
3 Extensions of local fields

Local field = field complete wrt an AV. (Sometimes people are more restrictive
— e.g. some people require the field to be locally compact.) We’re going to study
extensions of such things.

Recall standard field theory: L/K finite extension of degree n, the L ' Kn as
K-vs and so for x ∈ L, the K-linear transformation [×x] : L→ L has a char.poly
fx,L/K(X) = Xn +

∑n−1
i=0 aiX

i ∈ K[X], and trL/K(x) := tr[×x] = −an−1 ∈ K,
NL/K(x) = det[×x] = (−1)na0 ∈ K.

If L/K is a finite Galois extension with group G then trL/K(x) =
∑

σ∈G σx,
NL/K(x) =

∏
σ∈G σx.

For any finite L/K we define the trace form:

tL/K : L× L→ K, tL/K(x, y) = trL/K(xy).

which is symmetric and K-bilinear.

Basic fact: tL/K is nondegenerate (i.e. trL/K is not identically 0) iff L/K is
separable.1

In the cases of interest to us this is simple to prove: if K has characteristic 0
this is trivial, since trL/K(1) = n 6= 0. The other case we need is K = Fq finite.

Then L = Fqn and trL/K(x) = x+xq + · · ·+xq
n−1

is a polynomial of degree qn−1 so
can’t vanish identically on L. So if L/K is separable and e1, . . . , en is an (ordered)
basis for L/K then disc(e1, . . . , en) := det(trL/K(eiej)) ∈ K is non-zero.

Theorem 3.1 (Finiteness of IC). Let R be an integrally closed domain, K =
FracR. Assume R is Noetherian domain. Let be L a finite separable extension of
K = Frac(R), S = integral closure of R in L. Then S is a finite R-algebra.

Proof. Let {ei} be a basis for L/K with all ei ∈ S. Let {fi} be the dual basis for
tL/K , so that trL/K(eifj) = δij. Let x ∈ S, and write x =

∑
aifi. Then for all i,

ai = trL/K(eix) ∈ R (since eix ∈ S, hence is integral over R). So S ⊂
∑
Rfi is a

submodule of a finite R-module, hence (since R is Noetherian) is itself finite.
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Theorem 3.2. Let K be complete wrt an AV |−|, and L/K an algebraic extension.

i) There exists a unique AV |−|L on L whose restriction to K is |−|.

ii) If [L : K] = n <∞ and x ∈ L then |x|L =
∣∣NL/K(x)

∣∣1/n.

iii) Assume K is nonarchimedean, with valuation ring R. The valuation ring RL

of |−|L equals the integral closure of R in L.

We only need (and will prove) this in certain cases.
If K = R or C, it’s trivial.
We assume now that K is NA, complete with respect to a discrete valuation,

with valuation ring R, uniformiser π, residue field k. (The proof works for arbitrary
NA fields, given a suitable version of Hensel’s lemma.)

Lemma 3.3. (i) f ∈ K[T ] monic, irreducible, f(0) ∈ R. Then f ∈ R[T ].
(ii) If L/K is finite and z ∈ L with NL/K(z) ∈ R then z is integral over R.

1Non-degenerate means that for all nonzero x ∈ L there exists y ∈ L with tL/K(x, y) 6= 0.
This is equivalent to saying that trL/K is surjective, since if trL/K(a) = 1 then tL/K(x, x−1a) = 1.
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Proof. (i) Let d = deg(f) and let m be minimal such that f ∗(T ) = πmf(T ) =∑d
i=0 aiT

i has R-coefficients. Assume m > 0, and let j be the largest integer with
aj ∈ R∗. By hypothesis, 0 < j < d, hence we can write

f̄ ∗ = ḡh̄ = (ājT
j + · · ·+ ā0)(0.T d−j + · · ·+ 0.T + āj),

a factorisation in k[T ] with (ḡ, h̄) = 1. So by Hensel’s lemma it lifts to a factori-
sation f ∗ = gh in R[T ], contradicting irreducibility of f . For (ii), apply (i) with f
the minimal polynomial of z.

Proof of theorem. First do the case [L : K] = n <∞. Existence in (i), (ii): define
|−|L by the formula given. Clearly satisfies all the axioms except possibly (AV3N).
Suppose x, y ∈ L with |x|L ≤ |y|L; STP |x+ y|L ≤ |y|L. Equivalently, STP that
if |z|L ≤ 1 then |z + 1|L ≤ 1. Let f = min.poly of z/K, m its degree. Then

|z|L = |f(0)|1/m so |f(0)| ≤ 1 i.e. f(0) ∈ R. By the Lemma, this forces f ∈ R[X],

so as f(X − 1) is the min.poly of 1 + z, |1 + z|L = |f(−1)|1/m ≤ 1.
For the remainder, let z ∈ RL. Then z is integral over R by Lemma 3.3(ii). As

RL is integrally closed (being a valuation ring), it equals the integral closure of R
in L. This proves (iii) Now if |−|′ is any other AV on L extending |−| its valuation
ring R′ is integrally closed, hence contains R, so by Thm 1.3(iii) |−|′ is equivalent
to |−|L.

In general L is the union of its subfields L′ finite over K, and the extensions of
|−| to L′ therefore define an extension to all of L.

So there is a unique extension of |−| to the algebraic closure of K. In particular
we can uniquely extend the normalised p-adic absolute value to Qp. The value

group is vp(Q
∗
p) equals Q, since clearly vp(p

a/b) = a/b.

Important fact: Qp is not complete. [Warning: This is nothing to do with

the fact that the value group of Qp is not complete.] See ex. sheet 2.

Proposition 3.4. Let K be complete wrt a discrete valuation, L/K a finite sep-
arable extension. Then the AV |−| on L is discrete, and L is complete. Moreover
RL ' Rn as R-modules.

Proof. Clearly |L∗| ⊂ |K∗|1/n so L is discretely valued. By finiteness of IC, RL is
finitely generated as an R-module. As R is a PID and RL is obviously torsion-free
as R-module, we have RL ' Rn. Now πKRL = πeLRL for e = v(πK)/v(πL), and so

lim←−
m

RL/π
m
LRl = lim←−

m

RL/π
me
L RL = lim←−

m

RL/π
m
KRL ' lim←−(R/πmKRK)n = Rn

so RL = lim←−RL/π
m
LRL, hence is complete.

Note: if K is not discretely valued, a finite extension L will still be complete.
But in general RL will not be a free R-module (R is no longer a PID).
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Remark: the proof of 3.2 has a gap: given a NA AV |−| on K, we have proved
it extends to a unique NA AV on L. But could there be an archimedean AV
extending |−|? The answer is NO, because of the following fact: an AV on a
field K is non-archimedean iff for every n ∈ Z, |n.1K | ≤ 1. [Proof: =⇒ by
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strong triangle inequality. Other way: by binomial theorem, see that |x+ y|r ≤
(r + 1) max(|x| , |y|)r for every r ≥ 1, and letting r →∞ get that |−| is NA.]

Until the end of this § we assume all valuations are discrete.

Common and convenient shorthand: cdvf (complete discretely valued field). Let
K be such a field.

Notation: oK = valuation ring of K, πK a uniformiser, vK the normalised
valuation (with vK(πK) = 1). kK = oK/πKoK the residue field.

Let L/K be a finite separable extension of degree n. Since πK ⊂ πLoL, the
inclusion oK ⊂ oL induces a homorphism kK → kL, which is therefore a field
extension.

Definition. The residue class degree of L/K is the integer f = f(L/K) = [kL :
kK ]. The ramification degree is e = e(L/K) = vL(πK)

Note that by definition, π
e(L/K)
L oL = πKoL.

Proposition 3.5. Let L/K be a finite separable extension of cdvfs. Then:
(i) e(L/K)f(L/K) = [L : K].
(ii) L ' K [L:K] as topological K-vector spaces.

Proof. (i) By Lemma 1.5, πiLoL/π
i+1
L oL ' kL, and so by the sequence of inclusions

πeLoL ⊂ πe−1
l oL ⊂ · · · ⊂ πLoL ⊂ oL

we have dimkK oL/πKoL = e dimk/K kL = ef . But by 3.4, oL ' onK so oL/πKoL has
dimension n.

(ii) This follows from the proof of 3.4.

Definition. We say a finite extension L/K is unramified if (i) e(L/K) = 1 and
(ii) the extension kL/kK is separable.

The condition e = 1 is equivalent to saying that πK is also a uniformiser of L.
(In applications, kK will be finite so (ii) is automatic.) Unramified extensions are
easy to classify.

Proposition 3.6. Suppose L/K is finite. TFAE:

i) L/K is unramified;

ii) L = K(x) for some x ∈ oK for which fx,L/K ∈ kK [T ] is separable.

If so then oL = oK [x] for any x as in (ii).

Proof. Suppose L/K is unramified, and let x̄ ∈ kL be any element with kL =
kK(x). (It exists by separability.) Then pick any x ∈ oL lifting x̄, and let g be its
minimal polynomial; it is in oK [T ] since x is integral over oK . Then ḡ(x̄) = 0, and
since f(L/K) = n, this forces ḡ to be the minimal polynomial of x̄.

Conversely, suppose x is as in (ii). Claim fx,L/K is irreducible. If not, as it is
separable it factors into 2 coprime polynomials in kK [T ]. So by Hensel’s Lemma
fx,L/K is reducible: contradiction. Therefore kk(x̄)/kK is separable of degree n, so
kL = kk(x̄) and L/K is unramified.

Finally, if oK [x] 6= oL, there exists y ∈ oL with πKy ∈ oK [x] but y 6= oK [x].
Write πKy =

∑n−1
i=0 aix

i. As 1, x̄, . . . , x̄n−1 is a basis for kL/kK , y ∈ oL implies all
ai ∈ πKoK , hence y ∈ oK [x], contradiction.

13



If L/, M/K are finite separable extensions then any K-algebra homomorphism
L→M maps oL to oM , hence induces a map kL → kK . So L 7→ kL is a functor

{finite separable extensions of K} → {finite extensions of kK}

Theorem 3.7. (i) Let L/K be unramified, and M/K any field extension. Then
the natural map

HomK-algebras(L,M)→ HomkK -algebras(kL, kM)

is a bijection.
(ii) Let k′/kK be a finite separable extension. There exists L/K unramified with

kL = k′, and it is unique up to isomorphism.

Proof. (i) Write L = K(x) for x, g as in the propn. Then by Hensel

HomK-algebras(L,M) ' {y ∈M | g(y) = 0}
= {y ∈ oM | g(y) = 0}
' {ȳ ∈ kM | ḡ(ȳ) = 0}
= HomkK-algebras(kL, kM)

(ii) Can write k′ = kK(x̄), ḡ(x̄) = 0 for some irreducible ḡ ∈ kK [T ]. So barg
and ḡ′ are coprime. Let L = K(x) where g is any monic lift of ḡ. Then g(x) /∈ mL

so by propn above L/K is unramified and kL = k′. Part (i) with M = L shows
uniqueness.
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Recall Thm.3.7. It implies that the functor L 7→ kL defines an equivalence of
categories:

(finite unramified extensions of K) ∼−→ (finite separable extensions of kK)

Remark. Let K be a cdvf, L/K a separable algebraic extension L/K. Extend the
normalised valuation vK of K to L. We say L/K is unramified if vK(L∗) = Z and
kL/kK is separable. Equivalently, L/K is unramified if all its finite subextensions
are unramified. The conclusions of the theorem apply equally in this case.

Corollary 3.8. Suppose kK = Fq is finite. Then K has a unique unramified
extension of degree n, for every n ≥ 1, namely the splitting field of T q

n−1 − 1.

Proof. Follows from the corresponding statement for extensions of Fq.

Corollary 3.9. (i) Let L/K be unramified. Then L/K is Galois iff kL/kK is, and
the Galois groups are canonically isomorphic.

(ii) Suppose that kK = Fq is finite. Then every finite unramified extension L/K
is Galois. There exists a unique element σL/K ∈ Gal(L/K), called the arithmetic
Frobenius such that for every x ∈ oL, σL/K(x) ≡ xq (mod πL). It generates
Gal(L/K).

Proof. (i) Take M = L in (i).
(ii) Every extension of finite fields Fqn/Fq is Galois, with cyclic Galois group

generated by x 7→ xq. Take σL/K = corresponding element of Gal(L/K) under
(i).
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The inverse FL/K = σ−1
L/K is called the geometric Frobenius of L/K.

Remark. Recall that Fq =
⋃
n≥1 Fqn =

⋃
(m,p)=1 Fq(µm). Let Qp ⊂ Qp with K/Qp

finite. Then Knr =
⋃

(m,p)=1 K(µm) is the union of all the unramified finite exten-

sions L/K inside Qp. It is called the maximal unramified extension of K. It is
Galois and we have

Gal(Knr/K) ' Gal(Fq/Fq) = lim←−
n≥1

Gal(Fqn/Fq) ' lim←−
n≥1

Z/nZ = Ẑ

Let φK ∈ Gal(Knr/K) be the automorphism corresponding to φq ∈ Gal(Fq/Fq).
Then 〈φK〉 is an infinite cyclic subgroup of Gal(Knr/K), which is dense in it.

Ramification
For (considerable) simplicity we now only consider extensions L/K for which

kL/kK is separable.

Theorem 3.10. L/K finite separable, kL/kK is separable. Then ∃ unique in-
termediate field K ⊂ L0 ⊂ L such that L0/K is unramified and L/L0 is totally
ramified (i.e. fL/L0 = 1). If K ⊂ F ⊂ L then F ⊂ L0 iff F/K is unramified.

L0 is called the maximal unramified subfield of L/K.

Proof. By 3.7(ii) there exists K ′/K unramified with residue field kL, and by (i)
the identity map on kL defines a unique embedding K ′ ↪−→L. Let L0 be its image.
Then L0/K is unramified of residue degree f(L/K) so L/L0 is totally ramified.
Obviously F ⊂ L0 =⇒ F/K unramified. Conversely, if F/K unramified then
kF ⊂ kL = kL0 so applying 3.7(i) gives unique maps F ↪−→L0 ↪−→L lifting the
maps on residue fields, hence F ⊂ L0.

So a finite extension can be broken up into an unramified extension, followed
by a totally ramified one. We now look at the latter.

Definition. A monic polynomial g = T n +
∑n−1

i=0 aiT
i ∈ oK [T ] is Eisenstein if for

all 0 ≤ i ≤ n− 1, vK(ai) > 0, and vK(a0) = 1.

Eisenstein’s criterion then says that g is irreducible over K.

Theorem 3.11. (i) If g is an Eisenstein polynomial over K and x is a root of g,
then L = K(x) is totally ramified, x is a uniformiser of L and oL = oK [x].

(ii) Conversely, if L/K is totally ramified, and πL is a uniformiser, then the
min-poly of πL is Eisenstein and L = K(πL).

Example: let L = Qp(µq), q = pr. Then ζq is a root of Φq(T ) = (T q−1)/(T q/p−
1), and the usual argument shows that Φq(T + 1) is an Eisenstein polynomial. So
oL = Zp[ζq], and πL = ζq − 1 is a uniformiser of L.

Lecture 10

Proof. (i) Say g = T n+an−1T
n−1 · · ·+a1T+a0. Let vK be the normalised valuation

on K, extended to L = K(x). Then

xn = −
n−1∑
i=0

aix
i
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implies that vK(x) > 0. But then for all i 6= 0, vK(aix
i) > 1 = vK(a0), hence

vK(RHS) = 1. Therefore vK(x) = 1/n, and ef = n implies that e = n and
vL(x) = 1, i.e. x = πL is a uniformiser of L.

Now consider y =
∑n−1

i=0 biπ
i
L ∈ K[πL]. Then vL(biπ

i
L) = nvK(bi) + i, so all the

terms have different valuations (as they belong to different residue classes mod n).
Therefore vL(y) = min{nvK(bi) + i}, by triangle inequality. In particular, y ∈ oL
iff for each i, nvK(bi) ≥ −i i.e. vK(bi) ≥ −i/n. As i/n < 1 this means y ∈ oL iff
all bi ∈ oK .

(ii) Let [L : K] = n, and let g = Tm +
∑m−1

i=0 aiT
i be the min.poly of πL. Then

m ≤ n and vL(ai) = nvK(ai), and from the equation

−πmL =
m−1∑
i=0

aiπ
i
L

and the same argument as above, we have

m = vL(πmL ) = min{vL(aiπ
i
L)} = min{i+ nvK(ai) | 0 ≤ i ≤ m− 1}

and this can only be satisfied if vK(ai) ≥ 1 for all i and vK(a0) = 1, which means
m = n, so L = K(πL); then oL = oK [πL] as in (i).

Remark. Suppose K/Qp is finite, with q = #kK . The normalised AV (or modulus)

is often defined to be |x|K = q−vK(x); thus |−|K = |−|[K:Qp]
p . We explain which.

K is a locally compact topological group, hence has (up to scalar) a unique
Haar measure µ (translation-invariant measure, for which every compact set is
measurable). It is easy to describe µ (without any fancy measure theory). Every
compact subset of K has a compact open neighbourhood, so we need to specify
the values µ(x + πnKoK), for x ∈ K and n ∈ Z. Translation invariance says
µ(x + πnKoK) = µ(πnKoK), and as (πnKoK : πn+1

K ) = q we deduce µ(πnKoK) =
qµ(πn+1

K oK), hecne

µ(x+ πnKoK) = µ(πnKoK) = q−nµ(oK).

for all x ∈ K, n ∈ Z. So fixing µ(oK) determines µ completely.
In particular, for any open compact ∅ 6= U ⊂ K and x ∈ K∗, the quotient

µ(xU)/µ(U) is just |x|K . For a general l.c. top.field K the map x 7→ µ(xU)/µ(U)
is a homomorphism K∗ → R which doesn’t depend on U (measurable with non-0
measure). For K = R it is |x|, and for K = C it is |x|2.

4 Ramification theory

L/K finite separable extension of cdvf, with separable residue field extension.
Consider the trace form tL/K : L × L → K. If {xi} is an oK-basis for oL, and

{yi} is the dual basis wrt tL/K , then trL/K(xiyj) = δij. So X =
∑

oKyi is the
oL-submodule of L given by

{x ∈ oL | trL/K(xy) ∈ oK ∀y ∈ oL}

called the inverse different of L/K, written D−1
L/K . Obviously D−1

L/K ⊃ oL, and

since πnLD−1
L/K ⊂ oL when n = min{−vL(yi)} we have D−1

L/K = π
−δ(L/K)
L oL for some

δ(L/K) ∈ N.
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Definition. DL/K = π
δL/K
L oL is the different of L/K, and δ(L/K) is the differen-

tial exponent.

Theorem 4.1. (i) M/L/K =⇒ DM/K = DM/LDL/K.
(ii) If oL = oK [x] with g = min.poly of x, then DL/K = (g′(x)).
(iii) δ(L/K) ≥ e(L/K) − 1, with equality iff e 6≡ 0 (mod p). In particular,

L/K is unramified iff DL/K = oL. (Here p is the residue characteristic of K.)

Proof. (i) follow definition.
(ii) Let x = x1, . . . , xn be the roots of g. Then since xi 6= xj we have partial

fractions decomposition

1

g(T )
=

n∑
i=1

1

(T − xi)g′(xi)

Expanding both sides as power series in 1/T we have

T−n − an−1T
−n−1 + . . . =

n∑
i=1

g′(xi)
−1(T−1 + xiT

−2 + x2
iT
−3 + . . . )

=
∞∑
r=0

trL/K g
′(x)−1xrT−r−1

and equating coefficients gives

trL/K(xrg′(x)−1)


= 0 if 0 ≤ r < n− 1

= 1 if r = n− 1

∈ oK for all r

This implies that {g′(x)−1xi | 0 ≤ i ≤ n − 1} is an oK-basis for D−1
L/K , hence

DL/K = (g′(x)).

Lecture 11

(iii) Applying this with L/K unramified gives by Propn. 3.6 that DL/K = oL. So
by (i) DL/K = DL/L0 where L0 is the maximal unramified subfield, so it is enough
to consider the case L/K totally ramified. In this case [L : K] = e and we may
take x = πL, a root of an Eisenstein polynomial g = T e +

∑
aiT

i. Then

g′(πL) = eπe−1
L +

e−1∑
i=1

iaiπ
i−1
L

and if e 6≡ 0 (mod p) then the term eπe−1
L has vL = e − 1, whereas vL(iaiπ

i−1
L ≥

vL(ai) ≥ e. So vL(g′(πL)) = e − 1. But if e ≡ 0 (mod p) then each term on the
RHS has vL ≥ e.

Definition. L/K is tamely ramified if p - eL/K . Otherwise L/K is wildly ramified.

If kL has characteristic zero, then any extension of K is at most tamely ramified.
We henceforth assume kK has characteristic p > 0.

Example: Kn = Qp(ζpn), p > 2. Know [Kn : Qp] = pn−1(p − 1) and Kn/Qp is
totally ramified, uniformiser πn = ζpn − 1.

So K1/Qp is tamely ramified and DK1/Qp = (πp−2
1 ).

For n > 1, Kn/Kn−1 has degree p and oKn = oKn−1 [ζpn ], min.poly of ζpn over

Kn−1 is g(T ) = T p − ζpn−1 . So DKn/Kn−1 = (pζp−1
pn ) = (p) and δ(Kn/Kn−1) =

pn−2(p− 1). Therefore DKn/Qp = (pn−1πp−2
1 ).
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The case of L/K Galois

Let G = Gal(L/K). Then ∀σ ∈ G, vL ◦ σ = vL so σ(oL) = oL and σ(mL) = mL.
So G actos on oL and on the quotients oL/m

i+1
L , i ≥ 0.

Definition. Gi = Gi(L/K) = ker(G → Aut(oL/m
i+1
L )) (i ≥ 0) are the ramifica-

tion groups of L/K.

It’s convenient to set G−1 = G. Obviously Gi C G and Gi ⊂ Gi+1. Also⋂
i

Gi =
⋂

ker(G→ Aut(oL/m
i+1
L )) = ker(G→ Aut oL) = {1}

so Gi = {1} for i� 0.

Definition. I = I(L/K) = G0, the inertia subgroup of L/K; P = P (L/K) = G1,
the wild ramification subgroup of L/K.

If L0 is the maximal unramified subfield, obviously

I = ker(G→ Gal(kL/kK))

= ker(G→ Gal(L/L0))

so I = Gal(L/L0). In particular, L/K is unramified iff I = {1}, and G/I '
Gal(kL/kK). Also, for i ≥ Gi(L/K) = Gi(L/L0).

Proposition 4.2. Assume L/K is totally ramified, πL a uniformiser of L. Then:
(i) Gi(L/K) = {σ ∈ Gal(L/K) | vL(σ(πL)− πL) ≥ i+ 1}.
(ii) Define maps

θi : Gi →

{
k∗L for i = 0

mi
L/m

i+1
L for i ≥ 1

σ 7→


σ(πL)

πL
mod mL (i = 0)

σ(πL)

πL
− 1 mod mi+1

L (i ≥ 1)

(well-defined by (i)). Then θi is a homomorphism, independent of the choice of
πL, and ker(θi) = Gi+1, for all i ≥ 0.

Proof. Let σ ∈ Gi. Then if u ∈ o∗L, σ(u) ≡ u mod mi+1
L and so σ(u)/u ≡ 1

mod mi+1
L . Therefore

σ(uπL)

uπL
=
σ(u)

u

σ(πL)

πL
=≡ σ(πL)

πL
mod mi+1

L

so θi(σ) is independent of the choice of πL. So for any τ ∈ Gi, θi(σ) = σ(τ(πL))/τ(πL)−
1. If i = 0 and σ, τ ∈ G0 then

θ0(σ)θ0(τ) =
σ(τ(πL))

τ(πL)

τ(πL)

πL
=
στ(πL)

πL
= θ0(στ)

and θ0 is a homomorphism. Likewise, if i ≥ 1 then θi(σ)θi(τ) = 0 and so

θi(στ) =
σ(τ(πL))

πL
−1 =

σ(πL)

τ(πL)

τ(πL)

πL
−1 = (θi(σ)+1)(θI(τ)+1)−1 = θi(σ)+θi(τ).

By definition of Gi, ker θi = Gi+1.
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Lecture 12

Corollary 4.3. (i) G0/G1 is cyclic of order prime to p, and for all i ≥ 1, Gi/Gi+1

is an elementary abelian p-group.
(ii) P = G1 is the unique Sylow p-subgroup of I, and is normal in G. Moreover

P = {1} iff L/K is tamely ramified.
(iii) If kK is finite, G is solvable.

Proof. (i) We have G0/G1 ↪−→ k∗L and Gi/Gi+1 ↪−→mi
L/m

i+1
L ' kL. Every finite

subgroup of a field is cyclic.
(ii) From (i) P is a Sylow p-subgroup of I and is normal; so it is the unique

Sylow p, hence is normal in G.
(iii) We have I/P cyclic, P a p-group and since kK finite, G/I cyclic.

Example: Kn = Qp(ζpn). Then Kn/Qp totally ramified =⇒ G = G0, and

G = Gal(Kn/Qp)
∼−−−→ (Z/pnZ)∗

(σa : ζ → ζa) ↔ a

Now πn = ζpn − 1 is a uniformiser of Kn. Let (a ∈ Z/pnZ), a − 1 ≡ pn−mb with
0 < m ≤ n and (p, b) = 1. Then

vKn(σa(πn)− πn) = vKn(σa(ζpn)− ζpn) = vKn(ζapn − ζpn) = vKn(ζa−1
pn − 1)

= vKn(ζbpm − 1) = vKn(ζpm − 1) = vKn(πm) = [Kn : Km] = pn−m.

and therefore by 4.2(i) (putting r = n−m)

Gi = ker((Z/pnZ)∗ → (Z/prZ)∗) if pr−1 ≤ i ≤ pr − 1.
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