
Algebraic Number Theory part III, Michaelmas 2012: notes

Review of basic properties of number fields

Lecture 1

(Algebraic) Number Field = finite extension K/Q, degree n = [K : Q]. Its ring of
integers is

oK = {algebraic integers of K} = {x ∈ K | min. poly of x is in Z[X]}

One shows (using the discriminant) that oK ' Zn as a Z-module. Algebra: oK is
a Dedekind domain. Recall that for an integral domain R with FoF F , TFAE:

i) R is Noetherian, is integrally closed in F , and every non-0 prime ideal of R is
maximal.

ii) Every non-0 ideal of R has a unique factorisation as a product of prime ideals.

(It’s easy to see that oK satisfies (i).)
A fractional ideal of R is a finitely-generated non-0 R-submodule of F . Equiv-

alently, is is xR for some x ∈ F ∗. Then {fractional ideals} is an abelian group
under multiplication, and (ii) implies that is is freely generated by the set of non-0
prime ideals

I =
∏

P vP (I), where vP (I) ∈ Z and vP (I) = 0 for all but finitely many P .

If I, J ⊂ R are ideals, then

vP (I + J) = min(vP (I), vP (J)), vP (I ∩ J) = max(vP (I), vP (J)), I + J = R =⇒ I ∩ J = IJ

and the Chinese Remainder Theorem then implies

R/I ∼−→
∏

R/P vP (I).

The class group: Cl(R) = {fractional ideals}/{principal ideals xR}. Then:

Theorem. Cl(oK) is finite.

This needs more than just algebra (for an arbitrary Dedekind domain R, Cl(R)
can be infinite).
Archimedean analysis: There are exactly n = [K : Q] distinct embeddings σi : K ↪−→C:
can write then as r1 real and r2 pairs of complex conjugate embeddings, where
n = r1 + 2r2:

σ1, . . . σr1 : K ↪−→R, σr1+1 = σr1+r2+1, . . . , σr1+r2 = σn : K ↪−→C.

If (x1, . . . , xn) is a Q-basis for K then det(σi(xj)) 6= 0. In particular, if oK =
∑

Zxi
then dK = det(σi(xj))

2 ∈ Z \ 0, the discriminant of K. Then

σ = (σ1, . . . , σr1+r2 : K ↪−→Rr1 × Cr2 ' Rn

and σ(oK) is a lattice (discrete subgroup of rank n).
One aspect of modern algebraic number theory is to regard the prime ideals

P and the complex embeddings σi as analogous objects. From this viewpoint,
primes correspond to embedding of K into topological fields other than C, so-
called nonarchimedean fields. Begin by looking at these.
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1 Valuations and absolute values

Definition. A (rank 1) valuation of K is a non-trivial homomorphism v : K∗ → R
s.t.:

for all x, ∈ K with y 6= −x, v(x+ y) ≥ min(v(x), v(y)). (V)

Remark. By convention we extend v to all of K by setting v(0) = +∞, so that
(with the obvious arithmetic in R∪{+∞}) (V) holds for all x, y ∈ K. Some people
don’t require v(K∗) 6= {0} (so allow the “trivial valuation”).

Examples. (i) p-adic valuation: vp : Q∗ → R, vp(p
na/b) = n if (p, ab) = 1.

(ii) K a number field, 0 6= P ⊂ oK a prime ideal. Then define, for 0 6= x ∈ K∗,
vP (x) to be the exponent of P in the factorisation of the fractional ideal xoK .
Obviously a homomorpism. To see that (V) holds, let x, y ∈ K. Multiplying by
suitable z ∈ oK , may assume WLOG x, y ∈ oK . In this case vP (x) = n ⇐⇒ x ∈
P n \ P n+1 and (V) is then obvious.

(iii) K = field of meromorphic functions on C. Then v(f) = ordz=0f(z) is a
valuation of K.

Definition. A valuation v of K is discrete is v(K∗) ⊂ R is a discrete subgroup; it
then equals rZ for some r > 0. A discrete valuation v is normalised if v(K∗) = Z.

All the previous examples are normalised discrete valuations. We will come
across important examples when v(K∗) = Q.

Remark. There are other (rank > 1) valuations of fields. We shall not consider
them.

If v is a valuation of F , and α > 0, then αv is obviously also a valuation. We
say v, αv are equivalent valuations.

Proposition 1.1. Let v be a valuation on K. Then if v(x) 6= v(y), v(x + y) =
min(v(x), v(y)).

Proof. WLOG v(x) < v(y) = v(−y), so v(x) = v((x+y)−y) ≥ min(v(x+y), v(y)),
hence v(x) ≥ v(x+ y) ≥ min(v(x), v(y)) = v(x).

Lecture 2

Definition. Let K be a field, R ⊂ K a proper subring. We say that R is a
valuation ring of K is x ∈ K \R =⇒ x−1 ∈ R.

Remark. Definition implies that if x, y ∈ R \ 0 =⇒ at least one of x/y, y/x is in
R. Obviously then Frac(R) = K.

Theorem 1.2. Let R be a valuation ring of K. Then

i) R is a local ring with maximal ideal m = R \R∗.

ii) R is integrally closed.

iii) Every finitely generated ideal of R is principal; in particularly R is Noetherian
(every ideal is f.g.) iff R is a PID.

Recall what these mean: a ring R is local if it has exactly one maximal ideal. A
domain R is integrally closed if x ∈ Frac(R), a0, . . . , an−1 ∈ R with xn+

∑
aix

i = 0
implies x ∈ R.
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Proof. i) Let m = R \ R∗. Trivially x ∈ m, y ∈ R =⇒ xy ∈ m. If x, y ∈ m \ 0
then WLOG z = y/x ∈ R, hence x + y = x(1 + z) ∈ m. So m is an ideal. Since
R \ m = R∗, every proper ideal of R is contained in m, hence m is the unique
maximal ideal of R.

ii) Let x ∈ K∗ be integral over R, say

xn +
n−1∑
i=0

aix
i = 0, ai ∈ R.

If x−1 /∈ R then x ∈ R and we are finished. Otherwise, x−1 ∈ R and

x−1
(
−

n−1∑
i=0

ai(x
−1)n−i−1

)
= 1

so x−1 ∈ R∗, hence x ∈ R.
iii) If x, y ∈ R are nonzero then

xR + yR =

{
xR if y/x ∈ R
yR if x/y ∈ R

Theorem 1.3. (i) Let K be a field, v a valuation on K. Define

Rv = {x ∈ K | v(x) ≥ 0}, mv = {x ∈ K | v(x) > 0}.

Then Rv is a valuation ring with maximal ideal m, and v induces an isomorphism
K∗/R∗v

∼−→ v(K∗) ⊂ R.
(ii) Rv is a maximal proper subring of K, and depends only on the equivalence

class of v.
(iii) If v, v′ are valuations of K and Rv ⊂ Rv′ then Rv = Rv′ and v, v′ are

equivalent. In particular, for any valuation ring R of K there is at most one
equivalence class of valuations v with Rv = R.

Examples to bear in mind is

Z(p) =
{x
y

∣∣∣ x, y ∈ Z, (p, y) = 1
}
⊂ Q

the valuation ring of the p-adic valuation vp, and more generally

oK,P =
{x
y

∣∣∣x, y ∈ oK , y /∈ P
}
⊂ K

the valuation ring of the P -adic valuation of a number field K.

Proof. i) By definition of a valuation, Rv is a ring, and Rv 6= K since v is nontrivial.
Also x /∈ Rv =⇒ v(x) < 0 =⇒ v(x−1) > 0 =⇒ x−1 ∈ R. So Rv is a valuation
ring of K, its nonunits are obviously m, and ker(v) = R∗v.

ii) Let x ∈ K \ Rv. Then v(x) < 0, so for any y ∈ K, there exists n ∈ Z
with v(y) ≥ nv(x). Then y/xn ∈ R, so y ∈ R[x] i.e. R[x] = K, so R is maximal.
Obviously if v and v′ are quivalent, Rv = Rv′ .

iii) By ii) we get Rv′ = Rv (hence mv = mv′). Therefore for any x, y ∈ K

v(x) ≥ v(y) ⇐⇒ x/y ∈ Rv ⇐⇒ v′(x) ≥ v′(y).
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Let 0 6= π ∈ mv. Then for any p/q ∈ Q, q > 0,

v(x)

v(π)
≥ p

q
⇐⇒ v(xq) ≥ v(πp) ⇐⇒ xqπ−p ∈ Rv

and the same for v′, hence v(x)/v(π) = v′(x)/v′(π), and so v, v′ are equivalent.

Remark. Conversely, any valuation ring of a field which is maximal is some Rv

(see example sheet). (To get all valuation rings we need to consider valuations of
higher rank.)

Definition. A discrete valuation ring or DVR is the valuation ring of a discrete
valuation on some field.

Proposition 1.4. A domain is a DVR ⇐⇒ it is a PID with a unique nonzero
prime ideal.

Proof. Let R be a PID with ! prime ideal πR, Frac(R) = K. For 0 6= x ∈ R define
v(x) = n ∈ N with xR = πnR; for 0 6= x/y ∈ K∗ set v(x/y) = v(x)− v(y) — easy
to see that v is a DV on K with valuation ring R.

Lecture 3

Conversely, let Rv be a DVR. As v(K∗) is discrete, there exists x ∈ I with v(x)
minimal, and then I = xR. So Rv is Noetherian, hence a PID by Theorem 1.2(iii),
and in a PID, maximal ideals are the same as non-0 prime ideals.

Lemma 1.5. (R, π) a DVR. Then for every m, n ≥ 0, have R-module isomor-
phism

πm : R/πnR ∼−→ πmR/πm+nR.

Proof. Obvious for any ring R and π ∈ R which is not a zero-divisor.

Theorem 1.6. Any valuation on Q is equivalent to some vp. Any valuation on a
number field K is equivalent to some vP .

Proof. Let oK be the ring of integers of K, v a valuation of K. Then as Rv is
integrally closed, Rv ⊃ oK . As Frac oK = K, v is nontrivial on oK . Therefore
P = mv ∩ oK is a non-zero prime ideal of oK . Then x ∈ oK \ P ⊂ Rv \ mv =⇒
v(x) = 0, and so Rv ⊃ oK,P . Then by Thm.1.3(iii), Rv = oK,P and v factors

through vP : K∗/o∗K,P
∼−→ Z.

Definition. K a field. A map |−| : K → R≥0 is an absolute value (AV) if for all
x, y ∈ K:

(AV1) |x| = 0 iff x = 0

(AV2) |xy| = |x| · |y|

(AV3) |x+ y| ≤ |x|+ |y|

(AV4) ∃x ∈ K with |x| /∈ {0, 1}.

If (AV3) can be replaced by

(AV3N) |x+ y| ≤ max(|x| , |y|)
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then it is said to be a nonarchimedean AV. If not, say it is archimedean.

Obvious archimedean AVs are usual (Euclidean) absolute value on R, and mod-
ulus on C.

Theorem 1.7. Fix ρ ∈ (0, 1). Let v be a valuation on K. Then |x|v = ρv(x) is
a nonarchimedean AV on K, and v → |−|v is a bijection between valuations and
NAAVs on K.

Proof. Obvious from definitions. Recover v from |−|v by v(x) = log |x|v / log ρ.

For example, vp on Q gives rise to the p-adic AV, usually normalised by taking
ρ = 1/p:

|pnu/v|p :=
1

pn
, (p, uv) = 1.

If |−| is a non-arch. AV then so is |−|r, any r > 0. We say |−|, |−|r are equivalent
AVs.

Proposition 1.8. Let |−| be an AV on K. Then the function d(x, y) = |x− y|
is a metric on K, invariant under translation, for which the field operations are
continuous. Equivalent AVs determine equivalent metrics.

Proof. Follows instantly from the axioms.

In particular, any AV on K makes K into a topological field, the topology only
depending on the equivalence class of the AV.

It’s convenient to weaken the definition of AV to replace (AV3) with

(AV3′) for some α ∈ (0, 1], |x+ y|α ≤ |x|α + |y|α.

With this definition, the square of complex modulus is an AV on C. If |−| satisfies
(AV3′) then |−|r satisfies (AV3), so this definition is not significantly different.

We’ve already classified NAAVs of Q. For archimedean ones, one has:

Theorem 1.9 (Ostrowski’s Theorem). Any archimedean AV of Q is equivalent to
the Euclidean AV.

Proof. Omitted.

2 Completion

Let K be a field with an AV |−|, satisfying (AV3). Mimicing one of the usual
constructions of R from Q, we can enlarge K to a complete field:

Theorem 2.1. There exists a field K̂ with an AV |−|̂ , together with an isometric

embedding ι : K ↪−→ K̂, such that:

i) K̂ is complete w.r.t the metric given by |−|̂ ;

ii) ι(K) is dense in K̂; and

iii) any isometric embedding (K, |−|)
(

↪−→K ′, |−|′) of K into a complete field fac-
tors uniquely through ι.
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Proof. (Sketch) Let R ⊂ KN be the set of Cauchy sequences in K, and I ⊂ R be
the subset of null sequences. It’s easy to see that R is a ring, and I is an ideal.
Moreover I is maximal: let x = (xn) ∈ R \ I. As x /∈ I, |xn| is bounded below by
some ε > 0 for all n ≥ N sufficiently large. Set yn = 1/xn for n ≥ N . Then

|yn − ym| =
|xm − xn|
|xmxn|

≤ ε−2 |xm − xn|

so the sequence y = (yn) (where we define yn = 0 if n < N) is Cauchy, and
xy ∈ 1 + I. So R/I is a field, and easily check that it is complete with respect to
the absolute value

|(xn)n∈N| = lim
n→∞

|xn| .

If j : K ↪−→K ′ is an embedding of K into a complete field as in (iii), then it defines
a map R→ K ′ by (xn) 7→ lim j(xn), whose kernel is I.

If K = Q and |−| is Euclidean AV then K̂ = R.

Lecture 4

If K = Q and |−| = |−|∞, Euclidean absolute value, then K̂ = R.
Until the end of this section, we consider only non-archimedean valuations.

Then it’s clear that the extension |−|̂ is also non-archimedean. We’ll simply denote
it |−| if there is no confusion. Then if |−| = |−|v for some valuation v of K, we

get an extension of v to a valuation of K̂, which we’ll also denote v.
Example: K = Q, |−| = |−|p the p-adic absolute value. Then K̂ is denoted Qp,

the field of p-adic numbers. It’s valuation ring is written Zp = {x ∈ Qp | vp(x) ≥
0}, the ring of p-adic integers.

Let’s give a completely explicit description of Qp and Zp.

Proposition 2.2. Every element of Zp has a unique representation as a series

x = a0 + a1p+ · · · =
∞∑
n=0

anp
n, an ∈ {0, 1, . . . , p− 1}.

Every element of Qp has a unique representation as a series

x = a−Np
−N + a−N+1p

−N+1 + · · · =
∞∑

n=−N

anp
n, an ∈ {0, 1, . . . , p− 1}

for some N . In either case, vp(x) = min{n | an 6= 0}.

Proof. Let xn =
∑

i≤n aip
i. Then if n > m,

|xn − xm|p =

∣∣∣∣∣
n−1∑
i=m

aip
i

∣∣∣∣∣
p

≤ max{
∣∣aipi∣∣p | m ≥ i < n} ≤ p−m

so (xn) is Cauchy and the series converges. Conversely, suppose x ∈ Zp and n > 0.
Claim there exists a unique yn ∈ Z with 0 ≤ yn < pn and |x− yn|p ≤ p−n. In fact,
as Q is dense in Qp, there exists a/b ∈ Q with |x− a/b|p ≤ p−n. As |x|p ≤ 1, the
strict triangle equality (AV3N) implies |a/b|p ≤ 1, so WLOG (p, b) = 1. Choose
c ∈ Z with bc ≡ 1 (mod pn). Then vp(bc) = 0, i.e. |bc|p = 1, so

|x− ac|p ≤ max(|x− bcx|p , |bcx− ac|) = max(|x|p |bc− 1|p , |x− a/b|p) ≤ p−n
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Let yn ∈ {0, 1, . . . , pn − 1} be the unique element with y ≡ ac (mod pn). Then
yn = yn+1 (mod pn) and so there exists a unique sequence (ai) ∈ {0, . . . , p − 1}N
such that for every n > 0,

yn =
n−1∑
i=0

aip
i.

Thus every element of Zp has a unique representation in the given form. As Zp is
the valuation ring of Qp with respect to |−|p, Qp = Zp[1/p], so writing x ∈ Qp as

x/pN with x ∈ Zp gives the second part.
For the last, suppose x =

∑
n≥0 anp

n ∈ Zp with 0 ≤ an < p. Then x = a0 + py,
y =

∑
n≥1 anp

n−1 ∈ Zp, so vp(x) = 0 ⇐⇒ vp(a0) = 0 ⇐⇒ a0 6= 0. The formula
for vp(x), x ∈ Qp¡ follows at once.

In other words, p-adic numbers may be represented as “backwards decimals”
(in base p, of course!), and addition and multiplication can be carried out in the
same way as for decimal expansion of real numbers.

A more sophisticated, and more general, way to see this uses the concept of
inverse limit.

Let Xn (n ∈ N) be a sequence of sets (or groups, rings or . . . ) and πn : Xn →
Xn−1 a collections of maps (or homomorphisms) between them. We call the system
(Xn, πn) an inverse system. Its inverse limit is defined to be

lim←−(Xn, πn) = lim←−Xn :={(xn)n | ∀n, xn ∈ Xn, πn(xn) = xn−1} ⊂
∏
n∈N

Xn.

Typically we wil only be concerned with inverse systems in which the πn are
surjective. If Xn are groups (or rings, or . . . ) and πn are homomorphisms, then
lim←−Xn is also a group (or ring. . . ) under the obvious operations.

Remark. More generally, we may replace N with any partially-ordered set I in
which every pair of elements has an upper bound. View I as a category, with one
morphism fij : i→ j whenever i ≥ j. Fix a category C (sets, groups, rings. . . ). A
projective system in C is a functor X : I → C. So for each i ∈ I we have an object
X(i), and for each pair i, j with i ≥ j a morphism Xij : X(i) → X(j). If C is
a concrete category (the objects are sets with some additional structure) we may
form

lim←−X = {(xi)i∈I | xi ∈ X(i), Xij(xi) = xi if i ≥ j} ⊂
∏
i∈I

Xi.

Depending on C, this may or may not be an object of C — if it is, we call it the
projective limit of X.

Example: let Xn = Z/pnZ πn−→ Z/pn−1Z, reduction modulo pn−1. Then I claim
that (at least as a set) lim←−Z/pnZ is precisely Zp. This is clear from the proof of

Proposition 2.2, using the standard bijection {0, 1, . . . , pn − 1} ' Z/pnZ.
Completion: let R be a ring, I ⊂ R an ideal, In its n-th power (recall that the

product of ideals I and J is

IJ = {finite sums
∑

xnyn | xn ∈ I, yn ∈ J}

which is an ideal). The I-adic completion of R is

R̂ = lim←−R/I
n
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where the maps πn : R/In → R/In−1 are the obvious ones. Clearly R̂ is a ring,

and there is a homomorphism R→ R̂ given by

(x ∈ R) 7→ ((xn = x+ In)n ∈ lim←−R/I
n)

whose kernel is
⋂
n I

n.
Example: R = k[T ] polynomial ring over a field k, I = (T ). Then R/In is the

ring of truncated polynomials {
∑

0≤i<n aiT
i}, and it’s easy to see that R̂ is the

ring of formal power series

k[[T ]] = {
∑
n≥0

anT
n}.

Lecture 5

Last time: R ring, I ideal; I-adic completion R̂ = lim←−R/I
n. We say R is I-adically

complete if the natural map R→ R̂ is an isomorphism.
Topology on the inverse limit: let X = lim←−Xn, and let prm : X → Xm be the

m-th component map: (xn) 7→ xm. We define the inverse limit topology to be the
smallest topology for which the maps prm are continuous (for the discrete topology
on Xm). This means that the open sets of X are arbitrary unions of sets of the
form

Um,a = pr−1m (a).

Proposition 2.3. (i) lim←−Xn is totally disconnected.

(ii) Suppose each Xn is finite. Then lim←−Xn is compact.

Proof. (i) Let x = (xn), y = (yn) ∈ lim←−Xn. Suppose x 6= y. Then for some m we

have xm 6= ym, and then lim←−Xn is the disjoint union of the open sets

Um,xm and (pr−1n (xm))c =
⋃

xm 6=a∈Xm

Um,a

with x belonging to the first and y to the second. So lim←−Xn is totally disconnected.

(ii) Each Xn is compact for the discrete topology. Tychonoff’s theorem (product
of compact spaces with the product topology is compact) implies that

∏
Xn is

compact. Then lim←−Xn ⊂
∏
Xn is a closed subspace with the induced topology

(check!) hence is compact.

Theorem 2.4. Let v be a valuation of K, R the valuation ring. Let K̂ be the
completion of K with respect to |−|v, and R̂ its valuation ring. Then for any

π ∈ R \ 0 with v(π) > 0, there is a canonical topological isomorphism between R̂
and lim←−R/π

nR.

Proof. Let (xn) ∈ lim←−R/π
nR. For each n choose yn ∈ R lifting xn. Then if

n > m, yn − ym ∈ πmR so |yn − ym|v ≤ |π|
m
v . As |π|v < 1, (yn) is a Cauchy
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sequence, converging to a unique element y ∈ K̂, and |y| = lim |yn| ≥ 0, so y ∈ R̂/
If (y′n) is another set of liftings, converging to y′ ∈ R̂, then |y′n − yn| ≤ |π|

n, so
(y′n − yn) is a null sequence and y′ = y. This defines the map lim←−R/π

nR → R̂.

which is easily checked to be a continuous homomorphism.
In the other direction, let (yn) be a Cauchy sequence in K converging to some

y ∈ K̂ with |y| ≤ 1. Then (see example sheet) |yn| = |y| for n ≥ N sufficiently
large, in particular yn ∈ R′ for n ≥ N . Choose a subsequence (zn) of (yn) such
that |zn+1 − zn| ≤ |π|n. Then zn+1 − zn ∈ πnR, so (zn) ∈ lim←−R/π

nR. Exercise to

check this is the required continuous inverse.

Hensel’s lemma: origin of p-adic numbers:
Problem. Let f ∈ Z[T ], and suppose a ∈ Z with f(a) ≡ 0 (mod pn), some

n > 0. Can we find b ∈ Z with b ≡ a (mod pn) and f(b) ≡ 0 (mod pn+1) ?
Example: take p = 2, f = T 2 + 1, a = 1. Then even for n = 1 answer is no (−1

is not a square mod 4).
If we could do this for every n, this would give a sequence xn ∈ Z such that

xn+1 ≡ xn (mod pn) and f(xn) ≡ 0 (mod pn). Then the limit x = lim(xn) ∈ Zp
exists and is a root of f .

Theorem 2.5 (Hensel’s Lemma). Let R be a complete DVR, uniformiser π. Sup-
pose f , g1, h1 ∈ R[T ] with g1 monic, (ḡ1, h̄1) = 1 and f ≡ g1h1 (mod π). Then
there exist unique g, h ∈ R[T ] with g monic such that g ≡ g1, h ≡ h1 (mod π) and
f − gh.

(Here ḡ ∈ k[T ] denotes the reduction of g mod π.)

Corollary 2.6. Let f ∈ R[T ] be monic. Suppose a ∈ R with f(a) ≡ 0 6≡
f ′(a) (mod π). There there exists a unique b ∈ R with b ≡ a (mod π) and f(b) = 0.

(Proof of corollary: write f(T ) = (T − a)h1(T ) + f(a), h1 ∈ R[T ], g1 = T − a
and apply Theorem.)

Proof. Let N = deg(f), d = deg(g1). WLOG deg(h1) ≤ N − d. Will inductively
construct (gn, hn) in R[T ] such that gn is monic of degree d, deg(hn) ≤ N − d,
f ≡ gnhn (mod πn) and gn+1 ≡ gn, hn+1 ≡ hn (mod πn), and such that at each
stage, (gn, hn) is unique modulo πn.

Granted this: by completeness ofR, the sequences (gn), (hn) converge coefficient-
by-coefficient to some g, h ∈ R[T ] and f = gh. By the uniqueness at each stage,
any g, h satisfying the conditions of the theorem has g ≡ gn, h ≡ hn (mod πn)
hence the solution is unique.

Lecture 6

Construction: suppose we have (gn, hn), so f − gnhn = πnq for some q ∈ R[T ],
deg(q) ≤ N , and (gn, hn) unique mod πn. Write

gn+1 = gn + πnu, hn+1 = hn + πnv, deg(u) ≤ d− 1, deg(v) ≤ N − d.

Then

f ≡ gn+1hn+1 (mod πn+1) ⇐⇒ gnv + hnu ≡ q (mod π).

So enough to show there exist unique ū, v̄ ∈ k[T ] with deg(ū) ≤ d − 1, deg(v̄) ≤
N − d and

ḡnū+ h̄nv̄ = q̄. (*)
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Now (ḡn, h̄n) = (ḡ1, h̄1) = 1 in k[T ], so there exists a pair (ū, v̄) satisfying (∗), and
the pair is unique up to transformations ū 7→ ū+ r̄ḡ1, v̄ 7→ v̄ − r̄h̄1 with r̄ ∈ k[T ].
So there is a unique choice of r̄ for which deg(ū) ≤ d − 1, and (∗) then implies
deg(v̄) ≤ N − d.

Before we pass on to extensions, one final remark (which could have come
earlier):

Proposition 2.7. Let R be a valuation ring, π ∈ mR \ R, and R̂ = lim←−R/π
nR.

Then the map R/πnR→ R̂/πnR̂ is an isomorphism.

Proof. By Theorem 2.4, R̂ is the valuation ring of the completion K̂ of K, so
R→ R̂ is injective and πnR̂ = {x ∈ K̂ | v(x) ≥ nv(π)}. Therefore πnR̂∩R = πnR,
so R/πnR → R̂/πnR̂ is injective. As K is dense in K̂, R is dense in ER̂ and so
for all x ∈ R̂, there exists y ∈ R with x − y ∈ πnR̂. Therefore the map is an
isomorphism.

Examples. Take R = Zp (p odd), f = T p−1 − 1. Then f ≡ (T − 1)(T − 2) · · · (T −
p+1), so Hensel’s lemma says that for each a ∈ {1, . . . , p−1} there exists a unique
â ∈ Zp with â ≡ a (mod p) and (â)p−1 = 1. So Zp contains all (p−1)-st roots of 1.

More generally, let R be a complete DVR with finite residue field Fq. Applying
Hensel’s lemma with f = T q−1 − 1 shows that R comtains all (q − 1)-st roots of
unity.
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