

Algebraic Geometry IID (Lent 2013) — example sheet II

Prof A J Scholl¹

Assume throughout that the base field k is algebraically closed. If it helps, feel free to assume that it has characteristic zero.

Questions (or parts of questions) marked * might be harder.

1. Consider the plane affine curves with defining equations

$$\begin{array}{ll} (a) \ y = x^3 & (b) \ xy = x^6 + y^6 \\ (c) \ x^3 = y^2 + x^4 + y^4 & (d) \ x^2y + xy^2 = x^4 + y^4 \\ (e) \ 2x^2y^2 = x^2 + y^2 & (f) \ y^2 = f(x) \text{ with } f \in k[x], \deg f = n. \end{array}$$

Write down the projective closures of the curves, determine their points at infinity and find all their singular points.

2. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $X_1X_2^2 - X_3^3 \in k[X_0, \dots, X_3]$. Find the dimension of the tangent space at all the singularities.

3. Consider $V = V(I) \subset \mathbb{A}^3$ where I is generated by $X_1^3 - X_3$ and $X_2^2 - X_3$. Verify that I is a prime ideal, and thus that $I(V) = I$. Determine the points at which V is singular and compute the dimensions of the tangent spaces there.

4. * (i) Repeat the previous question for $V = V(I)$ where I is generated by

$$X_1^4 - X_2X_3, \quad X_1^3X_2 - X_3^2, \quad X_2^2 - X_1X_3$$

(ii) If you assumed $I = I(V)$ in (i), justify it. (Hint: consider a suitable morphism $\mathbb{A}^1 \rightarrow \mathbb{A}^3$ of the form $Y \mapsto (Y^a, Y^b, Y^c)$.)

5. Consider the birational map $\phi: \mathbb{P}^2 \rightarrow \mathbb{P}^2$ given by $(X_1X_2 : X_0X_2 : X_0X_1)$, and let $P_0 = (1 : 0 : 0)$, $P_1 = (0 : 1 : 0)$ and $P_2 = (0 : 0 : 1)$ be the basis points, at which ϕ is not regular. Let $L \subset \mathbb{P}^2$ be a line which is not one of the lines $\{X_i = 0\}$. Show that ϕ defines a morphism $L \rightarrow \mathbb{P}^2$ such that:

(i) if $L \cap \{P_i\} = \emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^2 which passes through all of the $\{P_i\}$;

(ii) if L contains just one P_i then ϕ is an isomorphism of L with another line in \mathbb{P}^2

* Determine the effect of ϕ on the cubic C with defining polynomial $X_0(X_1^2 + X_2^2) + X_1^2X_2 + X_1X_2^2$. (Assume $\text{char}(k) \neq 2$.) What happens to the singularity of C ? Draw appropriate pictures.

6. * Let $C = V(f) \subset \mathbb{A}^2$ be an affine plane curve such that $P = (0, 0)$ is a smooth point of C , and let the tangent at P to C be $ax + by = 0$. By considering the polynomial f , show that if $b \neq 0$ then the rational function y/x is regular at P .

Deduce that if $V \subset \mathbb{P}^2$ is a plane curve which contains P_0 as a smooth point, then the rational map $\phi: V \dashrightarrow \mathbb{P}^2$ of question 5 is regular at P_0 .

Show conversely that if $V \subset \mathbb{P}^2$ is a plane curve of which P_0 is a singular point, then the rational map $\phi: V \dashrightarrow \mathbb{P}^2$ is not regular at P_0 .

¹Comments and corrections to a.j.scholl@dpmms.cam.ac.uk

7. Let $V = V(F) \subset \mathbb{P}^2$ be a smooth plane curve of degree d . Let $P = (a_i) \in \mathbb{P}^2 \setminus V$. Consider the polynomial

$$G_P = a_0 \partial F / \partial X_0 + a_1 \partial F / \partial X_1 + a_2 \partial F / \partial X_2 \in k[\underline{X}]$$

Assume that G_P is not identically zero. The curve $V(G_P)$ is called the *polar* to V from P . Show that $Q \in V \cap V(G_P)$ if and only if the line PQ is the tangent to V at Q .

8. Recall that the *rational normal curve* of degree d is the image C_d of the morphism $\phi = (X_0^2 : X_0^{d-1}X_1 : \dots : X_1^d) : \mathbb{P}^1 \rightarrow \mathbb{P}^d$.

Let P_0, P_1, \dots, P_r be distinct points on C_d . Show that if $r < d$ then there is a unique linear subvariety of \mathbb{P}^d of dimension r containing $\{P_i\}$.

9. Assume $\text{char}(k) \neq 2$. Show that a homogeneous polynomial $F(X_0, \dots, X_n)$ of degree 2 can be written uniquely in the form ${}^T X A X$, where A is a symmetric $(n+1) \times (n+1)$ matrix with entries in k and $X = {}^T(X_0, \dots, X_n)$ (here T denotes transpose). Show that if $n = 2$ then F is irreducible if and only if A is nonsingular. Show that for a suitable choice of coordinates in \mathbb{P}^n ($n \geq 2$) any quadric (i.e. variety defined by a single quadratic polynomial) may be written as $V(F)$ for $F = X_0^2 + \dots + X_m^2$ for some $m \leq n$, and that V is smooth if and only if $m = n$.

10. (Conics in characteristic 2.) Work over a field k of characteristic 2. Show that the plane curve given by the polynomial $X_0X_1 + X_0X_2 + X_1X_2$ is everywhere nonsingular. Compute the tangent line at a point of C , and show that all tangent lines meet in the point $P = (1 : 1 : 1)$. Verify that the polar polynomial G_P (cf. question 7) is identically zero.

11. A point P of a smooth plane curve V is a *point of inflection* (or *flex*) if the tangent line at P meets V there with multiplicity ≥ 3 . Assume $\text{char}(k) \neq 2$.

(i) Let $V = V(f) \subset \mathbb{A}^2$ be affine. Let $v \in T_{V,P} \subset k^2$ be any nonzero tangent vector at P . Show that P is a flex if and only if ${}^T v J_P v = 0$ where $J_P = (\partial^2 f / \partial X_i \partial X_j(P))_{ij}$.

(ii) Let $V = V(F) \subset \mathbb{P}^2$ be projective. Show that P is a point of inflection of V if and only if the determinant $H = |\partial^2 F / \partial X_i \partial X_j|$ vanishes at P . (The curve $H = 0$ is called the *Hessian* of V .) In particular, any smooth projective curve of degree ≥ 3 has points of inflection. [Hint: assume $P = (1 : 0 : 0)$.]

(iii) Let C be the plane cubic $V(X_0^3 + X_1^3 + X_2^3 - aX_0X_1X_2)$. Assume $\text{char}(k) \neq 3$. Show that if $a^3 \neq 27$ then C is nonsingular. Find in this case the flexes of C .

12. Suppose $V = V(F)$ is a nonsingular plane cubic, P_0 a point of inflection. Show that coordinates may be chosen in \mathbb{P}^2 for which $P_0 = (0 : 0 : 1)$ and $F = X_2^2X_0 - X_1(X_1 - X_0)(X_1 - \lambda X_0)$ for some $\lambda \in k \setminus \{0, 1\}$.