Algebraic Geometry IID 2013

7 Divisors on curves

For the rest of this course, curve will mean smooth, projective, irreducible curve,
unless explicitly stated to the contrary.

A divisor on a curve V' is a finite formal sum »_p, , npP with np € Z (finite
means that for all but finitely many P, np = 0). Sometimes the points are put
in brackets (P) to make the notation clearer. The set of divisors on V' forms an
abelian group under obvious addition, denoted Div(V'). If D = > npP is a divisor,
define deg(D) = Y np € Z. The map D +— deg(D) is obviously a homomorphism,
whose kernel is denoted Div’(V) (divisors of degree 0). We sometimes write vp (D)
for the coefficient np of P in D.

Let f € k(V)* be a nonzero rational function. Define the divisor of f to be

div(f) = (f)=Y_ vp(f)P.

Pev
Corol.6.8(ii) says that div(f) € Div’(V). Divisors of the form div(f) are called
principal divisors, and form a subgroup div(k(V)*) c Div’(V).

If you're doing Number Fields you will probably notice the similarity between this
and ideal theory for number fields. In particular, we can also define the divisor
class group of V for be the quotient

CL(V) = Div(V)/div(k(V)").

and for D € Div(V) write [D] for the class of D in CI(V'). Divisors in the same
divisor class are said to be linearly equivalent, written D ~ E. So D ~ E iff
D — E is a principal divisor. If so then deg(D) = deg(E).

Proposition 7.1. Every divisor of degree 0 on P! is principal.

Proof. Write the divisor as D = >, n4(a) + noo(00). As deg(D) = 0, ny =
—> g Let f=]],c(t —a)". Then since (¢ — a) is a local parameter at a and
a unit at b # a, v,(f) = ng, and since 1/(t — a) is a local parameter at oo for any

A, Voo (f) = =D Mo = Nio. O

For a general curve, deg: Div(V) — Z induces a homomorphism Cl(V) — Z,
obviously surjective, and (by 7.1) an isomorphism for V' = P!. Later will see this
is a characteristic property of P!.

Other ways divisors arise:

Hyperplane sections div(L). Let V' C P" and consider a hyperplane H =
V(L) C P™ not containing V', some linear form L. Define

div(L) =Y “npP,  where if X;(P) # 0, np = vp(L/X;)

Note that this is independent of i, and that the only P occuring in the sum are
PeVNH.

If I/ is another linear form then div(L’) — div(L) = div(L’/L) which is a principal
divisor, so div(L) and div(L') are linearly equivalent and in particular have the
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same degree, called the degree of V. For an irreducible plane curve V = V (F),
vp(L/X;) is just the multiplicity mp(V, H) (see proof of 5.1) and the degree of V/
is just the degree of F.

Likewise, any homogeneous G € k[X] of degree m such that V(G) A V determines
a divisor div(G) which is linearly equivalent to m xdiv(L), and therefore has degree
md.

Special case: V = V(F) C P?, F irreducible of degree n. see that
#V(F)NV(G)} <mn
i.e. (cf. the special case Prop.5.3):

Theorem 7.2 (Bezout’s Theorem, basic version). Two distinct irreducible plane
curves of degrees m, n intersect in at most mn points.

A divisor D =) npP is effective if np > 0 for all P — notation D > 0. (Some
authors confusingly use the term positive.) Let D be any divisor. Then associated
to D are two important invariants: the first is

L(D) = L(D)={f €k(V)| f=0or div(f) + D > 0}
={f €k(V)|VYPEV, vp(f)+np >0} i D=>» npP.

Noting that vp(f +g) > vp(f) we see that L(D) is a vector space. Its dimension is
written ¢(D), which is finite. For example, let co = (0:1) € V =P!, D = m(c0).
Writing © = X; /X, we see that L(D) is spanned by 1,z,... 2™ so £(D) = m+ 1.

In general we have:

Proposition 7.3. Let D € Div(V'). Then:

(i) deg(D) < 0 = L(D)=0.

(i1) deg(D) > 0 = 4(D) < deg(D) + 1.

(i1i) For any P € V, {(D) < {(D — P)+ 1.

Proof. (i) If L(D) # 0 then for 0 # f € L(D), div(f) + D = E > 0. But then
deg(D) = deg(E) > 0 (as degdiv(f) = 0).

(iii) Let n = vp(D). Define a: L(D) — k by a(f) = (7} f)(P). The kernel of this
homomorphism is then L(D — P) so /(D — P) > {(D) — 1.

(ii) now follows: if d = deg(D) > 0 we see {(D) < (D —(d+1)P)+d+1=d+1
since deg(D — (d+ 1)P) = 0. O

If D ~ E, sothat D — E = div(g) then L(D) and L(E) are isomorphic by the
map f — fg. So ¢(D) depends only on the class of D.

8 Differentials

Differentials are a way of doing calculus on varieties, in a coordinate-free way.

K /k field extension. Informally a differential is a finite sum of formal expressions
xdy with x, y € K, subject to the usual rules of calculus. Precisely:
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Definition The space of Kéhler differentials Qr/;, is the quotient M /N where

M = (K -vector space generated by symbols dz, x € K )
N — ( subspace generated by d(x + y) — dz — dy, >
~ \d(zxy) —xdy —yox, da for z, y € K, a € k.
and define dx = éx + N € Qg/x. (Think of K as functions, k as constants.)

The map d: K — Qg is the exterior derivative. It is k-linear since if a € &
then d(ax) = adx

Any k-linear map D: K — U to a K-vector space U satisfying the product rule
D(zy) = xDy+yDzx is called a derivation (more precisely, a k-derivation). So d
is a derivation. Another example of a derivation is the formal differentiation map
d/dX: k(X) — k(X). (We make the same definition of K is a ring containing k
and U is a K-module.)

Lemma (/tautology). A map D: K — U is a derivation iff there is a K-linear
map A Qg — U such that XN(dx) = D(x) for all x € K.

Proof. If X\ is such a K-linear map then obviously D = X o d is k-linear and
D(zy) = Md(zy)) = zA(dy) + yA(dz), so D is a derivation. Conversely, given
a derivation D: K — U, write Qg = M/N as in the definition, and define a

K-linear map MM —U by dy — D(y) for all y € K. Then as D is a derivation it
follows that A(N) = 0 so we get a K-linear map A with the desired properties. [

For any derivation (in particular d), if y # 0 then Dz = D(y(z/y)) = yD(x/y) +
(x/y)Dy giving the quotient formula D(x/y) = y~*(yDx — xDy).

Lemma 8.1. (i) If f = g/h € k(X4,...,X,) and y = f(z1,...,2,) € K, then
(it) If K = k(z1,...,2,) for x; € K then {dxz;} spans Qg /.

Proof. (i) follows from the rules for d(zy), d(z/y) and k-linearity. (ii) is an imme-
diate consequence. O

Theorem 8.2. Let K/k(t) be finite and separable, t transcendental over k. Then
Qg i, is one-dimensional, spanned by dt.

Proof. First suppose K = k(t). Then by 8.1(ii), Qk/; is generated by dt so has
dimension < 1. Enough to show it is nonzero. By Lemma-Tautology, enough to
show there is a non-zero derivation K — K, and d/dt is one.

For the general case, write Ky = k(t) so that K = K(«a) = k(t, «) by the primitive
clement theorem. Let h € K[ X] be the minimal polynomial of a. Then A'(a) # 0
by separability. By 8.1(ii), Qk/ is spanned by dt and do. If for f € Ko[X] we
write Dy f = 0f /0t (i.e. apply d/dt to the coefficients of f), then 8.1(i) gives

0 =d(h(a)) = (Dih)(a)dt + I (a)da

so Qky is spanned by dt. It therefore is enough to show g/, # 0, or equivalently
to write down a none-zero derivation K — K.

Define a derviation D : Ky[X] — K (which is isomorphic to Ky[X]/(h), hence is a
K[ X]-module) by

D(f) = Dy(f) if f € Ko, D(X) = _%, D(X™) = na""'D(X).
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Then D(h) = D(h)(«)

f(a)D(h) + h(a)D(f) = 0. So D vanishes on the ideal hKy[X] C Ky[X], hence
defines a derivation D: K = Ko[X]/(h) — K, whose restriction to Ky is Dy, hence
is non-zero. [

Remark. We have d(zP) = pa?~'dz, so if K has characteristic p > 0, then d(z?) = 0
for all x € K.In what follows I will generally stick to the case of characteristic zero,
but point on when there are issues in the finite characteristic chase.

+h ( )D(X) = 0, so for any f € Ky[X|, D(fh) =
0.

Our situation; V' a curve (smooth, projective & irreducible), K = k(V). An
element of {4y is called a rational differential on V. As k is fixed I will
usually drop the “/k”. Differentials are usually denoted w, n, €. ...

Let P € V, We say w € Qv is regular at P if it can be expressed asw = ) f;dg;
with f;, gi € Oy.p. We let Qy p or Qp denote the set of differentials regular at P.
It is obviously an Oy, p-module.

Theorem 8.3. Qy.p s the free Oy p module generated by dmp for any local pa-
rameter mp at P.

So Qup = {fdrp| f € Oyp}. In particular, if 7} is another local parameter, the
drp = udmp where u € Oy, p is regular an non-zero at P.

(It is not hard to show that {2p is just the module of differentials Qe /x.)
Definition. If w € Q) and P € V, let vp(w) = vp(f) where w = fdmp.

By the last remark this doesn’t depend on the choice of local parameter, and
vp(w) > 0 iff w is regular at P.

Proof. Obviously Opdrp C Qp. Let f = f(P)+ 7pg € Op = k+ mp. Then
df = gdrp + mpdg € Opdrp + mp€lp. Therefore

Opdrp C Qp C Opdrp + wpllp

and then applying Nakayama’s Lemma with R = Op, J =mp, M = Qp D N =
Opdrp, we get Qp = Opdrp. The only thing we need to check is that Qp is
finitely generated. Choose an affine piece Vj C A™ of V' containing P, so that
k[Vo] = k[xq, ..., x,] say. If f € Op then f = g(z)/h(z) for polynomials g, h with
g(P) # 0, and then

hog/0X; — gOh/0X;
dfzz 9/ g /

so {z;} generate Qp. O

We define the divisor of a non-zero differential w € Qv to be (w) =" pvp(w)P
If 0 # W € Q) then o' = fw for some f € k(V)*, so div(w') = div(f) +
div(w). Therefore the divisor class of div(w) doesn’t depend on w. It is called the
canonical class of V. e write Ky for any element of the canonical class, and call
it a canonical divisor. (Note the non-canonical use of the word ”canonical”. . .)

V =P! Compute: vp(dt) =0if P =a € A® (since t — a is a local parameter). At
00, T = ¢! is a local parameter and dt = —t2d(1/t), s0 v (dt) = v (t?) = —2.
So (dt) = —2(00) is a canonical divisor.

Lemma 8.4. Let 0 # w € Q)i Then vp(w) =0 for all but finitely many P.
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Proof. As vp(fdg) = vp(f) +vp(dg) and vp(f) = 0 for all but finitely many P,
it’s enough to consider w = dg with k(V)/k(g) finite and separable. Consider
¢ = (1:9): V — P By the finiteness theorem, there are only finitely many
P € V with g(P) = oo or ep > 1. For all other P, g — g(P) = ¢*(t — g(P)) is a
local parameter at P, and therefore by 8.3(ii), vp(dg) = 0. O

Define the divisor of w # 0 to be

(w) =Y _vp(w)P.

As any other nonzero w' € Qv is of the form fw, f € k(V)*, the divisors of w
and w’ are linearly equivalent.

Define the canonical class of V' to be the class of (w). Denote by Ky any divisor
in the canonical class.

Fix w € Qg and let Ky = (w). Then fw is regular iff (f) + Ky >0, i.e.
L(Ky) = Q(V), fr fo.

In particular, (V) is finite-dimensional. Major definition:

Definition: g(V) = dim Q(V) = ¢(Ky) is the genus of V.

Remark. The genus of V' depends only on the isomorphism class of V', not on how
V' is embedded into projective space (unlike degree).

Ex: V =P! We saw Kp = —2(00) and therefore g(P') = ((Ky) = 0.

V = V(F) plane cubic, F = Xo X3 — [[°_, (X1 — M Xo), with \; # \; if i # j. We
assume ch(k) # 2. Then V is nonsingular (cf. Q1 on example sheet #2). Affine
equation is f(x,y) =y* — [[(z = Ai) = y* — g() say.

Observe 2y dy = ¢'(z) dx in Qi . Let w = da/y.

Claim: vp(w) =0 for all P € V.

Assuming this is true then Ky = 0, so g(V) = £(0) = 1 and (V) = kw. Various
cases:

e P eV, y(P)#0. Then (0f/0y)(P) # 0 so x — z(P) is a local parameter
at P, hence vp(w) = vp(dz) = vp(d(z — x(P))) = 0.

e PeVy, y(P) =0, x(P) =X\. Then (9f)/(0z)(P) = —g¢'(\;) # 0 (simple
root), so y is a local parameter at P. Then vp(w) = vp(2dy/g¢'(x)) = 0.

e P=PF,=(0:0:1) point at infinity. Then as vp, () = —2 and vp,(y) = —3,
have vp,(dz/y) = (=2 — 1) — (=3) = 0 by 8.5(7) (below).

[Alternative calculation at infinity: in the affine patch { Xy # 0}, use coordinates
(z,t) = (Xo/ X2, X1, X2), P = (0,0). Equation of V' becomes z = [[(t — \;z), and
vp(z) = 3, vp(t) = 1. Therefore dz/y = d(1/t)/(z/t) = —(t3/2)dt and vp(w) = 0.]

In particular, this proves that V is not isomorphic to P!.

Proposition 8.5. (i) Suppose char(k) = 0. Let 0 # f € k(V), and assume
vp(f) # 0. Then vp(df) = vp(f) — 1.

(ii) Suppose char(k) =p # 0, and n = vp(f). Then vp(df) > n — 1, with equality
if (pin) = 1.
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Proof. Let n = vp(f), so f = wpu with v € O}F. Write du = gdrp. Then
df = 75 (nu + mpg)drp. So vp(df) = (n — 1) + vp(nu + 7pg). Both results
follow. [

Proposition 8.6. Let V = V(F) C P? be a plane curve (irreducible projective
nonsingular) of degree d > 1. Then Ky = (d — 3)H, where H is the divisor of a
hyperplane (i.e. line) section.

Proof. Choose coordinates so that (0:1:0) ¢ V. Let z = X;/Xo, y = X2/X,
viewed as rational functions on V. Then f(z,y) = 0 where f(X,Y) = F(1,X,Y)
is the affine equation of V', so (0f/0X)(x,y)dr 4+ (0f/0Y)(x,y)dy = 0 in Qyy.

So let
dx dy

w = = —

@f/0Y)(z,y)  (0f/0X)(z,y)
Claim (w) = (d — 3)H with H = hyperplane at infinity.

Let P € VN A2 As in the previous example, if (3f)/9Y)(P) # 0, then z — z(P)
is a local parameter at P and so vp(w) = vp(1/(0f)/0Y)(P)) = 0. Otheriwise,
(0f)/0Y)(P) # 0, in which case y — y(P) is a local parameter and vp(w) = 0.

It remains to consider points at infinity. Since (0:1:0) ¢ V, any point at infin-
ity is contained in the affine piece {X3 # 0}, on which V' has equation g = 0
with 2 = Xo/Xo = 1/y, t = X1/Xy = x/y and ¢(Z,T) = F(Z,T,1) € k[Z,T].
Let n = dz/(0g/0T)(z,t) = —dt/(0g/0Z)(z,t). The preceding argument shows
that vp(n) = 0 for any P in this the affine piece {Xy, # 0}. But f(X,Y) =
Yig(1/Y,X/Y) so 0f/0X =Y 1(dg/0V)(1/Y,X/Y) and so

Y dy B 272dz _ a3
T OFX) @)y 0D
and so if Xo(P) # 0, vp(w) = (d—3)vp(z)+vp(n) = (d—3)vp(z). Since z = X/ X,
this means (w) = (d — 3)div(Xy) = (d — 3)H. O

Mention: topological nature of genus. Curvature.

9 Riemann-Roch

Let C be a (smooth, projective) curve. We have already seen the space L(D) =
{f 1 (f)+D >0}, where D is a divisor on C', and its dimension /(D) = dim L(D).
By definition, ¢(D) > 0 iff D is linearly equivalent to an effective divisor.

The Riemann-Roch problem is to determine /(D).
Recall (7.3) that ¢(D) < deg(D) + 1. When V = P! we have seen that for all D,
((D) = max(0,deg(D) + 1).

Theorem 9.1 (Riemann-Roch). Let g be the genus of V', and K = Ky a canonical
divsor. For any divisor D,

U(D)— UK —D)=1-—g+deg(D).

This is a hard theorem, and the proof is beyond the course. The simplest proof
uses sheaf cohomology — see chapter 2 of Serre, Algebraic Groups and Class Fields
for a readable proof, or Hartshorne chapter 5 for a shorter but much fancier one.
We will content outselves to discovering how powerful this result is.
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Corollary 9.2. deg(K) = 2g — 2.
Proof. Take D = K so that {(D) = ¢(K) = g and {/(K — D) = ¢(0) = 1. O

Corollary 9.3. A plane (smooth, projective) curve of degree d has genus (d —
1)(d — 2)/2.

Proof. By 8.5 K = (d—3)H and deg(H) = d so deg(K) = (d—3)d =29 -2 =
g=(d®—3d+2)/2. O

Sod=1or2 = g =0 (line or conic, which we already know to be ~ P!).
For d = 3 we get g = 1, and for plane quartics, g = 3. In particular, no (smooth)
plane curve has genus 2. (There are plenty of curves of genus 2 in P? however.)

In particular we see that if nonsingular curves V', V' of degrees d # d' are isomor-
phic, then {d,d'} = {1,2}. (As they must have the same genus, d(d—3) = d'(d'—3)
ie. (d —d)(d +d—3)=0.) The converse is far from true: if d > 2 there are

infinitely many isomorphism classes of plane curves of degree d (we’ll do the case
d = 3 later).

Corollary 9.4. deg(D) > 29 —2 = {(D) =1— g+ deg(D).
Proof. (K — D) = 0 in this case because deg(K — D) = 29 —2—deg(D) < 0. O
Curves of genus 1.

Corollary 9.5. Suppose g(V) = 1. Then Ky ~ 0, and deg(D) >0 = {(D) =
deg(D).

Proof. As {(Ky) = g = 1 there exists an effective divisor in the class of Ky, which
must therefore be 0 as deg(Ky) = 2g — 2 = 0. Second part follows from 9.4. [

Fix Py € V. The pair (V, ) (or, less correctly, just V itself) is called an elliptic
curve. Traditionally we write E instead of V' (actually it is also more common to
use C for curves...).

Let P, Q € E. Then {(P 4+ @Q — Fy) = 1 so there exists a unique effective divisor
of degree 1 (i.e. a point) R such that P + @ — Py ~ R. We define:

(It would perhaps be more correct, but over-pedantic, to write P +z p,) Q)

Theorem 9.6. The operation +g makes E into an abelian group, with identity
element Py. Moreover the map P +— [P — Py| € CI(E) is an isomorphism of groups
between E and C1°(E), the groups of divisor classes of degree 0 on E.

Proof. Let 3(P) = [P — Py] € CI°(E). First show that 3 is a bijection. Have
B(P)=pB(Q) < P—-P~Q—-PF < P~Q < P =Q since {(P) = 1.
So [ is injective. Also if D is a divisor of degree 0 then as (D + Fy) = 1 there
exists P with D + Py ~ P, so [D] = ((P). Therefore [ is a bijection (of sets).
Finally, if P +5 @ = R then 8(P+p Q) = [R-R| =[P+ Q - — K| =
[P — Py) 4+ [Q — Py] = B(P) + B(Q). So f3 transforms +5 into addition in C1°(E),
and therefore (F,+g) is a group and [ is an isomorphism. ]
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We'll often write Og for the identity point Py in the group law. A smooth plane
cubic has genus 1. Let’s look at the special case we considered in the last lecture.

Theorem 9.7. Assume char(k) # 2, and let E = V(F) C P? be the nonsingular
plane cubic:

3
F(Xo, X1,X2) = XoX3 — [[ (X1 — XiXo), NA#E N ifi# .

i=1
Let Op = Py=(0:0:1) € E. Then in the group law on E

P+ Q+pR=0 < P, Q, R are collinear

(We'll see soon that any curve of genus 1 is isomorphic to such a plane cubic.)

By collinear here we mean that there is a line L C P? for which the line section
on E is the divisor P + @ + R (if P, @, R are distinct this just means that they
line on L.)

Proof. P+pQ+rp R =0 < P+ Q+ R ~ 3F (by definition of the group
law) which holds iff 3f with (f) = P+ Q + R —3F. As L(3R) = (l,z,y) =
(1, X1/ X0, X2/ Xy), this holds iff f = G/X, for a linear form G with (G) = P +
Q + R. O

Before getting on to curves of higher genus, we’ll first obtain the Riemann-
Hurwitz formula.

Let ¢: V. — W be a finite morphism of curves. Assume char(k) = 0 here. Let
w = fdt € Qwym, K(W)/k(t) finite. Then k(V')/¢*(k(t)) is also finite so Qpvy/k
is generated by d¢*(t). Define

¢*(w) = ¢"(f) do*(t)-

Let P € V, @ = ¢(P). We will compare vp(¢*(w) and vg(w). Let ep be the
ramification degree of ¢ at P, and mp, mg local parameters.

Lemma 9.8. Assume char(k) = 0. Thenvp(¢p*w) = epvg(w)+e—1. In particular,
op(6°(dmg)) = ¢ — 1,

Proof. Write w = u¢g, dmg, so that vg(w) = vo(f) = n € Z. Then vp * ¢*(w) =
vp(d*u) + nvp(¢*mp) + vp(de*np) = nep + vp(dp*np). Now ¢*(mg) = yn$ for
some y € Oy p with dy = z dmp say and so

d(¢*mg) = (ey + mp2)ms 'dmp
so vp(d(¢*mg)) = e — 1 since char(k) = 0. O

Theorem 9.9 (Riemann-Hurwitz formula). Let ¢: V' — W be a finite morphism
of curves in characteristic zero. Let n = deg(¢). Then

29(V) =2 =n(29(W) = 2) + Y (ep — 1).

pPeVv
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Proof. Let 0 # w € Quwy/k. Then

29(V) — 2 = degdiv(¢'w) = > vp(¢*w)

PV

=Y > ve(d'w)

QeEW P—Q

= Z Z (GPUQ(CO) +ep — 1)

QeEW P—Q

= Z (an(w) + Z (ep — 1))

QewW P—Q
= ndegdiv(w) + Z(ep —1)

pPev

Remark. (not from lectures) In characteristic p, things change a bit:

e We must assume that k(V)/k(W) is separable (otherwise ¢*: Q) —
Qpv)/k is identically zero).

o Assuming separability, let 0p = vp(¢*dng). The proof of the lemma shows
that 0p = ep — 1 if ptep, and is > ep if p | ep. One says that ¢ is wildly
ramified at P if p | ep, tamely ramified otherwise.

e The Riemann-Hurwitz formula for a finite separable morphism ¢: V. — W
(in any characteristic) is then:

29(V) —2=n(29(W) - 2)+ > _dp.

PV

Examples Say 7: V — P! has degree 2. Then ep = 1 or 2. R-H formula
— 2g—2=2(0—2)+> (ep — 1), ie.

g:g—l, n=#{PEV |ep=2} =2g+2

(thus n is the number of ramificiation points of 7). Specifically:
g=0 = n=2.

g=1 = n=4. Infact, if V = F has Legendre equation y* = z(z—1)(z—
A) and P, is the point at infinity then 7 = ¢op, = (1 : x): E — P! has degree
2 and is ramified precisely at {Fp, (0,0), (1,0), (A, 0)} (the points of order
dividing 2 in the group of points of E), and 7(P) = 7(Q) <= P = +gQ.

Now consider g > 1.

Definition A curve V of genus g > 1 is hyperelliptic is there exists 7: V — P!
of degree 2. If so, then consider D = 7*(0c0). Have 1, 7*(X,/Xy) € L(D) and so
{(D) > 2. Moreover if £(D) = 3 then D = P + @ say and {(P) = 2, hence V = P!
which is impossible. So (D) = 2.

Theorem 9.10. (i) Let g(V) > 1. If there exists a divisor D > 0 of degree 2
on V with ((D) = 2 then 7 = ¢p: V — P! has degree 2, 7*(c0) = D and V is
hyperelliptic.

(ii) Every curve of genus 2 is hyperelliptic.

34



Proof. (i) Say D =P+ Q and 7 = ¢p = (1:2): V — P! where L(D) = (1,x).
Then () = D' — D, some D' = P'+ @’ > 0. We must have {P,Q} N{P",Q'} =0
since if say Q = Q' then (x) = P’ — P so {(P) =2 and V ~ P

Therefore vp(z) = —1 = vg(x) if P # Q, or vp(x) = —2 if P = (). In either case,
m™(00) = P+ Q.
(ii) If g = 2 then ((K) = 2 = deg(K). O

We can write hyperelliptic curves explicitly as follows. Suppose 7: V — P!, D =
7 (00), L(D) = (1,z). Then deg(w) =2 = k(V')/k(z) is an extension of degree
2, s0 (as we are assuming char(k) # 2!) k(V) = k(x,y) where y? = r(x) € k(x),
r(z) not a square. As k[z] is a UFD, we can write r(z) = h(z)(p(x)/q(x))? for
p,q,h € klz], h =[]~ (x — \;) squarefree.

Then V' is (by Theorem 2.5) birational to the plane curve V' with affine equation
f(x,y) = y* — h(x). The affine part V' N A? is smooth, since if P = (zp,yp) €
V' N A? then if (0f/0y)(P) = 2yp = 0, we have h(z) = —f(P) = 0. But
(0f/0z)(P) = —h'(zp) # 0 and h is squarefree. The intersection V' N {X, = 0}
is one point (0 : 0 : 1) which in fact is singular. In any case, we get a birational
morphism
(1:z:y): V— V' CP?

and a rational map

(Xo: X1): V —— P!

whose composite is 7 = ¢p: V — P! and therefore 7 is ramified over x =
A1, ...y Ay and possibly also infinity. Therefore since the number of ramification
points is 2g + 2 which is even, either

e m = 2g+ 2 is even, 7 is unramified over oo; or

e m =2g+ 1is odd, 7 is ramified over oco.

10 Projective embeddings

Let V' C P" be a curve of degree d, not contained in any hyperplane. Then
D = (Xp) is an effective divisor of degree d. A given curve V can occur in
projective space in different ways (for example, a curve of genus 0 is isomorphic
to P!, but also to a conic in P2, which has degree 2, and to a twisted cubic in P3,
etc.) For a fixed curve V', we can ask: as we consider all ways of embedding V'
into projective space (or varying dimension) what such divisors D can arise?

If F =5 M\X; #0is any linear form, then (F') ~ D and F/X, € L(D). So have
B: {linear forms F' = Z \iXi}— L(D), Fw— F/X,.

(Injective linear map, since V' doesn’t lie on a hyperplane.)

2 observations: let P, @) be distinct points of V', not lying on {X, = 0}. (We can
always change coordinates so that this holds; this amounts to replacing D by a
linearly equivalent divisor).

(1) There exist linear forms F', G with F(P) # 0 and G(P) = 0 # G(Q). So
B(F) e L(D)\ L(D — P) and 5(G) € L(D — P)\ L(D — P — Q). Therefore
(D —P—Q)<{D)—2,and so by 7.3(iii), {(D — P — Q) = {(D) — 2.
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(2) As P is a smooth point, it has a tangent line L = T% . There exists a lincar
form F' with F(P) = 0 but not vanishing identically on L. Therefore the
multiplicity of P in (F) is exactly 1, hence S(F') € L(D — P) \ L(D — 2P)

Se we deduce that D satisfies:
(%) For every P, Q € V (not necessarily distinct), {(D — P — Q) = ¢(D) — 2.

Now start with a curve V' and a divisor D with ¢(D) = n + 1 > 2. Pick a basis
{fo,---, fn} for L(D). Tt defines a morphism

op="(fo: fr::fa): V=P

We say ¢p is an embedding if ¢p is an isomorphism between V' and a (necessarily
smooth, irreducible) curve in P".

Note that choosing another basis changes ¢p by a linear transformation of P".
Also, if D" = D — (g) is an equivalent divisor, then {gf;} is a basis for L(D’),
hence ¢p = ¢p depends only on the equivalence class of D.

Theorem 10.1 (Embedding criterion). ¢p is an embedding iff (%) holds.

The above discussion shows that condition (%) is necessary. The meat of the
theorem is therefore that it is a sufficient condition.

I won’t prove the theorem here — see for example Proposition 6.56 in Hulek
(although he finesses some of the difficulties by defining “embedding” in a slightly
different way). I will show however that () implies that ¢p is injective. Let P,
@ € V be distinct points. There exist functions p, ¢ € k(V) with vp(p) = vg(q) =
1, vp(q) = vo(p) = 0 (take ratios of suitable linear forms on the projective space
containing V). Replacing D with D + (p?¢®) for suitable a, b € Z, we may assume
vp(D) = vo(D) = 0. We have {(D — P — Q) = {(D) — 2, by 7.3(iii) we have
{(D—P) ={(D)—1 as well. Choose a basis {f;} for L(D) such that {fo, ..., fri—2}
spans L(D — P — @) and {fo, ..., fm_1} spans L(D — P). Then all f; are regular

at P and Q and f,_1(P) = 0 # f(P), fm-1(Q) # 0. Therefore ¢p(P) # ¢p(Q).

This shows that if (%) holds, then ¢p is injective. The idea of the rest of the
proof is: by general theory, the image ¢p (V') is a possibly singular curve V' C P™.
The condition with P = @ is then used to show that V'’ is smooth and that
k(V) = k(V"), which then implies that ¢: V —= V',

Corollary 10.2. If deg(D) > 2g then ¢p is an embedding.

Proof. Apply Riemann-Roch: as deg(D) > deg(D — P — Q) > 2g — 2 = deg(K),
we have {(Kp) = (KD — P —Q)) = 0 and so

(D)=1-g+deg(D), {(D—P—-Q)=1-g+deg(D—P—Q)=1D)-2.
0

Examples:

First consider the case g = 0. Then deg(D) = n > 0 implies ¢(D) = n + 1 and
D ~ nP for any P € V. Therefore ¢p is always an embedding. Taking V = P*
and D = n(oo) we get L(D) =k® k.x @ --- @ k.x", hence

¢n(m):(1:x:---:x"):Pl—>}P’”
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is the n-tuple embedding.

Next consider g = 1. Corollary says that if deg(D) > 3 then ¢p is an embedding.
Pick Py € V and consider the case D = 3F,. As {(nP) = n by Riemann-Roch, we
have:

L(Py) =k & L(2P,y) = span{1, z} for some = with vp () = —2
¢ L(3Py) = span{l,z,y} for some y with vp, (z) = —3

Then L(4F) = L(3P) ® k.2? and L(5P)) = L(4FR) ® k.zy, and z3, y? both
have vp, = —6, hence lie in L(6F) \ L(5F,). Therefore there must be a linear
dependence between 1, z, 22, 23, y, xy, y? in which the coefficients of 23 and y? are
nonzero. Replacing y by cy for suitable ¢ # 0 this takes the form

Y2+ azy + asy = 23 + asx? + aur + ag
for suitable a; € k.

Theorem 10.3. Let E, Py) be an elliptic curve. Then Jay, as, as,ay, a6 € k and
an isomorphism E —~ V = V(F) C P2 where V is a smooth cubic with affine
defining polynomial

flx,y) =F(l,z,y) = Y? + a1zy + azy — (1’3 + asr® + agx + ag) (W)

and Py — (0:0:1). Moreover if char(k) # 2 coordinates may be chosen to that in
addition, a; = az = 0 and

flay) =y —a(@—1)(@—A), A€k A¢{0,1} (L)

The cubic (W) is called a (generalised) Weierstrass equation for £, and the
form (L) is Legendre normal form. The indices are written in such a way that
is the variables x, y are assigned weight 2,3 and a; is assigned weight ¢ then each
term in f has weight 6.

Proof. From the above, ¢3p,: V — P? is an embedding, and its image lies in V (F)
for some F asin (W). As V is a curve of genus 1 this can only happen if the image
equals V(F') and if V(F') is nonsingular.

If char(k) # 2 then by completing the square,

<y + %1‘ + %)2 = (cubic)(x) = f[(f'f = Ai)

and \; # \j as V' is smooth. Writing

, o T— )\ , yt+ax/2+az/3 A3 — A\
x )\2_)\17 Y (/\2_/\1)3/2 ) )\2_)\1 3&07 , OO
gives (y)? = 2/(2/ — 1)(2' — ). O

Consider now Legendre normal form with char(k) # 2. Then if P = (1:a:b) =
(a,b) € E, the P’ = (a,—b) € E also, and the line = a cuts out the divisor
P+ P'+ P,. In other words, P = —P in the group law.
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For n € Z, write [n|P for n times P in the group law. Then [2]P = 0g iff P = —P,
so we see that in the Legendre model,

{P e E[[2]P=0g}={0g,(0,0),(1,0),(A0)

which is therefore isomorphic to Z/2Z x 7./27.

What about [3]P = 0g? This holds iff the tangent at P has 3-fold intersection
with F at P, i.e. iff P is a point of inflection. Using the Hessian one can show
that if char(k) # 3 then there are exactly 9 points of inflection on E (P being one
of them) and so

{PeE|[B]P=0g} ~2Z/3Z xZ/3Z if char(k) # 3
More generally one can show that
{PeFE|[n]P=0g}~7Z/nZ x Z/nZ if char(k) { n

Before leaving curves of genus 1 let’s just explain what happens when &k = C.
Consider a pair 71,75 € C of complex numbers, linearly independent over R. Let
A =7Zmn + Zry, C C. Theory of elliptic functions (see Riemann surfaces course)
tells us that there is a meromorphic function p(z), holomorphic on C apart from
double poles at every z € A, such that p(z + A) = p(z) for all A € A. Moreover
©(2) satisfies the differential equation

0 (2)? = 4p(2)® = g2p(2) — g3, certain go, g3 € C.

The functions g, ¢’ are therefore meromorphic functions on the Riemann surface
T = C/A, and one shows that the map

. (1:p(2):¢'(2)/2) ifzeC\A
(0:0:1) if z€ A

is then a bijection between T and a smooth plane cubic curve in P%4. Now 7T has an

obvious group structure (as a quatient group of C) and this map is an isomorphism
of groups (for the group law on the cubic we have defined earlier).

Finally notice that there is an isomorphism
R/ZXR/ZﬁT, <$1,$2>'—>x17'1+$27'2 mod A

and so the subgroup of elements of order dividing n in 7" is isomorphic to Z/nZ x
Z.nZ.

Finally consider a curve V' of genus g > 2. If V is hyperelliptic, then we have
already seen a fairly precise description of V.

If not, we have in any case {(K) = g > 2. Consider the morphism ¢x: V — P91
given by a canonical divisor K.

Theorem 10.4. Suppose V is not hyperelliptic. Then ¢r: V — P91 is an em-
bedding.

Proof. Suppose ¢ is not an embedding. Then by the theorem, there exist P and
Q with (K — P — Q) > g — 1. Apply Riemann-Roch to D = P + (). We get
{(D)=UK—-D)+1—g+deg(D)>2. Soas g #0, {(D) =2,say L(D) = k@ k.x
with (z) = —P — Q + D’. Then ¢p: V — P! satisfies ¢ (c0) = D, so ¢p has
degree 2, i.e. V is hyperelliptic. Il
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