
9 Idele class group

Already seen that the content map induces surjections from CK = JK/K
∗ and

J1
K/K

∗ to the ideal class group Cl(K) = I(K)/P (K). It’s important for Class
Field Theory to understand all the finite quotients of CK .

Proposition 9.1. Let G be a discrete group.
(i) Any continuous homomophism α : CK → G has finite image.
(ii) There is a bijection:

{
continuous homomor-
phisms α : JK → G

}
∼−→

families (αv : K∗v → G)v of continu-
ous homomorphisms with αv(O

∗
v) =

{1} for almost all finite v


Proof. (i) As JK/J

1
K ' R, we must have α(CK) = α(J1

K/K
∗) and result follows

from compactness of J1
K/K

∗.
(ii) The subgroup

⊕
vK

∗
v ⊂ JK is dense (since ⊕O∗v ⊂

∏
O∗v is dense). So if

α : JK → G is continuous, it is determined by the family (αv = α|K∗v : K∗v → G)v.
As kerα is open, αv(O

∗
v) = 1.

Conversely, if (αv)v is such a family, then the formula α(x) =
∏

v αv(xv) is a
finite product if x ∈ JK and defines a continuous homomorphism α.

Definition. A modulus is a finite formal sum m =
∑

v∈ΣK
mv(v) with mv ∈ N.

The support and finite support of m are the sets

supp(m) = {v ∈ ΣK | mv > 0}, suppf (m) = supp(m) ∩ ΣK,f .

Define UK,m =
∏

v∈ΣK
Umv
v ⊂ JK where

Um
v


O∗v v finite, m = 0

1 + πmv Ov v finite, m > 0

K∗v v real and m = 0, or v complex

K∗,+v = R∗>0 v real, m > 0.

Then UK,m is an open subgroup of JK , since Umv
v ⊂ K∗v is open for all v and

equals O∗v for almost all v.

Proposition 9.2. Any open subgroup of JK contains some UK,m, and JK/K
∗UK,m

is finite.

Proof. The first statement follows from the definition of the topology on JK , since
the open subgroups of R∗ are R∗ and R∗,+ and C∗ has no proper open subgroup.
Since UK,m is open, JK/K

∗UK,m is a discrete quotient of CK hence is finite by
Prop.9.1(i).

Definition. The group Clm(K) = JK/K
∗UK,m is called the ray class group of K

modulo m.

Clearly every (continuous) finite quotient of CK factors through some Clm(K).
If m = 0 then UK,m = UK = ker

(
c : JK → I(K)

)
and Clm(K) is the class group

Cl(K).
More notations: let m =

∑
mv(v) be a modulus.

• For x ∈ K∗, write x ≡ 1 mod∗ m if:
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– for v ∈ suppf (m), v(x− 1) ≥ mv ; and

– for every real v ∈ supp(m), x ∈ K∗,+v .

• K∗m = {x ∈ K∗ | x ≡ 1 mod∗ m}.

• Im(K) = free abelian group on {v ∈ ΣK,f | mv = 0},

• Pm(K) = {xoK | x ∈ K∗m} ⊂ Im(K).

Theorem. Cm(K) ' Im(K)/Pm(K).

Example. Suppose m =
∑

v|∞(v). Then Im(K) = I(K) and Pm(K) is the group

of principal fractional ideals xoK where for every σ : K ↪−→R, σ(x) > 0. (We say
x is totally positive.) The group Cl(m(K) is called the narrow ideal class group,
written Cl+(K). The kernel of the obvious surjection Cl+(K) → Cl(K is killed
by multiplication by 2.

Lecture 19

More precisely:

Theorem 9.3. Let S ⊂ ΣK,f be a finite subset containing suppf (m).. There is
a unique continuous homomorphism α = (αv) : JK → Im(K)/Pm(K) such that
α(K∗) = 0 and, for every finite v /∈ S, αv(πv) = P−1

v . It is surjective with kernel
K∗UK,m.

Remark. We use P−1
v rather than Pv to make subsequent things nicer.

Proof. More notation! Let

JK,m = {(xv) ∈ JK | ∀v ∈ suppf (m), xv ∈ Umv
v }

which is the subgroup of JK generated by UK,m and all the K∗v ’s. The strong
approximation theorem then implies that JK = K∗JK,m. If x ∈ K∗ ⊂ JK then
x ∈ K∗m iff x ∈ JK,m, i.e. K∗m = K∗ ∩ JK,m.

First show α is unique: if α, α′ are two such homomorphisms set φ = α−1α′.
Then (enlarging S is necessary) we may assume that φ(UK,m′) = 1 for some mod-
ulus m′ with finite support contained in S. By hypothesis φv(πv) = 1 for all finite
v /∈ S. Therefore φ(JK,m′) = 1. As φ(K∗) = 1, this means φ = 1.

So it suffices to construct α. But as K∗JK,m = JK and K∗ ∩ JK,m = K∗m,

JK
K∗UK,m

∼←−−− JK,m
(K∗UK,m) ∩ JK,m

=
JK,m

K∗mUK,m
(1)

We also have an isomorphism −c : JK/m/UK,m
∼−→ Im(K), which maps an idele x

to the inverse of its content: −c(x) =
∏
v-∞

P
−v(xv)
v . As c(K∗m) = Pm(K), this induces

an isomorphism

−c :
JK,m

K∗mUK,m

∼−→ Im(K)

Pm(K)
.

We define α to be the composite of (1) and −c.

Remark. It is important to note that the homomorphism JK/K
∗ → Im/Pm just

constructed is not induced by the content map on all of JK (Neukirch VI.1.9 is
at best ambiguous in this regard). It only agrees with the content map on JK,m.
(Fröhlich called this the “fundamental mistake of class field theory”).
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Example. Suppose K = Q, m ≥ 1, and let m = m∞ denote the modulus (∞) +∑
p|m vp(m) · (p). If I ∈ Im(Q) then I = (a/b)Z for unique positive coprime

integers a, b with (ab,m) = 1, set θ(I) = (a/b) (mod m). This clearly defines an
isomorphism θ : Im(Q)/Pm(Q) ∼−→ (Z/mZ)∗.

On the idelic side, the inclusion
∏

p|m Z∗p ↪−→ JQ induces an inclusion

β : (Z/mZ)∗ =
∏
p|m

(Zp/mZp)∗ ↪−→ JQ,m/UQ,m

I claim that the composite map:

(Z/mZ)∗
∼−−−→
β

Clm(Q)
∼−−−→
α
Im(Q)/Pm(Q)

∼−−−→
θ

(Z/mZ)∗

is the identity map! To see this, let a > 0 be an integer prime to m. Then
β(a) is represented by the idele with components a at every p|m and 1 elsewhere.
Multiplying by the principal idele a−1 shows that β(a) is also represented by the
idele x with components 1 at every p|m and a−1 at all others. So (as a > 0)
x ∈ JQ,m, and α(x) is the class of the ideal I with vp(I) = vp(a)−1 for all p|m,
vp(I) = 0 for all other p — in other words, I = aZ.

10 Dedekind zeta function

Theta functions of lattices

Let V be a real vector space of dimension n ≥ 1, 〈, 〉 : V ×V → R an inner product.
Let {ei} be an ON basis for V , and µ (or dv) the associated measure (for which
µ(V/

∑
Zei) = 1) — it doesn’t depend on the choice of ON basis.

Fourier transform: Let f : V → C be a nice2 function. Define

f̂ : V → C, f̂(u) =

∫
V

e−2πi〈u,v〉f(v) dv

The Fourier inversion formula for Rn says:
ˆ̂
f(v) = f(−v).

Theorem 10.1 (Poisson summation formula). Let Λ ⊂ V be a lattice, Λ′ = {y ∈
V |〈x, y〉 ∈ Z ∀x ∈ Λ} the dual lattice. Then∑

x∈Λ

f(x) = µ(V/Λ)−1
∑
y∈Λ′

f̂(y).

Proof. Let g(v) =
∑

x∈Λ f(v + x) : V/Λ→ C. Then g can be written as a Fourier
series:

g(v) =
∑
y∈Λ′

cy e
2πi〈y,v〉

with coefficients

cy = µ(V/Λ)−1

∫
V/Λ

g(v)e−2πi〈y,v〉 dv

= µ(V/Λ)−1

∫
V

f(v)e−2πi〈y,v〉 dv = µ(V/Λ)−1f̂(y)

Then
∑

x∈Λ f(x) = g(0) =
∑

y∈Λ′ cy = µ(V/Λ)−1
∑

y∈Λ′ f̂(y).

2 “Nice” here means that the derivatives f (m) (m ∈ Nn) satisfy: for every polynomial function
P on V , P (v)f (m)(v) is bounded.
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Lecture 20

Now we define the theta function of Λ to be

ΘΛ(t) =
∑
x∈Λ

e−πt〈x,x〉 (0 < t ∈ R).

Note that since #{x ∈ Λ | 〈x, x〉 < N} = O(Nn), the series is bounded by a
constant times

∑∞
N=1N

ne−πtN so converges. (The same argument shows that the
series g in the proof of Poisson summation converges.)

Theorem 10.2.
ΘΛ(t) = t−n/2µ(V/Λ)−1ΘΛ′(1/t).

Proof. We let f(v) = e−π〈v,v〉 =
∏

i e
−πv2

i , if v =
∑
viei in the ON basis {ei}. Then

f̂ = f (standard result3 for n = 1).
Moreover as (cΛ)′ = c−1Λ′, by Poisson summation

ΘΛ(t) =
∑

x∈t1/2Λ

f(x) = µ(V/t1/2Λ)−1
∑

y∈t−1/2Λ′

f(y) = t−n/2µ(V/Λ)−1ΘΛ′(1/t).

As ΘΛ′(t)→ 1 as t→∞, deduce:

Corollary 10.3. ΘΛ(t) ∼ µ(V/Λ)−1t−n/2 as t→ 0.

The Epstein zeta function of the quadratic lattice Λ is

E(Λ, s) = E(Λ, 〈−,−〉; s) =
∑

06=x∈Λ

1

〈x, x〉s
.

It converges absolutely for Re(s) > n/2. In fact, if {fi} is a basis for Λ and
x =

∑
xifi then 〈x, x〉 ≥ cmax(x2

i ) for some c > 0, so∑
0 6=x∈Λ

〈x, x〉−s ≤ c−s
∑

0≤∈Zn

(max |xi|)−2s

= c−s
∑
N≥1

N−2s ×#{x ∈ Zn | max |xi| = N}

� c−s
∑
N≥1

Nn−1−2s

which converges for Re(2s) > n.

Theorem 10.4. E(Λ, s) = π−sΓ(s)E(Λ, s) has a meromorphic continuation to C,
analytic apart from simple poles at s = 0, n/2 with residues −1, µ(V/Λ) respec-
tively. It satisfies the functional equation

E(Λ, s) = µ(V/Λ)−1E(Λ′,
n

2
− s).

In particular, E(Λ, 0) = −1.

3Proof: if f(x) = exp(−πx2) then

f̂(y) =

∫ ∞
−∞

e−πx
2−2πixy dx = e−πy

2

∫ ∞
−∞

e−π(x+iy)
2

dx = f(y)

∫ ∞+iy

−∞+iy

e−πz
2

dz .

Now shift the path of integration to [−∞,∞] and use
∫∞
−∞ e−πx

2

dx = 1.
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Recall Γ(s) =
∫∞

0
e−tts−1 dt is analytic apart for simple poles at s = 0,−1,−2, . . . ,

and Γ(n+ 1) = n!, Γ(s+ 1) = sΓ(s). In particular, Ress=0 Γ(s) = 1.

Remark. Λ = Z ⊂ R with Euclidean inner product. Then E(Z, s) = 2ζ(2s). We
get ζ(s) ∼ 1/(s − 1), ζ(0) = −1/2 and the usual FE for ζ(s). (See Analytic
Number Theory next term.)

Proof.

π−sΓ(s)E(Λ, s) =

∫ ∞
0

e−tπ−sts
∑

06=x∈Λ

〈x, x〉−s dt
t

=

∫ ∞
0

∑
x 6=0

e−πt〈x,x〉ts
dt

t
=

∫ ∞
0

(ΘΛ(t)− 1) ts
dt

t

Break up as
∫ 1

0
+
∫∞

1
. Then if Re(s) > n/2, we can by Cor.10.2 compute:∫ 1

0

=

∫ 1

0

ΘΛ(t)ts
dt

t
− 1

s
= −1

s
+

∫ 1

0

µ(V/Λ)−1ΘΛ′(t
−1)ts−n/2

dt

t

= −1

s
+ µ(V/Λ)−1

∫ ∞
1

ΘΛ′(t)t
n/2−s dt

t

= −
(

1

s
+
µ(V/Λ)−1

n/2− s

)
+ µ(V/Λ)−1

∫ ∞
1

(ΘΛ′(t)− 1) tn/2−s
dt

t

So E(Λ, s) equals

−
(

1

s
+
µ(V/Λ)−1

n/2− s

)
+

∫ ∞
1

(ΘΛ(t)− 1) ts + µ(V/Λ)−1 (ΘΛ′(t)− 1) tn/2−s · dt
t

Now ΘΛ − 1 tends rapidly to 0 as t→∞, so the integral is analytic for all s ∈ C.
This gives the residues, and using the FE for Θ and µ(V/Λ)−1 = µ(V/Λ′) we get
the FE.

Lecture 21

Definition. The Dedekind zeta function is the function

ζK(s) =
∑
I

1

N(I)s

the sum taken over non-0 ideals I ⊂ oK .

Proposition 10.5. ζK(s) =
∏

v-∞(1−q−sv )−1, and the product converges absolutely

for Re(s) > 1.

Proof. As formal series, the product follows from unique factorisation of ideals:
writing I =

∏
P nv
v gives NI =

∏
qnv
v , hence

ζK(s) =
∏
v

(1 + q−sv + q−2s
v + · · · )

Now #{v|p} ≤ n and qv ≥ p if v|p, so product converges by comparison with∏
p

(1− p−s)−n = (
∑
N≥1

N−s)n = ζ(s)n.
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We are now going to prove:

Theorem 10.6. ζK(s) has a meromorphic continuation to C whose only singu-
larity is a simple pole at s = 1. Moreover

lim
s→0

ζK(s)

sr1+r2−1
= −hKRK

wK
.

This is the famous analytic class number formula. Here:

• hK = #Cl(K), the class number of K

• wK = #µ(K) the order of the group of roots of unity of K

• RK is the regulator of K (defined below).

Let Σ = ΣK,∞ be the infinite places of K. Write the group of units of K as
o∗K = µK × 〈ε1, . . . , εr−1〉, r = r1 + r2 = #Σ. Let ev = e(v/∞) = 1 if v is real, 2 if
v is complex.

Consider the (r − 1) × r real matrix (log |εj|v) (v ∈ Σ, 1 ≤ j ≤ r − 1). Since∏
v |εj|v = 1, the columns of this matrix sum to zero. So all of its (r− 1)× (r− 1)

minors have the same absolute value, which is by definition RK . The proof of the
unit theorem shows that RK 6= 0 (it is, for suitably chosen measure, the volume
of Rr−1/λ(o∗K). )

We begin by breaking the sum up into ideal classes:

ζK(s) =
∑
C∈Cl(K)

ζK(C, s), where ζK(C, s) =
∑

I⊂oK , I∈C

NI−s.

Fix I0 ∈ C−1. Then C = {xI−1
0 | x ∈ I0} and

ζK(C, s) = (NI0)s
∑∗

x∈I0

∣∣NK/Q(x)
∣∣−s

where ∗ means to take the sum over nonzero elements of I0 modulo o∗K .
If K = Q which is just (1/2)Z(Z, s/2). If Q(

√
−D) is imaginary quadratic,

then as oK is finite, the sum is just 1/wK times the sum over all nonzero x ∈ I),
and NK/Q(x) = xx̄ is a positive definite quadratic form. So ζK(C, s) is itself an
Epstein zeta function. For other K, this isn’t the case, but we can write each
“partial zeta” ζK(C, s) as an integral of Epstein zeta functions.

Define

φ : Rr−1 ∼−→ {u = (uv) ∈ RΣ
>0 |

∏
uv = 1}, φ(w) =

(∏
j

|εj|wj

v

)
v

For x = (xv) ∈ K ⊗ R =
∏

v∈Σ Kv ' Rr1 × Cr2 and u = φ(w) set

Qw(x) =
∑
v∈Σ

ev(uv |xv|v)
2/ev =

∑
v real

u2
v |xv|

2
v + 2

∑
v complex

uv |xv|v

which is a positive definite quadratic form (remember that for v complex, |−|v is
square of complex modulus).

Lemma 10.7. For all m ∈ Zr−1 and ζ ∈ µ(K), Qw(ζ
∏

j ε
mj

j · x) = Qw+m(x).

(Proof trivial.)
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Lecture 22

Recall

Qw(x) =
∑
v∈Σ

ev(uv |xv|v)
2/ev where u = φ(w) =

(∏
j

|εj|wj

v

)
v
.

The next result is the key to rewriting ζK(s) in terms of Epstein zeta functions.

Proposition 10.8. Let x ∈ K∗. Then

Γ(s)

∫
Rr−1

Qw(x)−s dw = R−1
K

(
Γ(s/n)r1 Γ(2s/n)r2

n2r1+2r2s/n−1

) ∣∣NK/Q(x)
∣∣−2s/n

.

Proof.

LHS =

∫
R>0×Rr−1

e−ttsQw(x)−s
dt

t
dw =

∫
R>0×Rr−1

e−tQw(x)ts
dt

t
dw. (∗)

Change variables to (yv) ∈ RΣ
>0 where yv = tevu2

v and (uv) = φ(w) as above. Then

tn =
∏
v

tev =
∏
v

yv as
∏

uv = 1, tQw(x) =
∑
v

evy
1/ev
v |x|2/evv .

Compute the Jacobian:

dyv
yv

= ev
dt

t
+ 2

r−1∑
j=1

log |εj|v dwj ,
∏ dyv

yv
= |J | dt

t

∏
j

dwj

where

|J | =

∥∥∥∥∥∥
· · · · · · · · · · · ·
ev 2 log |ε1|v · · · 2 log |εr−1|v
· · · · · · · · · · · ·

∥∥∥∥∥∥
= 2r−1

∥∥∥∥∥∥∥∥
n 0 · · · 0
· · · · · · · · · · · ·
ev log |ε1|v · · · log |εr−1|v
· · · · · · · · · · · ·

∥∥∥∥∥∥∥∥ = 2r−1nRK

adding all the remaining rows to the first and using
∑

v log |ε|v = 0. Then

(∗)× |J | =
∫
RΣ
>0

exp
(
−
∑
v

evy
1/ev
v |x|2/evv︸ ︷︷ ︸

= z

)∏
v

ys/nv

∏
v

dyv
yv

=
∏
v

∫ ∞
0

exp(−z)
(
e−2
v |x|

−2
v zev

)s/n
ev
dz

z

= 2r2(1−2s/n)
∣∣NK/Q(x)

∣∣−2s/n
Γ
( s
n

)r1
Γ

(
2s

n

)r2
.

where we have made the further change of variables yv = e−2
v |xv|

−2
v zev in the

integral (note that eevv = e2
v).
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Proof of Theorem. Apply to ζK(C, s) (replacing s in the Proposition with ns/2)
to get:

Γ
(s

2

)r1
Γ(s)r2 ζK(C, s) = RK n2r1+r2s−1Γ

(ns
2

)
(NI0)s

∑∗

x∈I0

∫
Rr−1

Qw(x)−ns/2 dw

Now break up the domain of integration into boxes m + [0, 1]r−1, m ∈ Zr−1 and
apply Lemma 10.7 with ε = ζ

∏
j ε

mj

j , ζ ∈ µ(K), to write the sum as:

∑∗

x∈I0

∫
[0,1]r−1

∑
m∈Zr−1

Qw+m(x)−ns/2 dw =
∑∗

x∈I0

∫
[0,1]r−1

1

#µ(K)

∑
ε∈o∗K

Qw(εx)−ns/2 dw

=

∫
[0,1]r−1

1

#µ(K)

∑
06=x∈I0

Qw(x)−ns/2 dw

=
1

#µ(K)

∫
[0,1]r−1

E(I0, Qw, ns/2) dw.

Therefore we get:

Γ
(s

2

)r1
Γ(s)r2 ζK(C, s) = n2r1+r2s−1π

ns
2 (NI0)s

RK

#µ(K)

∫
(R/Z)r−1

E(I0, Qw,
ns

2
) dw

Now (analytic fact!) Γ(s) has no zeroes, so by the analytic continuation of E we
obtain that of ζK(C, s), with only possible poles at s = 1 and 0. The leading term
of the Taylor series at s = 0 of the various terms are:

Γ
(s

2

)r1
Γ(s)r2 ∼ 2−r1sr1+r2 , E(I0, Qw,

ns

2
) ∼ − 2

ns

so ζK(C, s) ∼ −w−1
K RKs

r−1. Summing over ideal classes we get the Theorem!

Remark. It is standard to write ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s). The
integral representation then becomes

ΓR(s)r1ΓC(s)r2ζK(C, s) =
n2r−1RK

wK
(NI0)s

∫
(R/Z)r−1

E(I0, Qw,
ns

2
) dw.

from which it is an exercise to derive the functional equation for ζK(s) (see example
sheet 3).
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