

9 Idele class group

Already seen that the content map induces surjections from $C_K = J_K/K^*$ and J_K^1/K^* to the ideal class group $Cl(K) = I(K)/P(K)$. It's important for Class Field Theory to understand *all* the finite quotients of C_K .

Proposition 9.1. *Let G be a discrete group.*

(i) *Any continuous homomorphism $\alpha: C_K \rightarrow G$ has finite image.*

(ii) *There is a bijection:*

$$\left\{ \begin{array}{l} \text{continuous} \\ \text{homomorphisms } \alpha: J_K \rightarrow G \end{array} \right\} \xrightarrow{\sim} \left\{ \begin{array}{l} \text{families } (\alpha_v: K_v^* \rightarrow G)_v \text{ of continuous} \\ \text{homomorphisms with } \alpha_v(\mathfrak{O}_v^*) = \{1\} \text{ for almost all finite } v \end{array} \right\}$$

Proof. (i) As $J_K/J_K^1 \simeq \mathbb{R}$, we must have $\alpha(C_K) = \alpha(J_K^1/K^*)$ and result follows from compactness of J_K^1/K^* .

(ii) The subgroup $\bigoplus_v K_v^* \subset J_K$ is dense (since $\bigoplus \mathfrak{O}_v^* \subset \prod \mathfrak{O}_v^*$ is dense). So if $\alpha: J_K \rightarrow G$ is continuous, it is determined by the family $(\alpha_v = \alpha|_{K_v^*}: K_v^* \rightarrow G)_v$. As $\ker \alpha$ is open, $\alpha_v(\mathfrak{O}_v^*) = 1$.

Conversely, if $(\alpha_v)_v$ is such a family, then the formula $\alpha(x) = \prod_v \alpha_v(x_v)$ is a finite product if $x \in J_K$ and defines a continuous homomorphism α . \square

Definition. A *modulus* is a finite formal sum $\mathfrak{m} = \sum_{v \in \Sigma_K} m_v(v)$ with $m_v \in \mathbb{N}$. The *support* and *finite support* of \mathfrak{m} are the sets

$$\text{supp}(\mathfrak{m}) = \{v \in \Sigma_K \mid m_v > 0\}, \quad \text{supp}_f(\mathfrak{m}) = \text{supp}(\mathfrak{m}) \cap \Sigma_{K,f}.$$

Define $U_{K,\mathfrak{m}} = \prod_{v \in \Sigma_K} U_v^{m_v} \subset J_K$ where

$$U_v^m = \begin{cases} \mathfrak{O}_v^* & v \text{ finite, } m = 0 \\ 1 + \pi_v^m \mathfrak{O}_v & v \text{ finite, } m > 0 \\ K_v^* & v \text{ real and } m = 0, \text{ or } v \text{ complex} \\ K_v^{*,+} = \mathbb{R}_{>0}^* & v \text{ real, } m > 0. \end{cases}$$

Then $U_{K,\mathfrak{m}}$ is an open subgroup of J_K , since $U_v^{m_v} \subset K_v^*$ is open for all v and equals \mathfrak{O}_v^* for almost all v .

Proposition 9.2. *Any open subgroup of J_K contains some $U_{K,\mathfrak{m}}$, and $J_K/K^*U_{K,\mathfrak{m}}$ is finite.*

Proof. The first statement follows from the definition of the topology on J_K , since the open subgroups of \mathbb{R}^* are \mathbb{R}^* and $\mathbb{R}^{*,+}$ and \mathbb{C}^* has no proper open subgroup. Since $U_{K,\mathfrak{m}}$ is open, $J_K/K^*U_{K,\mathfrak{m}}$ is a discrete quotient of C_K hence is finite by Prop.9.1(i). \square

Definition. The group $Cl_{\mathfrak{m}}(K) = J_K/K^*U_{K,\mathfrak{m}}$ is called the *ray class group* of K modulo \mathfrak{m} .

Clearly every (continuous) finite quotient of C_K factors through some $Cl_{\mathfrak{m}}(K)$. If $\mathfrak{m} = 0$ then $U_{K,\mathfrak{m}} = U_K = \ker(c: J_K \rightarrow \mathcal{I}(K))$ and $Cl_{\mathfrak{m}}(K)$ is the class group $Cl(K)$.

More notations: let $\mathfrak{m} = \sum m_v(v)$ be a modulus.

- For $x \in K^*$, write $x \equiv 1 \pmod* \mathfrak{m}$ if:

- for $v \in \text{supp}_f(\mathfrak{m})$, $v(x-1) \geq m_v$; and
- for every real $v \in \text{supp}(\mathfrak{m})$, $x \in K_v^{*,+}$.

- $K_{\mathfrak{m}}^* = \{x \in K^* \mid x \equiv 1 \pmod* \mathfrak{m}\}$.
- $\mathcal{I}_{\mathfrak{m}}(K)$ = free abelian group on $\{v \in \Sigma_{K,f} \mid m_v = 0\}$,
- $\mathcal{P}_{\mathfrak{m}}(K) = \{x\mathfrak{o}_K \mid x \in K_{\mathfrak{m}}^*\} \subset \mathcal{I}_{\mathfrak{m}}(K)$.

Theorem. $C_{\mathfrak{m}}(K) \simeq \mathcal{I}_{\mathfrak{m}}(K)/\mathcal{P}_{\mathfrak{m}}(K)$.

Example. Suppose $\mathfrak{m} = \sum_{v|\infty}(v)$. Then $\mathcal{I}_{\mathfrak{m}}(K) = \mathcal{I}(K)$ and $\mathcal{P}_{\mathfrak{m}}(K)$ is the group of principal fractional ideals $x\mathfrak{o}_K$ where for every $\sigma: K \hookrightarrow \mathbb{R}$, $\sigma(x) > 0$. (We say x is *totally positive*.) The group $Cl(\mathfrak{m}(K))$ is called the *narrow ideal class group*, written $Cl^+(K)$. The kernel of the obvious surjection $Cl^+(K) \rightarrow Cl(K)$ is killed by multiplication by 2.

Lecture 19

More precisely:

Theorem 9.3. *Let $S \subset \Sigma_{K,f}$ be a finite subset containing $\text{supp}_f(\mathfrak{m})$. There is a unique continuous homomorphism $\alpha = (\alpha_v): J_K \rightarrow \mathcal{I}_{\mathfrak{m}}(K)/\mathcal{P}_{\mathfrak{m}}(K)$ such that $\alpha(K^*) = 0$ and, for every finite $v \notin S$, $\alpha_v(\pi_v) = P_v^{-1}$. It is surjective with kernel $K^*U_{K,\mathfrak{m}}$.*

Remark. We use P_v^{-1} rather than P_v to make subsequent things nicer.

Proof. More notation! Let

$$J_{K,\mathfrak{m}} = \{(x_v) \in J_K \mid \forall v \in \text{supp}_f(\mathfrak{m}), x_v \in U_v^{m_v}\}$$

which is the subgroup of J_K generated by $U_{K,\mathfrak{m}}$ and all the K_v^* 's. The strong approximation theorem then implies that $J_K = K^*J_{K,\mathfrak{m}}$. If $x \in K^* \subset J_K$ then $x \in K_{\mathfrak{m}}^*$ iff $x \in J_{K,\mathfrak{m}}$, i.e. $K_{\mathfrak{m}}^* = K^* \cap J_{K,\mathfrak{m}}$.

First show α is unique: if α, α' are two such homomorphisms set $\phi = \alpha^{-1}\alpha'$. Then (enlarging S is necessary) we may assume that $\phi(U_{K,\mathfrak{m}'}) = 1$ for some modulus \mathfrak{m}' with finite support contained in S . By hypothesis $\phi_v(\pi_v) = 1$ for all finite $v \notin S$. Therefore $\phi(J_{K,\mathfrak{m}'}) = 1$. As $\phi(K^*) = 1$, this means $\phi = 1$.

So it suffices to construct α . But as $K^*J_{K,\mathfrak{m}} = J_K$ and $K^* \cap J_{K,\mathfrak{m}} = K_{\mathfrak{m}}^*$,

$$\frac{J_K}{K^*U_{K,\mathfrak{m}}} \xleftarrow{\sim} \frac{J_{K,\mathfrak{m}}}{(K^*U_{K,\mathfrak{m}}) \cap J_{K,\mathfrak{m}}} = \frac{J_{K,\mathfrak{m}}}{K_{\mathfrak{m}}^*U_{K,\mathfrak{m}}} \quad (1)$$

We also have an isomorphism $-c: J_{K/\mathfrak{m}}/U_{K,\mathfrak{m}} \xrightarrow{\sim} \mathcal{I}_{\mathfrak{m}}(K)$, which maps an idele x to the inverse of its content: $-c(x) = \prod_{v \nmid \infty} P_v^{-v(x_v)}$. As $c(K_{\mathfrak{m}}^*) = \mathcal{P}_{\mathfrak{m}}(K)$, this induces an isomorphism

$$\overline{-c}: \frac{J_{K,\mathfrak{m}}}{K_{\mathfrak{m}}^*U_{K,\mathfrak{m}}} \xrightarrow{\sim} \frac{\mathcal{I}_{\mathfrak{m}}(K)}{\mathcal{P}_{\mathfrak{m}}(K)}.$$

We define α to be the composite of (1) and $\overline{-c}$. □

Remark. It is important to note that the homomorphism $J_K/K^* \rightarrow \mathcal{I}_{\mathfrak{m}}/\mathcal{P}_{\mathfrak{m}}$ just constructed is *not* induced by the content map on all of J_K (Neukirch VI.1.9 is at best ambiguous in this regard). It only agrees with the content map on $J_{K,\mathfrak{m}}$. (Fröhlich called this the “fundamental mistake of class field theory”).

Example. Suppose $K = \mathbb{Q}$, $m \geq 1$, and let $\mathfrak{m} = m\infty$ denote the modulus $(\infty) + \sum_{p|m} v_p(m) \cdot (p)$. If $I \in \mathcal{I}_{\mathfrak{m}}(\mathbb{Q})$ then $I = (a/b)\mathbb{Z}$ for unique positive coprime integers a, b with $(ab, m) = 1$, set $\theta(I) = (a/b) \pmod{m}$. This clearly defines an isomorphism $\theta: \mathcal{I}_{\mathfrak{m}}(\mathbb{Q})/\mathcal{P}_{\mathfrak{m}}(\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^*$.

On the idelic side, the inclusion $\prod_{p|m} \mathbb{Z}_p^* \hookrightarrow J_{\mathbb{Q}, \mathfrak{m}}$ induces an inclusion

$$\beta: (\mathbb{Z}/m\mathbb{Z})^* = \prod_{p|m} (\mathbb{Z}_p/m\mathbb{Z}_p)^* \hookrightarrow J_{\mathbb{Q}, \mathfrak{m}}/U_{\mathbb{Q}, \mathfrak{m}}$$

I claim that the composite map:

$$(\mathbb{Z}/m\mathbb{Z})^* \xrightarrow{\beta} Cl_{\mathfrak{m}}(\mathbb{Q}) \xrightarrow{\alpha} \mathcal{I}_{\mathfrak{m}}(\mathbb{Q})/\mathcal{P}_{\mathfrak{m}}(\mathbb{Q}) \xrightarrow{\theta} (\mathbb{Z}/m\mathbb{Z})^*$$

is the identity map! To see this, let $a > 0$ be an integer prime to m . Then $\beta(a)$ is represented by the idele with components a at every $p|m$ and 1 elsewhere. Multiplying by the principal idele a^{-1} shows that $\beta(a)$ is also represented by the idele x with components 1 at every $p|m$ and a^{-1} at all others. So (as $a > 0$) $x \in J_{\mathbb{Q}, \mathfrak{m}}$, and $\alpha(x)$ is the class of the ideal I with $v_p(I) = v_p(a)^{-1}$ for all $p|m$, $v_p(I) = 0$ for all other p — in other words, $I = a\mathbb{Z}$.

10 Dedekind zeta function

Theta functions of lattices

Let V be a real vector space of dimension $n \geq 1$, $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{R}$ an inner product. Let $\{e_i\}$ be an ON basis for V , and μ (or dv) the associated measure (for which $\mu(V/\sum \mathbb{Z}e_i) = 1$) — it doesn't depend on the choice of ON basis.

Fourier transform: Let $f: V \rightarrow \mathbb{C}$ be a nice² function. Define

$$\hat{f}: V \rightarrow \mathbb{C}, \quad \hat{f}(u) = \int_V e^{-2\pi i \langle u, v \rangle} f(v) dv$$

The **Fourier inversion formula** for \mathbb{R}^n says: $\hat{\hat{f}}(v) = f(-v)$.

Theorem 10.1 (Poisson summation formula). *Let $\Lambda \subset V$ be a lattice, $\Lambda' = \{y \in V \mid \langle x, y \rangle \in \mathbb{Z} \ \forall x \in \Lambda\}$ the dual lattice. Then*

$$\sum_{x \in \Lambda} f(x) = \mu(V/\Lambda)^{-1} \sum_{y \in \Lambda'} \hat{f}(y).$$

Proof. Let $g(v) = \sum_{x \in \Lambda} f(v+x): V/\Lambda \rightarrow \mathbb{C}$. Then g can be written as a Fourier series:

$$g(v) = \sum_{y \in \Lambda'} c_y e^{2\pi i \langle y, v \rangle}$$

with coefficients

$$\begin{aligned} c_y &= \mu(V/\Lambda)^{-1} \int_{V/\Lambda} g(v) e^{-2\pi i \langle y, v \rangle} dv \\ &= \mu(V/\Lambda)^{-1} \int_V f(v) e^{-2\pi i \langle y, v \rangle} dv = \mu(V/\Lambda)^{-1} \hat{f}(y) \end{aligned}$$

Then $\sum_{x \in \Lambda} f(x) = g(0) = \sum_{y \in \Lambda'} c_y = \mu(V/\Lambda)^{-1} \sum_{y \in \Lambda'} \hat{f}(y)$. \square

² “Nice” here means that the derivatives $f^{(m)}$ ($m \in \mathbb{N}^n$) satisfy: for every polynomial function P on V , $P(v)f^{(m)}(v)$ is bounded.

Lecture 20

Now we define the **theta function** of Λ to be

$$\Theta_\Lambda(t) = \sum_{x \in \Lambda} e^{-\pi t \langle x, x \rangle} \quad (0 < t \in \mathbb{R}).$$

Note that since $\#\{x \in \Lambda \mid \langle x, x \rangle < N\} = O(N^n)$, the series is bounded by a constant times $\sum_{N=1}^{\infty} N^n e^{-\pi t N}$ so converges. (The same argument shows that the series g in the proof of Poisson summation converges.)

Theorem 10.2.

$$\Theta_\Lambda(t) = t^{-n/2} \mu(V/\Lambda)^{-1} \Theta_{\Lambda'}(1/t).$$

Proof. We let $f(v) = e^{-\pi \langle v, v \rangle} = \prod_i e^{-\pi v_i^2}$, if $v = \sum v_i e_i$ in the ON basis $\{e_i\}$. Then $\hat{f} = f$ (standard result³ for $n = 1$).

Moreover as $(c\Lambda)' = c^{-1}\Lambda'$, by Poisson summation

$$\Theta_\Lambda(t) = \sum_{x \in t^{1/2}\Lambda} f(x) = \mu(V/t^{1/2}\Lambda)^{-1} \sum_{y \in t^{-1/2}\Lambda'} f(y) = t^{-n/2} \mu(V/\Lambda)^{-1} \Theta_{\Lambda'}(1/t).$$

□

As $\Theta_{\Lambda'}(t) \rightarrow 1$ as $t \rightarrow \infty$, deduce:

Corollary 10.3. $\Theta_\Lambda(t) \sim \mu(V/\Lambda)^{-1} t^{-n/2}$ as $t \rightarrow 0$.

The **Epstein zeta function** of the quadratic lattice Λ is

$$E(\Lambda, s) = E(\Lambda, \langle -, - \rangle; s) = \sum_{0 \neq x \in \Lambda} \frac{1}{\langle x, x \rangle^s}.$$

It converges absolutely for $\operatorname{Re}(s) > n/2$. In fact, if $\{f_i\}$ is a basis for Λ and $x = \sum x_i f_i$ then $\langle x, x \rangle \geq c \max(x_i^2)$ for some $c > 0$, so

$$\begin{aligned} \sum_{0 \neq x \in \Lambda} \langle x, x \rangle^{-s} &\leq c^{-s} \sum_{0 \leq \underline{x} \in \mathbb{Z}^n} (\max |x_i|)^{-2s} \\ &= c^{-s} \sum_{N \geq 1} N^{-2s} \times \#\{\underline{x} \in \mathbb{Z}^n \mid \max |x_i| = N\} \\ &\ll c^{-s} \sum_{N \geq 1} N^{n-1-2s} \end{aligned}$$

which converges for $\operatorname{Re}(2s) > n$.

Theorem 10.4. $\mathcal{E}(\Lambda, s) = \pi^{-s} \Gamma(s) E(\Lambda, s)$ has a meromorphic continuation to \mathbb{C} , analytic apart from simple poles at $s = 0, n/2$ with residues $-1, \mu(V/\Lambda)$ respectively. It satisfies the **functional equation**

$$\mathcal{E}(\Lambda, s) = \mu(V/\Lambda)^{-1} \mathcal{E}(\Lambda', \frac{n}{2} - s).$$

In particular, $E(\Lambda, 0) = -1$.

³Proof: if $f(x) = \exp(-\pi x^2)$ then

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-\pi x^2 - 2\pi ixy} dx = e^{-\pi y^2} \int_{-\infty}^{\infty} e^{-\pi(x+iy)^2} dx = f(y) \int_{-\infty+iy}^{\infty+iy} e^{-\pi z^2} dz.$$

Now shift the path of integration to $[-\infty, \infty]$ and use $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$.

Recall $\Gamma(s) = \int_0^\infty e^{-ts} t^{s-1} dt$ is analytic apart for simple poles at $s = 0, -1, -2, \dots$, and $\Gamma(n+1) = n!$, $\Gamma(s+1) = s\Gamma(s)$. In particular, $\text{Res}_{s=0} \Gamma(s) = 1$.

Remark. $\Lambda = \mathbb{Z} \subset \mathbb{R}$ with Euclidean inner product. Then $E(\mathbb{Z}, s) = 2\zeta(2s)$. We get $\zeta(s) \sim 1/(s-1)$, $\zeta(0) = -1/2$ and the usual FE for $\zeta(s)$. (See Analytic Number Theory next term.)

Proof.

$$\begin{aligned} \pi^{-s} \Gamma(s) E(\Lambda, s) &= \int_0^\infty e^{-t} \pi^{-s} t^s \sum_{0 \neq x \in \Lambda} \langle x, x \rangle^{-s} \frac{dt}{t} \\ &= \int_0^\infty \sum_{x \neq 0} e^{-\pi t \langle x, x \rangle} t^s \frac{dt}{t} = \int_0^\infty (\Theta_\Lambda(t) - 1) t^s \frac{dt}{t} \end{aligned}$$

Break up as $\int_0^1 + \int_1^\infty$. Then if $\text{Re}(s) > n/2$, we can by Cor.10.2 compute:

$$\begin{aligned} \int_0^1 &= \int_0^1 \Theta_\Lambda(t) t^s \frac{dt}{t} - \frac{1}{s} = -\frac{1}{s} + \int_0^1 \mu(V/\Lambda)^{-1} \Theta_{\Lambda'}(t^{-1}) t^{s-n/2} \frac{dt}{t} \\ &= -\frac{1}{s} + \mu(V/\Lambda)^{-1} \int_1^\infty \Theta_{\Lambda'}(t) t^{n/2-s} \frac{dt}{t} \\ &= -\left(\frac{1}{s} + \frac{\mu(V/\Lambda)^{-1}}{n/2-s}\right) + \mu(V/\Lambda)^{-1} \int_1^\infty (\Theta_{\Lambda'}(t) - 1) t^{n/2-s} \frac{dt}{t} \end{aligned}$$

So $\mathcal{E}(\Lambda, s)$ equals

$$-\left(\frac{1}{s} + \frac{\mu(V/\Lambda)^{-1}}{n/2-s}\right) + \int_1^\infty (\Theta_\Lambda(t) - 1) t^s + \mu(V/\Lambda)^{-1} (\Theta_{\Lambda'}(t) - 1) t^{n/2-s} \cdot \frac{dt}{t}$$

Now $\Theta_\Lambda - 1$ tends rapidly to 0 as $t \rightarrow \infty$, so the integral is analytic for all $s \in \mathbb{C}$. This gives the residues, and using the FE for Θ and $\mu(V/\Lambda)^{-1} = \mu(V/\Lambda')$ we get the FE. \square

Lecture 21

Definition. The *Dedekind zeta function* is the function

$$\zeta_K(s) = \sum_I \frac{1}{N(I)^s}$$

the sum taken over non-0 ideals $I \subset \mathfrak{o}_K$.

Proposition 10.5. $\zeta_K(s) = \prod_{v \nmid \infty} (1 - q_v^{-s})^{-1}$, and the product converges absolutely for $\text{Re}(s) > 1$.

Proof. As formal series, the product follows from unique factorisation of ideals: writing $I = \prod P_v^{n_v}$ gives $NI = \prod q_v^{n_v}$, hence

$$\zeta_K(s) = \prod_v (1 + q_v^{-s} + q_v^{-2s} + \dots)$$

Now $\#\{v|p\} \leq n$ and $q_v \geq p$ if $v|p$, so product converges by comparison with

$$\prod_p (1 - p^{-s})^{-n} = \left(\sum_{N \geq 1} N^{-s}\right)^n = \zeta(s)^n.$$

\square

We are now going to prove:

Theorem 10.6. $\zeta_K(s)$ has a meromorphic continuation to \mathbb{C} whose only singularity is a simple pole at $s = 1$. Moreover

$$\lim_{s \rightarrow 0} \frac{\zeta_K(s)}{s^{r_1+r_2-1}} = -\frac{h_K R_K}{w_K}.$$

This is the famous **analytic class number formula**. Here:

- $h_K = \#Cl(K)$, the *class number* of K
- $w_K = \#\mu(K)$ the order of the group of roots of unity of K
- R_K is the *regulator* of K (defined below).

Let $\Sigma = \Sigma_{K,\infty}$ be the infinite places of K . Write the group of units of K as $\mathfrak{o}_K^* = \mu_K \times \langle \varepsilon_1, \dots, \varepsilon_{r-1} \rangle$, $r = r_1 + r_2 = \#\Sigma$. Let $e_v = e(v/\infty) = 1$ if v is real, 2 if v is complex.

Consider the $(r-1) \times r$ real matrix $(\log |\varepsilon_j|_v)$ ($v \in \Sigma$, $1 \leq j \leq r-1$). Since $\prod_v |\varepsilon_j|_v = 1$, the columns of this matrix sum to zero. So all of its $(r-1) \times (r-1)$ minors have the same absolute value, which is by definition R_K . The proof of the unit theorem shows that $R_K \neq 0$ (it is, for suitably chosen measure, the volume of $\mathbb{R}^{r-1}/\lambda(\mathfrak{o}_K^*)$.)

We begin by breaking the sum up into ideal classes:

$$\zeta_K(s) = \sum_{\mathcal{C} \in Cl(K)} \zeta_K(\mathcal{C}, s), \quad \text{where } \zeta_K(\mathcal{C}, s) = \sum_{I \subset \mathfrak{o}_K, I \in \mathcal{C}} NI^{-s}.$$

Fix $I_0 \in \mathcal{C}^{-1}$. Then $\mathcal{C} = \{xI_0^{-1} \mid x \in I_0\}$ and

$$\zeta_K(\mathcal{C}, s) = (NI_0)^s \sum_{x \in I_0}^* |N_{K/\mathbb{Q}}(x)|^{-s}$$

where * means to take the sum over nonzero elements of I_0 modulo \mathfrak{o}_K^* .

If $K = \mathbb{Q}$ which is just $(1/2)Z(\mathbb{Z}, s/2)$. If $\mathbb{Q}(\sqrt{-D})$ is imaginary quadratic, then as \mathfrak{o}_K is finite, the sum is just $1/w_K$ times the sum over all nonzero $x \in I_0$, and $N_{K/\mathbb{Q}}(x) = x\bar{x}$ is a positive definite quadratic form. So $\zeta_K(\mathcal{C}, s)$ is itself an Epstein zeta function. For other K , this isn't the case, but we can write each "partial zeta" $\zeta_K(\mathcal{C}, s)$ as an *integral* of Epstein zeta functions.

Define

$$\phi: \mathbb{R}^{r-1} \xrightarrow{\sim} \{u = (u_v) \in \mathbb{R}_{>0}^\Sigma \mid \prod u_v = 1\}, \quad \phi(w) = \left(\prod_j |\varepsilon_j|_v^{w_j} \right)_v$$

For $x = (x_v) \in K \otimes \mathbb{R} = \prod_{v \in \Sigma} K_v \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ and $u = \phi(w)$ set

$$Q_w(x) = \sum_{v \in \Sigma} e_v (u_v |x_v|_v)^{2/e_v} = \sum_{v \text{ real}} u_v^2 |x_v|_v^2 + 2 \sum_{v \text{ complex}} u_v |x_v|_v$$

which is a positive definite quadratic form (remember that for v complex, $|-|_v$ is *square* of complex modulus).

Lemma 10.7. For all $m \in \mathbb{Z}^{r-1}$ and $\zeta \in \mu(K)$, $Q_w(\zeta \prod_j \varepsilon_j^{m_j} \cdot x) = Q_{w+m}(x)$.

(Proof trivial.)

Lecture 22

Recall

$$Q_w(x) = \sum_{v \in \Sigma} e_v (u_v |x_v|_v)^{2/e_v} \quad \text{where} \quad u = \phi(w) = \left(\prod_j |\varepsilon_j|_v^{w_j} \right)_v.$$

The next result is the key to rewriting $\zeta_K(s)$ in terms of Epstein zeta functions.

Proposition 10.8. *Let $x \in K^*$. Then*

$$\Gamma(s) \int_{\mathbb{R}^{r-1}} Q_w(x)^{-s} dw = R_K^{-1} \left(\frac{\Gamma(s/n)^{r_1} \Gamma(2s/n)^{r_2}}{n 2^{r_1+2r_2 s/n-1}} \right) |N_{K/\mathbb{Q}}(x)|^{-2s/n}.$$

Proof.

$$\text{LHS} = \int_{\mathbb{R}_{>0} \times \mathbb{R}^{r-1}} e^{-t} t^s Q_w(x)^{-s} \frac{dt}{t} dw = \int_{\mathbb{R}_{>0} \times \mathbb{R}^{r-1}} e^{-tQ_w(x)} t^s \frac{dt}{t} dw. \quad (*)$$

Change variables to $(y_v) \in \mathbb{R}_{>0}^\Sigma$ where $y_v = t^{e_v} u_v^2$ and $(u_v) = \phi(w)$ as above. Then

$$t^n = \prod_v t^{e_v} = \prod_v y_v \quad \text{as} \quad \prod u_v = 1, \quad tQ_w(x) = \sum_v e_v y_v^{1/e_v} |x|_v^{2/e_v}.$$

Compute the Jacobian:

$$\frac{dy_v}{y_v} = e_v \frac{dt}{t} + 2 \sum_{j=1}^{r-1} \log |\varepsilon_j|_v dw_j, \quad \prod \frac{dy_v}{y_v} = |J| \frac{dt}{t} \prod_j dw_j$$

where

$$\begin{aligned} |J| &= \begin{vmatrix} \cdots & \cdots & \cdots & \cdots \\ e_v & 2 \log |\varepsilon_1|_v & \cdots & 2 \log |\varepsilon_{r-1}|_v \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} \\ &= 2^{r-1} \begin{vmatrix} n & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ e_v & \log |\varepsilon_1|_v & \cdots & \log |\varepsilon_{r-1}|_v \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = 2^{r-1} n R_K \end{aligned}$$

adding all the remaining rows to the first and using $\sum_v \log |\varepsilon|_v = 0$. Then

$$\begin{aligned} (*) \times |J| &= \int_{\mathbb{R}_{>0}^\Sigma} \exp \left(- \sum_v \underbrace{e_v y_v^{1/e_v} |x|_v^{2/e_v}}_z \right) \prod_v y_v^{s/n} \prod_v \frac{dy_v}{y_v} \\ &= \prod_v \int_0^\infty \exp(-z) \left(e_v^{-2} |x|_v^{-2} z^{e_v} \right)^{s/n} e_v \frac{dz}{z} \\ &= 2^{r_2(1-2s/n)} |N_{K/\mathbb{Q}}(x)|^{-2s/n} \Gamma \left(\frac{s}{n} \right)^{r_1} \Gamma \left(\frac{2s}{n} \right)^{r_2}. \end{aligned}$$

where we have made the further change of variables $y_v = e_v^{-2} |x_v|_v^{-2} z^{e_v}$ in the integral (note that $e_v^{e_v} = e_v^2$). \square

Proof of Theorem. Apply to $\zeta_K(\mathcal{C}, s)$ (replacing s in the Proposition with $ns/2$) to get:

$$\Gamma\left(\frac{s}{2}\right)^{r_1} \Gamma(s)^{r_2} \zeta_K(\mathcal{C}, s) = R_K n 2^{r_1 + r_2 s - 1} \Gamma\left(\frac{ns}{2}\right) (NI_0)^s \sum_{x \in I_0}^* \int_{\mathbb{R}^{r-1}} Q_w(x)^{-ns/2} dw$$

Now break up the domain of integration into boxes $m + [0, 1]^{r-1}$, $m \in \mathbb{Z}^{r-1}$ and apply Lemma 10.7 with $\varepsilon = \zeta \prod_j \varepsilon_j^{m_j}$, $\zeta \in \mu(K)$, to write the sum as:

$$\begin{aligned} \sum_{x \in I_0}^* \int_{[0,1]^{r-1}} \sum_{m \in \mathbb{Z}^{r-1}} Q_{w+m}(x)^{-ns/2} dw &= \sum_{x \in I_0}^* \int_{[0,1]^{r-1}} \frac{1}{\#\mu(K)} \sum_{\varepsilon \in \mathfrak{o}_K^*} Q_w(\varepsilon x)^{-ns/2} dw \\ &= \int_{[0,1]^{r-1}} \frac{1}{\#\mu(K)} \sum_{0 \neq x \in I_0} Q_w(x)^{-ns/2} dw \\ &= \frac{1}{\#\mu(K)} \int_{[0,1]^{r-1}} E(I_0, Q_w, ns/2) dw. \end{aligned}$$

Therefore we get:

$$\Gamma\left(\frac{s}{2}\right)^{r_1} \Gamma(s)^{r_2} \zeta_K(\mathcal{C}, s) = n 2^{r_1 + r_2 s - 1} \pi^{\frac{ns}{2}} (NI_0)^s \frac{R_K}{\#\mu(K)} \int_{(\mathbb{R}/\mathbb{Z})^{r-1}} \mathcal{E}(I_0, Q_w, \frac{ns}{2}) dw$$

Now (analytic fact!) $\Gamma(s)$ has no zeroes, so by the analytic continuation of \mathcal{E} we obtain that of $\zeta_K(\mathcal{C}, s)$, with only possible poles at $s = 1$ and 0 . The leading term of the Taylor series at $s = 0$ of the various terms are:

$$\Gamma\left(\frac{s}{2}\right)^{r_1} \Gamma(s)^{r_2} \sim 2^{-r_1} s^{r_1 + r_2}, \quad \mathcal{E}(I_0, Q_w, \frac{ns}{2}) \sim -\frac{2}{ns}$$

so $\zeta_K(\mathcal{C}, s) \sim -w_K^{-1} R_K s^{r-1}$. Summing over ideal classes we get the Theorem! \square

Remark. It is standard to write $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2)$, $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$. The integral representation then becomes

$$\Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(\mathcal{C}, s) = \frac{n 2^{r-1} R_K}{w_K} (NI_0)^s \int_{(\mathbb{R}/\mathbb{Z})^{r-1}} \mathcal{E}(I_0, Q_w, \frac{ns}{2}) dw.$$

from which it is an exercise to derive the functional equation for $\zeta_K(s)$ (see example sheet 3).