Chapter VII

Modular Forms

§1. The modular group

1.1. Definitions

Let H denote the upper half plane of C, i.e. the set of complex numbers z whose imaginary part Im(z) is >0.

Let $SL_2(\mathbf{R})$ be the group of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, with real coefficients, such that ad-bc=1. We make $SL_2(\mathbf{R})$ act on $\tilde{\mathbf{C}}=\mathbf{C}\cup\{\infty\}$ in the following way:

if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an element of $SL_2(\mathbb{R})$, and if $z \in \widetilde{\mathbb{C}}$, we put

$$gz = \frac{az+b}{cz+d}.$$

One checks easily the formula

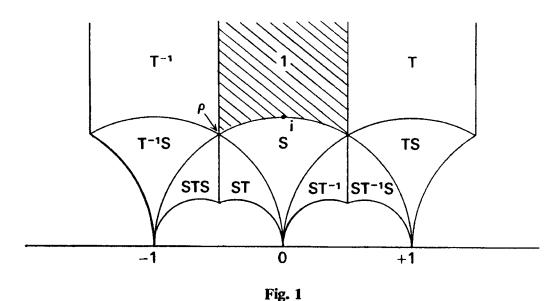
(1)
$$Im(gz) = \frac{Im(z)}{|cz+d|^2}.$$

This shows that H is *stable* under the action of $SL_2(R)$. Note that the element $-1 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ of $SL_2(R)$ acts trivially on H. We can then consider that it is the group $PSL_2(R) = SL_2(R)/\{\pm 1\}$ which operates (and this group acts *faithfully*—one can even show that it is the group of all analytic automorphisms of H).

Let $SL_2(Z)$ be the subgroup of $SL_2(R)$ consisting of the matrices with coefficients in Z. It is a discrete subgroup of $SL_2(R)$.

Definition 1.—The group $G = SL_2(\mathbb{Z})/\{\pm 1\}$ is called the modular group; it is the image of $SL_2(\mathbb{Z})$ in $PSL_2(\mathbb{R})$.

If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an element of $SL_2(\mathbf{Z})$, we often use the same symbol to denote its image in the modular group G.


1.2. Fundamental domain of the modular group

Let S and T be the elements of G defined respectively by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. One has:

$$Sz = -1/z,$$
 $Tz = z+1$
 $S^2 = 1,$ $(ST)^3 = 1$

On the other hand, let D be the subset of H formed of all points z such that $|z| \ge 1$ and $|Re(z)| \le 1/2$. The figure below represents the transforms of D by the elements:

 $\{1, T, TS, ST^{-1}S, S, ST, STS, T^{-1}S, T^{-1}\}\$ of the group G.

We will show that D is a fundamental domain for the action of G on the half plane H. More precisely:

Theorem 1.—(1) For every $z \in H$, there exists $g \in G$ such that $gz \in D$.

- (2) Suppose that two distinct points z, z' of D are congruent modulo G. Then, $R(z) = \pm \frac{1}{2}$ and $z = z' \pm 1$, or |z| = 1 and z' = -1/z.
- (3) Let $z \in D$ and let $I(z) = \{g | g \in G, gz = z\}$ the stabilizer of z in G. One has $I(z) = \{1\}$ except in the following three cases:

z = i, in which case I(z) is the group of order 2 generated by S;

 $z = \rho = e^{2\pi i/3}$, in which case I(z) is the group of order 3 generated by ST;

 $z = -\bar{\rho} = e^{\pi i/3}$, in which case I(z) is the group of order 3 generated by TS.

Assertions (1) and (2) imply:

Corollary.—The canonical map $D \rightarrow H/G$ is surjective and its restriction to the interior of D is injective.

Theorem 2.—The group G is generated by S and T.

Proof of theorems 1 and 2.—Let G' be the subgroup of G generated by S and T, and let $z \in H$. We are going to show that there exists $g' \in G'$ such that $g'z \in D$, and this will prove assertion (1) of theorem 1. If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an element of G', then

(1)
$$Im(gz) = \frac{Im(z)}{|cz+d|^2}.$$

Modular functions 79

Since c and d are integers, the numbers of pairs (c, d) such that |cz+d| is less than a given number is *finite*. This shows that there exists $g \in G'$ such that Im(gz) is maximum. Choose now an integer n such that T^ngz has real part between $-\frac{1}{2}$ and $+\frac{1}{2}$. The element $z' = T^ngz$ belongs to D; indeed, it suffices to see that $|z'| \ge 1$, but if |z'| < 1, the element -1/z' would have an imaginary part strictly larger than Im(z'), which is impossible. Thus the element $g' = T^ng$ has the desired property.

We now prove assertions (2) and (3) of theorem 1. Let $z \in D$ and let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $gz \in D$. Being free to replace (z, g) by (gz, g^{-1}) , we may suppose that $Im(gz) \ge Im(z)$, i.e. that |cz+d| is ≤ 1 . This is clearly impossible if $|c| \ge 2$, leaving then the cases c = 0, 1, -1. If c = 0, we have $d = \pm 1$ and g is the translation by $\pm b$. Since R(z) and R(gz) are both between $-\frac{1}{2}$ and $\frac{1}{2}$, this implies either b=0 and g=1 or $b=\pm 1$ in which case one of the numbers R(z) and R(gz) must be equal to $-\frac{1}{2}$ and the other to $\frac{1}{2}$. If c=1, the fact that |z+d| is ≤ 1 implies d=0 except if $z=\rho$ (resp. $-\bar{\rho}$) in which case we can have d=0, 1 (resp. d=0, -1). The case d=0gives $|z| \le 1$ hence |z| = 1; on the other hand, ad - bc = 1 implies b = -1, hence gz = a - 1/z and the first part of the discussion proves that a = 0except if $R(z) = \pm \frac{1}{2}$, i.e. if $z = \rho$ or $-\bar{\rho}$ in which case we have a = 0, -1 or a = 0, 1. The case $z = \rho, d = 1$ gives a - b = 1 and $g\rho = a - 1/(1 + \rho) = a + \rho$, hence a = 0, 1; we argue similarly when $z = -\bar{\rho}$, d = -1. Finally the case c = -1 leads to the case c = 1 by changing the signs of a, b, c, d (which does not change g, viewed as an element of G). This completes the verification of assertions (2) and (3).

It remains to prove that G' = G. Let g be an element of G. Choose a point z_0 interior to D (for example $z_0 = 2i$), and let $z = gz_0$. We have seen above that there exists $g' \in G'$ such that $g'z \in D$. The points z_0 and $g'z = g'gz_0$ of D are congruent modulo G, and one of them is interior to D. By (2) and (3), it follows that these points coincide and that g'g = 1. Hence we have $g \in G'$, which completes the proof.

Remark.—One can show that $\langle S, T; S^2, (ST)^3 \rangle$ is a presentation of G, or, equivalently, that G is the free product of the cyclic group of order 2 generated by S and the cyclic group of order 3 generated by ST.

§2. Modular functions

2.1. Definitions

Definition 2.—Let k be an integer. We say a function f is weakly modular of weight $2k^{(1)}$ if f is meromorphic on the half plane H and verifies the relation

(2)
$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right) \quad \text{for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}_2(\mathbf{Z}).$$

⁽¹⁾ Some authors say that f is "of weight -2k", others that f is "of weight k".