

ANALYSIS II (Michaelmas 2011): EXAMPLES 3

The questions are not equally difficult. The questions marked with * may be harder, but merit some attention even if you do not write out solutions. Comments, corrections are welcome at any time and may be sent to a.j.scholl@dpmmms.cam.ac.uk.

1. Let $\|\cdot\|$ denote the usual Euclidean norm on \mathbb{R}^n . Show that the map sending x to $\|x\|^2$ is differentiable everywhere. What is its derivative? Where is the map sending x to $\|x\|$ differentiable and what is its derivative?

2. At which points of \mathbb{R}^2 are the following functions $\mathbb{R}^2 \rightarrow \mathbb{R}$ differentiable?

$$(i) f(x, y) = \begin{cases} x/y & \text{if } y \neq 0 \\ 0 & \text{if } y = 0. \end{cases}$$

$$(ii) f(x, y) = |x| |y|.$$

$$(iii) f(x, y) = xy |x - y|.$$

$$(iv) f(x, y) = \begin{cases} xy / \sqrt{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

$$(v) f(x, y) = \begin{cases} xy \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

3. Let $f(x, y) = x^2y/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$, and $f(0, 0) = 0$. Show that f is continuous at $(0, 0)$ and that it has directional derivatives in all directions there. Is f differentiable at $(0, 0)$?

4. We work in \mathbb{R}^3 with the usual inner product. Consider the map $f : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $f(x) = x/\|x\|$ for $x \neq 0$ and $f(0) = 0$. Show that f is differentiable except at 0 and

$$Df(a) : u \mapsto \frac{u}{\|a\|} - \frac{a(a \cdot u)}{\|a\|^3}, \quad a \neq 0, u \in \mathbb{R}^3$$

Verify that for any $u \in \mathbb{R}^3$, $Df(a)(u)$ is orthogonal to a . Explain geometrically why this is the case.

5. (i) Suppose that $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ is such that $\partial f / \partial x$ is continuous in some open ball around (a, b) , and $\partial f / \partial y$ exists at (a, b) . Show that f is differentiable at (a, b) .

(ii) Suppose that $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ is such that $\partial f / \partial x$ exists and is bounded near (a, b) , and that for a fixed, $f(a, y)$ is continuous as a function of y . Show that f is continuous at (a, b) .

6. Let $M_n = M_n(\mathbb{R})$ be the space of $n \times n$ real matrices (it can be identified with \mathbb{R}^{n^2}). Show that the function $f : M_n \rightarrow M_n$ defined by $f(X) = X^2$ is differentiable everywhere in M_n . Is it true that $Df(A) = 2A$? If not, what is the derivative of f ?

7. Let $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear map. Recall that the *operator norm* of A is

$$\|A\| = \sup \{ \|Ax\| \mid x \in \mathbb{R}^n, \|x\| \leq 1 \} = \sup \left\{ \frac{\|Ax\|}{\|x\|} \mid 0 \neq x \in \mathbb{R}^n \right\}.$$

Complete the proof that this defines a norm on the vector space $L(\mathbb{R}^n, \mathbb{R}^m)$ of all linear maps $\mathbb{R}^n \rightarrow \mathbb{R}^m$.

Now assume $m = n$ and identify $L(\mathbb{R}^n, \mathbb{R}^n)$ with $M_n(\mathbb{R})$, the space of $n \times n$ real matrices. Show that if the operator norm of $A \in M_n$ satisfies $\|A\| < 1$, then the sequence $B_k = I + A + A^2 + \dots + A^{k-1}$ converges (here I is the identity matrix), and deduce that $I - A$ is then invertible. Deduce that the set $GL_n(\mathbb{R})$ of all invertible $n \times n$ real matrices is an open subset of $M_n(\mathbb{R})$.

8. We regard $GL_n(\mathbb{R})$ as an open subset of $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ (cf. the previous question). Define $g : GL_n(\mathbb{R}) \rightarrow M_n(\mathbb{R})$ by $g(X) = X^{-1}$ for $X \in GL_n(\mathbb{R})$. Show that g is differentiable at the identity matrix $I \in GL_n(\mathbb{R})$, and that its derivative there satisfies $Dg(I) : H \mapsto -H$.

Let $A \in GL_n(\mathbb{R})$. By writing $(A + H)^{-1} = A^{-1}(I + HA^{-1})^{-1}$, or otherwise, show that g is differentiable at $X = A$. What is $Dg(A)$?

Show further that g is twice differentiable at I , and find $D^2g(I)$ as a bilinear map $M_n \times M_n \rightarrow M_n$.

9. (i) Define $f : M_n \rightarrow M_n$ by $f(X) = X^3$. Find the Taylor series of $f(A + H)$ about A .

(ii)* (This assumes that you did the previous question!) Let again $g : GL_n(\mathbb{R}) \rightarrow GL_n(\mathbb{R})$ be defined by $g(X) = X^{-1}$. Find the Taylor series of $g(I + H)$ about I .

10.* Show that $\det : M_n \rightarrow \mathbb{R}$ is differentiable at the identity matrix I with $D\det(I)(H) = \text{tr}(H)$. Deduce that \det is differentiable at any invertible matrix A with $D\det(A)(H) = \det(A) \text{tr}(A^{-1}H)$. Show further that \det is twice differentiable at I and find $D^2\det(I)$ as a bilinear map $M_n \times M_n \rightarrow \mathbb{R}$.

11. Show that there is a continuous square-root function on some neighbourhood of I in M_n ; that is, show that there is an open ball $B(I; r) \subset M_n$ for some $r > 0$ and a continuous function $g : B(I; r) \rightarrow M_n$ such that $g(X)^2 = X$ for all $X \in B(I; r)$.

Is it possible to define a square-root function on all of M_n ? What about a cube-root function?

12. Define $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $f(x, y) = (x, x^3 + y^3 - 3xy)$ and let $C = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}$. Show that f is locally invertible around each point of C except $(0, 0)$ and $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$; that is, show that if $(x_0, y_0) \in C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$ then there are open sets U containing (x_0, y_0) and V containing $f(x_0, y_0)$ such that f maps U bijectively to V . What is the derivative of the local inverse function? Deduce that for each point $(x_0, y_0) \in C$ other than $(0, 0)$ and $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$ there exist open intervals I containing x_0 and J containing y_0 such that for each $x \in I$ there is a unique $y \in J$ with $(x, y) \in C$.

13. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a differentiable function and let $g(x) = f(x, c - x)$ where c is a constant. Show that $g : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and find its derivative

(i) directly from the definition of differentiability

and also

(ii) by using the chain rule.

Deduce that if $\partial f / \partial x = \partial f / \partial y$ holds throughout \mathbb{R}^2 , then $f(x, y) = h(x + y)$ for some differentiable function h .

14.* Let $U \subset \mathbb{R}^2$ be an open set that contains a rectangle $[a, b] \times [c, d]$. Suppose that $g : U \rightarrow \mathbb{R}$ is continuous and that the partial derivative $\partial g / \partial y$ exists and is continuous. Set $G(y) = \int_a^b g(x, y) dx$. Show that G is differentiable on (c, d) with derivative $G'(y) = \int_a^b (\partial g / \partial y)(x, y) dx$. Show further that $H(y) = \int_a^y g(x, y) dx$ is differentiable. What is its derivative $H'(y)$?

[Hint: consider a function $F(y, z) = \int_a^z g(x, y) dx$ before dealing with H .]