3 Extensions of local fields

Local field = field complete wrt an AV. (Sometimes people are more restrictive
— e.g. some people require the field to be locally compact.) We're going to study
extensions of such things.

Recall standard field theory: L/K finite extension of degree n, the L ~ K" as
K-vs and so for x € L, the K-linear transformation [xz|: L — L has a char.poly
for/g(X) = X"+ 3" a; X € K[X], and trp/g(z) :=tr[x2] = —a,, € K,
Ni/k(x) = det[xz] = (=1)"ay € K.

If L/K is a finite Galois extension with group G then trpx(z) = Y, .07,

Niyi (@) = lpeq o
For any finite L/K we define the trace form:

tryk: Lx L — K, trg(r,y) =trox(zy).

which is symmetric and K-bilinear.
Basic fact: t;/x is nondegenerate (i.e. trp i is not identically 0) iff L/K is
separable.t

In the cases of interest to us this is simple to prove: if K has characteristic 0
this is trivial, since try x(1) = n # 0. The other case we need is K = F, finite.
Then L = Fyn and trp g (z) = 2 +29+---+29" " is a polynomial of degree ¢! so
can’t vanish identically on L. So if L/K is separable and ey, ..., e, is an (ordered)
basis for L/K then disc(ey, ..., e,) :=det(tr; x(e;e;)) € K is non-zero.

Theorem 3.1 (Finiteness of IC). Let R be an integrally closed domain, K =
Frac R. Assume R is Noetherian domain. Let be L a finite separable extension of
K = Frac(R), S = integral closure of R in L. Then S is a finite R-algebra.

Proof. Let {e;} be a basis for L/K with all e; € S. Let {f;} be the dual basis for
tr/k, so that trp k(e f;) = 0;. Let x € S, and write © = Y a;f;. Then for all ¢,
a; = trr/k(e;x) € R (since e;x € S, hence is integral over R). So S C ) Rf; is a
submodule of a finite R-module, hence (since R is Noetherian) is itself finite. [
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Theorem 3.2. Let K be complete wrt an AV |—|, and L/ K an algebraic extension.

i) There exists a unique AV |—|, on L whose restriction to K is |—|.

i) If [L: K] =n<oo and x € L then |z|, = |NL/K(x){1/n
ii1) Assume K is nonarchimedean, with valuation ring R. The valuation ring Ry,
of |—|; equals the integral closure of R in L.

We only need (and will prove) this in certain cases.

If K =R or C, it’s trivial.

We assume now that K is NA, complete with respect to a discrete valuation,
with valuation ring R, uniformiser , residue field k. (The proof works for arbitrary
NA fields, given a suitable version of Hensel’s lemma.)

Lemma 3.3. (i) f € K[T| monic, irreducible, f(0) € R. Then f € R[T].
(ii) If L) K s finite and z € L with Np k(2) € R then z is integral over R.

! Non-degenerate means that for all nonzero x € L there exists y € L with tryx(z,y) # 0.
This is equivalent to saying that try,/x is surjective, since if try,/x (a) = 1 then ¢,/ (2,27 'a) = 1.
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Proof. (i) Let d = deg(f) and let m be minimal such that f*(7) = 7™ f(T) =
Z?:o a;T" has R-coefficients. Assume m > 0, and let j be the largest integer with
a; € R*. By hypothesis, 0 < j < d, hence we can write

fr=gh= (a7 +---+a)(0.7"7 +--- + 0.T +ay),

a factorisation in k[T] with (g, h) = 1. So by Hensel’s lemma it lifts to a factori-
sation f* = gh in R[T], contradicting irreducibility of f. For (ii), apply (i) with f
the minimal polynomial of z. O]

Proof of theorem. First do the case [L : K| = n < oo. Existence in (i), (ii): define
|—|, by the formula given. Clearly satisfies all the axioms except possibly (AV3N).
Suppose x, y € L with |z|, < |y|;; STP |z +y|, < |y|,. Equivalently, STP that
if 2|, < 1 then |z+1|, < 1. Let f = min.poly of z/K, m its degree. Then
12, = |£(0)]"™ so | f(0)] < 1ie. f(0) € R. By the Lemma, this forces f € R[X],
so as f(X — 1) is the min.poly of 1 + 2, |1+ 2|, = F(=D)Y™ < 1.

For the remainder, let z € Ry. Then z is integral over R by Lemma 3.3(ii). As
Ry, is integrally closed (being a valuation ring), it equals the integral closure of R

in L. This proves (iii) Now if |—|" is any other AV on L extending |—| its valuation
ring R’ is integrally closed, hence contains R, so by Thm 1.3(iii) |—|" is equivalent
to [—|.

In general L is the union of its subfields L’ finite over K, and the extensions of
|—| to L’ therefore define an extension to all of L. O

So there is a unique extension of |—| to the algebraic closure of K. In particular
we can uniquely extend the normalised p-adic absolute value to Q,. The value
group is vp(@;) equals Q, since clearly v,(p¥®) = a/b.

Important fact: Q, is not complete. [Warning: This is nothing to do with
the fact that the value group of Q, is not complete.] See ex. sheet 2.

Proposition 3.4. Let K be complete wrt a discrete valuation, L/ K a finite sep-
arable extension. Then the AV |—| on L is discrete, and L is complete. Moreover

R; ~ R™ as R-modules.

Proof. Clearly |L*| C |K*|Y™ so L is discretely valued. By finiteness of IC, Ry, is
finitely generated as an R-module. As R is a PID and R, is obviously torsion-free
as R-module, we have R; ~ R". Now xRy = n§ Ry, for e = v(mk)/v(my), and so

<li_m Ryp/7'R; = <11_m Ry /7[Ry = <11_m Ry /7R Ry, ~ (H_m(R/W}?RK)” =R"
so Ry, = <h_m R /7Ry, hence is complete. ]

Note: if K is not discretely valued, a finite extension L will still be complete.
But in general R, will not be a free R-module (R is no longer a PID).

Lecture 8

Remark: the proof of 3.2 has a gap: given a NA AV |—| on K, we have proved
it extends to a unique NA AV on L. But could there be an archimedean AV
extending |—|? The answer is NO, because of the following fact: an AV on a
field K is non-archimedean iff for every n € Z, |n.1x| < 1. [Proof: = by
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strong triangle inequality. Other way: by binomial theorem, see that |z + y|" <
(r 4+ 1) max(|z|, |y|)" for every r > 1, and letting r — oo get that |—| is NA.]

‘Until the end of this § we assume all valuations are discrete.‘

Common and convenient shorthand: cdvf (complete discretely valued field). Let
K be such a field.

Notation: o0x = valuation ring of K, mx a uniformiser, vx the normalised
valuation (with vg(mx) =1). kx = 0 /T 0k the residue field.

Let L/K be a finite separable extension of degree n. Since mx C 7oy, the
inclusion ox C o0y induces a homorphism ki — kr, which is therefore a field
extension.

Definition. The residue class degree of L/K is the integer f = f(L/K) = [kg
k). The ramification degree is e = e(L/K) = vy (7k)

Note that by definition, WZ(L/K)OL = TKOL.

Proposition 3.5. Let L/K be a finite separable extension of cdvfs. Then:
(1) e(L/K)f(L/K) = [L: K].
(ii) L ~ K"K] as topological K -vector spaces.

Proof. (i) By Lemma 1.5, 740y, /75 oy, =~ kr, and so by the sequence of inclusions

7'('20[, - 71'?710[, C---Cmror, Coyp,
we have dlka OL/WKUL = €dimk/[( kL = ef. But by 34, 07 ™~ OnK SO OL/7TKOL has
dimension n.
(ii) This follows from the proof of 3.4. O

Definition. We say a finite extension L/K is unramified if (i) e(L/K) = 1 and
(ii) the extension kr/ky is separable.

The condition e = 1 is equivalent to saying that mx is also a uniformiser of L.
(In applications, kx will be finite so (ii) is automatic.) Unramified extensions are
easy to classify.

Proposition 3.6. Suppose L/K is finite. TFAE:

i) L/K is unramified;

ii) L = K(z) for some x € oy for which f, 1 € kx[T) is separable.
If so then of, = ok[x] for any = as in (i1).

Proof. Suppose L/K is unramified, and let z € k; be any element with k;, =
ki (x). (It exists by separability.) Then pick any x € oy, lifting z, and let g be its
minimal polynomial; it is in 0x[7] since z is integral over ox. Then g(z) = 0, and
since f(L/K) = n, this forces g to be the minimal polynomial of Zz.

Conversely, suppose x is as in (ii). Claim f, 1/ is irreducible. If not, as it is
separable it factors into 2 coprime polynomials in kx[T]. So by Hensel’s Lemma
fa,/K is reducible: contradiction. Therefore ki (Z)/kk is separable of degree n, so
kr = kx(Z) and L/K is unramified.

Finally, if ox[z] # or, there exists y € oy with mxy € ok[z] but y # ox[z].
Write gy = Z?;(} a;x’. As 1,Z,...,2" 1 is a basis for kr/ky, y € or implies all
a; € TgOk, hence y € ox[z], contradiction. O
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If L/, M/K are finite separable extensions then any K-algebra homomorphism
L — M maps oy, to 07, hence induces a map k;, — kg. So L — kp is a functor

{finite separable extensions of K} — {finite extensions of kx }

Theorem 3.7. (i) Let L/K be unramified, and M/K any field extension. Then
the natural map

HomK—algebras(Lv M) — Hoka—algebras(kLa kM)

18 a biyjection.
(i1) Let k' [k be a finite separable extension. There exists L] K unramified with
kr =K', and it is unique up to isomorphism.

Proof. (i) Write L = K(x) for x, g as in the propn. Then by Hensel

HomK—algebraS(Lu M) = {y eM | g(y) = 0}
={y€ou|gly) =0}
~{y € ku|g(y) =0}
= Hoka-algebras (]CL, kM)

(ii) Can write k' = kg (z), g(&) = 0 for some irreducible g € kg[T]. So barg
and ¢’ are coprime. Let L = K(z) where ¢ is any monic lift of g. Then g(x) ¢ m,
so by propn above L/K is unramified and k;, = k’. Part (i) with M = L shows
uniqueness. O

Lecture 9

Recall Thm.3.7. It implies that the functor L — k; defines an equivalence of
categories:

(finite unramified extensions of K) — (finite separable extensions of kg )

Remark. Let K be a cdvf, L/K a separable algebraic extension L/K. Extend the
normalised valuation vk of K to L. We say L/K is unramified if vg (L*) = Z and
kr/kk is separable. Equivalently, L /K is unramified if all its finite subextensions
are unramified. The conclusions of the theorem apply equally in this case.

Corollary 3.8. Suppose kx = I, is finite. Then K has a unique unramified
extension of degree n, for every n > 1, namely the splitting field of T ~' — 1.

Proof. Follows from the corresponding statement for extensions of [F,. m

Corollary 3.9. (i) Let L/ K be unramified. Then L/K is Galois iff kr/kx is, and
the Galois groups are canonically isomorphic.

(1) Suppose that ki = F, is finite. Then every finite unramified extension L] K
is Galois. There exists a unique element or/x € Gal(L/K), called the arithmetic
Frobenius such that for every x € or, op/x(x) = 29 (mod 7r). It generates

Gal(L/K).

Proof. (i) Take M = L in (i).
(ii) Every extension of finite fields Fyn /F, is Galois, with cyclic Galois group
generated by x — x9. Take o/ = corresponding element of Gal(L/K) under

(i). O
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The inverse I, = O‘Z/lK is called the geometric Frobenius of L/K.

Remark. Recall that F, = Uns1 For = U p)=1 F,(i,,). Let Q, C Q, with K/Q,
finite. Then K™ = J,,, ;=1 K (H,,) is the union of all the unramified finite exten-

sions L/K inside @p. It is called the maximal unramified extension of K. It is
Galois and we have

Gal(K™/K) = Gal(F,/F,) = lim Gal(F,»/F,) = lim Z/nZ = Z

n>1 n>1

Let ¢ € Gal(K™/K) be the automorphism corresponding to ¢, € Gal(F,/F,).
Then (¢k) is an infinite cyclic subgroup of Gal(K™ /K’), which is dense in it.

Ramification
For (considerable) simplicity we now only consider extensions L/K for which
kr/ky is separable.

Theorem 3.10. L/K finite separable, ki /kyx is separable. Then 3 unique in-
termediate field K C Ly C L such that Lo/K is unramified and L/Lq is totally
ramified (i.e. frj, =1). If K C F C L then F C Ly iff /K is unramified.

Ly is called the maximal unramified subfield of L/K.

Proof. By 3.7(ii) there exists K'/K unramified with residue field k., and by (i)
the identity map on kr, defines a unique embedding K’ —— L. Let Lg be its image.
Then Ly/K is unramified of residue degree f(L/K) so L/Ly is totally ramified.
Obviously F' C Ly = F/K unramified. Conversely, if F'//K unramified then
krp C kp = kr, so applying 3.7(i) gives unique maps F —— Lo —— L lifting the
maps on residue fields, hence F' C L. O]

So a finite extension can be broken up into an unramified extension, followed
by a totally ramified one. We now look at the latter.

Definition. A monic polynomial g = 7" + 3" ' a,T" € o [T] is Eisenstein if for
all0 <7< n—1,vg(a;) >0, and vg(ag) = 1.

Eisenstein’s criterion then says that ¢ is irreducible over K.

Theorem 3.11. (i) If g is an Eisenstein polynomial over K and x is a root of g,
then L = K (x) is totally ramified, x is a uniformiser of L and oy, = og|x].

(11) Conversely, if L/K is totally ramified, and 7y, is a uniformiser, then the
min-poly of wp, is Eisenstein and L = K(7y).

Example: let L = Q,(p,), ¢ = p". Then (, is aroot of ®,(T) = (T9—1)/(T"*—
1), and the usual argument shows that ®,(7"+ 1) is an Eisenstein polynomial. So
or, = Zy|(,], and 7, = (; — 1 is a uniformiser of L.

Lecture 10

Proof. (i) Say g = T"+a, 1T" ' -+a;T+ag. Let vg be the normalised valuation
on K, extended to L = K(x). Then

n—1
" = — g a; "
i=0
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implies that vg(x) > 0. But then for all i # 0, vg(a;x’) > 1 = vg(ag), hence
vk (RHS) = 1. Therefore vg(xz) = 1/n, and ef = n implies that e = n and
vp(x) =1, i.e. x = 7y, is a uniformiser of L.

Now consider y = Y0 byt € K[rz]. Then v (bh) = nug(b;) + i, so all the
terms have different valuations (as they belong to different residue classes mod n).
Therefore v, (y) = min{nvg(b;) + i}, by triangle inequality. In particular, y € o,
iff for each i, nvg(b;) > —i i.e. vg(b;) > —i/n. As i/n < 1 this means y € oy, iff
all bZ € 0k.

(i) Let [L : K] = n, and let g = T™ + S, ' a;T" be the min.poly of 7. Then
m < n and vy (a;) = nvg(a;), and from the equation

m—1

-7y = E a;Ty

=0
and the same argument as above, we have
m = v (77") = min{vg(a;7%)} = min{i + nvg(a;) |0 <i <m — 1}

and this can only be satisfied if vi(a;) > 1 for all i and vk (ag) = 1, which means
m =n, so L = K(n); then o, = ox[nz] as in (i). O
Remark. Suppose K/Q, is finite, with ¢ = #kg. The normalised AV (or modulus)
is often defined to be |z|, = ¢ &@); thus |—|, = ]—|LK:Q”}. We explain which.

K is a locally compact topological group, hence has (up to scalar) a unique
Haar measure p (translation-invariant measure, for which every compact set is
measurable). It is easy to describe p (without any fancy measure theory). Every
compact subset of K has a compact open neighbourhood, so we need to specify
the values p(z + 7lhog), for x € K and n € Z. Translation invariance says

p(r + mhog) = p(rhog), and as (mhox : mptt) = ¢ we deduce p(nlog) =

qu(mog), hecne

(@ + mgok) = p(mgox) = q " p(ok).

for all z € K, n € Z. So fixing u(ok) determines p completely.

In particular, for any open compact ) # U C K and x € K*, the quotient
pu(zU)/p(U) is just |z|,. For a general l.c. top.field K the map z — p(2U)/pu(U)
is a homomorphism K* — R which doesn’t depend on U (measurable with non-0
measure). For K =R it is ||, and for K = C it is |z|*.

4 Ramification theory

L/K finite separable extension of cdvf, with separable residue field extension.

Consider the trace form t;,x: L x L — K. If {2;} is an og-basis for o, and
{v:} is the dual basis wrt ¢k, then try/x(z;y;) = 0. So X = Y ogy; is the
or-submodule of L given by

{ZL‘ € oy | tl"L/K(ny) € 0k Vy € OL}

called the inverse different of L/K, written D;},.. Obviously DZ}K D op, and

L/K"
since WEDZ}K C o7 when n = min{—vy(y;)} we have DZ}K = 7TZ6(L/K)0L for some

d(L/K) € N.
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Definition. Dyx = 73"/ %oy, is the different of L/K, and §(L/K) is the differen-
tial exponent.
Theorem 4.1. (Z) M/L/K — DM/K = DM/LDL/K~

(ii) If of, = ok x| with g = min.poly of x, then Dr k = (9'(x)).

(111) 6(L/K) > e(L/K) — 1, with equality iff e # 0 (mod p). In particular,
L/K is unramified iff D/ = or. (Here p is the residue characteristic of K.)
Proof. (i) follow definition.

(ii) Let = x1,...,x, be the roots of g. Then since x; # x; we have partial
fractions decomposition

1 - 1
0D " T a)g )

Expanding both sides as power series in 1/7T" we have

T —ap T 4 Zg YT 4o T2+ 22T 3+

_ Z trL/K gl (x)flmrTfrfl

and equating coefficients gives
=0 if0<r<n-1
trpg(z'g(x) ) q=1 ifr=n—1
cox forall r

This implies that {¢'(z)™'2° | 0 < i < n — 1} is an og-basis for DE}K, hence
Dyx = (9'())-

Lecture 11

(iii) Applying this with L/K unramified gives by Propn. 3.6 that Dy /x = 0. So
by (i) Dk = Dr/1, where Lg is the maximal unramified subfield, so it is enough
to consider the case L/K totally ramified. In this case [L : K] = e and we may
take x = 7z, a root of an Eisenstein polynomial g = T° + >~ a;T%. Then

g(mp) = er§” —I—meL

and if e Z 0 (mod p) then the term ewz_l has v;, = e — 1, whereas vL(iaﬂri_l >
vp(a;) > e. Sovr(¢'(m)) = e —1. But if e = 0 (mod p) then each term on the
RHS has vy, > e. O

Definition. L/K is tamely ramified if p { er/x. Otherwise L/K is wildly ramified.

If k1, has characteristic zero, then any extension of K is at most tamely ramified.
We henceforth assume kg has characteristic p > 0.

Example: K, = Q,(({yn), p > 2. Know [K,, : Q)] = p" }(p—1) and K,,/Q, is
totally ramified, uniformiser m, = (n — 1.

So K/Q, is tamely ramified and D, /g, = (77 %).

For n > 1, K,,/K,,_1 has degree p and ok, = ok, ,[(], min.poly of (,» over
Kyo1is g(T) = TP — (1. So Diyi,, = 0 ") = (p) and (K, /K1) =
p"%(p — 1). Therefore Dy, jq, = (p" "7}~ 2).
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The case of L/K Galois

Let G = Gal(L/K). Then Vo € G, v, 00 = vy s0 o(0y) = oy and o(mg) = my.
So G actos on oy, and on the quotients oy /m%™ i > 0.

Definition. G; = G;(L/K) = ker(G — Aut(or/m%™)) (i > 0) are the ramifica-
tion groups of L/ K.

It’s convenient to set G_; = G. Obviously G; <« G and G; C G;,1. Also

(G = )ker(G — Aut(o/m;™)) = ker(G — Autoy) = {1}

so G; = {1} for i > 0.

Definition. [ = I(L/K) = Gy, the inertia subgroup of L/K; P = P(L/K) = G},
the wild ramification subgroup of L/K.

If Ly is the maximal unramified subfield, obviously

I = ker(G — Gal(ks/kx))
= ker(G — Gal(L/Ly))

so I = Gal(L/Ly). In particular, L/K is unramified iff I = {1}, and G/I ~
G&l(k’L/k‘K) AISO, for ¢ Z Gl(L/K) = GZ(L/L())

Proposition 4.2. Assume L/K s totally ramified, 71, a uniformiser of L. Then:
(1) Gi(L/K) ={o € Gal(L/K) | vp(o(mL) — 7)) > 1+ 1}.
(i1) Define maps

Qi:Gi_){k‘z fori=20

m /m fori > 1

7T od my (i = 0)
o UZ;{' ) '
—2 1 modmit (i>1)
L

(well-defined by (i)). Then 6; is a homomorphism, independent of the choice of
7L, and ker(6;) = Gy1, for alli > 0.

Proof. Let ¢ € G;. Then if u € o}, o(u) = u mod m4™ and so o(u)/u = 1

mod m:". Therefore
o(ury) _ow)o(m) __ olm) i1

uTy, u T, Ty,

so 0;(o) is independent of the choice of 777, So for any 7 € G;, 0;(0) = o(7(7))/7(7L)—
1. If i =0 and o, 7 € G then

00(0)60(7) = o(r(mp)) 7(7r) _ or(my) — 0y(o7)

T(mp) 7L T

and 6y is a homomorphism. Likewise, if i > 1 then 6;(0)6;(7) = 0 and so

0i(07) = olr(m) 4 _ olm)r(m) | _ (0:(0)+1)(0r(T)+1)—1 = 0;(0) +0;().

L (7)) T

By definition of G;, ker0; = G;. O
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Lecture 12

Corollary 4.3. (i) Go/G; is cyclic of order prime to p, and for alli > 1, G;/Gi11
1s an elementary abelian p-group.

(i1) P = Gy is the unique Sylow p-subgroup of I, and is normal in G. Moreover
P = {1} iff L/ K is tamely ramified.

(111) If ky is finite, G is solvable.

Proof. (i) We have Go/G,—k} and G;/Gi — m} /mo™ ~ kp. Every finite
subgroup of a field is cyclic.

(ii) From (i) P is a Sylow p-subgroup of I and is normal; so it is the unique
Sylow p, hence is normal in G.

(iii) We have I/P cyclic, P a p-group and since kg finite, G/I cyclic. O]

Example: K,, = Q,((yn). Then K,,/Q, totally ramified = G = G, and
G = Gal(K,/Q,) —— (Z/p"Z)*
(0a: ¢ —=¢7) ¢ a

Now 7, = (,» — 1 is a uniformiser of K,,. Let (a € Z/p"Z), a — 1 = p"~™b with
0 <m <nand (p,b) =1. Then

Uk, (0a(Tn) — Tn) = VK, (0a(Gpn) — () = UKn(an — () = UKn(an_l —1)

= UKn(C;l;Jm —1) = vk, (Gr — 1) = vk, () = [K, 1 K] =p" ™.
and therefore by 4.2(i) (putting r = n —m)

G; = ker((Z/p"Z)* — (Z/p"Z)*) ifpt <i<p —1.
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