

Galois Theory (Michaelmas 2013): Transitivity of Trace and Norm

a.j.scholl@dpmms.cam.ac.uk

Theorem (13.5). *Let $M/L/K$ be finite extensions and $x \in M$. Then*

$$\mathrm{N}_{M/K}(x) = \mathrm{N}_{L/K}(\mathrm{N}_{M/L}(x)), \quad \mathrm{Tr}_{M/K}(x) = \mathrm{Tr}_{L/K}(\mathrm{Tr}_{M/L}(x))$$

For trace (which is easy) this was proved in the lectures.

In fact it is easier (as often happens!) to prove a more general statement. Suppose that V is a finite-dimensional vector space over L , and $u: V \rightarrow V$ is an L -endomorphism of V . Then u is also K -linear. Write $\det_L(u)$, $\mathrm{tr}_L(u)$ for the determinant/trace of u regarded as an endomorphism of the L -vector space V , and $\det_K(u)$, $\mathrm{tr}_K(u)$ for them when we view V as a K -vector space. Theorem 13.5 is the special case $V = M$, $u = T_x$ of:

Theorem. $\det_K(u) = \mathrm{N}_{L/K}\det_L(u)$ and $\mathrm{tr}_K(u) = \mathrm{Tr}_{L/K}\mathrm{tr}_L(u)$.

Proof. We first make an additional assumption: that u is *cyclic*, meaning that the $L[u]$ -module V is cyclic. Recall (from IB GRM) that this means that there exists $e_0 \in V$ such that the elements

$$e_0, e_1 = u(e_0), \dots, e_{n-1} = u^{n-1}(e_0) \quad (n = \dim_L V)$$

form a basis of V over L . Then we have

$$u^n(e_0) = - \sum_{i=0}^{n-1} a_i e_i, \quad a_i \in L$$

and $X^n + \sum_{i=0}^{n-1} a_i X^i \in L[X]$ is both the minimal and the characteristic polynomial of u . The matrix of u in terms of the basis (e_i) is

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

and so $\det_L(u) = (-1)^n a_0$, $\mathrm{tr}_L(u) = -a_{n-1}$. (Compare proof of 13.2.)

Now choose a basis f_1, \dots, f_m for L/K , and let $A_i \in M_n(K)$ be the matrix of T_{a_i} , the K -endomorphism $x \mapsto a_i x$ of L . Then the mn elements of V

$$e_0 f_1, \dots, e_0 f_m, e_1 f_1, \dots, e_{n-1} f_m$$

form a K -basis for V , and the matrix of u , as a K -endomorphism of V , with respect to this basis is

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -A_0 \\ I_m & 0 & \dots & 0 & -A_1 \\ 0 & I_m & \dots & 0 & -A_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & I_m & -A_{n-1} \end{pmatrix}$$

which has trace $-\text{tr}(A_{n-1}) = -\text{Tr}_{L/K}(a_{n-1}) = \text{Tr}_{L/K}\text{tr}_L(u)$ by the above.

Applying a cyclic permutation of the columns to the right m times, we see that its determinant is

$$(-1)^{m(mn-1)} \begin{vmatrix} -A_0 & 0 & \dots & 0 \\ -A_1 & I_m & \dots & 0 \\ \vdots & & \ddots & \vdots \\ -A_{n-1} & 0 & \dots & I_m \end{vmatrix} = (-1)^{mn} \det(A_0) = \text{N}_{L/K}((-1)^m a_0).$$

This proves the theorem for a cyclic endomorphism.

In general, we know by module theory that V is a direct sum $\bigoplus V_i$ of cyclic $L[u]$ -modules. Let u_i be the cyclic endomorphism of V_i thus obtained. Now, determinant is multiplicative for direct sums, and trace is additive. Since $\text{N}_{L/K}$ is multiplicative and $\text{Tr}_{L/K}$ is additive, we have

$$\det_K(u) = \prod_i \det_K(u_i) = \prod_i \text{N}_{L/K} \det_L(u_i) = \text{N}_{L/K} \left(\prod_i \det_L(u_i) \right) = \text{N}_{L/K} \det_L(u)$$

and similarly for trace. □