

Algebraic Geometry IID (Lent 2013) — example sheet III

Prof A J Scholl¹

Assume throughout that the base field k is algebraically closed. If it helps, feel free to assume throughout that it has characteristic zero.

Questions marked * might be harder.

1. Let P be a smooth point of the irreducible curve V . Show that if $f, g \in k(V)$ then $v_P(f+g) \geq \min(v_P(f), v_P(g))$, with equality if $v_P(f) \neq v_P(g)$.

2. Show that the Finiteness Theorem fails in general for a morphism of smooth affine curves.

Let $V = V(F) \subset \mathbb{P}^2$ be the plane cubic given by $F = X_0X_2^2 - X_1^3$. Is V smooth? Show that $\phi: (Y_0 : Y_1) \mapsto (Y_0^3 : Y_0Y_1^2 : Y_1^3)$ defines a morphism $\mathbb{P}^1 \rightarrow V$ which is a bijection, but is not an isomorphism.

3. (i) Let $\phi = (1 : f): \mathbb{P}^1 \rightarrow \mathbb{P}^1$ be a morphism given by a nonconstant polynomial $f \in k[t] \subset k(\mathbb{P}^1)$. Show that $\deg(\phi) = \deg f$, and determine the ramification points of ϕ — that is,² the points $P \in \mathbb{P}^1$ for which $e_P > 1$. Do the same for a rational function $f \in k(t)$.

(ii) Let $\phi = (t^2 - 7 : t^3 - 10): \mathbb{P}^1 \rightarrow \mathbb{P}^1$. Compute $\deg(\phi)$ and e_P for all $P \in \mathbb{P}^1$. (Assume $\text{char}(k) = 0$ or add a star.)

(iii) Let $f, g \in k[t]$ be coprime polynomials with $\deg(f) > \deg(g)$, and $\text{char}(k) = 0$. Assume that every root of $f'g - g'f$ is a root of fg . Show that g is constant and f is a power of a linear polynomial.

(iv) Let $\phi: \mathbb{P}^1 \rightarrow \mathbb{P}^1$ be a finite morphism in characteristic zero. Suppose that every ramification point $P \in \mathbb{P}^1$ satisfies $\phi(P) \in \{0, \infty\}$. Show that $\phi = (F_0^n : F_1^n)$ for some linear forms F_i . [Hint: choose coordinates so that $\phi(0) = 0$ and $\phi(\infty) = \infty$.]

(v) Suppose $\text{char}(k) = p \neq 0$, and let $\phi: \mathbb{P}^1 \rightarrow \mathbb{P}^1$ be given by $t^p - t \in k(t)$. Show that ϕ has degree p and that it is only ramified at ∞ .

4. Let $\phi: V \rightarrow W$ be a finite morphism of smooth projective irreducible curves, and $D = \sum n_Q Q$ a divisor on W . Define

$$\phi^*D = \sum_{P \in V} e_P n_{\phi(P)} P \in \text{Div}(V).$$

Show that $\phi^*: \text{Div}(W) \rightarrow \text{Div}(V)$ is a homomorphism, that $\deg(\phi^*D) = \deg(\phi) \deg(D)$, and that if D is principal, so is $\phi^*(D)$. Thus ϕ^* induces a homomorphism $\text{Cl}(W) \rightarrow \text{Cl}(V)$.

5. (i) Use the Finiteness Theorem to show that if $\phi: V \rightarrow W$ is a morphism between smooth projective curves in characteristic zero which is a bijection, then ϕ is an isomorphism.

(ii) Let k be algebraically closed of characteristic $p > 0$. Consider the morphism $\phi = (X_0^p : X_1^p): V = \mathbb{P}^1 \rightarrow W = \mathbb{P}^1$. Show that ϕ is a bijection, $k(V)/\phi^*k(W)$ is purely inseparable of degree p , and that $e_P = p$ for every $P \in V$.

(iii) * Formulate a version of the statement in (i) which holds in every characteristic.

6. Show that the plane cubic $V = V(F)$, $F = X_0X_2^2 - X_1^3 + 3X_1X_0^2$ is smooth if $\text{char}(k) \neq 2, 3$. Find the degree and ramification degrees for (i) the projection $\phi = (X_0 : X_1): V \rightarrow \mathbb{P}^1$ (ii) the projection $\phi = (X_0 : X_2): V \rightarrow \mathbb{P}^1$.

¹Comments and corrections to a.j.scholl@dpmms.cam.ac.uk

²The image $\phi(P)$ of a ramification point P is called a *branch point* of ϕ .

7. If P is a smooth point of an irreducible curve V and $\pi_P \in \mathcal{O}_{V,P}$ is a local parameter at P , show that $\dim_k \mathcal{O}_{V,P}/(\pi_P^n) = n$ for every $n \in \mathbb{N}$.

8. Show that $V = V(X_0^8 + X_1^8 + X_2^8)$ and $W = V(Y_0^4 + Y_1^4 + Y_2^4)$ are irreducible smooth curves in \mathbb{P}^2 provided $\text{char}(k) \neq 2$, and that $\phi: (X_i) \mapsto (X_i^2)$ is a morphism from V to W . Determine the degree of ϕ , and compute e_P for all $P \in V$.

9. Let V be a smooth irreducible projective curve. Let $U \subset k(V)$ be a finite-dimension k -vector subspace of $k(V)$. Show that there exists a divisor D on V for which $U \subset L(D)$.

10. Let $f \in k[x]$ a polynomial of degree $d > 1$ with distinct roots, and $V \subset \mathbb{P}^2$ the projective closure of the affine curve with equation $y^{d-1} = f(x)$. Assume that $\text{char}(k)$ does not divide $d-1$. Prove that V is smooth, and has a single point P at infinity. Calculate $v_P(x)$ and $v_P(y)$.
 * Deduce (without using Riemann–Roch) that if $n > d(d-3)$, then $\ell((n+1)P) = \ell(nP) + 1$.

11. Let $V_0 \subset \mathbb{A}^2$ be the affine curve with equation $y^3 = x^4 + 1$, and let $V \subset \mathbb{P}^2$ be its projective closure. Show that V is smooth, and has a unique point Q at infinity. Let ω be the rational differential dx/y^2 on V . Show that $v_P(\omega) = 0$ for all $P \in V_0$. prove that $v_Q(\omega) = 4$ and hence that ω , $x\omega$ and $y\omega$ are all regular on V .