
Algebraic Geometry IID 2013

Prof A J Scholl1

These are rough lecture notes, in which the details of the examples are mostly left
out (as are all the pictures). On the other hand there are some proofs here which
I won’t give in the lectures (for reasons of time or public decency). These were
written when I gave the course in 2009, and although I have changed some things
to reflect differences in the way I gave the course this time, the text doesn’t follow
the lectures word-for-word.

Brief introduction

What the subject is about. Examples of plane curves. Rational parameterisations.
Plane cubics (singular and nonsingular).

1 Affine varieties

k here any field

Affine n-space An = kn (as a set); elements are points P = (ai) = (a1, . . . , an)

Affine subspace of An: any subset of the form v + U , v ∈ kn, U ⊂ kn a vector
subspace.

k[X] = k[X1, . . . , Xn] (polynomial ring in n variables)

Recall basic facts: (1) k[X] is a UFD (Gauss’s Lemma). (2) Hilbert basis
theorem: Every ideal of k[X] is finitely generated (i.e. k[X] is Noetherian).

f ∈ k[X] =⇒ function

f : An → k

P = (ai) 7→ f(P ) = f(a1, . . . , an)

NB: if k is finite funny things can happen (two polynomials can represent the same
function). Doesn’t arise with infinite fields. Whatever the field, by a constant
polynomial we always mean an element of k ⊂ k[X].

Linear algebra =⇒ affine subspaces of An are just those subsets which can be
defined by linear equations (not necessarily homogeneous).

Affine closed algebraic set or affine variety V (S) determined by S ⊂ k[X] is

V (S) = {P ∈ An | ∀f ∈ S, f(P ) = 0}

Although this notion makes sense in general, it is really only useful if k is alge-
braically closed, which will assume later on.

Ex: n = 1 and 0 6= f ∈ k[X] then V (f) = {zeros of f}, a finite subset of A1, and
if V ⊂ A1 is finite then V = V (f) with f =

∏
a∈V (x− a).

Define hypersurface V (f) = V ({f}), f any non-constant polynomial (i.e. f /∈ k).
1Comments and corrections to a.j.scholl@dpmms.cam.ac.uk
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Theorem 1.1. (i) S ⊂ k[X], I = ideal generated by S. Then V (I) = V (S).

(ii) V (S) an affine variety =⇒ ∃ finite set {fj} ⊂ S of polynomials with V (S) =
V ({fj}).

Proof. (i) P ∈ An; then f(P ) = 0 for all f ∈ S iff f(P ) = 0 for all f ∈ I
(obviously).

(ii) V (S) = V (I) as in (i); take {h1, . . . , hr} generators for I. Then can find finite
subset {f1, . . . , fm} ⊂ S and gij ∈ k[X] such that hi =

∑m
j=1 gijfj. Then {fj} also

is a set of generators for I, so V (S) = V ({fj}).

Review defn. of V (S) ⊂ An.

Proposition 1.2. (i) S ⊂ T =⇒ V (T ) ⊂ V (S).

(ii) V (0) = An; and V (k[X]) = ∅ = V (c) for any 0 6= c ∈ k.
(iii)

⋂
j V (Ij) = V (

∑
j Ij) for any family of ideals Ij (finite or not)

(iv) V (I) ∪ V (J) = V (I ∩ J).

Proof. (i), (ii) trivial

(iii)
⋂
V (Ij) = V (

⋃
Ij) by definition; then apply Thm 1.1(i).

(iv) By (i) V (I) ∪ V (J) ⊂ V (I ∩ J). Let P ∈ V (I ∩ J), and suppose P /∈ V (I).
Then ∃g ∈ I with g(P ) 6= 0; and ∀f ∈ J , fg ∈ I ∩ J so (fg)(P ) = 0, hence
f(P ) = 0 i.e. P ∈ V (J).

V is irreducible if V 6= V1 ∪ V2 for varieties Vi 6= V (i = 1, 2). Reducible = not
irreducible.

NB: some people use “variety” to mean “irreducible variety”. Later will come
across more general types of varieties (projective, quasi-projective).

Ex: V (X1(X2 −X2
1 )) = V (X1) ∪ V (X2 −X2

1 ) ⊂ A2.

Proposition 1.3. Every (affine) variety V is a finite union of irreducible varieties.

Proof. (usual bisection argument) Suppose not. Then V reducible so = V1 ∪ V ′1
say. If both of V1, V

′
i are finite unions of irreducibles then done. Otherwise V1 say

isn’t. So we get a chain V = V0 ) V1 ) V2 ) . . . of varieties Vj = V (Ij). Let
W =

⋂
j Vj = V (

∑
Ij). As I =

∑
Ij is finitely generated, must have I =

∑
j≤N Ij

for some N . Then W =
⋂

j≤N Vj so chain terminates; contradiction.

Can also show that a minimal decomposition V = ∪Vi into distinct irreducibles
is unique up to ordering (exercise). The irreducibles Vi that occur are called the
irreducible components of V .

Zariski topology on An — say U ⊂ An is open if U is complement of a variety.
Prop.1.2(ii-iv) shows this is a topology.

Ex: A1. Closed sets are either A1 itself of finite subsets of k. In particular A1 is
not Hausdorff if k is infinite (since any two nonempty open sets intersect).

Proof of 1.3 shows that Zariski topology on An is Noetherian — every descending
chain of closed subsets is ultimately stationary.

The topology doesn’t say much about a variety. (See example sheet.) More a
convenience of language.
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When if V (I) = ∅? E.g. k = R, V (X2
1 +X2

2 + 1) = ∅. So we should look at k = k̄.

For V ⊂ A1 the answer is easy: every ideal of k[X] is principal, and f nonconstant
=⇒ V (f) = {roots of f in k}. So if k is algebraically closed, I 6= k[X] =⇒
V (I) 6= ∅. General result is harder:

Theorem 1.4 (Hilbert’s Nullstellensatz I). If k is algebraically closed and I (
k[X] is a proper ideal then V (I) 6= ∅.

(proof later)

When is V (I) = V (J)?

Even for algebraically closed k, can have V (I) = V (J) with I 6= J . E.g. let
I = (f), J = (fd) for any d > 1.

Given some affine variety V ⊂ An, there is a largest possible ideal for which
V = V (I). Namely: define

I(V ) = {f ∈ k[X] | ∀P ∈ V f(P ) = 0}.

Proposition 1.5. (i) V = V (S) =⇒ S ⊂ I(V )

(ii) V = V (I(V )).

(iii) V = W ⇐⇒ I(V ) = I(W ).

(proof obvious)

So get an injective map: (affine varieties in n-space) → (ideals ⊂ k[X]) given by
V 7→ I(V ), which has V (−) as left inverse.

Proposition 1.6. (i) V ⊂ W iff I(V ) ⊃ I(W ).

(ii) V irreducible iff I(V ) prime.

Proof. (i) =⇒ obvious. If V 6⊂ W let P ∈ V \W . Then P /∈ W = V (I(W )) =⇒
∃f ∈ I(W ) with f(P ) 6= 0, i.e. f /∈ I(V ).

(ii) Obviously I(V1 ∪ V2) = I(V1) ∩ I(V2). Suppose V = V1 ∪ V2 is reducible. Let
Ij = I(Vj). Then I(V ) = I1 ∩ I2 and by (i), I1 6⊂ I2 6⊂ I1. Let f1 ∈ I1 \ I2,
f2 ∈ I2 \ I1. Then fi /∈ I(V ) but f1f2 ∈ I1 ∩ I2 = I(V ), so I(V ) not prime.

Conversely, suppose f1f2 ∈ I(V ) with fi /∈ I(V ). Let Vi = V ∩ V (fi) = {P ∈ V |
fi(P ) = 0}. As fi /∈ I(V ), Vi 6= V . Then P ∈ V =⇒ f1(P )f2(P ) = 0 =⇒ P ∈
V1 ∪ V2 hence V = V1 ∪ V2.

V ⊂ An affine variety. Then f ∈ k[X] determines a function V → k. And f , g
determine the same function iff f(P ) = g(P )∀P ∈ V i.e. iff f − g ∈ I(V ). The set
of all such functions is therefore the quotient ring k[V ] := k[X]/I(V ), the ring of
regular functions or coordinate ring of V — also written O(V ).

Corollary 1.7. V irreducible iff k[V ] is an integral domain.

Theorem 1.8 (Hilbert’s Nullstellensatz II). Let k = k̄, V = V (I). Then f ∈ I(V )
iff for some m > 0, fm ∈ I.

Ex: let k = k̄ and V = V (f) a hypersurface with f irreducible. Then (f) is a
prime ideal, so Nullstellensatz implies that I(V ) = (f) rather easily. Therefore
I(V ) is prime and V (f) is irreducible.

3



For an ideal I (in any commutative ring R) define the radical of I to be

√
I = {f ∈ R | ∃m > 0 st fm ∈ I}.

Can check that
√
I is an ideal (exercise), and it’s obvious that

√√
I =

√
I. It

follows that V (I) = V (J) iff
√
I =

√
J .

Summing up: if k = k̄, have bijection (inclusion-reversing)

{ideals I ⊂ k[X] with I =
√
I} ↔ {affine varieties in An}

I 7→ V (I), V 7→ I(V )

Irreducible varieties correspond to prime ideals.

From now on, assume k = k̄ unless explicitly stated to the contrary.

Let V ⊂ An, W ⊂ Am. A mapping φ : V → W is a regular mapping or
morphism if ∃f1, . . . fm ∈ k[V ] such that φ(P ) = (f1(P ), . . . , fm(P )). Denote
them Mor(V,W ).

For example, Mor(V,A1) = k[V ].

Examples: projection An → Am, linear and affine transformations, inclusion mor-
phism, d-tuple embedding A1 → Ad.

Composition of polynomials is a polynomial, so φ : V → W , ψ : W → Z =⇒
ψ ◦ φ : V → Z. An isomorphism is a morphism with a 2-sided inverse.

Ex: A1 ∼−→ conic in A2.

In particular if g ∈ k[W ] = Mor(W,A1), and φ : V → W is any morphism, de-
fine φ∗g = g ◦ φ ∈ k[V ] = Mor(V,A1), the pullback of g to V . The map
φ∗ : k[W ] → k[V ] is a ring homomorphism (easy) which is identity on k (so a
k-algebra homomorphism).

Theorem 1.9. V ⊂ An, W ⊂ Am. Then φ 7→ φ∗ is a bijection

Mor(V,W ) ∼−→ {k-algebra homomorphisms k[W ] → k[V ] }

Rational functions: V ⊂ An irreducible. Function field k(V ) = Frac k[V ]
(fraction field of integral domain). If f, g ∈ k[X], g /∈ I(V ) then f/g represents an
element of k(V ) and determines a map

φ : V \ V (g) → k

Say φ is a rational function on V and that P ∈ V is a regular point for φ if
can find f/g with φ = f/g and g(P ) 6= 0.

Ex: X1/X2 : A2 \ {Y2 = 0} → k

The local ring at point P ∈ V (irreducible) isOV,P = {f ∈ k(V ) | f regular at P}.
If f ∈ OV,P , f(P ) 6= 0 then f ∈ O∗

V,P . Maximal ideal mV,P = {f ∈ OV,P | f(P ) =
0} = ker(f 7→ f(P )).

Define a local ring to be a ring with a unique maximal ideal. Simple fact:

Proposition 1.10. R is a local ring iff R \ R∗ is an ideal. If so then R \ R∗ is
the maximal ideal of R.
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Proof. In any ring, if A ⊂ R is an ideal, then A ( R iff A ∩R∗ = ∅ (obvious).

Suppose m = R \ R∗ is an ideal. Then by the previous sentence it is a maximal
ideal and contains every proper ideal of R. So it is the unique maximal ideal of R.

Conversely, let (R,m) be a local ring. Then m ⊂ R \ R∗, and if x ∈ R \ R∗ then
(x) 6= R so (x) ⊂ m by uniqueness. Therefore m = R \R∗.

2 Projective varieties

Brief introduction — point at infinity on Riemann sphere, parallel lines in A2.

U f-d vector space over k. Define P(U) = {lines in U through 0}. In particular,
define Pn = P(kn+1) projective n-space

Usually index the coordinates on kn+1 by 0, . . . , n. If line is {(a0t, a1t, . . . , ant) |
t ∈ k}, write (a0 : a1 : . . . : an) or simply (ai) for corresponding element of Pn. Thus

Pn = {(a0 : . . . : an) | ai ∈ k, not all 0}/ ∼

where (ai) ∼ (bi) iff ∃t ∈ k∗ with ai = tbi.

P1 = A1∪{∞}. P2 = A2 plus line at infinity. In general can write Pn = An∪Pn−1.

Affine patches: let Hj = {(ai) ∈ Pn | aj = 0} and Uj = Pn \Hj = {(ai) ∈ Pn |
aj 6= 0}. Then Uj

∼−→ An (set bijection) by

(a0 : . . . : an) 7→ (a0/aj, . . . , aj−1/aj, aj+1/aj, . . . an/aj) = (a0/aj, . . . , âj/aj, . . . an/aj)

(hat means omit the term underneath). Other way:

(b1, . . . , bn) 7→ (b1, . . . , bi, 1, bi+1, . . . , bn)

Eg usual covering of P1. Picture for P2.

Polynomials k[X] = k[X0, . . . , Xn] aren’t functions on Pn.

Terminology:

monomial: Xd0
0 X

d1
1 · · ·Xdn

n , di ≥ 0.
term: c×(monomial), c ∈ k∗.
total degree of term =

∑
di.

homogeneous polynomial of degree d: (possibly empty) sum of terms of total
degree d. (So the zero polynomial is homogeneous of every degree).

Every poly of total degree ≤ d has a decomposition (unique) as sum of homoge-
neous parts f =

∑d
i=0 f[i]

f homogeneous of degree d iff f(TX0, . . . , TXn) = T df(X0, . . . , Xn) ∈ k[X0, . . . , Xn, T ].

Partial derivatives defined formally by

∂(Xm
i )/∂Xj =

{
mXm−1

i if i = j

0 otherwise

Euler’s formula: if f is homogeneous of degree m ≥ 0 then∑
i

Xi
∂f

∂Xi

= m× f
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f ∈ k[X] homogeneous of degree d, (ai) ∈ Pn. Suppose bi = tai some t ∈ k∗.
Then f((bi)) = tdf((ai)), so f((bi)) = 0 ⇐⇒ f((ai)) = 0. So although f isn’t a
function on Pn its zeroes form a well-defined subset of Pn.

For ideals, need a definition:

An ideal I ⊂ k[X] is homogeneous if it is generated by a set of homogeneous
polys (not necessarily of the same degree)

Lemma 2.1. I ⊂ k[X]. TFAE:

(i) I is homogeneous;

(ii) If f ∈ I then its homogeneous parts f[r] are in I.

Proof. (i) =⇒ (ii): Let gj be generators of I, homogeneous of degrees dj. If
f =

∑
hjgj ∈ I then split each hj into homogeneous pieces hj[r], then hj[r]gj ∈ I

so f =
∑
f[r] with f[r] =

∑
j hj[r−dj ]gj ∈ I homogeneous of degree r.

(ii) =⇒ (i) trivial (decompose generators of I).

Definition: let I be a homogeneous ideal. Define

V (I) = {P = (ai) ∈ Pn | f((ai) = 0 ∀f ∈ I}

V (I) is a projective variety. (By the lemma, V (I) is the same if we add the
condition “f homogeneous”.)

Note: if f1, . . . , fm is a set of homogeneous generators for I then V (I) is the set of
simultaneous zeros of the fi.

Examples. Linear subspaces: let U ⊂ kn+1 be a vector subspace, then P(U) ⊂ Pn.

If U = {v ∈ kn+1 |
∑n

i=0 a
(j)
i vi = 0 ∀j} for a subset {a(j)} ⊂ kn+1 then P(U) = V (I)

where I is the (homogeneous) ideal generated by the linear forms Fj =
∑

i a
(j)
i Xi.

Conversely, any projective variety defined by linear homogeneous polynomials is
of this form. Have P(U ∩ V ) = P(U) ∩ P(V ). Hypersurfaces.

Affine pieces of projective variety V = V (I) ⊂ Pn. Let

I0 = {f = F (1, Y1, . . . , Yn) | F ∈ I homogeneous} ⊂ k[Y1, . . . , Yn]

which is an ideal. Let V0 ⊂ An be the affine variety defined by I0. Then V0 = V ∩An

thinking of An as U0 ⊂ Pn.

Likewise, setting Xj = 1 defines an ideal Ij whose associated affine variety is
V ∩ Uj.

Projective closure V ∗ of affine variety V : start with f ∈ k[Y1, . . . , Yn] of total
degree d. Then

F (X0, . . . , Xn) = Xd
0f(X1/X0, . . . , Xn/X0) ∈ k[X]

is a homogeneous polynomial of degree d, not divisible byX0, and F (1, Y1, . . . , Yn) =
f . Consider the (homogeneous) ideal I∗ generated by all such F as f runs over
I(V ). It is the ideal of a projective variety V ∗ ⊂ Pn with V ∗ ∩An = V , called the
projective closure of V .

Example: projective closure of a plane curve.

Proposition 1.2 holds (same proofs) for projective varieties.

Ih(V ) = ideal generated by all homogeneous polys vanishing on V . Assuming k
algebraically closed then have:
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Theorem 2.2 (Projective Nullstellensatz). (i) If V (I) = ∅ then I ⊃ (Xm
0 , . . . , X

m
n )

for some m > 0.

(ii) If V = V (I) 6= ∅ then Ih(V ) =
√
I.

The proof is an easy consequence of the affine result and we omit it.

Let V ⊂ Pn be a projective variety. If W ⊂ Pn is a projective variety with W ⊂ V
we say that W is a closed subvariety of V , and that the complement V \W is
an open subvariety of V . These satisfy same properties as open and closed sets
in topology (by 1.2).

We say V is irreducible if V 6= V1 ∪ V2 for proper closed subvarieties Vi.

Proposition 2.3. (i) Every projective variety is a finite union of irreducibles.

(ii) V irreducible iff Ih(V ) is prime.

The proofs are the same as for affines, once you notice that if I is a homogeneous
ideal which is not prime, can find homogeneous F , G /∈ I with FG ∈ I.
We say a subset S ⊂ V is (Zariski) dense in V if, for f ∈ k[X] homogeneous, f
vanishes on S =⇒ f vanishes on V .

Proposition 2.4. Let V ⊂ Pn be irreducible and W ⊂ V a proper closed subvari-
ety. Then V \W is dense in V .

Proof. Let f ∈ k[X] be homogeneous, vanishing on V \ W . As W 6= V there
exists g ∈ Ih(W ) \ Ih(V ) (by Nullstellensatz). Then fg vanishes on all of V . As
g ∈ Ih(V ) a prime ideal, f ∈ Ih(V ).

Moral: proper closed subvarieties of an irreducible variety are “smaller” than V .
(Later: they have smaller dimension.)

Rational functions: V ⊂ Pn irreducible variety. Define

k(V ) = {F/G | F,G ∈ k[X] homogeneous of same degree, G /∈ Ih(V )}/ ∼

where F1/G1 ∼ F2/G2 iff F1G2 = F2G1. Easy to check an equivalence relation
(using fact that Ih(V ) is prime) and that k(V ) is a field, the function field of
V . It is a finitely-generated extension of k (if X0 /∈ Ih(V ) it is generated by the
rational functions represented by Xi/X0, 1 ≤ i ≤ n).

φ ∈ k(V ) regular at P ∈ V iff φ = F/G for some F , G with G(P ) 6= 0.
In this case φ(P ) :=F (P )/G(P ) is independent of representation, and φ : V \
{points where φ isn’t regular} → k.

Suppose V 6⊂ {X0 = 0}. Let V0 = V ∩ {X0 6= 0} ⊂ An be the complement of the
hyperplane, an affine variety. Then the coordinate functions on V0 are just the
rational functions Xi/X0 on V , and in particular k(V ) = k(V0).

Local ring of V at P defined the same way as for affine varieties.

Rational maps:

Pm −−→ Pm

Let F0, . . . Fm ∈ k[X] be homogeneous of same degree d. If P = (ai) ∈ Pn and not
all fj(a) are zero, can consider (F0(a) : . . . :Fm(a)) ∈ Pm, which is well-defined, so
get a map

Pn \
⋂
j

V (fj) → Pm
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called a rational map. Notation: φ = (Fi) : Pn −−→ Pm (the broken arrow to
indicate that the map is only partially-defined).

Multiplying Fi by a common G gives essentially the same map (except the set
where it isn’t defined will be possibly larger). As k[X] is a UFD there is a best
choice of {Fi} got by cancelling common factors. The points where φ is defined
are the regular points of φ. If every point is regular, φ is a morphism written
with →. It is an isomorphism if there is a morphism ψ : W → V such that φ ◦ψ
and ψ ◦ φ are the identity morphisms on W and V respectively.

Examples:

Linear maps φ : Pn −−→ Pm, given by any (m + 1) × (n + 1) matrix (aij) 6= 0
so φ = (Fj) with Fj =

∑
i aijXi. If (aij) has rank n + 1 ≤ m + 1 then φ is

a morphism, whose image a linear projective subspace (and an isomorphism if
m = n, with inverse given by the inverse matrix).

Remark: all automorphisms of Pn are linear. Any morphism Pn → Pm with n > m
is necessarily constant.

Example where not a morphism: projection from a point Pn −−→ Pn−1.

Now let V ⊂ Pn be an irreducible variety. If F0, . . . , Fm ∈ k[X] are homogeneous
of the same degree, not all in Ih(V ), they are said to determine a rational map
φ : V −−→ Pm. It is a mapping of the nonempty open subvariety

V \
⋂
j

(V ∩ V (Fj)) → Pm

Two sets of polyns (Fj), (Gj) are said to determine the same rational map if
FiGj−FjGi ∈ Ih(V ) for all i, j. The point P ∈ V is a regular point of φ if φ has
a representation (Fi) with not all Fi(P ) = 0. If all P are regular, φ is a morphism
(may need to use different representations of φ at different points!). The domain
dom(φ) of φ is its set of regular points. It is a nonempty open subvariety of V
(easy to see). If W ⊂ Pm and φ(dom(φ)) ⊂ W then φ is a rational map from V
to W , written φ : V −−→ W .

Example: rational function are rational maps V −−→ P1 (all of them apart from
the morphism which maps every point of V to ∞ ∈ P1).

Example: conic to point by projection from a point.

ConicX2
1 = X0X2. First project from (0 : 1 : 0) (not on conic) by (X0 :X2). Regular

at all points.

Next project from (0 : 0 : 1) by (X0 :X1) = (X1 :X2). Note both (0 : 0 : 1) and
(1 : 0 : 0) are on V so we need both forms to get the morphism.

This is an isomorphism, inverse (Y0 :Y1) 7→ (Y 2
0 :Y0Y1 :Y 2

2 ).

Let φ : V → W be an morphism of (projective or affine) varieties. Let Z ⊂ W
be a closed subvariety. The set φ−1(Z) = {P ∈ V | (φ(P ) ∈ Z} is the inverse
image of Z under φ. It is easily seen to be a closed subvariety of V (since the
condition “φ(P ) ∈ Z” is equivalent to the vanishing of certain polynomials in the
coordinates of P ).

Suppose φ : V −−→ W , ψ : W −−→ Z are rational maps. The composite ψ ◦φ isn’t
always defined (since the image of φ could consist entirely of points at which ψ is
not regular).

Suppose φ(domφ) ⊂ W is dense in W . Then we say φ is dominant and in this
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case ψ ◦ φ is defined for any ψ.(This is the analogue of surjectivity for rational
maps.)

If ψ : W −−→ V is such that ψ ◦ φ, φ ◦ ψ are defined and equal the identity maps
of V , W respectively, then we say φ is birational (or a birational equivalence
or birational isomorphism).

Exs: Obviously any isomorphism is birational, but there are lots of other important
examples.

Cremona transformation P2 −−→ P2 by (X1X2 :X0X2 :X0X1) (think of this as
(1/X0 : 1/X1 : 1/X2), so obviously φ ◦ φ is the identity).

See ex. sheet for others.

Last lecture defined rational map, said what it meant for a rational map φ : V −
−→ W to be dominant, birational.

If φ is dominant then can compose rational functions on W with φ to give a map
φ∗ : k(W ) → k(V ) which is a homomorphism (easy to check). So if φ is birational,
it induces an isomorphism k(W ) ∼−→ k(V ). Very important fact:

Theorem 2.5. Let U , V be irreducible varieties. Then U , V are birationally
isomorphic iff k(U) ' k(V ).

So study of varieties up to birational equivalence is equivalent to the study of their
function fields.

Proof. (Sketch as the details are tedious) Let V ⊂ Pn not contained in {X0 = 0},
W ⊂ Pm not contained in {Y0 = 0}. Then k(V ) = k(x1, . . . , xn), xi = Xi/X0 and
k(W ) = k(y1, . . . , ym), yj = Yj/Y0. An isomorphism k(V ) ' k(W ) identifies yj

with fj(x), for some rational functions fj in n variables. Clearing denominators
and homogenising, get m+ 1 homogeneous Fj ∈ k[X] with

fj(X1/X0, . . . , Xn/X0) =
Fj(X0, . . . , Xn)

F0(X0, . . . , Xn)

and (F0 : . . . :Fm) determines a rational map V −−→ W . Writing the xis in terms
of {yj} defines a map in the other direction. It is tedious but straightforward to
check these are mutually inverse rational maps.

Remark: can also regard a rational map V −−→ W ⊂ Pm, W 6⊂ {X0 = 0} as an
m-tuple of rational functions (f1, . . . , fm) (get an (m + 1)-tuple (Fj) by clearing
denominators). Likewise can define rational maps between affine varieties.

Finish this section with:

Defn: a variety is an open subvariety of a projective variety.

This includes affine and projective varieties as special cases. Note that there are
varieties which are neither: an example is A2 \ {(0, 0)}.

3 Some commutative algebra

Hilbert Nullstellensatz

Recall k algebraically closed.
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Theorem 3.1 (= Theorem 1.4, Hilbert Nullstellensatz I). (i) Every maximal ideal
of k[X] is of the form (X1 − a1, . . . , Xn − an) for ai ∈ k.
(ii) If I ( k[X] then V (I) 6= ∅.

Proof. I’ll prove this only in the case k uncountable (eg k = C). For the general
case see Reid or Hulek.

(i) We know every ideal of this form is maximal (example sheet). So let m ⊂ k[X]
be a maximal ideal, K = k[X]/m and ai = Xi + m ∈ K. Then K is a field and
K = k[a1, . . . , an]. If K = k then ai ∈ k and Xi − ai ∈ m, and are done.

Otherwise, let t ∈ K \ k. As k = k̄ have k ⊂ k(t) ⊂ K and t is transcendental
over k, i.e. k(t) is the field of rational functions in t. Let Um ⊂ K be the k-vector
subspace spanned by the products {ar1

1 · · · arn
n } with

∑
ri ≤ m. Clearly dimUm <

∞ and and K =
⋃
Um. Now {1/(t − c) | c ∈ k} are linearly independent over k,

so only finitely many of them can lie in each Vm. Therefore the number belonging
to K =

⋃
Um is countable. As K is uncountable, we have a contradiction.

(ii) By Zorn’s lemma (or in the this case using ACC for ideals) there exists a max-
imal ideal m ⊂ k[X] containing I. By (i), m = V (P ) for some P = (a1, . . . , an) ∈
An, so P ∈ V (I).

Theorem 3.2 (= Theorem 1.8, Nullstellensatz II). V = V (I) =⇒ I(V ) =
√
I.

Proof. (Not given in lectures and not examinable) Let f ∈ I(V ). Consider
the ideal J ⊂ k[X1, . . . , Xn, T ] generated by the elements of I and the polynomial
1 − fT . If P = (a1, . . . , an+1) ∈ V (J) then f(a1, . . . , an) = 0 (as f ∈ I) but
1− an+1f(a) = 0. So V (J) = ∅, hence by Nullstellensatz I, J = k[X,T ]. So 1 ∈ J
which can be written as

1 =
m∑

r=0

T rhr + (1− fT )g

for some hr ∈ I and g ∈ k[X,T ]. WLOG may assume that m ≥ the T -degree of
g. Multiplying by fm we then get

fm =
m∑

r=0

fmT rhr + (1− fT )fmg(X,T ) =
m∑

r=0

fm−rhr(fT )r + (1− fT )g1(X, fT )

for some polynomial g1. Set T = 1/f in this identity2 to get fm =
∑m

r=0 f
m−rhr,

i.e. fm ∈ I.

Transcendence basis

Terminology: Let K/k be a finitely generated field extension. K/k is a pure
transcendental extension if K = k(x1, . . . , xn) for x1, . . . , xn ∈ K algebraically
independent over k.

Proposition 3.3. Let K/k be a finitely generated field extension. Then there
exists a pure transcendental subextension K0 = k(x1, . . . , xn) ⊂ K such that K/K0

is finite and separable. Moreover K = K0(y) for some y ∈ K.

Remark. Later will see (remark (ii) following Thm.4.5) that the integer n is unique.
It’s called the transcendence degree of K/k.

2This means compute the image under the homomorphism k[X,T ] → k(X) given by Xi 7→ Xi,
T 7→ 1/f .
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Proof (char(k) = 0). The last part is just the primitive element theorem.

For the rest, suppose k = K(x1, . . . , xm). There is a maximal subset of {xi} which
is algebraically independent. After reordering let it be {x1, . . . , xn}. Then each
of xn+1, . . . , xm is algebraic over k(x1, . . . , xn) so K/k(x1, . . . , xn) is finite. When
char(k) = 0 it is automatically separable.

Proof of Propn. 3.3 when char(k) = p. This was not given in the lectures
and is not examinable. (See also Reid who gives a more general result. However
there is a subtle error in the proof he gives of his (3.16), also reproduced in Hulek,
Prop. 1.33 — see if you can spot it. The result as Reid states it is true but needs
a different proof — see for example Zariski–Samuel Commutative Algebra vol.I,
Ch.5, sec.4 Thm.8.)

There certainly exist subfields K0 ⊂ K1 ⊂ K with K0 pure transcendental, K1/K0

finite and separable andK/K1 finite (e.g.K1 = K0 = k(x1, . . . , xn) as in the char =
0 proof). So there exists K0 ⊂ K1 ⊂ K with K1 maximal. Let K0 = k(x1, . . . , xn)
and K1 = K0(y), with y algebraic and separable over K0. By maximality of
K1, K/K1 is purely inseparable. If K = K1 we’re done; otherwise there exists
z ∈ K\K1 with zp = t ∈ K1. By the proposition there is an irreducible polynomial
g(X1, . . . , Xn, T ) such that g(x1, . . . , xn, z

p) = 0. As K1/K0 is separable, g is
separable in the variable T . Suppose g is not of the form h(Xp

1 , X2, . . . , T ). Then
x1 is separable over K ′

0 = k(x2, . . . , xn, z) and y is separable over K0 ⊂ K ′
0(x1).

Therefore K1(t) is separable over K ′
0 which is a pure transcendental extension of

k, by the proposition. This contradicts the maximality of K1.

Therefore we must have g(X1, . . . , Xn, T ) = h(Xp
1 , . . . , X

p
n, T ). Let h∗ be the poly-

nomial whose coefficients are the p-th roots of those of h. Then h∗(x1, . . . , xn, z) =
0 which shows that z is separable over K0, contradiction.

Proposition 3.4. Let K = k(x1, . . . , xn) with (x1, . . . , xn) algebraically indepen-
dent, and let xn+1 be algebraic over K. Then

I = {g ∈ k[X1, . . . , Xn+1] | g(x) = 0}

is a principal ideal (f) generated by some irreducible f ∈ k[X]. Moreover if f
contains the variable Xi then (x1, . . . , xi−1, xi+1, . . . , xn+1) is algebraically inde-
pendent.

In other words, k[x1, . . . , xn+1] = k[X]/I = k[X]/(f).

Proof. As x1, . . . , xn are algebraically independent, the ring R = k[x1, . . . xn] is
isomorphic to the polynomial ring k[X1, . . . , Xn] so is a UFD. Let h ∈ K[T ] be
the minimal polynomial of xn+1 over K, and let b ∈ R be the least common
denominator of its coefficients. Then bh is irreducible in R[T ] by Gauss’s Lemma.
Therefore bh = f [x1, . . . , xn, T ] for some irreducible f ∈ k[X1, . . . , Xn+1].

Let g ∈ k[X]. Then in the ring K[T ], g(x1, . . . , xn, T ) is a multiple of h, so again
applying Gauss’s Lemma g is a multiple of f .

For the last part, can assume 1 ≤ i ≤ n. Suppose (x1, . . . , xi−1, xi+1, . . . , xn+1) is
not algebraically independent. Then there exists 0 6= g ∈ I which does not involve
Xi. But as g is a multiple of f have a contradiction.

Corollary 3.5. Let k = k̄. Then any irreducible variety V is birational to a
hypersurface.
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Proof. Let K = k(V ). By Propositions 3.3, we can write K = k(x1, . . . , xn+1)
where x1, . . . , xn+1 are algebraically independent and xn+1 is algebraic over k(x1, . . . , xn),
and by proposition 3.4 k[x1, . . . , xn+1] = k[X]/(f) for some irreducible polynomial
f(X1, . . . , Xn+1). Therefore K equals the function field of the hypersurface V (f).
Result follows by Thm. 2.5.

4 Singularities, smoothness and dimension

Motivation: V = V (f) ⊂ An affine hypersurface, f irreducible, P = (ai) ∈ V .
Consider affine line through P

L = {(a1 + tb1, . . . , an + tbn) | t ∈ k}, 0 6= b ∈ kn

Compute V ∩ L by

0 = f(a1 + tb1, . . . ) = g(t) =
∑

r

crt
r

with c0 = f(a) = 0, c1 =
∑

i bi(∂f/∂Xi)(a). Then g vanishes at t = 0 because
P ∈ V ∩ L. Also, g has a zero of order > 1 at t = 0 (i.e. L is tangent to V at P )
iff L is contained in the affine subspace

T aff
V,P = V (g) ⊂ An, g =

n∑
i=1

(∂f/∂Xi)(P )(Xi − ai).

Definition: T aff
V,P is the (affine) tangent space of V at P .

So T aff
V,P is either an affine space of dimension n − 1 or the whole of An. The

point P is smooth (or nonsingular or regular) in the first case, and is singular
otherwise.

Example: f = X2
2 −X2

1 (X1 + 1).

Need to be able to compute also for projective V = V (F ) ⊂ Pn, F ∈ k[X0, . . . , Xn]
homogeneous, irreducible.

Defn: (projective) tangent space of V = V (F ) at P = (a0 : . . . : an) is

T proj
V,P = V (G) ⊂ Pn, G =

n∑
i=0

Xi(∂F/∂Xi)(a)

Remarks. (i) T proj
V,P is a linear projective subspace containing P , since deg(F )G(P ) =

F (P ) = 0 (Euler’s formula).

(ii) Assume V 6⊂ {X0 = 0} and let V0 = V ∩ An ⊂ An given by f(X1, . . . , Xn)
where

F (X0, . . . , Xn) = Xdeg F
0 f(X1/X0, . . . , Xn/X0)

then computing ∂F/∂Xi shows that if P ∈ V0 then T proj
V,P ∩ An = T aff

V0,P .

In either case, it is a linear subvariety of dimension n− 1 or n.

As in the affine case, if the tangent space has dimension n − 1 we say V is
smooth/nonsingular/regular at P ; otherwise P is a singular point.

So P is a singular point iff all the partial derivatives ∂f/∂Xi, 1 ≤ i ≤ n (in the
affine case) or ∂F/∂Xi, 0 ≤ i ≤ n (in the projective case) vanish at P .

Ex: plane curve V (X2
2X0 − X2

1 (X1 + X0)) has one singular point (1 : 0 : 0) (draw
picture over R).
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Proposition 4.1. The set of smooth points of an irreducible hypersurface is a
nonempty open subvariety.

Proof. (For V projective.) The set of singular points is V ∩
⋂

i V (∂F/∂Xi) which
is a closed subvariety of V . If it were all of V then by Nullstellensatz, ∂F/∂Xi ∈
Ih(V ) = (F ) for all i. Since ∂F/∂Xi is homogeneous of degree < degF , would
then have ∂F/∂Xi = 0 for all i. Two cases:

• char(k) = 0. Then F is constant, contradiction.

• char(k) = p > 0. Then F ∈ k[Xp
0 , . . . , X

p
n] so F = Gp for some polynomial

G (remember k is algebraically closed), contradiction.

Now consider a general variety V . It turns out best to consider the tangent space
as a vector space, rather than affine or projective space.

Definition (i) Let V ⊂ An be an affine variety, P ∈ V . Define

TV,P = {v ∈ kn |
n∑

i=1

vi
∂f

∂Xi

(P ) = 0 ∀f ∈ I(V )} ⊂ kn

(ii) Let V ⊂ Pn a projective variety. Let P ∈ V and let Vj = V ∩ {Xj 6= 0} be an
affine piece of V containing P . Define TV,P = TVj ,P as in (i).

If V ⊂ An is a hypersurface, then T aff
V,P = P + TV,P .

At a ’smooth’ point of a variety V we expect the number of independent tangent
directions to be a measure of the size/dimension of V . So we define:

Defn: V an affine or projective variety.

(i) V irreducible: define dimV = min{dimTV,P | P ∈ V }

(ii) P ∈ V is smooth/nonsingular points if dimTV,P = dimV , singular oth-
erwise

(iii) In general, dimV = largest dimension of irreducible components of V .

The next result shows that this is a good notion.

Theorem 4.2. The set of smooth points of V is a non-empty open subvariety.

Proof. Obviously non-empty, by definition. We can assume that V ⊂ An is affine
(if V is projective, just treat each affine pieces of V in turn) and that I(V ) is
generated by polynomials fj. Then if P ∈ V ,

TV,P = {v ∈ kn |
∑

i

vi(∂fj/∂Xi)(P ) = 0}

and so

dimTV,P = n− rank

(
∂fj

∂Xi

(P )

)
and for any r ∈ N,

{P ∈ V | dimTV,P ≥ r} = {P | rank((∂fj/∂Xi)(P )) ≤ n− r}

is the closed subvariety of V given by the (n − r)× (n − r) minors of the matrix
of polynomials (∂fj/∂Xi).
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Now suppose we have projective varieties V ⊂ Pn, W ⊂ Pm and a rational map
φ : V −−→ W , and P ∈ dom(φ). We will define a linear map dφP : TV,P → TW,φ(P ).
Assume that P ∈ V ∩ An, φ(P ) = Q ∈ W ∩ Am, and that φ = (F0 : . . . :Fm)
for homogeneous Fj ∈ k[X]. Write (Fj/Fo)(1, X1, . . . , Xn) = fj ∈ k(X1, . . . , Xn),
which represents a rational function on V , regular at P .

Definition: dφP is the map TV,P → km given by

(dφP )(v) =

(
n∑

i=1

vi
∂fj

∂Xi

(P )

)
j

∈ km

Proposition 4.3. (i) dφP (TV,P ) ⊂ TW,φ(P ).

(ii) dφP depends only of φ, not on the polynomials (Fi) representing it.

(iii) If ψ : W −−→ Z is a rational map with φ(P ) ∈ dom(ψ) then d(ψ ◦ φ)P =
dψφ(P ) ◦ dφP .

(iv) If φ is birational and φ−1 is regular at φ(P ) then dφP is an isomorphism.

Proof. (i) We can replace V by the affine pieces V ∩ An, W ∩ Am. Let g ∈ I(W ),
so that h = g(f1, . . . , fm) ∈ k(X) is a rational function regular at P , vanishing on
those points of V where it is regular. Then (chain rule)

∂h

∂Xi

(P ) =
∑

j

∂g

∂Yj

(Q)
∂fj

∂Xi

(P )

so if v ∈ TV,P , we see that dφP (v) ∈ TW,Q.

(ii) If we take another representation (F ′j) for φ then the corresponding rational
functions f ′j ∈ k(X) will have the property that f ′j − fj vanishes on V wherever it
is defined, so f ′j − fj = pj/qj where pj ∈ I(V ) and qj ∈ k[X], qj(P ) 6= 0. Then

∂(f ′j − fj)

∂Xi

(P ) =
1

qj(P )

∂p′j
∂Xi

(P )

Let v ∈ TV,P . Then the last equation shows that for every j

n∑
i=1

vi

∂(f ′j − fj)

∂Xi

(P ) = 0

so the map dφP is independent of the representation of φ.

(iii) This is just the chain rule.

(iv) follows from (iii), and implies by 4.2:

Corollary 4.4. Birational (irreducible) varieties have the same dimension.

Proposition 4.3 shows that the tangent space TV,P is an intrinsic invariant of the
variety at the point P . (In fact there is a way to define TV,P purely in terms of
the local ring OV,P and its maximal ideal mV,P : it is isomorphic to the dual of the
k-vector space mV,P/m

2
V,P . See Reid or Hulek for details.)

Now give another characterisation of dimension: recall the definition of transcen-
dence degree of a finitely-generated field extension K/k.

Theorem 4.5. If V is an irreducible variety then dimV = tr.deg.(k(V )/k).
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Proof. We saw (§3) that V is birational to a hypersurface, and (§2) that birational
varieties have isomorphic function fields. So by 4.4 we may assume that V is a
hypersurface, say V = V (f) ⊂ An, f ∈ k[X1, . . . , Xn] irreducible, and WLOG
f /∈ k[X1, . . . , Xn−1]. So k(V ) = k(x1, . . . , xn) where x1, . . . , xn−1 are algebraically
independent and f(x1, . . . , xn) = 0. So tr.deg.(k(V )/k) = n− 1 = dim(V )

Remarks. (i) Another characterisation of dimension: consider chains of closed ir-
reducible subvarieties Wi

V ⊃ W0 ) W1 ) · · · ) Wd 6= ∅

Theorem. dimV = maximum d for which such a chain exists.

Cf. example sheet I, Q8 where you show that the only irreducible subvarieties of
a curve are points. We won’t prove this result in the course for varieties of higher
dimension (for curves we’ll do so at the beginning of §6).

(ii) Proof of Thm.4.5 also proves that transcendence degree is well-defined (since
dimV only depends on k(V ) by 2.5 and 4.4)
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