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7 Divisors on curves

For the rest of this course, curve will mean smooth, projective, irreducible curve,
unless explicitly stated to the contrary.

A divisor on a curve V is a finite formal sum
∑

P∈V nPP with nP ∈ Z (finite
means that for all but finitely many P , nP = 0). Sometimes the points are put
in brackets (P ) to make the notation clearer. The set of divisors on V forms an
abelian group under obvious addition, denoted Div(V ). If D =

∑
nPP is a divisor,

define deg(D) =
∑
nP ∈ Z. The map D 7→ deg(D) is obviously a homomorphism,

whose kernel is denoted Div0(V ) (divisors of degree 0). We sometimes write vP (D)
for the coefficient nP of P in D.

Let f ∈ k(V )∗ be a nonzero rational function. Define the divisor of f to be

div(f) = (f) :=
∑
P∈V

vP (f)P.

Corol.6.8(ii) says that div(f) ∈ Div0(V ). Divisors of the form div(f) are called
principal divisors, and form a subgroup div(k(V )∗) ⊂ Div0(V ).

If you’re doing Number Fields you will probably notice the similarity between this
and ideal theory for number fields. In particular, we can also define the divisor
class group of V for be the quotient

Cl(V ) = Div(V )/div(k(V )∗).

and for D ∈ Div(V ) write [D] for the class of D in Cl(V ). Divisors in the same
divisor class are said to be linearly equivalent, written D ∼ E. So D ∼ E iff
D − E is a principal divisor. If so then deg(D) = deg(E).

Proposition 7.1. Every divisor of degree 0 on P1 is principal.

Proof. Write the divisor as D =
∑

a∈k na(a) + n∞(∞). As deg(D) = 0, n∞ =
−
∑
na. Let f =

∏
a∈k(t− a)na . Then since (t− a) is a local parameter at a and

a unit at b 6= a, va(f) = na, and since 1/(t− a) is a local parameter at ∞ for any
a, v∞(f) = −

∑
na = n∞.

For a general curve, deg : Div(V ) → Z induces a homomorphism Cl(V ) → Z,
obviously surjective, and (by 7.1) an isomorphism for V = P1. Later will see this
is a characteristic property of P1.

Other ways divisors arise:

Hyperplane sections div(L). Let V ⊂ Pn and consider a hyperplane H =
V (L) ⊂ Pn not containing V , some linear form L. Define

div(L) =
∑

nPP, where if Xi(P ) 6= 0, nP = vP (L/Xi)

Note that this is independent of i, and that the only P occuring in the sum are
P ∈ V ∩H.

If L′ is another linear form then div(L′)− div(L) = div(L′/L) which is a principal
divisor, so div(L) and div(L′) are linearly equivalent and in particular have the
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same degree, called the degree of V . For an irreducible plane curve V = V (F ),
vP (L/Xi) is just the multiplicity mP (V,H) (see proof of 5.1) and the degree of V
is just the degree of F .

Likewise, any homogeneous G ∈ k[X] of degree m such that V (G) 6⊃ V determines
a divisor div(G) which is linearly equivalent tom×div(L), and therefore has degree
md.

Special case: V = V (F ) ⊂ P2, F irreducible of degree n. see that

#V (F ) ∩ V (G)} ≤ mn

i.e. (cf. the special case Prop.5.3):

Theorem 7.2 (Bezout’s Theorem, basic version). Two distinct irreducible plane
curves of degrees m, n intersect in at most mn points.

A divisor D =
∑
nPP is effective if nP ≥ 0 for all P — notation D ≥ 0. (Some

authors confusingly use the term positive.) LetD be any divisor. Then associated
to D are two important invariants: the first is

L(D) = L(D) = {f ∈ k(V ) | f = 0 or div(f) +D ≥ 0}

= {f ∈ k(V ) | ∀P ∈ V, vP (f) + nP ≥ 0} if D =
∑

P

nPP.

Noting that vP (f+g) ≥ vP (f) we see that L(D) is a vector space. Its dimension is
written `(D), which is finite. For example, let ∞ = (0 : 1) ∈ V = P1, D = m(∞).
Writing x = X1/X0 we see that L(D) is spanned by 1, x, . . . , xm so `(D) = m+ 1.

In general we have:

Proposition 7.3. Let D ∈ Div(V ). Then:

(i) deg(D) < 0 =⇒ L(D) = 0.

(ii) deg(D) ≥ 0 =⇒ `(D) ≤ deg(D) + 1.

(iii) For any P ∈ V , `(D) ≤ `(D − P ) + 1.

Proof. (i) If L(D) 6= 0 then for 0 6= f ∈ L(D), div(f) + D = E ≥ 0. But then
deg(D) = deg(E) ≥ 0 (as deg div(f) = 0).

(iii) Let n = vP (D). Define α : L(D) → k by α(f) = (πn
Pf)(P ). The kernel of this

homomorphism is then L(D − P ) so `(D − P ) ≥ `(D)− 1.

(ii) now follows: if d = deg(D) ≥ 0 we see `(D) ≤ `(D− (d+ 1)P ) + d+ 1 = d+ 1
since deg(D − (d+ 1)P ) = 0.

If D ∼ E, so that D − E = div(g) then L(D) and L(E) are isomorphic by the
map f 7→ fg. So `(D) depends only on the class of D.

8 Differentials

Differentials are a way of doing calculus on varieties, in a coordinate-free way.

K/k field extension. Informally a differential is a finite sum of formal expressions
x dy with x, y ∈ K, subject to the usual rules of calculus. Precisely:
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Definition The space of Kähler differentials ΩK/k is the quotient M/N where

M =
(
K-vector space generated by symbols δx, x ∈ K

)
N =

(
subspace generated by δ(x + y) − δx − δy,
δ(xy)− x δy − y δx, δa for x, y ∈ K, a ∈ k.

)
and define dx = δx+N ∈ ΩK/k. (Think of K as functions, k as constants.)

The map d : K → ΩK/k is the exterior derivative. It is k-linear since if a ∈ k
then d(ax) = a dx

Any k-linear map D : K → U to a K-vector space U satisfying the product rule
D(xy) = xDy+yDx is called a derivation (more precisely, a k-derivation). So d
is a derivation. Another example of a derivation is the formal differentiation map
d/dX : k(X) → k(X). (We make the same definition of K is a ring containing k
and U is a K-module.)

Lemma (/tautology). A map D :K → U is a derivation iff there is a K-linear
map λ : ΩK/k → U such that λ(dx) = D(x) for all x ∈ K.

Proof. If λ is such a K-linear map then obviously D = λ ◦ d is k-linear and
D(xy) = λ(d(xy)) = xλ(dy) + yλ(dx), so D is a derivation. Conversely, given
a derivation D :K → U , write ΩK/k = M/N as in the definition, and define a

K-linear map λ̂ :M → U by δy 7→ D(y) for all y ∈ K. Then as D is a derivation it
follows that λ̂(N) = 0 so we get a K-linear map λ with the desired properties.

For any derivation (in particular d), if y 6= 0 then Dx = D(y(x/y)) = yD(x/y) +
(x/y)Dy giving the quotient formula D(x/y) = y−2(yDx− xDy).

Lemma 8.1. (i) If f = g/h ∈ k(X1, . . . , Xn) and y = f(x1, . . . , xn) ∈ K, then
dy =

∑
i(∂f/∂Xi)(x1, . . . , xn) dxi.

(ii) If K = k(x1, . . . , xn) for xi ∈ K then {dxi} spans ΩK/k.

Proof. (i) follows from the rules for d(xy), d(x/y) and k-linearity. (ii) is an imme-
diate consequence.

Theorem 8.2. Let K/k(t) be finite and separable, t transcendental over k. Then
ΩK/k is one-dimensional, spanned by dt.

Proof. First suppose K = k(t). Then by 8.1(ii), ΩK/k is generated by dt so has
dimension ≤ 1. Enough to show it is nonzero. By Lemma-Tautology, enough to
show there is a non-zero derivation K → K, and d/dt is one.

For the general case, write K0 = k(t) so that K = K(α) = k(t, α) by the primitive
element theorem. Let h ∈ K0[X] be the minimal polynomial of α. Then h′(α) 6= 0
by separability. By 8.1(ii), ΩK/k is spanned by dt and dα. If for f ∈ K0[X] we
write Dtf = ∂f/∂t (i.e. apply d/dt to the coefficients of f), then 8.1(i) gives

0 = d(h(α)) = (Dth)(α)dt+ h′(α)dα

so ΩK/k is spanned by dt. It therefore is enough to show ΩK/k 6= 0, or equivalently
to write down a none-zero derivation K → K.

Define a derviation D :K0[X] → K (which is isomorphic to K0[X]/(h), hence is a
K0[X]-module) by

D(f) = Dt(f) if f ∈ K0, D(X) = −(Dth)(α)

h′(α)
, D(Xn) = nαn−1D(X).
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Then D(h) = Dt(h)(α) + h′(α)D(X) = 0, so for any f ∈ K0[X], D(fh) =
f(α)D(h) + h(α)D(f) = 0. So D vanishes on the ideal hK0[X] ⊂ K0[X], hence
defines a derivation D̄ :K = K0[X]/(h) → K, whose restriction to K0 is Dt, hence
is non-zero.

Remark. We have d(xp) = pxp−1dx, so ifK has characteristic p > 0, then d(xp) = 0
for all x ∈ K.In what follows I will generally stick to the case of characteristic zero,
but point on when there are issues in the finite characteristic chase.

Our situation; V a curve (smooth, projective & irreducible), K = k(V ). An
element of Ωk(V )/k is called a rational differential on V . As k is fixed I will
usually drop the “/k”. Differentials are usually denoted ω, η, ξ. . . .

Let P ∈ V , We say ω ∈ Ωk(V ) is regular at P if it can be expressed as ω =
∑
fidgi

with fi, gi ∈ OV,P . We let ΩV,P or ΩP denote the set of differentials regular at P .
It is obviously an OV,P -module.

Theorem 8.3. ΩV,P is the free OV,P module generated by dπP for any local pa-
rameter πP at P .

So ΩV,P = {fdπP | f ∈ OV,P}. In particular, if π′P is another local parameter, the
dπ′P = udπP where u ∈ O∗

V,P is regular an non-zero at P .

(It is not hard to show that ΩP is just the module of differentials ΩOP /k.)

Definition. If ω ∈ Ωk(V ) and P ∈ V , let vP (ω) = vP (f) where ω = fdπP .

By the last remark this doesn’t depend on the choice of local parameter, and
vP (ω) ≥ 0 iff ω is regular at P .

Proof. Obviously OPdπP ⊂ ΩP . Let f = f(P ) + πPg ∈ OP = k + mP . Then
df = gdπP + πPdg ∈ OPdπP + πP ΩP . Therefore

OPdπP ⊂ ΩP ⊂ OPdπP + πP ΩP

and then applying Nakayama’s Lemma with R = OP , J = mP , M = ΩP ⊃ N =
OPdπP , we get ΩP = OPdπP . The only thing we need to check is that ΩP is
finitely generated. Choose an affine piece V0 ⊂ An of V containing P , so that
k[V0] = k[x1, . . . , xn] say. If f ∈ OP then f = g(x)/h(x) for polynomials g, h with
g(P ) 6= 0, and then

df =
∑ h∂g/∂Xi − g∂h/∂Xi

h2
(x)dxi

so {xi} generate ΩP .

We define the divisor of a non-zero differential ω ∈ Ωk(V ) to be (ω) =
∑

P vP (ω)P .
If 0 6= ω′ ∈ Ωk(V ) then ω′ = fω for some f ∈ k(V )∗, so div(ω′) = div(f) +
div(ω). Therefore the divisor class of div(ω) doesn’t depend on ω. It is called the
canonical class of V . e write KV for any element of the canonical class, and call
it a canonical divisor. (Note the non-canonical use of the word ”canonical”. . . )

V = P1. Compute: vP (dt) = 0 if P = a ∈ A1 (since t− a is a local parameter). At
∞, π∞ = t−1 is a local parameter and dt = −t2d(1/t), so v∞(dt) = v∞(t2) = −2.
So (dt) = −2(∞) is a canonical divisor.

Lemma 8.4. Let 0 6= ω ∈ Ωk(V )/k. Then vP (ω) = 0 for all but finitely many P .
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Proof. As vP (f dg) = vP (f) + vP (dg) and vP (f) = 0 for all but finitely many P ,
it’s enough to consider ω = dg with k(V )/k(g) finite and separable. Consider
φ = (1 : g) : V → P1. By the finiteness theorem, there are only finitely many
P ∈ V with g(P ) = ∞ or eP > 1. For all other P , g − g(P ) = φ∗(t − g(P )) is a
local parameter at P , and therefore by 8.3(ii), vP (dg) = 0.

Define the divisor of ω 6= 0 to be

(ω) =
∑

P

vP (ω)P.

As any other nonzero ω′ ∈ Ωk(V )/k is of the form fω, f ∈ k(V )∗, the divisors of ω
and ω′ are linearly equivalent.

Define the canonical class of V to be the class of (ω). Denote by KV any divisor
in the canonical class.

Fix ω ∈ Ωk(V )/k and let KV = (ω). Then fω is regular iff (f) +KV ≥ 0, i.e.

L(KV ) ∼−→ Ω(V ), f 7→ fω.

In particular, Ω(V ) is finite-dimensional. Major definition:

Definition: g(V ) = dim Ω(V ) = `(KV ) is the genus of V .

Remark. The genus of V depends only on the isomorphism class of V , not on how
V is embedded into projective space (unlike degree).

Ex: V = P1. We saw KP1 = −2(∞) and therefore g(P1) = `(KV ) = 0.

V = V (F ) plane cubic, F = X0X
2
2 −

∏3
i=1(X1 − λiX0), with λi 6= λj if i 6= j. We

assume ch(k) 6= 2. Then V is nonsingular (cf. Q1 on example sheet #2). Affine
equation is f(x, y) = y2 −

∏
(x− λi) = y2 − g(x) say.

Observe 2y dy = g′(x) dx in Ωk(V )/k. Let ω = dx/y.

Claim: vP (ω) = 0 for all P ∈ V .

Assuming this is true then KV = 0, so g(V ) = `(0) = 1 and Ω(V ) = kω. Various
cases:

• P ∈ V0, y(P ) 6= 0. Then (∂f/∂y)(P ) 6= 0 so x − x(P ) is a local parameter
at P , hence vP (ω) = vP (dx) = vP (d(x− x(P ))) = 0.

• P ∈ V0, y(P ) = 0, x(P ) = λi. Then (∂f)/(∂x)(P ) = −g′(λi) 6= 0 (simple
root), so y is a local parameter at P . Then vP (ω) = vP (2dy/g′(x)) = 0.

• P = P0 = (0 : 0 : 1) point at infinity. Then as vP0(x) = −2 and vP0(y) = −3,
have vP0(dx/y) = (−2− 1)− (−3) = 0 by 8.5(?) (below).

[Alternative calculation at infinity: in the affine patch {X2 6= 0}, use coordinates
(z, t) = (X0/X2, X1, X2), P = (0, 0). Equation of V becomes z =

∏
(t− λiz), and

vP (z) = 3, vP (t) = 1. Therefore dx/y = d(1/t)/(z/t) = −(t3/z)dt and vP (ω) = 0.]

In particular, this proves that V is not isomorphic to P1.

Proposition 8.5. (i) Suppose char(k) = 0. Let 0 6= f ∈ k(V ), and assume
vP (f) 6= 0. Then vP (df) = vP (f)− 1.

(ii) Suppose char(k) = p 6= 0, and n = vP (f). Then vP (df) ≥ n− 1, with equality
if (p, n) = 1.
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Proof. Let n = vP (f), so f = πn
Pu with u ∈ O∗

P . Write du = g dπP . Then
df = πn−1

P (nu + πPg)dπP . So vP (df) = (n − 1) + vP (nu + πPg). Both results
follow.

Proposition 8.6. Let V = V (F ) ⊂ P2 be a plane curve (irreducible projective
nonsingular) of degree d ≥ 1. Then KV = (d − 3)H, where H is the divisor of a
hyperplane (i.e. line) section.

Proof. Choose coordinates so that (0 : 1 : 0) /∈ V . Let x = X1/X0, y = X2/X0

viewed as rational functions on V . Then f(x, y) = 0 where f(X, Y ) = F (1, X, Y )
is the affine equation of V , so (∂f/∂X)(x, y) dx + (∂f/∂Y )(x, y) dy = 0 in ΩV/k.
So let

ω =
dx

(∂f/∂Y )(x, y)
= − dy

(∂f/∂X)(x, y)

Claim (w) = (d− 3)H with H = hyperplane at infinity.

Let P ∈ V ∩ A2. As in the previous example, if (∂f)/∂Y )(P ) 6= 0, then x− x(P )
is a local parameter at P and so vP (ω) = vP (1/(∂f)/∂Y )(P )) = 0. Otheriwise,
(∂f)/∂Y )(P ) 6= 0, in which case y − y(P ) is a local parameter and vP (ω) = 0.

It remains to consider points at infinity. Since (0 : 1 : 0) /∈ V , any point at infin-
ity is contained in the affine piece {X2 6= 0}, on which V has equation g = 0
with z = X0/X2 = 1/y, t = X1/X2 = x/y and g(Z, T ) = F (Z, T, 1) ∈ k[Z, T ].
Let η = dz/(∂g/∂T )(z, t) = −dt/(∂g/∂Z)(z, t). The preceding argument shows
that vP (η) = 0 for any P in this the affine piece {X2 6= 0}. But f(X, Y ) =
Y dg(1/Y,X/Y ) so ∂f/∂X = Y d−1(∂g/∂V )(1/Y,X/Y ) and so

ω = − dy

(∂f/∂X)(x, y)
=

z−2dz

yd−1(∂g/∂T )(z, t)
= zd−3η

and so ifX2(P ) 6= 0, vP (ω) = (d−3)vP (z)+vP (η) = (d−3)vP (z). Since z = X0/X2,
this means (ω) = (d− 3)div(X0) = (d− 3)H.

Mention: topological nature of genus. Curvature.

9 Riemann-Roch

Let C be a (smooth, projective) curve. We have already seen the space L(D) =
{f | (f)+D ≥ 0}, where D is a divisor on C, and its dimension `(D) = dimL(D).
By definition, `(D) > 0 iff D is linearly equivalent to an effective divisor.

The Riemann-Roch problem is to determine `(D).

Recall (7.3) that `(D) ≤ deg(D) + 1. When V = P1 we have seen that for all D,
`(D) = max(0, deg(D) + 1).

Theorem 9.1 (Riemann-Roch). Let g be the genus of V , and K = KV a canonical
divisor. For any divisor D,

`(D)− `(K −D) = 1− g + deg(D).

This is a hard theorem, and the proof is beyond the course. The simplest proof
uses sheaf cohomology — see chapter 2 of Serre, Algebraic Groups and Class Fields
for a readable proof, or Hartshorne chapter 5 for a shorter but much fancier one.
We will content outselves to discovering how powerful this result is.
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Corollary 9.2. deg(K) = 2g − 2.

Proof. Take D = K so that `(D) = `(K) = g and `(K −D) = `(0) = 1.

Corollary 9.3. A plane (smooth, projective) curve of degree d has genus (d −
1)(d− 2)/2.

Proof. By 8.5 K = (d− 3)H and deg(H) = d so deg(K) = (d− 3)d = 2g− 2 =⇒
g = (d2 − 3d+ 2)/2.

So d = 1 or 2 =⇒ g = 0 (line or conic, which we already know to be ' P1).
For d = 3 we get g = 1, and for plane quartics, g = 3. In particular, no (smooth)
plane curve has genus 2. (There are plenty of curves of genus 2 in P3 however.)

In particular we see that if nonsingular curves V , V ′ of degrees d 6= d′ are isomor-
phic, then {d, d′} = {1, 2}. (As they must have the same genus, d(d−3) = d′(d′−3)
i.e. (d′ − d)(d′ + d − 3) = 0.) The converse is far from true: if d > 2 there are
infinitely many isomorphism classes of plane curves of degree d (we’ll do the case
d = 3 later).

Corollary 9.4. deg(D) > 2g − 2 =⇒ `(D) = 1− g + deg(D).

Proof. `(K −D) = 0 in this case because deg(K −D) = 2g− 2− deg(D) < 0.

Curves of genus 1.

Corollary 9.5. Suppose g(V ) = 1. Then KV ∼ 0, and deg(D) > 0 =⇒ `(D) =
deg(D).

Proof. As `(KV ) = g = 1 there exists an effective divisor in the class of KV , which
must therefore be 0 as deg(KV ) = 2g − 2 = 0. Second part follows from 9.4.

Fix P0 ∈ V . The pair (V, P0) (or, less correctly, just V itself) is called an elliptic
curve. Traditionally we write E instead of V (actually it is also more common to
use C for curves. . . ).

Let P , Q ∈ E. Then `(P +Q− P0) = 1 so there exists a unique effective divisor
of degree 1 (i.e. a point) R such that P +Q− P0 ∼ R. We define:

P +E Q = R

(It would perhaps be more correct, but over-pedantic, to write P +(E,P0) Q.)

Theorem 9.6. The operation +E makes E into an abelian group, with identity
element P0. Moreover the map P 7→ [P −P0] ∈ Cl(E) is an isomorphism of groups
between E and Cl0(E), the groups of divisor classes of degree 0 on E.

Proof. Let β(P ) = [P − P0] ∈ Cl0(E). First show that β is a bijection. Have
β(P ) = β(Q) ⇐⇒ P − P0 ∼ Q− P0 ⇐⇒ P ∼ Q ⇐⇒ P = Q since `(P ) = 1.
So β is injective. Also if D is a divisor of degree 0 then as `(D + P0) = 1 there
exists P with D + P0 ∼ P , so [D] = β(P ). Therefore β is a bijection (of sets).
Finally, if P +E Q = R then β(P +E Q) = [R − P0] = [P + Q − P0 − P0] =
[P − P0] + [Q− P0] = β(P ) + β(Q). So β transforms +E into addition in Cl0(E),
and therefore (E,+E) is a group and β is an isomorphism.
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We’ll often write 0E for the identity point P0 in the group law. A smooth plane
cubic has genus 1. Let’s look at the special case we considered in the last lecture.

Theorem 9.7. Assume char(k) 6= 2, and let E = V (F ) ⊂ P2 be the nonsingular
plane cubic:

F (X0, X1, X2) = X0X
2
2 −

3∏
i=1

(X1 − λiX0), λi 6= λj if i 6= j.

Let OE = P0 = (0 : 0 : 1) ∈ E. Then in the group law on E

P +E Q+E R = 0E ⇐⇒ P , Q, R are collinear

(We’ll see soon that any curve of genus 1 is isomorphic to such a plane cubic.)

By collinear here we mean that there is a line L ⊂ P2 for which the line section
on E is the divisor P + Q + R (if P , Q, R are distinct this just means that they
line on L.)

Proof. P +E Q +E R = 0E ⇐⇒ P + Q + R ∼ 3P0 (by definition of the group
law) which holds iff ∃f with (f) = P + Q + R − 3P0. As L(3P0) = 〈1, x, y〉 =
〈1, X1/X0, X2/X0〉, this holds iff f = G/X0 for a linear form G with (G) = P +
Q+R.

Before getting on to curves of higher genus, we’ll first obtain the Riemann-
Hurwitz formula.

Let φ : V → W be a finite morphism of curves. Assume char(k) = 0 here. Let
ω = f dt ∈ Ωk(W )/k, k(W )/k(t) finite. Then k(V )/φ∗(k(t)) is also finite so Ωk(V )/k

is generated by dφ∗(t). Define

φ∗(ω) = φ∗(f) dφ∗(t).

Let P ∈ V , Q = φ(P ). We will compare vP (φ∗(ω) and vQ(ω). Let eP be the
ramification degree of φ at P , and πP , πQ local parameters.

Lemma 9.8. Assume char(k) = 0. Then vP (φ∗ω) = ePvQ(ω)+e−1. In particular,
vP (φ∗(dπQ)) = e− 1.

Proof. Write ω = uφn
Q dπQ, so that vQ(ω) = vQ(f) = n ∈ Z. Then vP ∗ φ∗(ω) =

vP (φ∗u) + nvP (φ∗πP ) + vP (dφ∗πP ) = neP + vP (dφ∗πP ). Now φ∗(πQ) = yπe
P for

some y ∈ O∗
V,P with dy = z dπP say and so

d(φ∗πQ) = (ey + πP z)π
e−1
P dπP

so vP (d(φ∗πQ)) = e− 1 since char(k) = 0.

Theorem 9.9 (Riemann-Hurwitz formula). Let φ : V → W be a finite morphism
of curves in characteristic zero. Let n = deg(φ). Then

2g(V )− 2 = n(2g(W )− 2) +
∑
P∈V

(eP − 1).
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Proof. Let 0 6= ω ∈ Ωk(W )/k. Then

2g(V )− 2 = deg div(φ∗ω) =
∑
P∈V

vP (φ∗ω)

=
∑
Q∈W

∑
P 7→Q

vP (φ∗ω)

=
∑
Q∈W

∑
P 7→Q

(ePvQ(ω) + eP − 1)

=
∑
Q∈W

(
nvQ(ω) +

∑
P 7→Q

(eP − 1)
)

= n deg div(ω) +
∑
P∈V

(eP − 1)

Remark. (not from lectures) In characteristic p, things change a bit:

• We must assume that k(V )/k(W ) is separable (otherwise φ∗ : Ωk(W )/k →
Ωk(V )/k is identically zero).

• Assuming separability, let δP = vP (φ∗dπQ). The proof of the lemma shows
that δP = eP − 1 if p - eP , and is ≥ eP if p | eP . One says that φ is wildly
ramified at P if p | eP , tamely ramified otherwise.

• The Riemann-Hurwitz formula for a finite separable morphism φ : V → W
(in any characteristic) is then:

2g(V )− 2 = n(2g(W )− 2) +
∑
P∈V

δP .

Examples Say π : V → P1 has degree 2. Then eP = 1 or 2. R-H formula
=⇒ 2g − 2 = 2(0− 2) +

∑
(eP − 1), i.e.

g =
n

2
− 1, n = #{P ∈ V | eP = 2} = 2g + 2

(thus n is the number of ramificiation points of π). Specifically:

g = 0 =⇒ n = 2.

g = 1 =⇒ n = 4. In fact, if V = E has Legendre equation y2 = x(x−1)(x−
λ) and P0 is the point at infinity then π = φ2P0 = (1 : x) : E → P1 has degree
2 and is ramified precisely at {P0, (0, 0), (1, 0), (λ, 0)} (the points of order
dividing 2 in the group of points of E), and π(P ) = π(Q) ⇐⇒ P = ±EQ.

Now consider g > 1.

Definition A curve V of genus g > 1 is hyperelliptic is there exists π : V → P1

of degree 2. If so, then consider D = π∗(∞). Have 1, π∗(X1/X0) ∈ L(D) and so
`(D) ≥ 2. Moreover if `(D) = 3 then D = P +Q say and `(P ) = 2, hence V = P1

which is impossible. So `(D) = 2.

Theorem 9.10. (i) Let g(V ) > 1. If there exists a divisor D ≥ 0 of degree 2
on V with `(D) = 2 then π = φD : V → P1 has degree 2, π∗(∞) = D and V is
hyperelliptic.

(ii) Every curve of genus 2 is hyperelliptic.
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Proof. (i) Say D = P + Q and π = φD = (1 :x) : V → P1 where L(D) = 〈1, x〉.
Then (x) = D′−D, some D′ = P ′ +Q′ ≥ 0. We must have {P,Q} ∩ {P ′, Q′} = ∅
since if say Q = Q′ then (x) = P ′ − P so `(P ) = 2 and V ' P1.

Therefore vP (x) = −1 = vQ(x) if P 6= Q, or vP (x) = −2 if P = Q. In either case,
π∗(∞) = P +Q.

(ii) If g = 2 then `(K) = 2 = deg(K).

We can write hyperelliptic curves explicitly as follows. Suppose π : V → P1, D =
π∗(∞), L(D) = 〈1, x〉. Then deg(π) = 2 =⇒ k(V )/k(x) is an extension of degree
2, so (as we are assuming char(k) 6= 2!) k(V ) = k(x, y) where y2 = r(x) ∈ k(x),
r(x) not a square. As k[x] is a UFD, we can write r(x) = h(x)(p(x)/q(x))2 for
p, q, h ∈ k[x], h =

∏m
i=1(x− λi) squarefree.

Then V is (by Theorem 2.5) birational to the plane curve V ′ with affine equation
f(x, y) = y2 − h(x). The affine part V ′ ∩ A2 is smooth, since if P = (xP , yP ) ∈
V ′ ∩ A2 then if (∂f/∂y)(P ) = 2yP = 0, we have h(x) = −f(P ) = 0. But
(∂f/∂x)(P ) = −h′(xP ) 6= 0 and h is squarefree. The intersection V ′ ∩ {X0 = 0}
is one point (0 : 0 : 1) which in fact is singular. In any case, we get a birational
morphism

(1 :x : y) : V → V ′ ⊂ P2

and a rational map
(X0 :X1) : V ′ −−→ P1

whose composite is π = φD : V → P1, and therefore π is ramified over x =
λ1, . . . , λm and possibly also infinity. Therefore since the number of ramification
points is 2g + 2 which is even, either

• m = 2g + 2 is even, π is unramified over ∞; or

• m = 2g + 1 is odd, π is ramified over ∞.

10 Projective embeddings

Let V ⊂ Pn be a curve of degree d, not contained in any hyperplane. Then
D = (X0) is an effective divisor of degree d. A given curve V can occur in
projective space in different ways (for example, a curve of genus 0 is isomorphic
to P1, but also to a conic in P2, which has degree 2, and to a twisted cubic in P3,
etc.) For a fixed curve V , we can ask: as we consider all ways of embedding V
into projective space (or varying dimension) what such divisors D can arise?

If F =
∑
λiXi 6= 0 is any linear form, then (F ) ∼ D and F/X0 ∈ L(D). So have

β : {linear forms F =
∑

λiXi} ↪−→L(D), F 7→ F/X0.

(Injective linear map, since V doesn’t lie on a hyperplane.)

2 observations: let P , Q be distinct points of V , not lying on {X0 = 0}. (We can
always change coordinates so that this holds; this amounts to replacing D by a
linearly equivalent divisor).

(1) There exist linear forms F , G with F (P ) 6= 0 and G(P ) = 0 6= G(Q). So
β(F ) ∈ L(D) \ L(D− P ) and β(G) ∈ L(D− P ) \ L(D− P −Q). Therefore
`(D − P −Q) ≤ `(D)− 2, and so by 7.3(iii), `(D − P −Q) = `(D)− 2.
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(2) As P is a smooth point, it has a tangent line L = T proj
P . There exists a linear

form F with F (P ) = 0 but not vanishing identically on L. Therefore the
multiplicity of P in (F ) is exactly 1, hence β(F ) ∈ L(D − P ) \ L(D − 2P )

Se we deduce that D satisfies:

(∗) For every P , Q ∈ V (not necessarily distinct), `(D − P −Q) = `(D)− 2.

Now start with a curve V and a divisor D with `(D) = n + 1 ≥ 2. Pick a basis
{f0, . . . , fn} for L(D). It defines a morphism

φD = (f0 : f1 : · · · : fn) : V → Pn.

We say φD is an embedding if φD is an isomorphism between V and a (necessarily
smooth, irreducible) curve in Pn.

Note that choosing another basis changes φD by a linear transformation of Pn.
Also, if D′ = D − (g) is an equivalent divisor, then {gfi} is a basis for L(D′),
hence φD = φD′ depends only on the equivalence class of D.

Theorem 10.1 (Embedding criterion). φD is an embedding iff (∗) holds.

The above discussion shows that condition (∗) is necessary. The meat of the
theorem is therefore that it is a sufficient condition.

I won’t prove the theorem here — see for example Proposition 6.56 in Hulek
(although he finesses some of the difficulties by defining “embedding” in a slightly
different way). I will show however that (∗) implies that φD is injective. Let P ,
Q ∈ V be distinct points. There exist functions p, q ∈ k(V ) with vP (p) = vQ(q) =
1, vP (q) = vQ(p) = 0 (take ratios of suitable linear forms on the projective space
containing V ). Replacing D with D+ (paqb) for suitable a, b ∈ Z, we may assume
vP (D) = vQ(D) = 0. We have `(D − P − Q) = `(D) − 2, by 7.3(iii) we have
`(D−P ) = `(D)−1 as well. Choose a basis {fi} for L(D) such that {f0, . . . , fm−2}
spans L(D − P −Q) and {f0, . . . , fm−1} spans L(D − P ). Then all fi are regular
at P and Q and fm−1(P ) = 0 6= fm(P ), fm−1(Q) 6= 0. Therefore φD(P ) 6= φD(Q).

This shows that if (∗) holds, then φD is injective. The idea of the rest of the
proof is: by general theory, the image φD(V ) is a possibly singular curve V ′ ⊂ Pm.
The condition with P = Q is then used to show that V ′ is smooth and that
k(V ) = k(V ′), which then implies that φ : V ∼−→ V ′.

Corollary 10.2. If deg(D) > 2g then φD is an embedding.

Proof. Apply Riemann-Roch: as deg(D) > deg(D − P − Q) > 2g − 2 = deg(K),
we have `(KD) = `(K(D − P −Q)) = 0 and so

`(D) = 1− g + deg(D), `(D − P −Q) = 1− g + deg(D − P −Q) = `(D)− 2.

Examples:

First consider the case g = 0. Then deg(D) = n > 0 implies `(D) = n + 1 and
D ∼ nP for any P ∈ V . Therefore φD is always an embedding. Taking V = P1

and D = n(∞) we get L(D) = k ⊕ k.x⊕ · · · ⊕ k.xn, hence

φn(∞) = (1 : x : · · · : xn) : P1 → Pn
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is the n-tuple embedding.

Next consider g = 1. Corollary says that if deg(D) ≥ 3 then φD is an embedding.
Pick P0 ∈ V and consider the case D = 3P0. As `(nP ) = n by Riemann-Roch, we
have:

L(P0) = k  L(2P0) = span{1, x} for some x with vP0(x) = −2

 L(3P0) = span{1, x, y} for some y with vP0(x) = −3

Then L(4P0) = L(3P0) ⊕ k.x2 and L(5P0) = L(4P0) ⊕ k.xy, and x3, y2 both
have vP0 = −6, hence lie in L(6P0) \ L(5P0). Therefore there must be a linear
dependence between 1, x, x2, x3, y, xy, y2 in which the coefficients of x3 and y2 are
nonzero. Replacing y by cy for suitable c 6= 0 this takes the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for suitable ai ∈ k.

Theorem 10.3. Let E,P0) be an elliptic curve. Then ∃a1, a2, a3, a4, a6 ∈ k and
an isomorphism E ∼−→ V = V (F ) ⊂ P2 where V is a smooth cubic with affine
defining polynomial

f(x, y) = F (1, x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) (W)

and P0 7→ (0 : 0 : 1). Moreover if char(k) 6= 2 coordinates may be chosen to that in
addition, a1 = a3 = 0 and

f(x, y) = y2 − x(x− 1)(x− λ), λ ∈ k, λ /∈ {0, 1} (L)

The cubic (W) is called a (generalised) Weierstrass equation for E, and the
form (L) is Legendre normal form. The indices are written in such a way that
is the variables x, y are assigned weight 2,3 and ai is assigned weight i then each
term in f has weight 6.

Proof. From the above, φ3P0 : V → P2 is an embedding, and its image lies in V (F )
for some F as in (W). As V is a curve of genus 1 this can only happen if the image
equals V (F ) and if V (F ) is nonsingular.

If char(k) 6= 2 then by completing the square,

(
y +

a1

2
x+

a3

3

)2

= (cubic)(x) =
3∏

i−1

(x− λi)

and λi 6= λj as V is smooth. Writing

x′ =
x− λ1

λ2 − λ1

, y′ =
y + a1x/2 + a3/3

(λ2 − λ1)3/2
, λ =

λ3 − λ1

λ2 − λ1

6= 0, 1, ∞

gives (y′)2 = x′(x′ − 1)(x′ − λ).

Consider now Legendre normal form with char(k) 6= 2. Then if P = (1 : a : b) =
(a, b) ∈ E, the P ′ = (a,−b) ∈ E also, and the line x = a cuts out the divisor
P + P ′ + P0. In other words, P ′ = −P in the group law.
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For n ∈ Z, write [n]P for n times P in the group law. Then [2]P = 0E iff P = −P ,
so we see that in the Legendre model,

{P ∈ E | [2]P = 0E} = {0E, (0, 0), (1, 0), (λ, 0)

which is therefore isomorphic to Z/2Z× Z/2Z.

What about [3]P = 0E? This holds iff the tangent at P has 3-fold intersection
with E at P , i.e. iff P is a point of inflection. Using the Hessian one can show
that if char(k) 6= 3 then there are exactly 9 points of inflection on E (P0 being one
of them) and so

{P ∈ E | [3]P = 0E} ' Z/3Z× Z/3Z if char(k) 6= 3

More generally one can show that

{P ∈ E | [n]P = 0E} ' Z/nZ× Z/nZ if char(k) - n

Before leaving curves of genus 1 let’s just explain what happens when k = C.
Consider a pair τ1, τ2 ∈ C of complex numbers, linearly independent over R. Let
Λ = Zτ1 + Zτ2 ⊂ C. Theory of elliptic functions (see Riemann surfaces course)
tells us that there is a meromorphic function ℘(z), holomorphic on C apart from
double poles at every z ∈ Λ, such that ℘(z + λ) = ℘(z) for all λ ∈ Λ. Moreover
℘(z) satisfies the differential equation

℘′(z)2 = 4℘(z)3 = g2℘(z)− g3, certain g2, g3 ∈ C.

The functions ℘, ℘′ are therefore meromorphic functions on the Riemann surface
T = C/Λ, and one shows that the map

z 7→

{
(1 :℘(z) :℘′(z)/2) if z ∈ C \ Λ

(0 : 0 : 1) if z ∈ Λ

is then a bijection between T and a smooth plane cubic curve in P2
C. Now T has an

obvious group structure (as a quatient group of C) and this map is an isomorphism
of groups (for the group law on the cubic we have defined earlier).

Finally notice that there is an isomorphism

R/Z× R/Z ∼−→ T, (x1, x2) 7→ x1τ1 + x2τ2 mod Λ

and so the subgroup of elements of order dividing n in T is isomorphic to Z/nZ×
Z.nZ.

Finally consider a curve V of genus g ≥ 2. If V is hyperelliptic, then we have
already seen a fairly precise description of V .

If not, we have in any case `(K) = g ≥ 2. Consider the morphism φK : V → Pg−1

given by a canonical divisor K.

Theorem 10.4. Suppose V is not hyperelliptic. Then φK : V → Pg−1 is an em-
bedding.

Proof. Suppose φK is not an embedding. Then by the theorem, there exist P and
Q with `(K − P − Q) ≥ g − 1. Apply Riemann-Roch to D = P + Q. We get
`(D) = `(K−D)+1−g+deg(D) ≥ 2. So as g 6= 0, `(D) = 2, say L(D) = k⊕k.x
with (x) = −P − Q + D′. Then φD : V → P1 satisfies φ∗D(∞) = D, so φD has
degree 2, i.e. V is hyperelliptic.
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