
Algebraic Geometry IID 2013

5 Examples

Here explore some examples of projective varieties in low dimensions. First start
with plane curves of degree d: V = V (F ) ⊂ P2, F irreducible of degree d.

Proposition 5.1. V ⊂ P2 an irreducible plane curve of degree d > 1, L ⊂ P2 a
line. Then #(V ∩ L) ≤ d. More precisely, there exist integers mP (V, L) ≥ 1 for
P ∈ V ∩ L such that ∑

P∈V ∩L

mP (V, L) = d

and mP (V, L) = 1 ⇐⇒ L 6⊂ T proj
V,P .

Proof. Choose coordinates in P2 such that (0 : 1 : 0) /∈ V and L = {X2 = 0}. Then
V ∩ L ⊂ {X0 6= 0} ' A2.

Let V ∩ A2 have affine equation f(x, y) = F (1, x, y). Since (0 : 1 : 0) /∈ V , f has
degree d in the variable x. Consider P = (a, 0) ∈ L ∩ A2. Let mP (V, L) =
multiplicity of x = a as root of f(x, 0). Then

mP (V, L) = 1 ⇐⇒ ∂f

∂x
(a, 0) 6= 0 ⇐⇒ L 6⊂ TV,P

since T aff
V,P is the line (∂f/∂x)(a, 0)(x− a) + (∂f/∂y)(a, 0)y = 0.

Proposition 5.2. Every irreducible conic V is nonsingular and is isomorphic to
P1. Moreover there exist quadratic forms Q0, Q1, Q2 ∈ k[X0, X1] ) such that
(Q0 :Q1 :Q2) : P1 ∼−→ V .

Proof. Let P,Q ∈ V , P 6= Q, L = line PQ. Then 5.1 =⇒ L ∩ V = {P,Q} and
L 6⊂ TV,P , so P is a smooth point of V .

Choose coordinates so that P = (0 : 0 : 1), TV,P = {X0 = 0}. Then F = X0(aX0 +
bX1 + cX2)−X2

1 . If c = 0 then F is reducible. So c = 0 and after further change
of coordinates, F = X0X2 − X2

1 , and so V is the image of φ = (Y 2
0 :Y0Y1 :Y −

12) : P1 → P2. In any other system of coordinates φ will be given by (Q0 :Q1 :Q2)
for quadratics Qi ∈ k[Y0, Y1]. The morphism φ is an isomorphism with projection
from P as inverse.

Proposition 5.3. Let F , G ∈ k[X0, X1, X2] be coprime homogeneous non-zero
polynomials, deg(F ) ≤ 2. Then #V (F ) ∩ V (G) ≤ degF · degG.

Proof. If deg(F ) = 1 or F = F1F2 deg(Fi) = 1 then 5.1 gives the result. Otherwise,
V (F ) is a conic. As F - G there exists P ∈ V (F ) \ V (G). Choose coordinates so
that P = (0 : 0 : 1) and F = X0X2 −X2

1 . Then V (F ) ∩ V (G) ⊂ A2 so is given by
y − x2 = 0 = g(x, y) i.e. g(x, x2) = 0 where g(x, y) = G(1, x, y). As deg(g) ≤ d,
#V (F ) ∩ V (G) ≤ 2d.

(See Thm.7.2 for the result without the hypothesis deg(F ) ≤ 2.)

Theorem 5.4. Let P1, . . . , P5 be distinct points in P2, no 3 collinear. Then there
exists a unique conic containing {Pi} and it is irreducible.
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Proof. If V = {F = 0} is a conic through {Pi} then F is irreducible (otherwise at
least 3 of {Pi} would lie on a line). Next, if V ′ = {F ′ = 0} is another then by 5.3
since #V ∩ V ′ > 4 we have V ′ = V i.e. F ′ is a multiple of F .

Finally, the equation F (Pi) = 0 is a linear equation in the 6 coefficients of F , so
the 5 equations F (Pi) = 0 have a nonzero solution, hence F exists.

Remark. Useful formula:

dim{F ∈ k[X0, . . . , Xn] | F homogeneous of degree d} =

(
n+ d
n

)
.

An easy way to see this: we have to count the monomials Xd0
0 . . . Xdn

n with
∑
di =

d, or equivalent the n-tuples (d1, . . . , dn) ∈ Nn with
∑
di ≤ n. Associate to this

the increasing sequence

1 ≤ d1 + 1 < d1 + d2 + 2 < · · · < d1 + d2 + · · ·+ dn + n ≤ d+ n

The rational normal curve

Let d ≥ 1. Then
φd = (Xd

0 :Xd−1
0 X2 : . . . :Xd

1 ) : P1 → Pd

is a morphism. Let Id ⊂ k[Y0, . . . , Yd] be the ideal generated by the 2 × 2 minors
of (

Y0 Y1 · · · Yd−1

Y1 Y2 · · · Yd

)
Theorem 5.5. The map φd is an isomorphism between P1 and Cd = V (Id) ⊂ Pd.

Proof. Obvious that for all P ∈ P1, φd(P ) ∈ Cd. Suppose P = (yi) ∈ Cd. If y0 6=
then WLOG P = (1 : y1 : . . . : yd) and the relation Y0Yr − Y1Yr−1 for 1 < r ≤ d
implies that yr = tr with t = y1, so P = π((1 : t)). If however y0 = 0 then the
relation Y 2

2 − Yr−1Yr+1, 1 ≤ r ≤ d − 1 shows that yr = 0 for r < d, hence P =
(0 : . . . : 0 : 1) = φ((0 : 1)). So Cd = φd(P1). Consider the projection ψ : C −−→ P1

given by (Y0 :Y1). It is clearly regular except possibly at (0 : . . . : 0 : 1) = P0. But
the relation Y0Yd − Y1Yd−1 shows that ψ can also be represented by (Yd−1 :Yd)
hence is regular at P0. It is trivial that φd, ψ are mutual inverses.

Remarks. (i) Notices that Cd does not lie in any hyperplane, since the monomials
{X i

0X
d−i
1 are linearly independent.

(ii) One can show (somewhat harder) that Id = I(Cd) (equivalently, that Id is its
own radical).

(iii) Any curve projectively equivalent to Cd is called a rational normal curve
of degree d. For d = 1 this is P1, for d = 2 a conic. The next case, d = 3 is called
a twisted cubic — it is the simplest example of a curve in P3 which does not lie
in a plane.

Plane cubics

Theorem 5.6. Let V = V (F ) ⊂ P2 where F is an irreducible homogeneous cubic.
Then V has at most one singular point. If it does, then there exists a birational
morphism φ : P1 → V .

Proof. Let P0 ∈ V be a singular point, P ∈ V \ {P0}. Consider LP , the line PP0.
As LP ⊂ P2 = T proj

V,P0
, mP0(LP , V ) ≥ 2. As deg(F ) = 3, by 5.1 this implies that
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(i) LP ∩ V = {P0, P}

(ii) mP0(LP , V ) = 2 and

(iii) mP (LP , V ) = 1, so P is a smooth point.

Consider projection from P0, φ : P2 → P1. This is regular on V \ {P0} and by (i)
is injective on V \ {P0}. Fix coordinates P0 = (0 : 0 : 1), φ = (X0 :X1). Then

F = F3(X0, X1) +X2F2(X0, X1), deg(Fj) = j, {Fj} coprime.

Let L be line {X1 = tX0} through P0. Then L∩V (F ) is given by the polynomials
X1 − tX0 and

F3(X0, tX0) +X2F2(X0, tX0) = X2
0 (F3(1, t)X0 + F2(1, t)X2)

so φ(P ) = (1 : t) iff P = (ai), a1 = ta0, a2F2(1, t) + a0F3(1, t) = 0, and so

ψ = (F2(Y0, Y1) :F2(Y0, Y1)Y1 :−F3(Y0, Y1))

is an inverse to φ, and is a morphism since F2 and F3 are coprime.

Remark. Later (see after 7.3) we’ll show that if V ⊂ P2 is a nonsingular cubic then
V is not birational to P1.

Higher-dimension analogue of 5.1 for hypersurfaces:

Proposition 5.7. Let V = V (F ) ⊂ Pn with degF = d and L ⊂ Pn a line not
contained in V . Then:

(i) #L ∩ V ≤ d

(ii) If there exists P ∈ L ∩ V with L ⊂ TV,P then #L ∩ V ≤ d− 1

Remark. If P ∈ L ⊂ V then by definition L ⊂ T proj
V,P .

Proof. L is the image of some φ = (G0 : . . . :Gn) : P1 → Pn, Gi ∈ k[X0, X1] lin-
ear, coprime. Then H(X0, X1) = F (G0, . . . , Gn) is homogeneous of degree d and
φ(P ) ∈ V ⇐⇒ H(P ) = 0. If H = 0 then L ⊂ V (F ). Otherwise H is a product of
at most d linear factors. If L ⊂ T proj

V,φ(P ) then H has a repeated factor (by definition

of tangent space) so #L ∩ V ≤ d− 1.

We now consider quadric surfaces V = V (F ) where F is homogeneous of degree
2. If F is reducible then V = union of 2 planes (possibly equal).

Proposition 5.8. If V is an irreducible quadric surface which is singular, then
V has exactly one singular point P0, If H ⊂ P3 is any plane through P0 then
C = H ∩ V is a nonsingular conic in H and

V = {P0} ∪ {P ∈ P3 \ {P0} | the line PP0 meets H in a point of C}

Say that V is the cone on C with vertex P0.
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Proof. Let P0 ∈ V = V (F ) be a singular point. By 5.7 since deg(F ) = 2, for every
line L ⊂ P3 through P0, either L ∩ V = {P0} or L ⊂ V . Let H ⊂ P2 be a plane
not containing P0, C = V ∩H. Then V is the union of the lines PP0, P ∈ C. Now
C is nonsingular — if not, then C is a line pair and so V is a union of 2 planes.
So taking suitable coordinates we can assume P = (1 : 0 : 0 : 0), H = {X0 = 0} and
C = {X0 = 0 = X1X2 −X2

3}. Then V = V (X1X2 −X2
3 from which it is easy to

check that V has no other singular point.

Theorem 5.9. Let V ⊂ P3 be a smooth quadric. Then for each P ∈ V there exists
exactly two lines in V containing P . The set of all lines on V is the union L∪L′
of two disjoint sets of lines satisfying:

(i) L,L′ ∈ L =⇒ L = L′ or L ∩ L′ = ∅ (and similarly for L′)

(ii) L ∈ L, L′ ∈ L′ =⇒ #L ∩ L′ = 1.

The families L, L′ are called the generators or the quadric.

Proof. Consider TP = T proj
V,P ⊂ P3. By 5.7, if L ⊂ TP with P ∈ L, then eight

L ∩ V = {P} or L ⊂ V . So TP ∩ V is a union of lines through P . If TP = V (X3)
then TP = V (X0, F (X0, X1, X2, 0))) so is a conic in the plane TP , hence is either a
line or a line pair. If a line, then F = GX3−H2 for some linear forms G,H ∈ k[X]
and then V is singular at the pointG = H = X3 = 0. So ∀P ∈ V , TP∩V = LP∪L′P
where LP , L′P are distinct lines through P . As any line through P lies in TP , the
first part is proved.

Let C = {all lines on V }. Define a relation ∼ on C by: L1 ∼ L2 iff L1, L2 are
either equal or disjoint. Then ∼ is an equivalence relation: the only nontrivial
thing to check is that L1 ∼ L3 ∼ L2 =⇒ L1 ∼ L2. If not then L1∩L2 = {P} 6= ∅
and L1 ∩ L3 = L2

calL3 = ∅, so TP ∩ V = L1 ∪ L2 and therefore TP ∩ L3 = ∅, impossible (a line and
a plane in P3 always meet).

As LP 6∼ L′P there are at least 2 equivalence classes. If there are more there would
be 3 distinct lines L1, L2, L3 on V with Li∩Lj 6= ∅. Then {Lj} would be coplanar,
which is impossible (the plane would intersect V is a curve of degree ≥ 3).

Compute equations: choose P ∈ V , Q ∈ V \ TP . Then P , Q, R = Lp ∩ L′Q and
R = L′P ∩ LQ are not on a plan, so can choose coordinates such that

P = (1 0 0 0), Q = (0 0 0 1), R = (0 : 1 : 0 : 0), S = (0 : 0 : 1 : 0

in which case

TP = {X3 = 0} 3 P,Q,R TP ∩ V = {X1 = X3 = 0} ∪ {X2 = X3 = 0}
TQ = {X0 = 0} 3 Q,R, S TQ ∩ V = {X0 = X1 = 0} ∪ {X0 = X2 = 0}

so
F (X0, X1, X2, 0) = cX1X2

F (0, X1, X2, X3) = c′X1X2

}
=⇒ F = cX1X2 + dX0X3, cd 6= 0

or after scaling F = X0X3 − X1X2. In particular, any two nonsingular quadrics
are isomorphic by a linear automorphism of P3.

Segre embedding [I only mentioned this briefly in 2013 lectures.]
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The product of affine varieties is an affine variety, since Am × An ' Am+n and if
V ⊂ Am, W ⊂ An are varieties the V ×W = V (I) ⊂ Am+n, where I is the ideal
generated by polynomials f(X1, . . . , Xm) for f ∈ I(V ) and g(Xm+1, . . . , Xm+n) for
g ∈ I(W ).

But this does not extend to an isomorphism between Pm × Pn and Pm+n. For
example, if m = n = 1 then P2 = A2 ∪ (line) but P1 × P1 = A2 ∪ (2 lines).

Definition: the Segre embedding is the map

σmn : Pm × Pn → Pmn+m+n

((xi), (yj)) 7→ (xiyj)

where the (m + 1)(n + 1) variables in Pmn+m+n are labelled Zij, 0 ≤ i ≤ m,
0 ≤ j ≤ n.

Note this is (just) a map of sets. However, for Q fixed, P 7→ σmn(P,Q) is a linear
morphism Pm ↪−→Pmn+m+n, and likewise for P fixed.

Theorem 5.10. σmn is a bijection between Pm × Pn and the projective variety
V = V (I) ⊂ Pmn+m+n, where I is the homogeneous ideal generated by polynomials

ZijZpq − ZiqZpj, i, p ∈ {0, . . . ,m}, j, q ∈ {0, . . . , n}, i 6= p, j 6= q.

V is irreducible and smooth.

Proof. Clearly σmn(Pm × Pn) ⊂ V . Consider the affine piece V00 = V ∩ {Z00 6=
0} ⊂ Amn+m+n. The inhomogeneous ideal I00 defining V00 is (setting Yij = Zij/Z00)
generated by the polynomials

Yij − Yi0Yj0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

which contains automatically all the other elements YijYpq−YiqYpj. So σmn defines

an isomorphism Am × An ∼−→ V (I00) with inverse

(Yij) 7→ ((Y10, . . . , Ym0), (Y01, . . . , Y0n)) .

So V (I00) is smooth and irreducible. Repeating this for the other affine pieces
{Zij 6= 0} gives the result.

Consider the case m = n = 1. Then σ11 : P1 × P1 ∼−→ V ⊂ P3 where V =
V (Z00Z11−Z01Z10) is a smooth quadric, and σ11({P}×P1), σ11(P1×{q}) are the
lines in V through the point σ11(P,Q).

Veronese surface [I didn’t lecture on this in 2013]

This is a higher-dimensional analogue of the rational normal curve. Consider the
morphism

φ : P2 → P5

(X0 :X1 :X2) 7→ (X2
0 :X0X1 :X0X2 :X2

1 :X1X2 :X2
2 ) = (Yij)0≤i≤j≤2

Then φ is an isomophism between P2 and V = V (I) ⊂ P5, where I is the ideal
generated by the 2× 2 minors ofY00 Y01 Y02

Y01 Y11 Y12

Y02 Y12 Y22


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(proof similar to that of 5.5 or 5.10). The surface V ⊂ P5 is called the Veronese
surface. It is related to conics in P2 is two different ways:

(1) Let P = (xi) ∈ P2. Consider

{ all homogeneous quadratics F ∈ k[X] vanishing at P} = {(aij) ∈ k6|
∑

aijxixj = 0}

(identifying F =
∑
aijXiXj with its coefficient vector). This is a codimension 1

subspace of k6, so corresponds to a dimension 1 subspace of the dual k6, i.e. to a
point in P5, which is none other than φ(P ).

Let H ⊂ P5 be the hyperplane
∑
aijYij = 0. Then

H ∩ V = {φ(P ) | P = (xi),
∑

aijxixj = 0}

= φ(V (
∑

aijXiXj))

i.e hyperplane sections of V are the images of conics in P2 under φ.

(2) Here we assume char(k) 6= 2. Identify y = (yij) ∈ k6 with the quadratic
polynomial

Fy(T0, T1, T2) =
∑

0≤i≤2

aiiT
2
i + 2

∑
0≤i<j≤2

aijTiTj.

Under this correspondence, points of P5 correspond to (possibly reducible) conics.
If Q = (yij) ∈ P5, then

Q = φ(P ), P = (xi) ⇐⇒ (yij) = (xixj)

⇐⇒ Fy(T0, T1, T2) = c(xiTi)
2

So the Veronese surface can be identified is the set of those conics which are doubled
lines.

Similarly (and more easily), if to P = (a : b : c) ∈ P2 we associate the quadratic
form FP = aU2

0 + 2bU0U1 + cU2
1 , then since the discrimnant of FP is 4(B2 − ac),

FP is a square iff P lies on the conic V (X0X2 −X2
1 ) ⊂ P2, which is the image of

the 2-tuple embedding P1 ↪−→P2.

The Veronese surface has many other fine properties. Let’s just note that if L ⊂ P5

is a linear subspace of dimension 2, then L = H1 ∩H2 for distinct hyperplanes Hi,
and Hi ∩ V = φ(Ci) for conics Ci ⊂ P2. So #L ∩ V = #C1 ∩ C2 is in general 4
distinct points.

6 Curves

Rest of course will study curves — varieties of dimension 1.

If V is an irreducible curve then its proper subvarieties are finite. For plane curves
with was Sheet 1, Ex.5. For the general case, it is enough to prove: let V ⊂ An be
an irreducible affine curve, W ⊂ V a proper irreducible subvariety. Then W is a
point.

Proof: we have I(V ) ⊂6= I(W ) (by Nullstellensatz) and the homomorphism

φ∗ : k[V ] = k[X]/I(V ) → k[W ] = k[X]/I(W )
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induced by the inclusion φ : W → V . If W is not a point, then k[W ] 6= k. If
t ∈ k[W ] \ k then t is transcendental over k (since k is algebraically closed). Let
0 6= x ∈ k[V ] with φ∗(x) = 0 and y ∈ k[V ] with φ∗(y) = y. Then easy to see that x,
y are algebraically independent. But this contradicts dimV = tr.deg.(k(V )/k) =
1.

So now let V ⊂ Pn be an irreducible curve. Associated to V we have:

function field k(V ) of V ; we know there exists t ∈ k(V ) such that k(V )/k(t) is
a finite (and even separable) extension.

Local ring OV,P = OP = {f/g | g(P ) 6= 0} ⊂ k(V ) at a point P ∈ V ; mP unique
maximal ideal.

Theorem 6.1. P is a smooth point of V iff mP ⊂ OP is a principal ideal.

Any πP such that mP = (πP ) is called a local parameter at P .

Proof. We’ll only prove =⇒ which is all we need. Assume P lies in an affine
piece V0 ⊂ An of V and WLOG P = (0, . . . , 0). Then

k[V0] = k[X1, . . . , Xn]/I(V0) = k[x1, . . . , xn] where xi = image of Xi

OP =

{
f

g
| f, g ∈ k[V0], g /∈ (x1, . . . , xn)

}
mP =

{
f

g
| f ∈ (x1, . . . , xn), g /∈ (x1, . . . , xn)

}
= x1OP + · · ·+ xnOP

More generally, if J ⊂ OP is any ideal then

J =

{
f

g
| f ∈ J ∩ k[V0], g ∈ k[V0], g(P ) 6= 0

}
so in particular is finitely generated (since the ideal J ∩ k[V0] ⊂ k[V0] is, by the
Hilbert basis theorem).

As P is smooth, after change of coordinates we may assume T aff
P = {X2 = · · · =

Xn = 0}. Will show mP = (x1). There exists f2, . . . , fn ∈ I(V0) such that

fj = Xj − hj (2 ≤ j ≤ n)

where hj has no terms of degree < 2. So in OP we have

xj = hj(x1, . . . , xn) ∈ (x2
1, x1x2, . . . , x

2
n) = m2

P , (2 ≤ j ≤ n)

Thus

mP =
n∑

j=1

xiOP = x1OP + m2
P .

Lemma: this implies mP = (x1).

Lemma 6.2 (Nakayama’s Lemma). R a ring, M a finitely generated R-module,
J ⊂ R an ideal. Then:

(i) JM = M =⇒ ∃r ∈ R such that (1 + r)M = 0.
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(ii) Let N ⊂M be a submodule such that JM +N = M . Then ∃r ∈ J such that
(1 + r)M ⊂ N .

Proof. (i) Let M = y1R + · · · + ynR, yi ∈ M = JM . Then yi =
∑n

j=1 xijyj with
xij ∈ J . Let X = (xij), then have matrix equation (In − X)y = 0. Multiply by
adjugate of (In − X) to get det(In − X)fi = 0 ∀i. And det(In − X) = 1 + z for
some z ∈ J .

(ii) Apply (i) to the R-module M/N .

Then apply (ii) with R = OP ⊃ J = mP = M ⊃ N = (x1).

The local parameter at a smooth point is not unique, but if πP is one every other
is of the form uπP , u ∈ O∗

P a unit.

Exs: OP1,0. Also OC,0 for curves y2 = x3 − x, y2 = x3 + x2. For an affine plane
curve V (f) ⊂ A2, f ∈ k[x, y], x− x(P ) is a local parameter at a smooth point P
iff (∂f/∂y)(P ) 6= 0 (by the proof of 6.1).

Corollary 6.3. P ∈ V a smooth point. Then there exists a surjective homomor-
phism vP : k(V )∗ → Z (called the valuation at P ) such that

OP = {0} ∪ {f ∈ k(V )∗ | vP (f) ≥ 0}
mP = {0} ∪ {f ∈ k(V )∗ | vP (f) > 0}.

and if f ∈ k(V )∗ then for any local parameter πP at P , f = π
vP (f)
P u for some

u ∈ O∗
P .

Proof. We know mP = (πP ) so mn
P = (πn

P ). Consider J = ∩nm
n
P . As J ⊂ OP is

an ideal it is finitely generated, and obviously mPJ = πPJ = J . So by Nakayama
again, J = 0. So for every f ∈ OP \ {0} there exists unique n ≥ 0 such that
f ∈ mn

P \mn+1
P . Set vP (f) = n. If f ∈ k(V )\OP then f−1 ∈ OP and we set vP (f) =

−vP (f−1). Thus since OP \mP = O∗
P (local ring) every 0 6= f ∈ k(V ) has f = uπn

P ,
n = vP (f), u ∈ O∗

P . Obviously vP is then a surjective homomorphism.

By convention we write vP (0) = ∞, so vP (f) is now defined for all f ∈ k(V ).

A discrete valuation ring or DVR is an integral domain with an element t 6= 0
such that every 0 6= x ∈ R has a unique expression utn. Equivalently, it is a local
PID.

Consequences for geometry:

Corollary 6.4. V an irreducible curve, f ∈ k(V ), P ∈ V a smooth point. Then
one of f , f−1 is regular at P .

Proof. f regular at P iff vP (f) ≥ 0.

Corollary 6.5. V a projective nonsingular curve. Then any rational map φ : V −
−→ Pm is a morphism.

Proof. Assume the image of φ isn’t contained in {X0 = 0}. Then φ = (G0 : . . . :Gm) =
(1 : g1 : . . . : gm) say, gi = Gi/G0 ∈ k(V ). If all gi ∈ OP then φ is regular at P . Oth-
erwise t = min{vP (gi) | 1 ≤ i ≤ m} is < 0, so min{vP (π−t

P gi)} = 0, hence
φ = (π−t

P : π−t
P g1 : . . . ) is regular at P .
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Examples: P = (a) ∈ A1; here x−a is a local parameter; at ∞ = (0 : 1) ∈ P1 local
parameter is 1/x = X0/X1 (or 1/(x− a) for any a)

V = V (f) ⊂ A2, f ∈ k[x, y] irreducible. Then if P = (a, b) ∈ V , x − a is a local
parameter provided ∂f/∂y(P ) 6= 0 (tangent not vertical).

Now study morphisms between curves in more detail. Let φ : V → W be a non-
constant morphism of irreducible curves.

Proposition 6.6. (i) For all Q ∈ W the set φ−1(Q) is finite;

(ii) φ induces an inclusion of function fields φ∗ : k(W ) ↪−→ k(V ) which makes k(V )
a finite extension of k(W ).

Proof. (i) φ−1(Q) is a closed subvariety of V , so it either V (in which case φ is
constant) or is a finite set.

(ii) V is infinite (since dimV > 0 for example) so by (i) φ(V ) is infinite, hence
dense in W . Therefore φ is dominant and so φ∗ : k(W ) → k(V ) is defined (and is
injective as k(W ) is a field). Let t ∈ k(W )\k, x = φ∗t ∈ k(V ). Then since k(V )/k
is finitely generated and has transcendence degree 1, k(V ) is a finite extension of
k(x) hence a fortiori also of φ∗k(W ).

The degree [k(V ) : φ∗k(W )] is called the degree deg(φ) of the morphism φ.

Suppose P ∈ V and Q = φ(P ) ∈ W are smooth points. We may then define the
ramification degree of φ at P to be

eP = e(φ, P ) = vP (φ∗πQ)

for any local parameter πQ on W at Q — note that this doesn’t depend on the
choice of local parameter.

The next theorem is key to the study of curves.

Theorem 6.7. (i) Let φ : V → W be a morphism of projective curves. Then φ
is surjective.

(ii) If in addition V and W are smooth, then for any Q ∈ W ,∑
P∈V, φ(P )=Q

eP = deg(φ).

(iii) If char(k) = 0 or more generally if k(V )/k(W ) is separable, then for all but
finitely many P ∈ V , eP = 1 (equivalently: for all but finitely many Q ∈ W ,
#φ−1(Q) = deg(φ)).

Statement (i) is a special case of the important theorem: if φ : V → W is a
morphism of projective varieties, then φ(V ) is a closed subvariety of W . Morally,
“projective curves have no missing points” (for varieties of dimension > 1 this is
an over-simplification).

Statement (ii) is sometimes called the finiteness theorem for curves. In short-
hand, the fibres of φ (this means the sets φ−1({Q})) have the same size, when
multiplicities are included in the count.

Remark: this is very similar to the theorem in Number Fields which says that if
K is a number field and poK =

∏
pei

i where pi is a prime ideal of norm pfi , then∑
eifi = [K : Q].
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We’ll prove (iii) a bit later on (time permitting) or you can take it on trust. See
the 3rd example sheet for an example of what can go wrong in characteristic p.

Proof. (Non-examinable and not lectured)

Important consequence:

Corollary 6.8. V smooth projective irreducible curve, f ∈ k(V )∗. Then:

(i) f regular for all P ∈ V =⇒ f ∈ k.
(ii) The set of P such that vP (f) 6= 0 is finite, and

∑
P∈V vP (f) = 0.

Proof. Consider the morphism φ = (1 : f) : V → P1. Then φ(P ) = ∞ = (0 : 1) ⇐⇒
f not regular at P , so if f is regular everywhere then ∞ /∈ φ(V ), and φ (and so f)
is constant, so (i).

For (ii), the statement is trivial for f constant, so assume not. Then t = X1/X0 is
a local parameter at 0 = (1 : 0) ∈ P1 and φ∗t = f (since as a rational map P1 → P1,
t is the identity). So f(P ) = 0 =⇒ eP = vP (φ∗t) = vP (f). Likewise, 1/t is a
local parameter at ∞ so f(P ) = ∞ =⇒ eP = vP (φ∗(1/t)) = −vP (f). Finally, if
φ(P ) /∈ {0,∞} then vP (f) = 0 so the number of P with vP (f) 6= 0 is finite, and
by finiteness theorem,

deg φ =
∑

φ(P )=0

vP (f) =
∑

φ(P )=∞

−vP (f).

Hence
∑

P vP (f) = 0.

Morally this says: number of zeros of f = number of poles of f , where a pole is
any point P at which vP (f) < 0.
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