

Modular forms (Lent 2011) — example sheet #2

Unless otherwise stated, Γ is a subgroup of finite index in $SL_2(\mathbb{Z})$.

- (i) Show that Γ has a fundamental domain which is a *connected* union of translates of the standard fundamental domain for $SL_2(\mathbb{Z})$.
(ii) Show that if Γ has no elements of finite order other than ± 1 then Γ is a free group. (Use the fact that any group acting without fixed points on a tree is free.)
- (i) Show that $\Gamma(N)$ is torsionfree if $N \geq 3$ and that the only elements of finite order of $\Gamma(2)$ are $\{\pm 1\}$.
(ii) Show that if $N \geq 4$ then $\Gamma_1(N)$ is torsionfree.
- Let

$$\Gamma^* = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \Gamma \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

- (i) Show that if $f \in M_k(\Gamma)$, then the function $f^*(z) = \overline{f(-\bar{z})}$ belongs to $M_k(\Gamma^*)$.
(ii) Show that if $\Gamma = \Gamma^*$ (for example, any one of $\Gamma_0(N)$, $\Gamma_1(N)$, $\Gamma(N)$) then $M_k(\Gamma)$ has a basis all of whose elements have real Fourier coefficients.
- (i) Show that if every cusp of Γ has width one then Γ must be $\Gamma(1)$.
(ii) (Somewhat hard, but useful to know!) Show that if Γ is a congruence subgroup containing -1 , then $\Gamma \supset \Gamma(N)$ where N is the least common multiple of the widths of the cusps of Γ . (This gives a way to tell whether or not a given group is a congruence subgroup.)
(iii) Assuming (ii), write down an infinite family of subgroups of $\Gamma_0(11)$ which are not congruence subgroups. (Recall that the compact Riemann surface $\widehat{\Gamma_0(11) \backslash \mathcal{H}}$ has genus 1.)
- Show that a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ belongs to $S_k(\Gamma)$ if and only if it is Γ -modular of weight k and the function $y^{k/2} |f(z)|$ is bounded for $z = x + iy \in \mathcal{H}$.
- (i) If $N = DM$ with $(D, M) = 1$ define

$$W_D = \begin{pmatrix} Da & b \\ Nc & Dd \end{pmatrix}, \quad adD - bcM = 1.$$

If $f \in S_k(N)$ show that $f|_k W_D$ is independent of the choice of $a \dots d$ and belongs to $S_k(N)$. Show that if $(D, E) = 1$ then $f|_k W_D W_E = f|_k W_{DE}$. Deduce that the operators W_p for $p|N$ commute and that their product is W_N .

- (ii) Prove that W_p commutes with T_ℓ (where $(\ell, N) = 1$) and with U_ℓ (where $\ell|N$ and $\ell \neq p$).
(i) Let p be prime and $r \geq 1$. Let $g \in S_k(N)$ be a nonzero cusp form. If $p \nmid N$ (respectively $p|N$) assume that g is an eigenfunction of T_p (resp. of both U_p and W_p). Consider the oldforms

$$f_i = g \Big|_k \begin{pmatrix} p^i & 0 \\ 0 & 1 \end{pmatrix} \in S_k(p^r N), \quad 0 \leq i \leq r.$$

Compute the action of the operators W_p and U_p on the space spanned by $\{f_i\}$. (Treat separately the cases when p does or does not divide N). Show that these spaces are simple modules for the action of the algebra generated by U_p and W_p .

(ii) Let $\mathcal{H}_k(N) \subset \text{End}_{\mathbb{C}} S_k(N)$ be the subalgebra generated over \mathbb{C} by all T_p , U_p and W_p operators. Show that S_k is a direct sum of pairwise non-isomorphic simple $\mathcal{H}_k(N)$ -modules, one corresponding to each newform in $S_k^{\text{new}}(M)$ for $M|N$. (This is easier if you use strong multiplicity one, but it is not strictly necessary.)

(iii)* Show that $\mathcal{H}_k(N)$ equals the (a priori larger) subalgebra of $\text{End}_{\mathbb{C}} S_k(N)$ generated by all the double coset operators $[\Gamma_0(N)\gamma\Gamma_0(N)]$, $\gamma \in GL_2^+(\mathbb{Q})$. (Assume strong multiplicity one.)

8. Assume $-1 \in \Gamma$. Write $\Gamma_\infty \subset \Gamma$ for the stabiliser of the cusp ∞ . Show that $j(\gamma, z)^2$ depends only on the coset $\Gamma_\infty \gamma$, and that if $k > 2$ is even, the series

$$E_{\Gamma, k}(z) = \sum_{\gamma \in \Gamma_\infty \setminus \Gamma} j(\gamma, z)^{-k}$$

is convergent. Show that $E_{\Gamma, k}$ is an element of $M_k(\Gamma)$ which is not a cusp form. Identify $E_{k, \Gamma}$ in the case $\Gamma = \Gamma(1)$.

9. Show that the constant term of $E_{k, \Gamma}$ at the cusp $x \in \mathbb{P}^1(\mathbb{Q})$ vanishes if and only if x is not Γ -equivalent to ∞ . By considering modular forms of the shape $E_{k, \Gamma'}|_k \gamma$, deduce that for every even $k > 2$ one has

$$\dim M_k(\Gamma) - \dim S_k(\Gamma) = \nu_\infty.$$

10. (i) Let $\chi: (\mathbb{Z}/m\mathbb{Z})^* \rightarrow \mathbb{C}^*$ be a primitive Dirichlet character, and $f \in S_k(N)$ with $(D, N) = 1$. Show that $f_\chi = \sum \chi(n) a_n(f) q^n$ belongs to $S_k(\Gamma_1(ND^2))$.
(ii) Show that if $(D, N) \neq 1$ it can happen that $f \neq f_\chi$.

11. The cusp form Δ is known to have an infinite product expansion

$$\Delta = q \prod_{n \geq 1} (1 - q^n)^{24}.$$

Assuming this, let $E_2(\tau) = 1 - 24 \sum_{n \geq 1} \sigma_1(n) q^n$. Show that

$$E_2(-1/\tau) = \tau^2 E_2(\tau) + \frac{6\tau}{\pi i} \tag{1}$$

Deduce that $E_2^*(\tau) = E_2(\tau) - \frac{3}{\pi y}$ is modular of weight 2.

(The infinite product for Δ follows from classical formulae in the theory of theta-functions. Conversely, any proof of (1) can be used to give a proof of the product formula for Δ — see for example the one in Serre's book. From a modern standpoint, the most natural proof of (1) uses the analytic continuation of the function $E(z, s)$ in the next question.)

12. (i) (Real analytic Eisenstein series). With the same notation as Q.8, define for $\operatorname{Re}(s) > 1$

$$E_\Gamma(z, s) = \sum_{\gamma \in \Gamma_\infty \setminus \Gamma} \operatorname{Im}(\gamma(z))^s$$

Show that the series converges and represents a function on \mathcal{H} which is invariant under Γ .

(ii) (Rankin-Selberg integral) Assume that ∞ is a cusp of width 1. Let $f, g \in S_k(\Gamma)$, with q -expansions $\sum a_n q^n$ and $\sum b_n q^n$ respectively. By writing the strip $\{x + iy \in \mathcal{H} \mid -1/2 < x \leq 1/2\}$ as a union of translates of the fundamental domain for Γ , show that

$$\begin{aligned} & \int_{\Gamma \setminus \mathcal{H}} E_\Gamma(z, s) f(z) \overline{g(z)} y^k \frac{dx dy}{y^2} \\ &= \int_{\substack{-1/2 \leq x \leq 1/2 \\ 0 < y < \infty}} f(z) \overline{g(z)} y^{k+s-2} dx dy \\ &= (4\pi)^{1-k-s} \Gamma(s+k-1) \sum_{n \geq 1} \frac{a_n \overline{b_n}}{n^{s+k-1}} \end{aligned}$$