

3 Extensions of local fields

Local field = field complete wrt an AV. (Sometimes people are more restrictive — e.g. some people require the field to be locally compact.) We're going to study extensions of such things.

Recall standard field theory: L/K finite extension of degree n , the $L \simeq K^n$ as K -vs and so for $x \in L$, the K -linear transformation $[\times x]: L \rightarrow L$ has a char.poly $f_{x,L/K}(X) = X^n + \sum_{i=0}^{n-1} a_i X^i \in K[X]$, and $\text{tr}_{L/K}(x) := \text{tr}[\times x] = -a_{n-1} \in K$, $N_{L/K}(x) = \det[\times x] = (-1)^n a_0 \in K$.

If L/K is a finite Galois extension with group G then $\text{tr}_{L/K}(x) = \sum_{\sigma \in G} \sigma x$, $N_{L/K}(x) = \prod_{\sigma \in G} \sigma x$.

For any finite L/K we define the *trace form*:

$$t_{L/K}: L \times L \rightarrow K, \quad t_{L/K}(x, y) = \text{tr}_{L/K}(xy).$$

which is symmetric and K -bilinear.

Basic fact: $t_{L/K}$ is nondegenerate (i.e. $\text{tr}_{L/K}$ is not identically 0) iff L/K is separable.¹

In the cases of interest to us this is simple to prove: if K has characteristic 0 this is trivial, since $\text{tr}_{L/K}(1) = n \neq 0$. The other case we need is $K = \overline{\mathbb{F}}_q$ finite. Then $L = \mathbb{F}_{q^n}$ and $\text{tr}_{L/K}(x) = x + x^q + \dots + x^{q^{n-1}}$ is a polynomial of degree q^{n-1} so can't vanish identically on L . So if L/K is separable and e_1, \dots, e_n is an (ordered) basis for L/K then $\text{disc}(e_1, \dots, e_n) := \det(\text{tr}_{L/K}(e_i e_j)) \in K$ is non-zero.

Theorem 3.1 (Finiteness of IC). *Let R be an integrally closed domain, $K = \text{Frac } R$. Assume R is Noetherian domain. Let L a finite separable extension of $K = \text{Frac}(R)$, $S = \text{integral closure of } R$ in L . Then S is a finite R -algebra.*

Proof. Let $\{e_i\}$ be a basis for L/K with all $e_i \in S$. Let $\{f_i\}$ be the dual basis for $t_{L/K}$, so that $\text{tr}_{L/K}(e_i f_j) = \delta_{ij}$. Let $x \in S$, and write $x = \sum a_i f_i$. Then for all i , $a_i = \text{tr}_{L/K}(e_i x) \in R$ (since $e_i x \in S$, hence is integral over R). So $S \subset \sum R f_i$ is a submodule of a finite R -module, hence (since R is Noetherian) is itself finite. \square

Lecture 7

Theorem 3.2. *Let K be complete wrt an AV $|-|$, and L/K an algebraic extension.*

- i) *There exists a unique AV $|-|_L$ on L whose restriction to K is $|-|$.*
- ii) *If $[L : K] = n < \infty$ and $x \in L$ then $|x|_L = |N_{L/K}(x)|^{1/n}$.*
- iii) *Assume K is nonarchimedean, with valuation ring R . The valuation ring R_L of $|-|_L$ equals the integral closure of R in L .*

We only need (and will prove) this in certain cases.

If $K = \mathbb{R}$ or \mathbb{C} , it's trivial.

We assume now that K is NA, complete with respect to a *discrete* valuation, with valuation ring R , uniformiser π , residue field k . (The proof works for arbitrary NA fields, given a suitable version of Hensel's lemma.)

Lemma 3.3. (i) $f \in K[T]$ monic, irreducible, $f(0) \in R$. Then $f \in R[T]$.

(ii) If L/K is finite and $z \in L$ with $N_{L/K}(z) \in R$ then z is integral over R .

¹Non-degenerate means that for all nonzero $x \in L$ there exists $y \in L$ with $t_{L/K}(x, y) \neq 0$. This is equivalent to saying that $\text{tr}_{L/K}$ is surjective, since if $\text{tr}_{L/K}(a) = 1$ then $t_{L/K}(x, x^{-1}a) = 1$.

Proof. (i) Let $d = \deg(f)$ and let m be minimal such that $f^*(T) = \pi^m f(T) = \sum_{i=0}^d a_i T^i$ has R -coefficients. Assume $m > 0$, and let j be the largest integer with $a_j \in R^*$. By hypothesis, $0 < j < d$, hence we can write

$$\bar{f}^* = \bar{g}\bar{h} = (\bar{a}_j T^j + \cdots + \bar{a}_0)(0.T^{d-j} + \cdots + 0.T + \bar{a}_j),$$

a factorisation in $k[T]$ with $(\bar{g}, \bar{h}) = 1$. So by Hensel's lemma it lifts to a factorisation $f^* = gh$ in $R[T]$, contradicting irreducibility of f . For (ii), apply (i) with f the minimal polynomial of z . \square

Proof of theorem. First do the case $[L : K] = n < \infty$. Existence in (i), (ii): define $|-|_L$ by the formula given. Clearly satisfies all the axioms except possibly (AV3N). Suppose $x, y \in L$ with $|x|_L \leq |y|_L$; STP $|x + y|_L \leq |y|_L$. Equivalently, STP that if $|z|_L \leq 1$ then $|z + 1|_L \leq 1$. Let $f = \min.\text{poly}$ of z/K , m its degree. Then $|z|_L = |f(0)|^{1/m}$ so $|f(0)| \leq 1$ i.e. $f(0) \in R$. By the Lemma, this forces $f \in R[X]$, so as $f(X - 1)$ is the min.poly of $1 + z$, $|1 + z|_L = |f(-1)|^{1/m} \leq 1$.

For the remainder, let $z \in R_L$. Then z is integral over R by Lemma 3.3(ii). As R_L is integrally closed (being a valuation ring), it equals the integral closure of R in L . This proves (iii) Now if $|-|'$ is any other AV on L extending $|-|$ its valuation ring R' is integrally closed, hence contains R , so by Thm 1.3(iii) $|-|'$ is equivalent to $|-|_L$.

In general L is the union of its subfields L' finite over K , and the extensions of $|-|$ to L' therefore define an extension to all of L . \square

So there is a unique extension of $|-|$ to the algebraic closure of K . In particular we can uniquely extend the normalised p -adic absolute value to $\overline{\mathbb{Q}}_p$. The value group is $v_p(\overline{\mathbb{Q}}_p^*)$ equals \mathbb{Q} , since clearly $v_p(p^{a/b}) = a/b$.

Important fact: $\overline{\mathbb{Q}}_p$ is *not* complete. [Warning: This is nothing to do with the fact that the value group of $\overline{\mathbb{Q}}_p$ is not complete.] See ex. sheet 2.

Proposition 3.4. *Let K be complete wrt a discrete valuation, L/K a finite separable extension. Then the AV $|-|$ on L is discrete, and L is complete. Moreover $R_L \simeq R^n$ as R -modules.*

Proof. Clearly $|L^*| \subset |K^*|^{1/n}$ so L is discretely valued. By finiteness of IC, R_L is finitely generated as an R -module. As R is a PID and R_L is obviously torsion-free as R -module, we have $R_L \simeq R^n$. Now $\pi_K R_L = \pi_L^e R_L$ for $e = v(\pi_K)/v(\pi_L)$, and so

$$\varprojlim_m R_L / \pi_L^m R_L = \varprojlim_m R_L / \pi_L^{me} R_L = \varprojlim_m R_L / \pi_K^m R_L \simeq \varprojlim_m (R / \pi_K^m R_K)^n = R^n$$

so $R_L = \varprojlim R_L / \pi_L^m R_L$, hence is complete. \square

Note: if K is not discretely valued, a finite extension L will still be complete. But in general R_L will not be a free R -module (R is no longer a PID).

Lecture 8

Remark: the proof of 3.2 has a gap: given a NA AV $|-|$ on K , we have proved it extends to a unique NA AV on L . But could there be an archimedean AV extending $|-|$? The answer is NO, because of the following fact: an AV on a field K is non-archimedean iff for every $n \in \mathbb{Z}$, $|n.1_K| \leq 1$. [Proof: \implies by

strong triangle inequality. Other way: by binomial theorem, see that $|x + y|^r \leq (r + 1) \max(|x|, |y|)^r$ for every $r \geq 1$, and letting $r \rightarrow \infty$ get that $|-|$ is NA.]

Until the end of this § we assume all valuations are discrete.

Common and convenient shorthand: cdvf (complete discretely valued field). Let K be such a field.

Notation: \mathfrak{o}_K = valuation ring of K , π_K a uniformiser, v_K the normalised valuation (with $v_K(\pi_K) = 1$). $k_K = \mathfrak{o}_K/\pi_K \mathfrak{o}_K$ the residue field.

Let L/K be a finite separable extension of degree n . Since $\pi_K \subset \pi_L \mathfrak{o}_L$, the inclusion $\mathfrak{o}_K \subset \mathfrak{o}_L$ induces a homomorphism $k_K \rightarrow k_L$, which is therefore a field extension.

Definition. The *residue class degree* of L/K is the integer $f = f(L/K) = [k_L : k_K]$. The *ramification degree* is $e = e(L/K) = v_L(\pi_K)$

Note that by definition, $\pi_L^{e(L/K)} \mathfrak{o}_L = \pi_K \mathfrak{o}_L$.

Proposition 3.5. Let L/K be a finite separable extension of cdvfs. Then:

- (i) $e(L/K)f(L/K) = [L : K]$.
- (ii) $L \simeq K^{[L:K]}$ as topological K -vector spaces.

Proof. (i) By Lemma 1.5, $\pi_L^i \mathfrak{o}_L / \pi_L^{i+1} \mathfrak{o}_L \simeq k_L$, and so by the sequence of inclusions

$$\pi_L^e \mathfrak{o}_L \subset \pi_L^{e-1} \mathfrak{o}_L \subset \cdots \subset \pi_L \mathfrak{o}_L \subset \mathfrak{o}_L$$

we have $\dim_{k_K} \mathfrak{o}_L / \pi_K \mathfrak{o}_L = e \dim_{k/K} k_L = ef$. But by 3.4, $\mathfrak{o}_L \simeq \mathfrak{o}_K^n$ so $\mathfrak{o}_L / \pi_K \mathfrak{o}_L$ has dimension n .

(ii) This follows from the proof of 3.4. □

Definition. We say a finite extension L/K is *unramified* if (i) $e(L/K) = 1$ and (ii) the extension k_L/k_K is separable.

The condition $e = 1$ is equivalent to saying that π_K is also a uniformiser of L . (In applications, k_K will be finite so (ii) is automatic.) Unramified extensions are easy to classify.

Proposition 3.6. Suppose L/K is finite. TFAE:

- i) L/K is unramified;
- ii) $L = K(x)$ for some $x \in \mathfrak{o}_K$ for which $\overline{f_{x,L/K}} \in k_K[T]$ is separable.

If so then $\mathfrak{o}_L = \mathfrak{o}_K[x]$ for any x as in (ii).

Proof. Suppose L/K is unramified, and let $\bar{x} \in k_L$ be any element with $k_L = k_K(\bar{x})$. (It exists by separability.) Then pick any $x \in \mathfrak{o}_L$ lifting \bar{x} , and let g be its minimal polynomial; it is in $\mathfrak{o}_K[T]$ since x is integral over \mathfrak{o}_K . Then $\bar{g}(\bar{x}) = 0$, and since $f(L/K) = n$, this forces \bar{g} to be the minimal polynomial of \bar{x} .

Conversely, suppose x is as in (ii). Claim $\overline{f_{x,L/K}}$ is irreducible. If not, as it is separable it factors into 2 coprime polynomials in $k_K[T]$. So by Hensel's Lemma $f_{x,L/K}$ is reducible: contradiction. Therefore $k_L(\bar{x})/k_K$ is separable of degree n , so $k_L = k_L(\bar{x})$ and L/K is unramified.

Finally, if $\mathfrak{o}_K[x] \neq \mathfrak{o}_L$, there exists $y \in \mathfrak{o}_L$ with $\pi_K y \in \mathfrak{o}_K[x]$ but $y \neq \mathfrak{o}_K[x]$. Write $\pi_K y = \sum_{i=0}^{n-1} a_i x^i$. As $1, \bar{x}, \dots, \bar{x}^{n-1}$ is a basis for k_L/k_K , $y \in \mathfrak{o}_L$ implies all $a_i \in \pi_K \mathfrak{o}_K$, hence $y \in \mathfrak{o}_K[x]$, contradiction. □

If $L/$, M/K are finite separable extensions then any K -algebra homomorphism $L \rightarrow M$ maps \mathfrak{o}_L to \mathfrak{o}_M , hence induces a map $k_L \rightarrow k_M$. So $L \mapsto k_L$ is a functor

$$\{\text{finite separable extensions of } K\} \rightarrow \{\text{finite extensions of } k_K\}$$

Theorem 3.7. (i) Let L/K be unramified, and M/K any field extension. Then the natural map

$$\text{Hom}_{K\text{-algebras}}(L, M) \rightarrow \text{Hom}_{k_K\text{-algebras}}(k_L, k_M)$$

is a bijection.

(ii) Let k'/k_K be a finite separable extension. There exists L/K unramified with $k_L = k'$, and it is unique up to isomorphism.

Proof. (i) Write $L = K(x)$ for x, g as in the propn. Then by Hensel

$$\begin{aligned} \text{Hom}_{K\text{-algebras}}(L, M) &\simeq \{y \in M \mid g(y) = 0\} \\ &= \{y \in \mathfrak{o}_M \mid g(y) = 0\} \\ &\simeq \{\bar{y} \in k_M \mid \bar{g}(\bar{y}) = 0\} \\ &= \text{Hom}_{k_K\text{-algebras}}(k_L, k_M) \end{aligned}$$

(ii) Can write $k' = k_K(\bar{x})$, $\bar{g}(\bar{x}) = 0$ for some irreducible $\bar{g} \in k_K[T]$. So \bar{b} and \bar{g}' are coprime. Let $L = K(x)$ where g is any monic lift of \bar{g} . Then $g(x) \notin \mathfrak{m}_L$ so by propn above L/K is unramified and $k_L = k'$. Part (i) with $M = L$ shows uniqueness. \square

Lecture 9

Recall Thm.3.7. It implies that the functor $L \mapsto k_L$ defines an equivalence of categories:

$$(\text{finite unramified extensions of } K) \xrightarrow{\sim} (\text{finite separable extensions of } k_K)$$

Remark. Let K be a cdvf, L/K a separable algebraic extension L/K . Extend the normalised valuation v_K of K to L . We say L/K is unramified if $v_K(L^*) = \mathbb{Z}$ and k_L/k_K is separable. Equivalently, L/K is unramified if all its finite subextensions are unramified. The conclusions of the theorem apply equally in this case.

Corollary 3.8. Suppose $k_K = \mathbb{F}_q$ is finite. Then K has a unique unramified extension of degree n , for every $n \geq 1$, namely the splitting field of $T^{q^n-1} - 1$.

Proof. Follows from the corresponding statement for extensions of \mathbb{F}_q . \square

Corollary 3.9. (i) Let L/K be unramified. Then L/K is Galois iff k_L/k_K is, and the Galois groups are canonically isomorphic.

(ii) Suppose that $k_K = \mathbb{F}_q$ is finite. Then every finite unramified extension L/K is Galois. There exists a unique element $\sigma_{L/K} \in \text{Gal}(L/K)$, called the arithmetic Frobenius such that for every $x \in \mathfrak{o}_L$, $\sigma_{L/K}(x) \equiv x^q \pmod{\pi_L}$. It generates $\text{Gal}(L/K)$.

Proof. (i) Take $M = L$ in (i).

(ii) Every extension of finite fields $\mathbb{F}_{q^n}/\mathbb{F}_q$ is Galois, with cyclic Galois group generated by $x \mapsto x^q$. Take $\sigma_{L/K} =$ corresponding element of $\text{Gal}(L/K)$ under (i). \square

The inverse $F_{L/K} = \sigma_{L/K}^{-1}$ is called the *geometric Frobenius* of L/K .

Remark. Recall that $\overline{\mathbb{F}}_q = \bigcup_{n \geq 1} \mathbb{F}_{q^n} = \bigcup_{(m,p)=1} \overline{\mathbb{F}}_q(\mu_m)$. Let $\mathbb{Q}_p \subset \overline{\mathbb{Q}}_p$ with K/\mathbb{Q}_p finite. Then $K^{\text{nr}} = \bigcup_{(m,p)=1} K(\mu_m)$ is the union of all the unramified finite extensions L/K inside $\overline{\mathbb{Q}}_p$. It is called the maximal unramified extension of K . It is Galois and we have

$$\text{Gal}(K^{\text{nr}}/K) \simeq \text{Gal}(\overline{\mathbb{F}}_q/\overline{\mathbb{F}}_q) = \varprojlim_{n \geq 1} \text{Gal}(\mathbb{F}_{q^n}/\overline{\mathbb{F}}_q) \simeq \varprojlim_{n \geq 1} \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}$$

Let $\phi_K \in \text{Gal}(K^{\text{nr}}/K)$ be the automorphism corresponding to $\phi_q \in \text{Gal}(\overline{\mathbb{F}}_q/\overline{\mathbb{F}}_q)$. Then $\langle \phi_K \rangle$ is an infinite cyclic subgroup of $\text{Gal}(K^{\text{nr}}/K)$, which is dense in it.

Ramification

For (considerable) simplicity we now only consider extensions L/K for which k_L/k_K is *separable*.

Theorem 3.10. *L/K finite separable, k_L/k_K is separable. Then \exists unique intermediate field $K \subset L_0 \subset L$ such that L_0/K is unramified and L/L_0 is totally ramified (i.e. $f_{L/L_0} = 1$). If $K \subset F \subset L$ then $F \subset L_0$ iff F/K is unramified.*

L_0 is called the maximal unramified subfield of L/K .

Proof. By 3.7(ii) there exists K'/K unramified with residue field k_L , and by (i) the identity map on k_L defines a unique embedding $K' \hookrightarrow L$. Let L_0 be its image. Then L_0/K is unramified of residue degree $f(L/K)$ so L/L_0 is totally ramified. Obviously $F \subset L_0 \implies F/K$ unramified. Conversely, if F/K unramified then $k_F \subset k_L = k_{L_0}$ so applying 3.7(i) gives unique maps $F \hookrightarrow L_0 \hookrightarrow L$ lifting the maps on residue fields, hence $F \subset L_0$. \square

So a finite extension can be broken up into an unramified extension, followed by a totally ramified one. We now look at the latter.

Definition. A monic polynomial $g = T^n + \sum_{i=0}^{n-1} a_i T^i \in \mathfrak{o}_K[T]$ is *Eisenstein* if for all $0 \leq i \leq n-1$, $v_K(a_i) > 0$, and $v_K(a_0) = 1$.

Eisenstein's criterion then says that g is irreducible over K .

Theorem 3.11. (i) *If g is an Eisenstein polynomial over K and x is a root of g , then $L = K(x)$ is totally ramified, x is a uniformiser of L and $\mathfrak{o}_L = \mathfrak{o}_K[x]$.*

(ii) *Conversely, if L/K is totally ramified, and π_L is a uniformiser, then the min-poly of π_L is Eisenstein and $L = K(\pi_L)$.*

Example: let $L = \mathbb{Q}_p(\mu_q)$, $q = p^r$. Then ζ_q is a root of $\Phi_q(T) = (T^q - 1)/(T^{q/p} - 1)$, and the usual argument shows that $\Phi_q(T + 1)$ is an Eisenstein polynomial. So $\mathfrak{o}_L = \mathbb{Z}_p[\zeta_q]$, and $\pi_L = \zeta_q - 1$ is a uniformiser of L .

Lecture 10

Proof. (i) Say $g = T^n + a_{n-1}T^{n-1} + \dots + a_1T + a_0$. Let v_K be the normalised valuation on K , extended to $L = K(x)$. Then

$$x^n = - \sum_{i=0}^{n-1} a_i x^i$$

implies that $v_K(x) > 0$. But then for all $i \neq 0$, $v_K(a_i x^i) > 1 = v_K(a_0)$, hence $v_K(\text{RHS}) = 1$. Therefore $v_K(x) = 1/n$, and $ef = n$ implies that $e = n$ and $v_L(x) = 1$, i.e. $x = \pi_L$ is a uniformiser of L .

Now consider $y = \sum_{i=0}^{n-1} b_i \pi_L^i \in K[\pi_L]$. Then $v_L(b_i \pi_L^i) = nv_K(b_i) + i$, so all the terms have different valuations (as they belong to different residue classes mod n). Therefore $v_L(y) = \min\{nv_K(b_i) + i\}$, by triangle inequality. In particular, $y \in \mathfrak{o}_L$ iff for each i , $nv_K(b_i) \geq -i$ i.e. $v_K(b_i) \geq -i/n$. As $i/n < 1$ this means $y \in \mathfrak{o}_L$ iff all $b_i \in \mathfrak{o}_K$.

(ii) Let $[L : K] = n$, and let $g = T^m + \sum_{i=0}^{m-1} a_i T^i$ be the min.poly of π_L . Then $m \leq n$ and $v_L(a_i) = nv_K(a_i)$, and from the equation

$$-\pi_L^m = \sum_{i=0}^{m-1} a_i \pi_L^i$$

and the same argument as above, we have

$$m = v_L(\pi_L^m) = \min\{v_L(a_i \pi_L^i)\} = \min\{i + nv_K(a_i) \mid 0 \leq i \leq m-1\}$$

and this can only be satisfied if $v_K(a_i) \geq 1$ for all i and $v_K(a_0) = 1$, which means $m = n$, so $L = K(\pi_L)$; then $\mathfrak{o}_L = \mathfrak{o}_K[\pi_L]$ as in (i). \square

Remark. Suppose K/\mathbb{Q}_p is finite, with $q = \#k_K$. The normalised AV (or modulus) is often defined to be $|x|_K = q^{-v_K(x)}$; thus $|-|_K = |-|_p^{[K:\mathbb{Q}_p]}$. We explain which.

K is a locally compact topological group, hence has (up to scalar) a unique Haar measure μ (translation-invariant measure, for which every compact set is measurable). It is easy to describe μ (without any fancy measure theory). Every compact subset of K has a compact open neighbourhood, so we need to specify the values $\mu(x + \pi_K^n \mathfrak{o}_K)$, for $x \in K$ and $n \in \mathbb{Z}$. Translation invariance says $\mu(x + \pi_K^n \mathfrak{o}_K) = \mu(\pi_K^n \mathfrak{o}_K)$, and as $(\pi_K^n \mathfrak{o}_K : \pi_K^{n+1}) = q$ we deduce $\mu(\pi_K^n \mathfrak{o}_K) = q\mu(\pi_K^{n+1} \mathfrak{o}_K)$, hence

$$\mu(x + \pi_K^n \mathfrak{o}_K) = \mu(\pi_K^n \mathfrak{o}_K) = q^{-n} \mu(\mathfrak{o}_K).$$

for all $x \in K$, $n \in \mathbb{Z}$. So fixing $\mu(\mathfrak{o}_K)$ determines μ completely.

In particular, for any open compact $\emptyset \neq U \subset K$ and $x \in K^*$, the quotient $\mu(xU)/\mu(U)$ is just $|x|_K$. For a general l.c. top.field K the map $x \mapsto \mu(xU)/\mu(U)$ is a homomorphism $K^* \rightarrow \mathbb{R}$ which doesn't depend on U (measurable with non-0 measure). For $K = \mathbb{R}$ it is $|x|$, and for $K = \mathbb{C}$ it is $|x|^2$.

4 Ramification theory

L/K finite separable extension of cdvf, with separable residue field extension.

Consider the trace form $t_{L/K}: L \times L \rightarrow K$. If $\{x_i\}$ is an \mathfrak{o}_K -basis for \mathfrak{o}_L , and $\{y_i\}$ is the dual basis wrt $t_{L/K}$, then $\text{tr}_{L/K}(x_i y_j) = \delta_{ij}$. So $X = \sum \mathfrak{o}_K y_i$ is the \mathfrak{o}_L -submodule of L given by

$$\{x \in \mathfrak{o}_L \mid \text{tr}_{L/K}(xy) \in \mathfrak{o}_K \ \forall y \in \mathfrak{o}_L\}$$

called the *inverse different* of L/K , written $\mathcal{D}_{L/K}^{-1}$. Obviously $\mathcal{D}_{L/K}^{-1} \supset \mathfrak{o}_L$, and since $\pi_L^n \mathcal{D}_{L/K}^{-1} \subset \mathfrak{o}_L$ when $n = \min\{-v_L(y_i)\}$ we have $\mathcal{D}_{L/K}^{-1} = \pi_L^{-\delta(L/K)} \mathfrak{o}_L$ for some $\delta(L/K) \in \mathbb{N}$.

Definition. $\mathcal{D}_{L/K} = \pi_L^{\delta L/K} \mathfrak{o}_L$ is the *different* of L/K , and $\delta(L/K)$ is the *differential exponent*.

Theorem 4.1. (i) $M/L/K \implies \mathcal{D}_{M/K} = \mathcal{D}_{M/L} \mathcal{D}_{L/K}$.

(ii) If $\mathfrak{o}_L = \mathfrak{o}_K[x]$ with $g = \text{min.poly of } x$, then $\mathcal{D}_{L/K} = (g'(x))$.

(iii) $\delta(L/K) \geq e(L/K) - 1$, with equality iff $e \not\equiv 0 \pmod{p}$. In particular, L/K is unramified iff $\mathcal{D}_{L/K} = \mathfrak{o}_L$. (Here p is the residue characteristic of K .)

Proof. (i) follow definition.

(ii) Let $x = x_1, \dots, x_n$ be the roots of g . Then since $x_i \neq x_j$ we have partial fractions decomposition

$$\frac{1}{g(T)} = \sum_{i=1}^n \frac{1}{(T - x_i)g'(x_i)}$$

Expanding both sides as power series in $1/T$ we have

$$\begin{aligned} T^{-n} - a_{n-1}T^{-n-1} + \dots &= \sum_{i=1}^n g'(x_i)^{-1}(T^{-1} + x_i T^{-2} + x_i^2 T^{-3} + \dots) \\ &= \sum_{r=0}^{\infty} \text{tr}_{L/K} g'(x)^{-1} x^r T^{-r-1} \end{aligned}$$

and equating coefficients gives

$$\text{tr}_{L/K}(x^r g'(x)^{-1}) \begin{cases} = 0 & \text{if } 0 \leq r < n-1 \\ = 1 & \text{if } r = n-1 \\ \in \mathfrak{o}_K & \text{for all } r \end{cases}$$

This implies that $\{g'(x)^{-1} x^i \mid 0 \leq i \leq n-1\}$ is an \mathfrak{o}_K -basis for $\mathcal{D}_{L/K}^{-1}$, hence $\mathcal{D}_{L/K} = (g'(x))$.

Lecture 11

(iii) Applying this with L/K unramified gives by Propn. 3.6 that $\mathcal{D}_{L/K} = \mathfrak{o}_L$. So by (i) $\mathcal{D}_{L/K} = \mathcal{D}_{L/L_0}$ where L_0 is the maximal unramified subfield, so it is enough to consider the case L/K totally ramified. In this case $[L : K] = e$ and we may take $x = \pi_L$, a root of an Eisenstein polynomial $g = T^e + \sum a_i T^i$. Then

$$g'(\pi_L) = e\pi_L^{e-1} + \sum_{i=1}^{e-1} i a_i \pi_L^{i-1}$$

and if $e \not\equiv 0 \pmod{p}$ then the term $e\pi_L^{e-1}$ has $v_L = e-1$, whereas $v_L(i a_i \pi_L^{i-1}) \geq v_L(a_i) \geq e$. So $v_L(g'(\pi_L)) = e-1$. But if $e \equiv 0 \pmod{p}$ then each term on the RHS has $v_L \geq e$. \square

Definition. L/K is *tamely ramified* if $p \nmid e_{L/K}$. Otherwise L/K is *wildly ramified*.

If k_L has characteristic zero, then any extension of K is at most tamely ramified. We henceforth assume k_K has characteristic $p > 0$.

Example: $K_n = \mathbb{Q}_p(\zeta_{p^n})$, $p > 2$. Know $[K_n : \mathbb{Q}_p] = p^{n-1}(p-1)$ and K_n/\mathbb{Q}_p is totally ramified, uniformiser $\pi_n = \zeta_{p^n} - 1$.

So K_1/\mathbb{Q}_p is tamely ramified and $\mathcal{D}_{K_1/\mathbb{Q}_p} = (\pi_1^{p-2})$.

For $n > 1$, K_n/K_{n-1} has degree p and $\mathfrak{o}_{K_n} = \mathfrak{o}_{K_{n-1}}[\zeta_{p^n}]$, min.poly of ζ_{p^n} over K_{n-1} is $g(T) = T^p - \zeta_{p^{n-1}}$. So $\mathcal{D}_{K_n/K_{n-1}} = (p\zeta_{p^n}^{p-1}) = (p)$ and $\delta(K_n/K_{n-1}) = p^{n-2}(p-1)$. Therefore $\mathcal{D}_{K_n/\mathbb{Q}_p} = (p^{n-1}\pi_1^{p-2})$.

The case of L/K Galois

Let $G = \text{Gal}(L/K)$. Then $\forall \sigma \in G, v_L \circ \sigma = v_L$ so $\sigma(\mathfrak{o}_L) = \mathfrak{o}_L$ and $\sigma(\mathfrak{m}_L) = \mathfrak{m}_L$. So G acts on \mathfrak{o}_L and on the quotients $\mathfrak{o}_L/\mathfrak{m}_L^{i+1}, i \geq 0$.

Definition. $G_i = G_i(L/K) = \ker(G \rightarrow \text{Aut}(\mathfrak{o}_L/\mathfrak{m}_L^{i+1}))$ ($i \geq 0$) are the *ramification groups* of L/K .

It's convenient to set $G_{-1} = G$. Obviously $G_i \triangleleft G$ and $G_i \subset G_{i+1}$. Also

$$\bigcap_i G_i = \bigcap \ker(G \rightarrow \text{Aut}(\mathfrak{o}_L/\mathfrak{m}_L^{i+1})) = \ker(G \rightarrow \text{Aut } \mathfrak{o}_L) = \{1\}$$

so $G_i = \{1\}$ for $i \gg 0$.

Definition. $I = I(L/K) = G_0$, the *inertia subgroup* of L/K ; $P = P(L/K) = G_1$, the *wild ramification subgroup* of L/K .

If L_0 is the maximal unramified subfield, obviously

$$\begin{aligned} I &= \ker(G \rightarrow \text{Gal}(k_L/k_K)) \\ &= \ker(G \rightarrow \text{Gal}(L/L_0)) \end{aligned}$$

so $I = \text{Gal}(L/L_0)$. In particular, L/K is unramified iff $I = \{1\}$, and $G/I \simeq \text{Gal}(k_L/k_K)$. Also, for $i \geq 1, G_i(L/K) = G_i(L/L_0)$.

Proposition 4.2. *Assume L/K is totally ramified, π_L a uniformiser of L . Then:*

- (i) $G_i(L/K) = \{\sigma \in \text{Gal}(L/K) \mid v_L(\sigma(\pi_L) - \pi_L) \geq i+1\}$.
- (ii) Define maps

$$\begin{aligned} \theta_i: G_i &\rightarrow \begin{cases} k_L^* & \text{for } i = 0 \\ \mathfrak{m}_L^i/\mathfrak{m}_L^{i+1} & \text{for } i \geq 1 \end{cases} \\ \sigma &\mapsto \begin{cases} \frac{\sigma(\pi_L)}{\pi_L} \pmod{\mathfrak{m}_L} & (i = 0) \\ \frac{\sigma(\pi_L)}{\pi_L} - 1 \pmod{\mathfrak{m}_L^{i+1}} & (i \geq 1) \end{cases} \end{aligned}$$

(well-defined by (i)). Then θ_i is a homomorphism, independent of the choice of π_L , and $\ker(\theta_i) = G_{i+1}$, for all $i \geq 0$.

Proof. Let $\sigma \in G_i$. Then if $u \in \mathfrak{o}_L^*$, $\sigma(u) \equiv u \pmod{\mathfrak{m}_L^{i+1}}$ and so $\sigma(u)/u \equiv 1 \pmod{\mathfrak{m}_L^{i+1}}$. Therefore

$$\frac{\sigma(u\pi_L)}{u\pi_L} = \frac{\sigma(u)}{u} \frac{\sigma(\pi_L)}{\pi_L} = \equiv \frac{\sigma(\pi_L)}{\pi_L} \pmod{\mathfrak{m}_L^{i+1}}$$

so $\theta_i(\sigma)$ is independent of the choice of π_L . So for any $\tau \in G_i, \theta_i(\sigma) = \sigma(\tau(\pi_L))/\tau(\pi_L) - 1$. If $i = 0$ and $\sigma, \tau \in G_0$ then

$$\theta_0(\sigma)\theta_0(\tau) = \frac{\sigma(\tau(\pi_L))}{\tau(\pi_L)} \frac{\tau(\pi_L)}{\pi_L} = \frac{\sigma\tau(\pi_L)}{\pi_L} = \theta_0(\sigma\tau)$$

and θ_0 is a homomorphism. Likewise, if $i \geq 1$ then $\theta_i(\sigma)\theta_i(\tau) = 0$ and so

$$\theta_i(\sigma\tau) = \frac{\sigma(\tau(\pi_L))}{\pi_L} - 1 = \frac{\sigma(\pi_L)}{\tau(\pi_L)} \frac{\tau(\pi_L)}{\pi_L} - 1 = (\theta_i(\sigma) + 1)(\theta_i(\tau) + 1) - 1 = \theta_i(\sigma) + \theta_i(\tau).$$

By definition of G_i , $\ker \theta_i = G_{i+1}$. \square

Lecture 12

Corollary 4.3. (i) G_0/G_1 is cyclic of order prime to p , and for all $i \geq 1$, G_i/G_{i+1} is an elementary abelian p -group.

(ii) $P = G_1$ is the unique Sylow p -subgroup of I , and is normal in G . Moreover $P = \{1\}$ iff L/K is tamely ramified.

(iii) If k_K is finite, G is solvable.

Proof. (i) We have $G_0/G_1 \hookrightarrow k_L^*$ and $G_i/G_{i+1} \hookrightarrow \mathfrak{m}_L^i/\mathfrak{m}_L^{i+1} \simeq k_L$. Every finite subgroup of a field is cyclic.

(ii) From (i) P is a Sylow p -subgroup of I and is normal; so it is the unique Sylow p , hence is normal in G .

(iii) We have I/P cyclic, P a p -group and since k_K finite, G/I cyclic. \square

Example: $K_n = \mathbb{Q}_p(\zeta_{p^n})$. Then K_n/\mathbb{Q}_p totally ramified $\implies G = G_0$, and

$$\begin{aligned} G = \text{Gal}(K_n/\mathbb{Q}_p) &\xrightarrow{\sim} (\mathbb{Z}/p^n\mathbb{Z})^* \\ (\sigma_a: \zeta \rightarrow \zeta^a) &\leftrightarrow a \end{aligned}$$

Now $\pi_n = \zeta_{p^n} - 1$ is a uniformiser of K_n . Let $(a \in \mathbb{Z}/p^n\mathbb{Z})$, $a - 1 \equiv p^{n-m}b$ with $0 < m \leq n$ and $(p, b) = 1$. Then

$$\begin{aligned} v_{K_n}(\sigma_a(\pi_n) - \pi_n) &= v_{K_n}(\sigma_a(\zeta_{p^n}) - \zeta_{p^n}) = v_{K_n}(\zeta_{p^n}^a - \zeta_{p^n}) = v_{K_n}(\zeta_{p^n}^{a-1} - 1) \\ &= v_{K_n}(\zeta_{p^m}^b - 1) = v_{K_n}(\zeta_{p^m} - 1) = v_{K_n}(\pi_m) = [K_n : K_m] = p^{n-m}. \end{aligned}$$

and therefore by 4.2(i) (putting $r = n - m$)

$$G_i = \ker((\mathbb{Z}/p^n\mathbb{Z})^* \rightarrow (\mathbb{Z}/p^r\mathbb{Z})^*) \quad \text{if } p^{r-1} \leq i \leq p^r - 1.$$