2 − g3Z
3.

(i) is just a restatement of (ii) above, and (ii) is an exercise.

Proof. (i,ii) If |ω| > 2 |z| then∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ z(2ω − z)

ω2(ω − z)2

∣∣∣∣ < (5/2) |ωz|
(1/4) |ω|4

=
10 |z|
|ω3|

which shows that the series converges uniformly on compact subsets of C \Λ, and
so is holomorphic there. Clearly it has a double pole at every point of Λ. It is also
obviously even. To show it is elliptic, consider the derivative:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

which is obviously elliptic, so ℘′(z + ωi) = ℘′(z) for i = 1, 2. Therefore ℘(z +
ωi) − ℘(z) = ci is constant. As ℘ is even, putting z = ωi/2 gives ci = 0, hence
℘(z + ωi) = ℘(z) — i.e. ℘ is elliptic.
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Now Thm.1.1(iii) applied to ℘(z) − a shows that it has exactly two zeroes z,
z′inC \ Λ, counted with multiplicity, and moreover that z + z′ ≡ 0 mod Λ. Since
z ≡ −z iff z ≡ 0 or z ≡ ωi/2, (ii) follows.

(iii) For |z| sufficiently small,

1

(z − ω)2
=
∞∑
n=0

(n+ 1)
zn

ωn+2

and therefore

℘(z) =
1

z2
+
∞∑
n=1

∑′

ω

(n+ 1)
zn

ωn+2
=

1

z2
+
∞∑
r=1

(2r + 1)G2r+2z
2r

=
1

z2
+ 3G4z

2 + 5G6z
4 +O(z6)

with Gk = Gk(Λ).

(iv) Consider the functions

℘′(z)2 =

(
−2

z3
+ 6G4z + 20G6z

3 +O(z5)

)2

=
4

z6
− 24G4

z2
− 80G6 +O(z2)

and

℘(z)3 =
1

z6
+

9G4

z2
+ 15G6 +O(z2).

Then
℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 = O(z2)

and so by Thm.1.1(i), this vanishes.

Write ei = ℘(ωi/2). Then the function fi(z) :=℘(z) − ei has the double zero
z = ωi/2. So ℘′ vanishes at each ωi/2, and these must be all the zeros of ℘′ in
C/Λ, by Thm.1.1(ii).

Therefore the function (℘′)2/f1f2f3 has no zeroes and poles, so by 1.1(i) is a
constant. Comparing with the differential equation gives the constant value 4,
and

4℘(z)3 − g2℘(z)− g3 = 4
3∏
i=1

(℘(z)− ei), ei :=℘(ωi/2).

Also if i 6= j then ei 6= ej (since fi cannot vanish at ωj/2) so we see:

Corollary 1.5. The discriminant

∆(Λ) := g3
2 − 27g2

3 = 16
∏
i<j

(ei − ej)2

is non-zero.

Another easy consequence of the above is that the field of all elliptic functions for
Λ is C(℘, ℘′).
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2 Modular forms of level 1

Motivation. Let L be the set of all lattices in C. Then Gk : L → C satisfies

Gk(αΛ) =
∑′

ω∈Λ

(αω)−k = α−kGk(Λ).

More generally, let F : L → C be a function on lattices which satisfies F (αΛ) =
α−kF (Λ) for some k ∈ Z. Then

F (Zω1 + Zω2) = ω−k1 F (Z + Zτ), τ = ω1/ω2.

Also, if

γ =

(
a b
c d

)
∈ GL2(Z) and

(
ω′2
ω′1

)
= γ

(
ω2

ω1

)
so that

τ ′ =
ω′2
ω′1

=
aτ + b

cτ + d

then Zω′1 + Zω′2 = Zω1 + Zω2 so

F (Zω′1 + Zω′2) = F (Zω1 + Zω2), F (Z + Zτ ′) = (cτ + d)kF (Z + Zτ).

Notation: take the usual left action of GL2(R) on C \ R by

γ(τ) =
aτ + b

cτ + d
, γ =

(
a b
c d

)
, τ ∈ C \ R

Then

Im γ(τ) = det γ
Im τ

|cτ + d|2
, γ′(τ) =

det γ

(cτ + d)2

so that Im τ , Im γ(τ) have the same sign iff det γ > 0. Write also

j(γ, τ) = cτ + d.

Then for γ, δ ∈ GL2(R)

j(γδ, τ) = j(γ, δ(τ))j(δ, τ), j(γ−1, τ) = j(γ, γ−1(τ))−1 (1)

(the 2nd identity from the first taking δ = γ−1.)

Now for γ ∈ GL2(R)+, f : H → C and k ∈ Z write

(f |kγ)(τ) := det(γ)k/2j(γ, τ)−kf(γ(τ)).

Lemma. γ : f → f |kf is a (right) group action of GL2(R)+ on functions on H.
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Proof: follows from (1).

Definition. Let f : H → P1(C) be meromorphic and k ∈ Z. We say that f is
modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) ∀γ =

(
a b
c d

)
∈ SL2(Z).

Equivalently, f |kγ = f for all γ ∈ SL2(Z).

Suppose now that f is holomorphic for Im τ > R, some R > 0. Then

γ =

(
1 1
0 1

)
⇒ f(τ + 1) = f(τ)

in other words,

f(τ) = g(e2πiτ ) =
∑
n∈Z

an(f)qn, q = e2πiτ (2)

for some holomorphic function g on {q ∈ C | 0 < |q| < r}, where log r = −2πR.
The series (2) is called the q-expansion (or Fourier expanson) of f at ∞.

Definition. f is meromorphic (resp. holomorphic) at infinity if it is holomorphic
for Im τ � 0 and an(f) = 0 for n� 0 (resp. for all n < 0).

Definition. (i) A modular form of weight k ∈ Z is a holomorphic function f : H →
C which is modular of weight k and holomorphic at infinity. It is a cusp form if
moreover a0(f) = 0.

(ii) A modular function is a meromorphic function f : H → P1(C) which is mero-
morphic at infinity.

Examples

First note that if f is a modular form of weight k and k is odd, then by taking
γ = −1 we see that f(τ) = −f(τ). So any non-zero modular form has even weight.

Eisenstein series: For k ≥ 4 even, set

Gk(τ) = Gk(Z + Zτ) =
∑′

m,n∈Z

1

(mτ + n)k

— here the prime means omit (m,n) = (0, 0). By the convergence of the series
this is holomorphic for τ ∈ H.

Proposition 2.1. Gk(τ) is a modular form of weight k, and has q-expansion

Gk(τ) = 2ζ(k)

(
1− 2k

Bk

∑
n≥1

σk−1(n)qn

)
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Here ζ(s) =
∑

n≥1 n
−s is the Riemann zeta-function, and σr(n) =

∑
0<d|n d

r.
Finally, the Bk are the Bernoulli numbers, defined by the identity

t

et − 1
=
∞∑
k=0

Bk
tk

k!

Proof. That Gk(τ) is modular of weight k has already been noted. To show it is
holomorphic at infinity we compute its q-expansion. Begin with

π cotπz =
1

z
+
∞∑
m=1

(
1

z −m
+

1

z +m

)
(3)

= πi
eπiz + e−πiz

eπiz − e−πiz
(4)

= πi− 2πi

1− e2πiz
(5)

= −πi− 2πi
∑
d≥1

e2πidz (6)

Differentiating (k − 1) times, for k > 1:

(−1)k−1(k − 1)!
∞∑

m=−∞

1

(z −m)k
= −(2πi)k

∑
d≥1

dk−1e2πidz

or ∑
m∈Z

1

(z −m)k
=

(−2πi)k

(k − 1)!

∑
d≥1

dk−1e2πidz

So if k is even

Gk(τ) = 2
∞∑
n=1

1

nk
+ 2

∞∑
m=1

∑
n∈Z

1

(mτ + n)k

= 2ζ(k) +
∞∑
m=1

2(2πi)k

(k − 1)!

∑
d≥1

dk−1e2πimdτ

= 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1qn

Now (3) gives, setting t = 2πiz,

1

2
+

1

et − 1
=

1

t
+
∞∑
m=1

1

t− 2πim
+

1

t+ 2πim
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so

t

et − 1
= 1− t

2
+
∞∑
m=1

t

t+ 2πim
+

t

t− 2πim

= 1− t

2
− 2

∑
m,n≥1

(
t

2πim

)2n

= 1− t

2
−
∞∑
n=1

2(2πi)−2nζ(2n)t2n

using the identity
t

t± 2πim
= −

∑
n≥1

(
±t

2πim

)n

Definition. For k ≥ 4 even, the normalised Eisenstein series is

Ek(τ) =
1

2ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

The first few nonzero Bernoulli numbers are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
,

B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, B14 =

7

6

giving

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn

E6(τ) = 1− 504
∞∑
n=1

σ5(n)qn

E8(τ) = 1 + 480
∞∑
n=1

σ7(n)qn

E10(τ) = 1− 264
∞∑
n=1

σ9(n)qn

E12(τ) = 1 +
65520

691

∞∑
n=1

σ11(n)qn

E14(τ) = 1− 24
∞∑
n=1

σ13(n)qn

9



The modular group

We’ve already considered the action of GL2(R)+ on H, which factors through
PGL2(R)+. Note that since GL2(R)+ = R∗.SL2(R) (R∗ embedded as diagonal
matrices), we have PGL2(R)+ = PSL2(R). We’ll see later why GL is needed.

Note the fact that PSL2(R) is the group of holomorphic automorphisms of H (or
equivalently of the unit disc). Moreover it acts transitively, and the stabiliser of i
is SO(2)/ ± 1, which is a maximal compact subgroup. The can be assembled in
the Iwasawa decomposition which I’ll just write for SL2:

SL2(R) = KAN = NAK, K = SO(2), A =

(
∗ 0
0 ∗

)
, N =

(
1 ∗
0 1

)
since

τ = x+ iy =

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
(i)

If Γ ⊂ SL2(R) then we often write Γ ⊂ PSL2(R) for its image, so that Γ =
Γ/(Γ ∩ {±1}). We are mainly interested in Γ = SL2(Z) and its subgroups. The
quotient Γ = PSL2(Z) is the modular group. First task is to describe its action
on H as explicitly as possible. Let S, T ∈ Γ denote the elements

S = ±
(

0 −1
1 0

)
, T = ±

(
1 1
0 1

)
.

Theorem 2.2. Let Γ = SL2(Z), Γ = PSL2(Z). Then the subset

D =

{
τ ∈ H | −1

2
< Re(τ) ≤ 1

2
, |τ | ≥ 1, |τ | = 1 =⇒ Re(τ) ≥ 0

}
is a fundamental domain for Γ, i.e. D ∼−→ Γ\H is bijective. Moreover, if τ ∈ D
and Γτ 6= 1, then:

either τ = i, Γτ = 〈S〉 ' Z/2
or τ = ρ = eπi/3, Γτ = 〈TS〉 ' Z/3.

Finally, Γ = 〈S, T 〉.

Proof. (i) Let Γ
∗

= 〈S, T 〉. First show that if τ ∈ H then ∃γ ∈ Γ
∗

with γ(τ) ∈ D.
Since Z + Zτ is a lattice, {|cτ + d| | c, d ∈ Z} is a discrete subset of R, so{

Im γ(τ) =
Im(τ)

|cτ + d|2
| γ ∈ Γ

∗
}

is a discrete subset or R>0, bounded above. So can choose γ ∈ Γ
∗

with Im γ(τ)
maximal, and (replacing γ with Tmγ is necessary) may assume |Re γ(τ)| ≤ 1/2.
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If |γ(τ)| < 1 then

Im(Sγ(τ)) = Im(−1/γ(τ)) =
Im(γ(τ)

|γ(τ)|2
> Im γ(τ)

contradicting maximality. So |γ(τ)| ≥ 1 i.e. γ(τ) ∈ Dc. If Re γ(τ) = −1/2 then
Tγ(τ) ∈ D. If −1/2 < Re γ(τ) < 0 and |γ(τ)| = 1 then Sγ(τ) ∈ D.

Remark: This leads to the following simple algorithm to compute γ (explained
in the lectures, where the proof of the theorem was not given): first find a power
T n such that |ReT nτ | ≤ 1/2. If |T nτ | < 1 then put τ1 = ST nτ , so that
Im(τ1) = 1/ Im(τ) > Im(τ). Replace τ by τ1 and repeat; eventually the sequence
of imaginary parts terminates, so we end up with a point τ ′ with |Re τ ′| ≤ 1/2 and
|τ ′| ≥ 1. Then one of τ ′, Sτ ′, Tτ ′ is in D.

(ii) Next show that if t, τ ′ ∈ D and τ ′ = γ(τ), γ ∈ Γ then τ = τ ′ and γ is as in
statement of theorem.

We can assume that

Im τ ′ =
Im(τ)

|cτ + d|2
≥ Im τ

i.e. that |cτ + d| ≤ 1. Then

1 ≥ |Im(cτ + d)| = |c| Im(τ) ≥ |c|
√

3

2

forcing c ∈ {0,±1}.

c = 0 =⇒ γ = ±
(

1 m
0 1

)
, τ ′ = τ +m, m ∈ Z =⇒ m = 0, γ = ±1, τ = τ ′.

If c = 1 then |τ | ≥ 1 and |τ + d| ≤ 1. Then 2 possibilities:

d = 0, |τ | = 1, γ =

(
a −1
1 0

)
, τ ′ = a− 1/τ.

Then a = 0 and τ = τ ′ = i or a = 1, τ = τ ′ = ρ.

d = 1, |τ | ≥ 1, |τ − 1| ≤ 1, Re(τ) ≤ 1/2.

Then τ = ρ, |cτ + d| = |τ − 1| = 1 so Im τ ′ = Im τ =
√

3/2, so τ = τ ′ = ρ. Then

aτ + b

τ − d
= τ = ρ =⇒ ρ2 − (a+ 1)ρ− b = 0 =⇒ b = −1, a = 0.

Important consequence is that the quotient Γ\H has finite invariant measure:
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Proposition 2.3. (i) The measure dµ = y−2dx dy onH is invariant under PSL2(R).

(ii) If Γ ⊂ SL2(Z) is a subgroup of finite index, then µ(Γ\H) <∞.

Proof. (i) Consider the associated 2-form

η =
dx ∧ dy
y2

=
i dτ ∧ dτ̄
2 Im(τ)2

.

Then if γ(τ) = (aτ + b)/(cτ + d), γ ∈ SL2(R), the formulae γ′(τ) = 1/(cτ + d)2,
Im γ(τ) = Im(τ)/ |cτ + d|2 show that η is invariant under γ.

(ii) If (PSL2(Z) : Γ) = M then

µ(Γ\H) = Mµ(PSL2(Z)\H)

= Mµ(D)

< M

∫
y≥1

|x|≤
√

3/2

dx dy

y2
<∞.

(Exercise: show that µ(PSL2(Z)\H) = π/3.)

Now return to modular forms. We let Mk and Sk denote the spaces of modular
and cusp forms, respectively, of weight k. From the definition we have an exact
sequence

0→ Sk →Mk
f 7→a0(f)−→ C (7)

so Sk either equals Mk or is a subspace of codimension 1. Let’s first prove:

Proposition 2.4. S0 = 0 and M0 = C.

Proof. Obviously C ⊂ M0, so enought to show S0 = 0. If f ∈ S0 the f is
holomorphic on H and satisfies f(x + iy) → 0 as y → ∞, uniformly in x. So
on Dc, f attains a maximum on the boundary (unit circle plus vertical lines).
But as weight is modular of weight 0 it’s invariant under SL2(Z), so since D is a
fundamental domain, this maximum must be the maximum of |f | on H, so f is
constant by maximum modulus, hence in fact zero.

Now recall that we have, for every even k ≥ 4, the normalised Eisenstein series; in
particular the series of weights 4 and 6:

E4 = 1 + 240
∞∑
n=1

σ3(n)qn

E6 = 1− 504
∞∑
n=1

σ5(n)qn.
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Define

∆ =
E3

4 − E2
6

1728
== q − 24q2 + · · · =

∞∑
n=1

τ(n)qn

which is therefore a cusp form of weight 12.

Write in terms of the unnormalised series G4 = G4(Z+Zτ) = g2/60, G6 = g3/140.
We have

2ζ(4) =
π4

45
, 2ζ(6) =

2π6

945
(8)

E4 =
3

8π4
g2, E6 =

27

16π6
g3 (9)

E3
4 − E2

6 =
33

29π12
(g3

2 − 27g2
3) (10)

and so comparing with Corollary 1.5 we see that ∆ is nonvanishing on H. Use this
to determine the spaces Mk completely. Let’s first note the simple fact:

Multiplication by ∆ is an isomorphism Mk−12
∼−→ Sk for every k ∈ Z.

Indeed, we have 0 6= ∆ ∈ S12, so ∆Mk−12 ⊂ Sk, and since ∆(τ) 6= 0 for τ ∈ H, if
f ∈ Sk the f/∆ is both holomorphic on H and holomorphic at infinity.

Theorem 2.5. (i) If k < 0 then Mk = 0. If k ≥ 4 then Mk = Sk ⊕ C.Ek.

(ii) If k ≥ 0 is even

dimMk =

{
1 +

[
k
12

]
if k 6≡ 2 mod 12

k−2
12

if k ≡ 2 mod 12

(iii) A basis for Mk is {Ea
4E

b
6∆c} where 4a+ 6b+ 12c = k, a, b, c ≥ 0 and b = 0 if

k ≡ 0 (mod 4), b = 1 if k ≡ 2 (mod 4). In particular,⊕
k∈Z

Mk = C[E4, E6].

Proof. (i) If f ∈ Mk, k < 0 then f 12∆(−k) ∈ S0 = {0}, so f = 0. Since Sk is the
kernel of the map Mk → C given by f 7→ a0(f) and a0(Ek) = 1, the second part
follows.

(ii) Assume k even. We have Sk = ∆Mk−12, hence Sk = 0 for k < 12, and therefore
Mk = C.Ek for 4 ≤ k ≤ 10. Let’s show that M2 = 0. If not, and 0 6= f ∈M2 then
f 2 ∈ M4 so f 2 = aE4. Likewise f 3E6. But as a0(Ek) = 1, this would imply that
E3

4 = E2
6 , whereas E3

4 − E2
6 = 1728∆ 6= 0.

The dimension formula is therefore true for 0 ≤ k ≤ 10. But if k ≥ 12, Mk =
C.Ek + ∆Mk−12 so dimMk = 1 + dimMk−12, hence (by induction) the formula
holds for all k.
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(iii) Let k ≥ 4 be even. Take b as in the first statement, and a = (k − 6b)/4.
Then Mk = C.Ea

4E
b
6 ⊕ ∆Mk−12. So by induction on k the statement holds. For

the second, as ∆ = 12−3(E3
4 −E2

6), every element of Mk is a linear combination of
{Ea

4E
b
6 | a, b ≤ 0, 4a+ 6b = k}. But it is easy to see that the number of such pairs

(a, b) equals the right hand side of the dimension formula, so the mononomials are
linearly independent.

Remark. The previous result shows there is no non-trivial homogeneous relation
between E4 and E6. It is not hard to see there is no inhomogeneous relation —
in other words, E4 and E6 are algebraically dependent as functions on H. It is
enough to check that if f1, . . . , fr are modular forms of weights k1 < · · · < kr
with

∑
fj = 0 then each fj = 0. But then fj(iy) = (iy)−kjfj(i/y) and as y → 0,

f(i/y) → a0(fj), so as the weights are different we have a0(fj) = 0 for all j. But
then dividing the relation by ∆ gives one with smaller weights, so by induction all
fj are zero.

Rationality and integrality

Let R ⊂ C be a subring. Define Mk(R) = Mk ∩ R[[q]] = {f ∈ Mk|an(f) ∈ R∀n},
Sk(R) = Sk ∩Mk(R).

We have E4 ∈ M4(Z) and E6 ∈ M6(Z). Also easy to see that ∆ ∈ S12(Z), since
expanding E3

4 − E2
6 one easily reduces to checking that σ5(n) − σ3(n) is always

divisible by 12, which follows from the congruence d5 − d3 ≡ 0 (mod 12).

Proposition 2.6. Let d = dimMk. There exists a basis {gj | 0 ≤ j < d} for Mk

such that gj ∈Mk(Z) and

an(gj) = δnj for all j, n ∈ {0, . . . , d− 1}.

Proof. Let b = 0 if 4|k and 1 otherwise, and consider the basis hj = E
(k−6b−12j)/4
4 Eb

6∆j ∈
Mk(Z) given in 2.5(iii). Then an(hj) = 0 if n < j and aj(hj) = 1, so by elementary
operations we can replace {hj} by a basis with the desired properties.

Corollary. (i) For every R, the map f 7→ (aj(f))0≤j<d is an isomorphism of R-

modules Mk(R) ∼−→ Rd. Likewise, f 7→ (aj(f))1≤j<d is an isomorphism Sk(R) ∼−→
Rd−1.

(ii) If 1/6 ∈ R then M∗(R) =
⊕

Mk(R) = R[E4, E6], and in general

M∗(R) = R[E4, E6,∆]/(E3
4 − E2

6 − 1728∆).

Proof. (i) The inverse map is (rj) 7→
∑
rjgj.

(ii) Since gj ∈ Z[E4, E6,∆] this is clear.
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Nice example: ∆ =
∑

n≥1 τ(n)qn, τ(n) ∈ Z. Then we have

E12 = 1 +
65520

691

∑
σ11(n)qn = E3

4 + c∆, c ∈ Q.

So for every n ≥ 1,
65520

691

∑
σ11 ≡ cτ(n) (mod Z).

Putting n = 1 shows that c ≡ 65220/691 (mod Z), giving Ramnujan’s congruence

τ(n) ≡ σ11(n) (mod 691).

There is a very elagant explanation of these and similar congruences in terms of
mod ` Galois representations, due to Serre and Swinnerton-Dyer (see papers by
them in Modular Forms of One Variable III ).

Finally, a useful estimate for the Fourier coefficients of a cusp form. First prove
the following nice characterisation of cusp forms:

Proposition 2.7. Let f : H → C be holomorphic and modular of weight k > 0.
Then f ∈ Sk if and only if yk/2 |f(τ)| is bounded on H, y = Im(τ).

Proof. The transformation law shows that yk/2 |f(τ)| is invariant under Γ, so it is
bounded on H iff it is bounded on ∆. But this holds iff it is bounded as y →∞,
which implies that |f | → 0 as y → ∞. So the Fourier series f =

∑
an(f)qn → 0

as q → 0, meaning that an = 0 for all n ≤ 0, i.e. f is a cusp form. Conversely if
f ∈ Sk then |f/q| is bounded as q → 0, so certainly yN |f | is bnounded at y →∞
for any N .

Corollary 2.8. If f ∈ Sk then |an(f)| � nk/2.

Proof. Since f(x+ iy) =
∑
an(f)e2πinx−2πny we have, for any y > 0,

an(f) =

∫ 1

0

e2πny−2πinxf(x+ iy) dx

hence

|an(f)| ≤ sup
x∈[0,1]

|f(x+ iy)| e2πny

� y−k/2e2πny

by the previous result. Take y = 1/n.

Notice that for k > 2 this estimate is false for any f ∈ Mk which isn’t a cusp
form. In fact, f is then the sum of a cusp form and a non-zero multiple of Ek, so
|an(f)| � σk−1(n) ≥ nk−1.

Later will prove the better estimateO(nk/2−1/4) for the Fourier coefficients of a cusp
form. This is about the best one can do by analytic means, but using arithmetic
geometry Deligne proved the best possible bound of O(n(k−1)/2+ε) (Ramanujan-
Petersson conjecture).
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