9 Idele class group

Already seen that the content map induces surjections from Cx = Jx/K* and
Ji/K* to the ideal class group CI(K) = I(K)/P(K). It’s important for Class
Field Theory to understand all the finite quotients of C.

Proposition 9.1. Let G be a discrete group.
(i) Any continuous homomophism «: Cx — G has finite image.
(ii) There is a bijection:
. families (o, : K — G), of continu-
continuous homomor-| ~ v : »
hisms o Jo — G — ¢ ous homomorphisms with a,(9O}) =
p oK {1} for almost all finite v

Proof. (i) As Jx/Ji ~ R, we must have a(Ck) = a(Ji/K*) and result follows
from compactness of J /K*.

(ii) The subgroup @, K C Jk is dense (since @O} C [[OF is dense). So if
a: Jg — G is continuous, it is determined by the family (a, = a|g:: K} — G),.
As ker av is open, a,,(97) = 1.

Conversely, if (ay), is such a family, then the formula o(z) = [], ay(x,) is a
finite product if z € Jx and defines a continuous homomorphism a. O]

Definition. A modulus is a finite formal sum m = »_ o m,(v) with m, € N,
The support and finite support of m are the sets

supp(m) = {v € Xk [ m, >0}, supp,(m) = supp(m) N I ;.

Define Ux m = [[,ex, US'" C Jx where

(%

o7 v finite, m =0
m 14+ 79, v finite, m >0
" K v real and m = 0, or v complex

Kyt =R%, wvreal, m>0.

Then Uk, is an open subgroup of Jg, since U™ C K is open for all v and
equals O for almost all v.

Proposition 9.2. Any open subgroup of Ji contains some Uk, and Jx | K* Uk m
18 finite.

Proof. The first statement follows from the definition of the topology on Jg, since
the open subgroups of R* are R* and R*" and C* has no proper open subgroup.
Since Uk is open, Jx/K*Uky is a discrete quotient of C'x hence is finite by
Prop.9.1(i). O

Definition. The group Cly(K) = Jx/K*Uk . is called the ray class group of K
modulo m.

Clearly every (continuous) finite quotient of C'x factors through some Cly,(K).
If m =0 then Ugwm = Ux = ker(c: Jg — Z(K)) and Cln(K) is the class group
Cl(K).

More notations: let m = > m,(v) be a modulus.

e For r € K*, write x = 1 mod™ m if:
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— for v € supp;(m), v(zr — 1) > m,; and
— for every real v € supp(m), z € K>,
o Ki={x e K*|z=1mod" m}.
o 7,(K) = free abelian group on {v € Xx s | m, = 0},
o Pu(K) ={zokg |z € K} CIy(K).
Theorem. Cy(K) >~ Zy(K)/Pu(K).

Ezample. Suppose m = > (v). Then Z,(K) = Z(K) and Pu(K) is the group
of principal fractional ideals xox where for every o: K <R, o(z) > 0. (We say
x is totally positive.) The group Cl(m(K) is called the narrow ideal class group,
written C1T(K). The kernel of the obvious surjection CI*(K) — CI(K is killed
by multiplication by 2.

Lecture 19

More precisely:

Theorem 9.3. Let S C Yk be a finite subset containing supp;(m).. There is
a unique continuous homomorphism o = (o,): Jg — Lu(K)/Pu(K) such that
a(K*) =0 and, for every finite v & S, a,(m,) = P, 1. It is surjective with kernel
KU m.

Remark. We use P, ! rather than P, to make subsequent things nicer.

Proof. More notation! Let
Jxm = {(z0) € Jg | YU € supp(m), z, € U™}

which is the subgroup of Jx generated by Uk, and all the K’s. The strong
approximation theorem then implies that Jx = K*Jgn. If 2 € K* C Jg then
S K:l iff v € JK,ma ie. K:l =K*nN JK,m-

First show « is unique: if «, o/ are two such homomorphisms set ¢ = a~'a/.
Then (enlarging S is necessary) we may assume that ¢(Ug ) = 1 for some mod-
ulus m’ with finite support contained in S. By hypothesis ¢,(m,) = 1 for all finite
v ¢ S. Therefore ¢(Jxm) =1. As ¢(K*) = 1, this means ¢ = 1.

So it suffices to construct a. But as K*Jxw = Jx and K* N Jgm = K,

JK ~ JK,m o JK,m (1)
KUk (K*Ukm) NIk KiUgm

We also have an isomorphism —c: Jx/m/Ukm s Zn(K), which maps an idele z

to the inverse of its content: —c(x) = HPU_U(“). As ¢(K}) = Pu(K), this induces
an isomorphism vfoo
—  Jkm ~ In(K)

—c: = :
© Kilkm  PulK)
We define « to be the composite of (1) and —c. O

Remark. 1t is important to note that the homomorphism Jx/K* — Ty, /Py just
constructed is not induced by the content map on all of Jx (Neukirch VI.1.9 is
at best ambiguous in this regard). It only agrees with the content map on Jx p.
(Frohlich called this the “fundamental mistake of class field theory”).
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Ezample. Suppose K = Q, m > 1, and let m = moo denote the modulus (00) +
> pim Up(m) - (p). I I € Zy(Q) then I = (a/b)Z for unique positive coprime
integers a,b with (ab,m) = 1, set (1) = (a/b) (mod m). This clearly defines an
isomorphism 6: Z,(Q) /Pn(Q) — (Z/mZ)*

On the idelic side, the inclusion [] * —— Jp induces an inclusion

plm p
B:(2/mZ)" = | [(Zp/mZy)" — Jom/Ugm
plm
I claim that the composite map:
(Z/mZ)* # Clm(@) %) Im(@)/Pm(Q> %) (Z/mZ)*

is the identity map! To see this, let a > 0 be an integer prime to m. Then
f(a) is represented by the idele with components a at every p|m and 1 elsewhere.
Multiplying by the principal idele a=! shows that 3(a) is also represented by the
idele x with components 1 at every p/m and a™! at all others. So (as a > 0)

T € Jom, and a(z) is the class of the ideal I with v,(I) = v,(a)™! for all pm,
vp(I) = 0 for all other p — in other words, I = aZ.

10 Dedekind zeta function

Theta functions of lattices

Let V' be a real vector space of dimension n > 1, (,): V' xV — R an inner product.
Let {e;} be an ON basis for V, and p (or dv) the associated measure (for which
w(V/ > Ze;) = 1) — it doesn’t depend on the choice of ON basis.

Fourier transform: Let f: VV — C be a nice? function. Define
f:vV =, flu) = / e~ 2mwY) £ (1) do
1%

The Fourier inversion formula for R” says: f(v) = f(—v).

Theorem 10.1 (Poisson summation formula). Let A C V be a lattice, N = {y €
V{z,y) € Z Vx € A} the dual lattice. Then

> f@) = p(VINTY f).

TEA yeN’

Proof. Let g(v) = >, co f(v+2): V/A — C. Then g can be written as a Fourier

series:
o 2mi(y,v)
= g Cy€
yeN

with coefficients
_ A -1 v 6—27ri(y,v> v
u(V/A) /V R0 d
— p(V/A) / F(0)e 20 dy = u(V/a) " f(y)
Then S,y £(7) = 9(0) = Xyen ¢ = p(V/A) ", ). 0

2 “Nice” here means that the derivatives f(™ (m € N") satisfy: for every polynomial function
PonV, P(v)f™)(v) is bounded.
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Lecture 20

Now we define the theta function of A to be

OA(t) =) e (0<teR).

zeA

Note that since #{x € A | (z,z) < N} = O(N™), the series is bounded by a
constant times > %_; N"e ™ 5o converges. (The same argument shows that the
series ¢ in the proof of Poisson summation converges.)

Theorem 10.2.
Ox(t) =t "u(V/A) 'O (1/1).

Proof. We let f(v) = e ™) = I e ™ if v = > wvie; in the ON basis {e;}. Then
f = f (standard result?® for n = 1).
Moreover as (cA)’ = ¢ 'A’, by Poisson summation

= > @) =pV/EPNTE ST fly) =t u(V/A) T O (1/1).

xEt/2A yet—1/2\/

As O,/(t) — 1 as t — oo, deduce:
Corollary 10.3. ©,(t) ~ u(V/A)~1 /2% ast — 0.

The Epstein zeta function of the quadratic lattice A is
1

B(A,s) = B(A(—,—)is)= Y

0#z€eA <£L’, x)s

It converges absolutely for Re(s) > n/2. In fact, if {f;} is a basis for A and
x =Y x;f; then (z,z) > cmax(z?) for some ¢ > 0, so

Y wa)y < > (maxa|)

0#z€A 0<ezn
=c* Y N x#{z € Z" | max|z;| = N}
N>1
<L s Z Nn7172s
N>1

which converges for Re(2s) > n.

Theorem 10.4. £(A,s) = n°I'(s) E(A, s) has a meromorphic continuation to C,
analytic apart from simple poles at s = 0, n/2 with residues —1, u(V/A) respec-
tively. It satisfies the functional equation

E(A, s) = u(V/A)LEWN, g — ).

In particular, E(A,0) = —1.

3Proof: if f(z) = exp(—mx?) then

R 00_2_2' g oo_(+')2 oo+iy_22
fly) = e T T dy = e7 Y e T dr = f(y) e dz.

—oo+1y

Now shift the path of integration to [—oo, oo] and use ffooo e dy = 1.
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Recall T'(s) = [;° e~"t*~ dt is analytic apart for simple poles at s = 0, —1, -2, . ..

and I'(n + 1) =nl, I'(s + 1) = sI'(s). In particular, Res;—oI'(s) = 1.

Remark. A = Z C R with Euclidean inner product. Then E(Z,s) = 2((2s). We
get ((s) ~ 1/(s — 1), ¢(0) = —1/2 and the usual FE for ((s). (See Analytic
Number Theory next term.)

Proof.
7°T(s) E(A, 5) = / Tetrr Y ey
) O 7 t
0#£zEA
_ Ze_m@c,m)ts @ - / (Oa(t) — 1) ¢t° ﬂ
t 0 t

0 z#0
Break up as fol + [°. Then if Re(s) > n/2, we can by Cor.10.2 compute:

L a1 1 ! it
/ - / e =5 =5 +/ p(V/A) O ()2 —
0 0 0

t S t
dt

— _1 + M(V/A)_l/ @A/(t)tn/2_s wr
s 1 t

_ (1 + N(V/A)_l) n M(V/A),l /oo (@A’<t) . 1) tn/ZS%

s n/2—s 1

So E(A, s) equals
1 V/A)~1
(L s

s n/2—s

) i /100 (Oa(t) = 1)1° + p(V/A) ™ (Onr(t) — 1) 1"/2* - %

Now ©4 — 1 tends rapidly to 0 as t — oo, so the integral is analytic for all s € C.
This gives the residues, and using the FE for © and u(V/A)™! = u(V/N') we get
the FE. ]

Lecture 21

Definition. The Dedekind zeta function is the function

the sum taken over non-0 ideals I C og.

Proposition 10.5. (k(s) = va(l—qv’s)’l, and the product converges absolutely
for Re(s) > 1.

Proof. As formal series, the product follows from unique factorisation of ideals:
writing [ = [[ P} gives NI =[] ¢)*, hence

Ce(s) =0+ a7 + > +--+)

v

Now #{v|p} <n and ¢, > p if v|p, so product converges by comparison with

[[Ta-p)m =0 N =)

p N>1
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We are now going to prove:

Theorem 10.6. (x(s) has a meromorphic continuation to C whose only singu-
larity is a simple pole at s = 1. Moreover

C(s) _ xRk

oI a1 Wi
This is the famous analytic class number formula. Here:
o hy = #CI(K), the class number of K
o wy = #u(K) the order of the group of roots of unity of K
e Ry is the requlator of K (defined below).

Let ¥ = Yk be the infinite places of K. Write the group of units of K as
0% = g X (€1,...,6r_1), T =11+ 19 = #2. Let e, = e(v/00) = 1 if v is real, 2 if
v is complex.

Consider the (r — 1) x r real matrix (log|e;|,) (v € X, 1 < j <r —1). Since
I, lejl, = 1, the columns of this matrix sum to zero. So all of its (r —1) x (r —1)
minors have the same absolute value, which is by definition Rx. The proof of the
unit theorem shows that Ry # 0 (it is, for suitably chosen measure, the volume

of R™™1/A(0%). )
We begin by breaking the sum up into ideal classes:

Z Ck(C,s), where (x(C,s) = Z NI~

CECI(K) ICox, I€C

Fix Iy € C7%. Then C = {zI;' | x € I} and
Gie(C.8) = (NI)* Y | Nia(a)|
AT

where * means to take the sum over nonzero elements of I, modulo o%.

If K = Q which is just (1/2)Z(Z,s/2). If Q(v/—D) is imaginary quadratic,
then as o is finite, the sum is just 1/wx times the sum over all nonzero x € Iy,
and Ng/o(z) = xZ is a positive definite quadratic form. So (x(C,s) is itself an
Epstein zeta function. For other K, this isn’t the case, but we can write each
“partial zeta” (x(C,s) as an integral of Epstein zeta functions.

Define

(b R"™™ 1—>{U— uv EIRE0‘1—[/%0_1} (ﬁ(U))I (H|€j|:}l}j>v
J

For z = (z,) € K QR = [[ s, Ky ¥ R™ x C™ and u = ¢(w) set

Qw(fﬁ) = Z€v<uv |$v|v)2/eu = Z U12; |xv|i +2 Z Uy |xv|v

vEX v real v complex

which is a positive definite quadratic form (remember that for v complex, |—|, is
square of complex modulus).

Lemma 10.7. For allm € Z'~" and ¢ € p(K), Qu(C[I; )7 1) = Quim().

(Proof trivial.)

34



Lecture 22
Recall

Qu(@) = Y euluy 2], )  where = g(w) = (H |€j|?>v'

vEY
The next result is the key to rewriting (x(s) in terms of Epstein zeta functions.
Proposition 10.8. Let x € K*. Then

0 . Quta i = i (SR et

Rr—1

dt dt
LHS = / et Qu(r) " — dw = / et Qu(@)ys 7 . (%)
R oxRT—1 t RsgxRr—1 t

Change variables to (y,) € R, where y, = t®u? and (u,) = ¢(w) as above. Then

=Tl =Tlw as[lw=1  tQulx) = ewlf o/
v v

v

Compute the Jacobian:

dy, dt dy, dt
yi:ev?+2210g|€j|v dwj, ] yy = 17| 7 [[ duw
v ]:1 v ]

where

|J|=| e, 2logles|, --- 2logle,—1],
n 0o - 0
_ gt . . : _orip
e, logle, - logle, ], S

adding all the remaining rows to the first and using ), log|e|, = 0. Then

d

ey 2/ey s/n Yo

()% 1= [ exn(= 30 et/ jal?) [T TT
>0 v =z v v

o0 _ s/nd
= H/ exp(—z) (e;2 |z|? ze”> ev—z
v 0 z

_92s/n T1 2 T2
— 270720 | N ()| 1 (2) r(—s) .

n n
where we have made the further change of variables y, = e;2|z,|,° 2% in the
integral (note that e = €2). O

35



Proof of Theorem. Apply to (x(C,s) (replacing s in the Proposition with ns/2)
to get:

D(3) T Ge(Cs) = Racn2 ™0 () (VRS [ Qul) ™ du

2 _
AT Rr—1

Now break up the domain of integration into boxes m + [0,1]""!, m € Z"~! and
apply Lemma 10.7 with ¢ = ([, 5;”, ¢ € pu(K), to write the sum as:

Z /01 Z Quim(x "S/de—z / ]rl#u

z€lp meZr—1 x€ly
_ Qw ns/2 dw
/[01]7“ ! #,u 0;;1

1
- E(Iy, Qu,ns/2) d
#M(K) /[071]T1 (07@ TLS/ ) w

Z Qu(ex) /2 dw

sGoK

Therefore we get:

Ry / ns
TR E(1o, Qu, —) dw
#1(K) (R/Z)r—1 Uy 2 )

Now (analytic fact!) I'(s) has no zeroes, so by the analytic continuation of £ we
obtain that of (x(C, s), with only possible poles at s = 1 and 0. The leading term
of the Taylor series at s = 0 of the various terms are:

r(%) () Cx(C, 8) = n2" 25~ L's (N I)®

S\ "1 ns 2
P<_> F " ~ 2_T1 7"1+T2’ I ) wy A~ )Y T
5 (s) 8 E(1o,Q 5 ) —

s0 Cx(C,8) ~ —wy' Rgs""!. Summing over ideal classes we get the Theorem! [
Remark. Tt is standard to write T'g(s) = 77%/2T'(s/2), Tc(s) = 2(27)~*T'(s). The

integral representation then becomes

1R
[r(s)* Tc(s)?Ck(C,s) = n—K(NIO)S/ E(Iy, Qu, %) dw.
(R/Z)r—1

Wg

from which it is an exercise to derive the functional equation for (x (s) (see example
sheet 3).
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