Algebraic Geometry IID 2013

5 Examples

Here explore some examples of projective varieties in low dimensions. First start
with plane curves of degree d: V = V(F) C P?, F irreducible of degree d.

Proposition 5.1. V C P? an irreducible plane curve of degree d > 1, L C P? a
line. Then #(V N L) < d. More precisely, there exist integers mp(V, L) > 1 for

P eV NL such that
> mp(V,L)=d

PeVNL

and mp(V,L)=1 < L ¢ T{}Zﬁj.

Proof. Choose coordinates in P? such that (0:1:0) ¢ V and L = {X, = 0}. Then
VNLC{Xy#0}~A%

Let V' N A? have affine equation f(x,y) = F(1,z,y). Since (0:1:0) ¢ V, f ha
degree d in the variable z. Consider P = (a,0) € LN A% Let mp(V,L) =
multiplicity of z = a as root of f(z,0). Then

mp(V,L) =1 <— %(a,())#() <~ L¢Typ

0

since T“}g is the line (0f/0x)(a,0)(z —a) + (0f/0y)(a,0)y = 0. O

Proposition 5.2. Fvery irreducible conic V' is nonsingular and is isomorphic to
P, Moreover there exist quadratic forms Qq, Q1, Q2 € k[Xy, X1] ) such that

(Qo:Q1:Qy): P! V.
Proof. Let P,QQ € V, P # @, L = line PQ. Then 5.1 = LNV ={P,Q} and
L ¢ Ty p, so P is a smooth point of V.

Choose coordinates so that P = (0:0:1), Ty p = {Xo = 0}. Then F' = X,(aX, +
bX1 + cX3) — X2 If ¢ = 0 then F is reducible. So ¢ = 0 and after further change
of coordinates, F = Xy X, — X2, and so V is the image of ¢ = (YZ:YY;:Y —
12): P! — P2. In any other system of coordinates ¢ will be given by (Qo: Q1 : Q2)
for quadratics @Q; € k[Yp, Y1]. The morphism ¢ is an isomorphism with projection
from P as inverse. O

Proposition 5.3. Let F', G € k[Xy, X1, Xs] be coprime homogeneous non-zero
polynomials, deg(F) < 2. Then #V(F)NV(G) < deg F - degG.

Proof. If deg(F) = 1 or F = F\ F» deg(F;) = 1 then 5.1 gives the result. Otherwise,
V(F') is a conic. As F'{ G there exists P € V(F) \ V(G). Choose coordinates so
that P = (0:0:1) and F = XX, — X?. Then V(F) NV (G) C A? so is given by
y—122=0=g(z,y) ie g(r,z*) = 0 where g(z,y) = G(1,2,y). As deg(g) < d,
LV (F)NV(G) < 2d. O

(See Thm.7.2 for the result without the hypothesis deg(F') < 2.)

Theorem 5.4. Let P, ..., Ps be distinct points in P2, no 3 collinear. Then there
exists a unique conic containing {P;} and it is irreducible.
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Proof. It V = {F = 0} is a conic through {F;} then F is irreducible (otherwise at
least 3 of {P,;} would lie on a line). Next, if V/ = {F’ = 0} is another then by 5.3
since #V NV’ > 4 we have V' =V i.e. F' is a multiple of F.

Finally, the equation F'(P;) = 0 is a linear equation in the 6 coefficients of F', so
the 5 equations F'(F;) = 0 have a nonzero solution, hence F' exists. ]

Remark. Useful formula:

dim{F € k[Xo, ..., X,] | F homogeneous of degree d} = <7”L —Tt d> .

An easy way to see this: we have to count the monomials XJ° ... X% with 3" d; =
d, or equivalent the n-tuples (dy,...,d,) € N* with > d; < n. Associate to this
the increasing sequence

1<di+1<di+do+2<---<di+do+---+d,+n<d+n 040

The rational normal curve

Let d > 1. Then

is a morphism. Let I; C k[Yp, ..., Yy] be the ideal generated by the 2 X 2 minors

of
Yo Yio-r Yy
Y, Yy - Yy

Theorem 5.5. The map ¢4 is an isomorphism between P! and Cy = V (I;) C P2

Proof. Obvious that for all P € P!, ¢4(P) € Cy. Suppose P = (y;) € Cy. If yy #
then WLOG P = (1:y;:...:y4) and the relation YyY, — Y1V, for 1 < r < d
implies that y, = t" with ¢ = y;, so P = w((1:t)). If however yo = 0 then the
relation Y2 — Y, 1Y,,1, 1 <r < d — 1 shows that y, = 0 for r < d, hence P =
(0:...:0:1) = ¢((0:1)). So C4 = ¢g(P'). Consider the projection ¢: C' —— P!

the relation YyYy; — Y1Y,—1 shows that ¢ can also be represented by (Yi_i:Yy)
hence is regular at Fy. It is trivial that ¢4, ¥ are mutual inverses. Il

Remarks. (i) Notices that Cy does not lie in any hyperplane, since the monomials
{X. X" are linearly independent.
(ii) One can show (somewhat harder) that I, = I(Cy) (equivalently, that I, is its

own radical).

(iii) Any curve projectively equivalent to Cjy is called a rational normal curve
of degree d. For d = 1 this is P!, for d = 2 a conic. The next case, d = 3 is called
a twisted cubic — it is the simplest example of a curve in P? which does not lie
in a plane.

Plane cubics

Theorem 5.6. Let V = V(F) C P? where F is an irreducible homogeneous cubic.
Then V' has at most one singular point. If it does, then there exists a birational
morphism ¢: P* — V.

Proof. Let Py € V be a singular point, P € V' \ {F}. Consider Lp, the line PF.
As Lp CP* =Ty3, mp,(Lp,V) > 2. As deg(F) = 3, by 5.1 this implies that
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(i) LpNV ={FR, P}
(11) mpO(Lp,V) =2 and

(iii) mp(Lp,V) =1, so P is a smooth point.

Consider projection from By, ¢: P? — P!, This is regular on V' \ {Fy} and by (i)
is injective on V' \ {Fy}. Fix coordinates Py = (0:0:1), ¢ = (Xo:X;). Then

F = F5(Xo, X1) + XoF5(Xo, X1), deg(F;) =7, {F};} coprime.

Let L be line {X; = tX,} through Py. Then LNV (F) is given by the polynomials
X; —tXp and

Fg(Xo,tX(]) + XQFQ(X(), th) = Xg(F:;(l, t)XO + Fg(l,t)XQ)
so ¢(P) = (1:t) iff P = (a;), a1 = tag, asF5(1,t) + apF3(1,t) =0, and so
¥ = (F3(Yo, Y1) : F5(Yo, Y1)Y1 - = F3(Yo, Y1)

is an inverse to ¢, and is a morphism since F, and Fj are coprime. O]

Remark. Later (see after 7.3) we’ll show that if V' C P? is a nonsingular cubic then
V is not birational to P*.

Higher-dimension analogue of 5.1 for hypersurfaces:

Proposition 5.7. Let V = V(F) C P" with degFF = d and L C P" a line not
contained i V. Then:

(i) #L NV <d
(i1) If there exists P € LNV with L C Ty p then #L NV <d—1
Remark. If P € L C V then by definition L C T&rﬁj.

Proof. L is the image of some ¢ = (Gy:...:G,): P! — P" G; € k[X,, X1] lin-

ear, coprime. Then H(Xy, X;) = F(Gy,...,G,) is homogeneous of degree d and

¢(P) eV <= H(P)=0.1If H=0then L C V(F). Otherwise H is a product of
oj

at most d linear factors. If L C 177 then H has a repeated factor (by definition
of tangent space) so #L NV <d — 1. O

We now consider quadric surfaces V = V(F') where F' is homogeneous of degree
2. If F is reducible then V' = union of 2 planes (possibly equal).

Proposition 5.8. If V is an irreducible quadric surface which is singular, then
V' has exactly one singular point Py, If H C P3 is any plane through Py then
C = HNYV is anonsingular conic in H and

V ={PR}U{P cP*\ {R} | the line PPy meets H in a point of C'}

Say that V' is the cone on C' with vertex F.
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Proof. Let Py € V =V (F) be a singular point. By 5.7 since deg(F') = 2, for every
line L C P? through P, either LNV = {Py} or L C V. Let H C P? be a plane
not containing Py, C' =V N H. Then V is the union of the lines PPy, P € C. Now
C' is nonsingular — if not, then C' is a line pair and so V is a union of 2 planes.
So taking suitable coordinates we can assume P = (1:0:0:0), H = {X, = 0} and
C={Xy=0= XXy — X2}. Then V = V(X; X, — X7 from which it is easy to
check that V' has no other singular point. O]

Theorem 5.9. Let V C IP? be a smooth quadric. Then for each P € V there exists
exactly two lines in 'V containing P. The set of all lines on 'V is the union £ U L'
of two disjoint sets of lines satisfying:

(i) L,L' e L = L=1L or LNL =0 (and similarly for L')

(i) Le L, L' e L' = #LNL =1.
The families £, £’ are called the generators or the quadric.

Proof. Consider Tp = Ty C P, By 5.7, if L C Tp with P € L, then eight
LNV ={P}or L CV.SoTpNV is a union of lines through P. If Tp = V(X3)
then Tp = V (X, F(Xo, X1, X2,0))) so is a conic in the plane T, hence is either a
line or a line pair. If a line, then F' = GX3— H? for some linear forms G, H € k[X]
and then V is singular at the point G = H = X3 =0. SoVP € V, TpNV = LpUL),
where Lp, L', are distinct lines through P. As any line through P lies in Tp, the
first part is proved.

Let C = {all lines on V'}. Define a relation ~ on C by: L; ~ Ly iff Ly, Ly are
either equal or disjoint. Then ~ is an equivalence relation: the only nontrivial
thing to check is that Ly ~ L3 ~ Ly = L; ~ Ly. If not then Ly N Ly = {P} # 0
and Ly N L3y = Ly

calLy = (), so Tp NV = Ly U Ly and therefore Tp N L3 = (), impossible (a line and
a plane in P? always meet).

As Lp o L, there are at least 2 equivalence classes. If there are more there would
be 3 distinct lines Ly, Lo, Ly on V with L; N L; # (. Then {L;} would be coplanar,
which is impossible (the plane would intersect V' is a curve of degree > 3). O

Compute equations: choose P € V, Q@ € V \ Tp. Then P, Q, R = L, N Ly and
R =L, N Lg are not on a plan, so can choose coordinates such that

P=(1000), @=(0001),R=(0:1:0:0), S=(0:0:1:0
in which case

TPZ{X3:0}9P,Q,R TpﬁV:{X1:X3:O}U{X2:X3:O}
TQ:{XOZO}BQ,R,S TQﬂV:{X0:X1:O}U{X0:X2:0}
SO ( )
FXo,Xl,XQ,O :CX1X2
= F=cX1Xo+dXpX3, cd#0
F(O,X17X2,X3)=C/X1X2} chide oXa, cd #

or after scaling F' = Xy X35 — X1X5. In particular, any two nonsingular quadrics
are isomorphic by a linear automorphism of P3.

Segre embedding [I only mentioned this briefly in 2013 lectures.|
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The product of affine varieties is an affine variety, since A™ x A™ ~ A™*" and if
V . A" W C A™ are varieties the V- x W = V(I) C A™"" where [ is the ideal
generated by polynomials f(X,...,X,,) for f € I(V) and g(X,ns1, .-, Xpnin) for
g e I(W).

But this does not extend to an isomorphism between P™ x P" and P™*". For
example, if m =n =1 then P? = A2 U (line) but P* x P! = A2 U (2 lines).

Definition: the Segre embedding is the map
O s P x P — Pmntmtn
((z:), () = (wiy;)

where the (m + 1)(n + 1) variables in P™"*™*" are labelled Z;;, 0 < i < m,
0<j<n.

Note this is (just) a map of sets. However, for @) fixed, P — 0,,,(P, Q) is a linear
morphism P —— Pmntmtn and likewise for P fixed.

Theorem 5.10. o,,, is a bijection between P™ x P™ and the projective variety
V =V(I) C Pt where I is the homogeneous ideal generated by polynomials

Ziijq _Ziqijv (YIS {O,...,m}, J,q € {07"'7n}7 i F D, JF Q.
V' is irreducible and smooth.

Proof. Clearly o,,,(P™ x P*) C V. Consider the affine piece Voo = V N {Zy #
0} ¢ Amm+mHn - The inhomogeneous ideal Iog defining Vi is (setting Yi; = Z;;/Zo)
generated by the polynomials

Yij =YY, 1<i<m, 1<j<n

which contains automatically all the other elements Y;;Y,; —Yi;Y,;. S0 0y, defines
an isomorphism A™ x A" — V(I) with inverse

(Y;J) = ((1/107 s 7Ym0)7 ()/017 S 7}/071)) .

So V(ly) is smooth and irreducible. Repeating this for the other affine pieces
{Z;; # 0} gives the result. O

Consider the case m = n = 1. Then oy;: P! x P! =5 V C P3 where V =
V(ZowZ11 — Zo1 Z1p) is a smooth quadric, and a1; ({ P} x P!), 011 (P! x {q}) are the
lines in V' through the point o1 (P, Q).

Veronese surface [I didn’t lecture on this in 2013]
This is a higher-dimensional analogue of the rational normal curve. Consider the
morphism
¢: P* — PP
(Xo ZXl :XQ) — (Xg :X()Xl IX()XQ : X12 : X1X2 X22) = (Ej)ogigjgg

Then ¢ is an isomophism between P? and V = V(I) C P5, where [ is the ideal
generated by the 2 x 2 minors of

Yoo Yor Yoo
You Y Yo
Yoo Yiz Yoo
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(proof similar to that of 5.5 or 5.10). The surface V' C P? is called the Veronese
surface. It is related to conics in P? is two different ways:

(1) Let P = (x;) € P2. Consider
{ all homogeneous quadratics F' € k[X] vanishing at P} = {(a;;) € k| Z a;;jrir; =0}

(identifying F' = > a;;X;X; with its coefficient vector). This is a codimension 1
subspace of k%, so corresponds to a dimension 1 subspace of the dual %, i.e. to a
point in P°, which is none other than ¢(P).

Let H C P° be the hyperplane Y a;;Y;; = 0. Then

HOV ={¢(P) | P=(x;), Y aur; =0}
= o(V(D_ ayXiX;))

i.e hyperplane sections of V' are the images of conics in P? under ¢.

(2) Here we assume char(k) # 2. Identify y = (y;;) € k° with the quadratic
polynomial

Fy(To, Th, Ty) = Z ai T} +2 Z ai; TiT}.

0<i<2 0<i<j<2

Under this correspondence, points of P® correspond to (possibly reducible) conics.
If Q= (yw) S P5, then

Q=0¢(P), P=(v;) < (y5) = (wiz;)
— F,(Ty, T\, T3) = c(xT;)°

So the Veronese surface can be identified is the set of those conics which are doubled
lines.

Similarly (and more easily), if to P = (a:b:c) € P? we associate the quadratic
form Fp = aUZ + 2bUyU; + cUZ, then since the discrimnant of Fp is 4(B? — ac),
Fp is a square iff P lies on the conic V(XyXy; — X?) C P2, which is the image of
the 2-tuple embedding P —— P2,

The Veronese surface has many other fine properties. Let’s just note that if L C P?
is a linear subspace of dimension 2, then L = H; N H, for distinct hyperplanes H;,
and H; NV = ¢(C;) for conics C; C P2 So #L NV = #C, N, is in general 4
distinct points.

6 Curves

Rest of course will study curves — varieties of dimension 1.

If V is an irreducible curve then its proper subvarieties are finite. For plane curves
with was Sheet 1, Ex.5. For the general case, it is enough to prove: let V' C A™ be
an irreducible affine curve, W C V a proper irreducible subvariety. Then W is a
point.

Proof: we have I(V') C# I(W) (by Nullstellensatz) and the homomorphism

¢ k[V] = KX]/I(V) — kW] = K[ X]/T(W)
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induced by the inclusion ¢: W — V. If W is not a point, then k[W]| # k. If
t € k[W]\ k then ¢ is transcendental over k (since k is algebraically closed). Let
0 # z € k[V] with ¢*(z) = 0 and y € k[V] with ¢*(y) = y. Then easy to see that z,
y are algebraically independent. But this contradicts dim V' = tr.deg.(k(V)/k) =
1.

So now let V' C P™ be an irreducible curve. Associated to V we have:
function field £(V') of V'; we know there exists t € k(V') such that k(V)/k(t) is

a finite (and even separable) extension.

Local ring Ovp = Op ={f/g | g(P) # 0} C k(V) at a point P € V; mp unique
maximal ideal.

Theorem 6.1. P is a smooth point of V iff mp C Op s a principal ideal.

Any 7p such that mp = (7p) is called a local parameter at P.

Proof. We'll only prove = which is all we need. Assume P lies in an affine
piece Vy C A" of V and WLOG P = (0,...,0). Then

Vo] = k[ Xy, ..., X,/ 1(Vb) = k[xy,...,2z,] where x; = image of X;

Or={ LI f.a € k0l 9 ¢ (@1
mp = {gyfe (21, 20), 9 ¢ (xl,...,xn)}

=2,:0p + - +2,0p

More generally, if J C Op is any ideal then

J= {§ fe TRV g€ kY g<P>¢o}

so in particular is finitely generated (since the ideal J N k[Vy] C k[Vp] is, by the
Hilbert basis theorem).

As P is smooth, after change of coordinates we may assume T]‘f,ff ={Xy=--=
X, = 0}. Will show mp = (x1). There exists fo,..., fn € I(Vp) such that
fi=Xj=h; (2<j<n)

where h; has no terms of degree < 2. So in Op we have

zj=hj(z1,. .. 2,) € (27,1129, ...,22) =m%H, (2<j<n)

Thus "
mp = ZZEZOP = I’lop + m?g

j=1
Lemma: this implies mp = (7).

Lemma 6.2 (Nakayama’s Lemma). R a ring, M a finitely generated R-module,
J C R an ideal. Then:

(i) JM = M = 3r € R such that (1 +r)M = 0.
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(ii) Let N C M be a submodule such that JM + N = M. Then 3r € J such that
(1+r)M C N.

Proof. (i) Let M = yy R+ -+ y,R, yi € M = JM. Then y; = 37| w5y, with
xi; € J. Let X = (z45), then have matrix equation (I, — X)y = 0. Multiply by
adjugate of (I, — X) to get det(l, — X)f; = 0 Vi. And det(I, — X) = 1 + z for
some z € J.

(ii) Apply (i) to the R-module M/N. O
Then apply (ii) with R=0p D J=mp =M D N = (7). O

The local parameter at a smooth point is not unique, but if 7p is one every other
is of the form ump, u € O} a unit.

Exs: Opig. Also Oc¢p for curves y* = 2% — z, y* = 23 4+ 2. For an affine plane

curve V(f) C A% f € k[z,y], v — x(P) is a local parameter at a smooth point P
iff (0f/0y)(P) # 0 (by the proof of 6.1).

Corollary 6.3. P € V a smooth point. Then there exists a surjective homomor-
phism vp: k(V)* — Z (called the valuation at P) such that

Op ={0 U{f € k(V)" | vp(f) = 0}
mp = {0} U{f € k(V)* | vp(f) > O}.

and if [ € k(V)* then for any local parameter mp at P, f = W;P(f)

uec Op.

u for some

Proof. We know mp = (7p) so m% = (7). Consider J = N,m%. As J C Op is
an ideal it is finitely generated, and obviously mpJ = 7pJ = J. So by Nakayama
again, J = 0. So for every f € Op \ {0} there exists unique n > 0 such that
femp\mpt. Set vp(f) =n. If f € k(V)\Op then f~1 € Op and we set vp(f) =
—vp(f~1). Thus since Op\mp = O% (local ring) every 0 # f € k(V) has f = unp,
n =uvp(f), u € Op. Obviously vp is then a surjective homomorphism. O

By convention we write vp(0) = 00, so vp(f) is now defined for all f € k(V).

A discrete valuation ring or DVR is an integral domain with an element ¢ £ 0
such that every 0 # x € R has a unique expression ut”. Equivalently, it is a local
PID.

Consequences for geometry:

Corollary 6.4. V an irreducible curve, f € k(V), P € V a smooth point. Then
one of f, f~1 is reqular at P.

Proof. f regular at P iff vp(f) >0 O

Corollary 6.5. V' a projective nonsingular curve. Then any rational map ¢: V —
—— P™ is a morphism.

Proof. Assume the image of ¢ isn’t contained in { Xy = 0}. Then ¢ = (Go:...:Gp)

erwise t = min{vp(g;) | 1 < i < m} is < 0, so min{vp(7p'g;)} = 0, hence
¢ = (mp':mplgr:...) is regular at P. O
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Examples: P = (a) € A'; here  — a is a local parameter; at co = (0:1) € P! local
parameter is 1/z = Xo/X; (or 1/(z — a) for any a)

V =V(f) C A% f € k[z,y] irreducible. Then if P = (a,b) € V, x — a is a local
parameter provided df/Jy(P) # 0 (tangent not vertical).

Now study morphisms between curves in more detail. Let ¢: V — W be a non-
constant morphism of irreducible curves.

Proposition 6.6. (i) For all Q € W the set $~1(Q) is finite;
(ii) ¢ induces an inclusion of function fields ¢*: k(W) —— k(V') which makes k(V)

a finite extension of k(W).

Proof. (i) ¢ 1(Q) is a closed subvariety of V| so it either V' (in which case ¢ is
constant) or is a finite set.

(ii) V is infinite (since dimV > 0 for example) so by (i) ¢(V') is infinite, hence
dense in W. Therefore ¢ is dominant and so ¢*: k(W) — k(V) is defined (and is
injective as k(W) is a field). Let t € k(W) \ k, x = ¢*t € k(V'). Then since k(V')/k
is finitely generated and has transcendence degree 1, k(V) is a finite extension of
k(x) hence a fortiori also of ¢*k(W). O

The degree [k(V) : ¢*k(WW)] is called the degree deg(¢) of the morphism ¢.

Suppose P € V and Q = ¢(P) € W are smooth points. We may then define the
ramification degree of ¢ at P to be

ep = e(¢, P) = vp(¢'mq)

for any local parameter 7y on W at () — note that this doesn’t depend on the
choice of local parameter.

The next theorem is key to the study of curves.

Theorem 6.7. (i) Let ¢: V — W be a morphism of projective curves. Then ¢
18 surjective.

(i) If in addition V and W are smooth, then for any Q € W,

Z ep = deg(¢).

PeV, ¢(P)=Q

(i11) If char(k) = 0 or more generally if k(V)/k(W) is separable, then for all but
finitely many P € V, ep = 1 (equivalently: for all but finitely many Q € W,
#¢1(Q) = deg(¢)).

Statement (i) is a special case of the important theorem: if ¢: V. — W is a
morphism of projective varieties, then ¢(V') is a closed subvariety of W. Morally,
“projective curves have no missing points” (for varieties of dimension > 1 this is
an over-simplification).

Statement (ii) is sometimes called the finiteness theorem for curves. In short-
hand, the fibres of ¢ (this means the sets ¢~'({@Q})) have the same size, when
multiplicities are included in the count.

Remark: this is very similar to the theorem in Number Fields which says that if
K is a number field and poy = []p§* where p; is a prime ideal of norm p/i, then

Zeifi = [K : Q]'
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We'll prove (iii) a bit later on (time permitting) or you can take it on trust. See
the 3rd example sheet for an example of what can go wrong in characteristic p.

Proof. (Non-examinable and not lectured) O
Important consequence:

Corollary 6.8. V' smooth projective irreducible curve, f € k(V)*. Then:
(i) f reqular for all P €V — f € k.
(ii) The set of P such that vp(f) # 0 is finite, and ) p.\, vp(f) = 0.

Proof. Consider the morphism ¢ = (1: f): V — PL. Then ¢(P) =00 = (0:1) <=
f not regular at P, so if f is regular everywhere then oo ¢ ¢(V'), and ¢ (and so f)
is constant, so (i).

For (ii), the statement is trivial for f constant, so assume not. Then ¢t = X;/X| is
a local parameter at 0 = (1:0) € P! and ¢*t = f (since as a rational map P! — P!,
t is the identity). So f(P) =0 = ep = vp(¢*t) = vp(f). Likewise, 1/t is a
local parameter at co so f(P) =00 = ep = vp(¢*(1/t)) = —vp(f). Finally, if
¢(P) ¢ {0,00} then vp(f) = 0 so the number of P with vp(f) # 0 is finite, and
by finiteness theorem,

deg ¢ = Z vp(f) = Z —vp(f).

»(P)=0 $(P)=0c0
Hence > ,vp(f) = 0. O

Morally this says: number of zeros of f = number of poles of f, where a pole is
any point P at which vp(f) < 0.
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