Chapter VII

Modular Forms

§1. The modular group

1.1. Definitions

Let H denote the upper half plane of C, i.e. the set of complex numbers
z whose imaginary part Im(z) is >0.
Let SL,(R) be the group of matrices (z Z) , with real coefficients, such

that ad—bc = 1. We make SL,(R) act on C = CuU{®} in the following
way:

if g = (z Z) is an element of SL,(R), and if z € C, we put

, az+b
cz+d’
One checks easily the formula
Im(z)
(1 Im(gz) = .
) (82) lcz+d|?

This shows that H is stable under the action of SL,(R). Note that the element

—-1 = (— (1) __(1)) of SL,(R) acts trivially on H. We can then consider that

it is the group PSL,(R) = SL,(R)/{+1} which operates (and this group
acts faithfully—one can even show that it is the group of all analytic auto-
morphisms of H).

Let SL,(Z) be the subgroup of SL,(R) consisting of the matrices with
coefficients in Z. It is a discrete subgroup of SL,(R).

Definition 1.—The group G = SL,(Z)/{+ 1} is called the modular group;
it is the image of SL,(Z) in PSL,(R).

Ifg = (? Z) is an element of SL,(Z), we often use the same symbol to

denote its image in the modular group G.

1.2. Fundamental domain of the modular group

Let S and T be the elements of G defined respectively by ((1) B (1)) and

1 1
(0 1) . One has:
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Sz = —1/z, Tz = z+1
S? = 1, (ST)3 =1

On the other hand, let D be the subset of H formed of all points z such

that |z] = 1 and |Re(z)| < 1/2. The figure below represents the transforms
of D by the elements:

{1, T, TS, ST"'S, S, ST, STS,T~'S, T~ '} of the group G.

ST'S

+1

Fig. 1

We will show that D is a fundamental domain for the action of G on the
half plane H. More precisely:

Theorem 1.—(1) For every z € H, there exists g € G such that gz € D.

(2) Suppose that two distinct points z, z' of D are congruent modulo G.
Then, R(z) = +4andz=2z"+1,0r|z| =1 and z' = —1/z

(3) Let ze D and let I(z) = {g|g € G, gz = z} the stabilizer of z in G.
One has I(z) = {1} except in the following three cases:

z = [, in which case I1(2) is the group of order 2 generated by S

z = p = e*™3, in which case 1(z) is the group of order 3 generated by ST;

z = —p = "3 in which case 1(2) is the group of order 3 generated by TS.

Assertions (1) and (2) imply:

Corollary.—The canonical map D — H|G is surjective and its restriction
to the interior of D is injective.

Theorem 2.—The group G is generated by S and T.

Proof of theorems 1 and 2.—Let G’ be the subgroup of G generated by
S and T, and let z € H. We are going to show that there exists g’ € G’ such

that g’z € D, and this will prove assertion (1) of theorem 1. If g = (? Z)

is an element of G’, then

1) Im(gz) = &)

|cz+d|é '
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Since ¢ and d are integers, the numbers of pairs (¢, d) such that |cz+d| is
less than a given number is finite. This shows that there exists g € G’ such
that Im(gz) is maximum. Choose now an integer » such that 7"gz has real
part between —% and + 4. The element z' = T"gz belongs to D; indeed, it
suffices to see that |z'| = 1, but if |z’| < 1, the element —1/z’ would have
an imaginary part strictly larger than Im(z’), which is impossible. Thus the
element g’ = T"g has the desired property.

We now prove assertions (2) and (3) of theorem 1. Let ze D and let

g =(z Z) e G such that gz € D. Being free to replace (z, g) by (gz, g7 '),

we may suppose that Im(gz) = Im(z), i.e. that |cz+d| is <1. This is clearly
impossible if |¢| = 2, leaving then the cases ¢ = 0, 1, —1. If ¢ = 0, we have

= 41 and g is the translation by +b. Since R(z) and R(gz) are both
between — 4 and 1, this implies either b6 = 0and g = 1 or b = +1 in which
case one of the numbers R(z) and R(gz) must be equal to — 4 and the other
to 3. If ¢ = 1, the fact that |z+d|is <1 implies d = 0 except if z = p (resp.
—p) in which case we can have d = 0, 1 (resp, d = 0, —1). The case d = 0
gives |z| < 1 hence |z| = 1; on the other hand, ad—bc = 1 implies b = —1,
hence gz = a—1/z and the first part of the discussion proves that a = 0
except if R(z) = +1,i.e.if z = por —p in which case we have a = 0, —1 or
a=0,1.Thecasez=p,d=1givesa—b=1and gp = a—1/(1+p) = a+p,
hence a = 0, 1; we argue similarly when z = —p,d = —1. Finally the case
¢ = —1 leads to the case ¢ = 1 by changing the signs of a, b, ¢, d (which
does not change g, viewed as an element of G). This completes the verific-
ation of assertions (2) and (3).

It remains to prove that G’ = (. Let g be an element of G. Choose a
point z, interior to D (for example z, = 2i), and let z = gz,. We have seen
above that there exists g’ € G’ such that g’z € D. The points z, and g’z =
g'gz, of D are congruent modulo G, and one of them is interior to D.
By (2) and (3), it follows that these points coincide and that g’g = 1. Hence
we have g € G', which completes the proof.

Remark.—One can show that (S, T; S?, (ST)>)> is a presentation of G,
or, equivalently, that G is the free product of the cyclic group of order 2
generated by S and the cyclic group of order 3 generated by ST.

§2. Modular functions
2.1. Definitions
Definition 2.—Let k be an integer. We say a function f is weakly modular
of weight 2k if f is meromorphic on the half plane H and verifies the relation

) f(z) = (cz+d)-2kf(@l) for all (‘c’ Z) e SL,(Z).

cz+

M Some authors say that f is “of weight —2k”, others that fis *‘of weight k.



