

Review of basic properties of number fields

Lecture 1

(Algebraic) Number Field = finite extension K/\mathbb{Q} , degree $n = [K : \mathbb{Q}]$. Its *ring of integers* is

$$\mathfrak{o}_K = \{\text{algebraic integers of } K\} = \{x \in K \mid \text{min. poly of } x \text{ is in } \mathbb{Z}[X]\}$$

One shows (using the discriminant) that $\mathfrak{o}_K \simeq \mathbb{Z}^n$ as a \mathbb{Z} -module. *Algebra*: \mathfrak{o}_K is a *Dedekind domain*. Recall that for an integral domain R with FoF F , TFAE:

- i) R is Noetherian, is integrally closed in F , and every non-0 prime ideal of R is maximal.
- ii) Every non-0 ideal of R has a unique factorisation as a product of prime ideals.

(It's easy to see that \mathfrak{o}_K satisfies (i).)

A *fractional ideal* of R is a finitely-generated non-0 R -submodule of F . Equivalently, is is xR for some $x \in F^*$. Then $\{\text{fractional ideals}\}$ is an abelian group under multiplication, and (ii) implies that is is freely generated by the set of non-0 prime ideals

$$I = \prod P^{v_P(I)}, \quad \text{where } v_P(I) \in \mathbb{Z} \text{ and } v_P(I) = 0 \text{ for all but finitely many } P.$$

If $I, J \subset R$ are ideals, then

$$v_P(I + J) = \min(v_P(I), v_P(J)), \quad v_P(I \cap J) = \max(v_P(I), v_P(J)), \quad I + J = R \implies I \cap J = IJ$$

and the Chinese Remainder Theorem then implies

$$R/I \xrightarrow{\sim} \prod R/P^{v_P(I)}.$$

The *class group*: $Cl(R) = \{\text{fractional ideals}\}/\{\text{principal ideals } xR\}$. Then:

Theorem. $Cl(\mathfrak{o}_K)$ is finite.

This needs more than just algebra (for an arbitrary Dedekind domain R , $Cl(R)$ can be infinite).

Archimedean analysis: There are exactly $n = [K : \mathbb{Q}]$ distinct embeddings $\sigma_i: K \hookrightarrow \mathbb{C}$: can write then as r_1 real and r_2 pairs of complex conjugate embeddings, where $n = r_1 + 2r_2$:

$$\sigma_1, \dots, \sigma_{r_1}: K \hookrightarrow \mathbb{R}, \quad \sigma_{r_1+1} = \bar{\sigma}_{r_1+r_2+1}, \dots, \sigma_{r_1+r_2} = \bar{\sigma}_n: K \hookrightarrow \mathbb{C}.$$

If (x_1, \dots, x_n) is a \mathbb{Q} -basis for K then $\det(\sigma_i(x_j)) \neq 0$. In particular, if $\mathfrak{o}_K = \sum \mathbb{Z}x_i$ then $d_K = \det(\sigma_i(x_j))^2 \in \mathbb{Z} \setminus 0$, the *discriminant* of K . Then

$$\sigma = (\sigma_1, \dots, \sigma_{r_1+r_2}: K \hookrightarrow \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \simeq \mathbb{R}^n$$

and $\sigma(\mathfrak{o}_K)$ is a *lattice* (discrete subgroup of rank n).

One aspect of modern algebraic number theory is to regard the prime ideals P and the complex embeddings σ_i as analogous objects. From this viewpoint, primes correspond to embedding of K into topological fields other than \mathbb{C} , so-called nonarchimedean fields. Begin by looking at these.

1 Valuations and absolute values

Definition. A (rank 1) valuation of K is a non-trivial homomorphism $v: K^* \rightarrow \mathbb{R}$ s.t.:

$$\text{for all } x, y \in K \text{ with } y \neq -x, \quad v(x+y) \geq \min(v(x), v(y)). \quad (\text{V})$$

Remark. By convention we extend v to all of K by setting $v(0) = +\infty$, so that (with the obvious arithmetic in $\mathbb{R} \cup \{+\infty\}$) (V) holds for all $x, y \in K$. Some people don't require $v(K^*) \neq \{0\}$ (so allow the "trivial valuation").

Examples. (i) p -adic valuation: $v_p: \mathbb{Q}^* \rightarrow \mathbb{R}$, $v_p(p^n a/b) = n$ if $(p, ab) = 1$.

(ii) K a number field, $0 \neq P \subset \mathfrak{o}_K$ a prime ideal. Then define, for $0 \neq x \in K^*$, $v_P(x)$ to be the exponent of P in the factorisation of the fractional ideal $x\mathfrak{o}_K$. Obviously a homomorphism. To see that (V) holds, let $x, y \in K$. Multiplying by suitable $z \in \mathfrak{o}_K$, may assume WLOG $x, y \in \mathfrak{o}_K$. In this case $v_P(x) = n \iff x \in P^n \setminus P^{n+1}$ and (V) is then obvious.

(iii) K = field of meromorphic functions on \mathbb{C} . Then $v(f) = \text{ord}_{z=0} f(z)$ is a valuation of K .

Definition. A valuation v of K is *discrete* is $v(K^*) \subset \mathbb{R}$ is a discrete subgroup; it then equals $r\mathbb{Z}$ for some $r > 0$. A discrete valuation v is *normalised* if $v(K^*) = \mathbb{Z}$.

All the previous examples are normalised discrete valuations. We will come across important examples when $v(K^*) = \mathbb{Q}$.

Remark. There are other (rank > 1) valuations of fields. We shall not consider them.

If v is a valuation of F , and $\alpha > 0$, then αv is obviously also a valuation. We say $v, \alpha v$ are *equivalent* valuations.

Proposition 1.1. *Let v be a valuation on K . Then if $v(x) \neq v(y)$, $v(x+y) = \min(v(x), v(y))$.*

Proof. WLOG $v(x) < v(y) = v(-y)$, so $v(x) = v((x+y)-y) \geq \min(v(x+y), v(y))$, hence $v(x) \geq v(x+y) \geq \min(v(x), v(y)) = v(x)$. \square

Lecture 2

Definition. Let K be a field, $R \subset K$ a proper subring. We say that R is a *valuation ring* of K is $x \in K \setminus R \implies x^{-1} \in R$.

Remark. Definition implies that if $x, y \in R \setminus 0 \implies$ at least one of $x/y, y/x$ is in R . Obviously then $\text{Frac}(R) = K$.

Theorem 1.2. *Let R be a valuation ring of K . Then*

- i) R is a local ring with maximal ideal $\mathfrak{m} = R \setminus R^*$.
- ii) R is integrally closed.
- iii) Every finitely generated ideal of R is principal; in particular R is Noetherian (every ideal is f.g.) iff R is a PID.

Recall what these mean: a ring R is *local* if it has exactly one maximal ideal. A domain R is *integrally closed* if $x \in \text{Frac}(R)$, $a_0, \dots, a_{n-1} \in R$ with $x^n + \sum a_i x^i = 0$ implies $x \in R$.

Proof. i) Let $\mathfrak{m} = R \setminus R^*$. Trivially $x \in \mathfrak{m}, y \in R \implies xy \in \mathfrak{m}$. If $x, y \in \mathfrak{m} \setminus 0$ then WLOG $z = y/x \in R$, hence $x + y = x(1 + z) \in \mathfrak{m}$. So \mathfrak{m} is an ideal. Since $R \setminus \mathfrak{m} = R^*$, every proper ideal of R is contained in \mathfrak{m} , hence \mathfrak{m} is the unique maximal ideal of R .

ii) Let $x \in K^*$ be integral over R , say

$$x^n + \sum_{i=0}^{n-1} a_i x^i = 0, \quad a_i \in R.$$

If $x^{-1} \notin R$ then $x \in R$ and we are finished. Otherwise, $x^{-1} \in R$ and

$$x^{-1} \left(- \sum_{i=0}^{n-1} a_i (x^{-1})^{n-i-1} \right) = 1$$

so $x^{-1} \in R^*$, hence $x \in R$.

iii) If $x, y \in R$ are nonzero then

$$xR + yR = \begin{cases} xR & \text{if } y/x \in R \\ yR & \text{if } x/y \in R \end{cases}$$

□

Theorem 1.3. (i) Let K be a field, v a valuation on K . Define

$$R_v = \{x \in K \mid v(x) \geq 0\}, \quad \mathfrak{m}_v = \{x \in K \mid v(x) > 0\}.$$

Then R_v is a valuation ring with maximal ideal \mathfrak{m}_v , and v induces an isomorphism $K^*/R_v^* \xrightarrow{\sim} v(K^*) \subset \mathbb{R}$.

(ii) R_v is a maximal proper subring of K , and depends only on the equivalence class of v .

(iii) If v, v' are valuations of K and $R_v \subset R_{v'}$ then $R_v = R_{v'}$ and v, v' are equivalent. In particular, for any valuation ring R of K there is at most one equivalence class of valuations v with $R_v = R$.

Examples to bear in mind is

$$\mathbb{Z}_{(p)} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, (p, y) = 1 \right\} \subset \mathbb{Q}$$

the valuation ring of the p -adic valuation v_p , and more generally

$$\mathfrak{o}_{K,P} = \left\{ \frac{x}{y} \mid x, y \in \mathfrak{o}_K, y \notin P \right\} \subset K$$

the valuation ring of the P -adic valuation of a number field K .

Proof. i) By definition of a valuation, R_v is a ring, and $R_v \neq K$ since v is nontrivial. Also $x \notin R_v \implies v(x) < 0 \implies v(x^{-1}) > 0 \implies x^{-1} \in R$. So R_v is a valuation ring of K , its nonunits are obviously \mathfrak{m}_v , and $\ker(v) = R_v^*$.

ii) Let $x \in K \setminus R_v$. Then $v(x) < 0$, so for any $y \in K$, there exists $n \in \mathbb{Z}$ with $v(y) \geq nv(x)$. Then $y/x^n \in R$, so $y \in R[x]$ i.e. $R[x] = K$, so R is maximal. Obviously if v and v' are equivalent, $R_v = R_{v'}$.

iii) By ii) we get $R_{v'} = R_v$ (hence $\mathfrak{m}_v = \mathfrak{m}_{v'}$). Therefore for any $x, y \in K$

$$v(x) \geq v(y) \iff x/y \in R_v \iff v'(x) \geq v'(y).$$

Let $0 \neq \pi \in \mathfrak{m}_v$. Then for any $p/q \in \mathbb{Q}$, $q > 0$,

$$\frac{v(x)}{v(\pi)} \geq \frac{p}{q} \iff v(x^q) \geq v(\pi^p) \iff x^q \pi^{-p} \in R_v$$

and the same for v' , hence $v(x)/v(\pi) = v'(x)/v'(\pi)$, and so v, v' are equivalent. \square

Remark. Conversely, any valuation ring of a field which is maximal is some R_v (see example sheet). (To get all valuation rings we need to consider valuations of higher rank.)

Definition. A *discrete valuation ring* or DVR is the valuation ring of a discrete valuation on some field.

Proposition 1.4. A domain is a DVR \iff it is a PID with a unique nonzero prime ideal.

Proof. Let R be a PID with ! prime ideal πR , $\text{Frac}(R) = K$. For $0 \neq x \in R$ define $v(x) = n \in \mathbb{N}$ with $xR = \pi^n R$; for $0 \neq x/y \in K^*$ set $v(x/y) = v(x) - v(y)$ — easy to see that v is a DV on K with valuation ring R .

Lecture 3

Conversely, let R_v be a DVR. As $v(K^*)$ is discrete, there exists $x \in I$ with $v(x)$ minimal, and then $I = xR$. So R_v is Noetherian, hence a PID by Theorem 1.2(iii), and in a PID, maximal ideals are the same as non-0 prime ideals. \square

Lemma 1.5. (R, π) a DVR. Then for every $m, n \geq 0$, have R -module isomorphism

$$\pi^m: R/\pi^n R \xrightarrow{\sim} \pi^m R/\pi^{m+n} R.$$

Proof. Obvious for any ring R and $\pi \in R$ which is not a zero-divisor. \square

Theorem 1.6. Any valuation on \mathbb{Q} is equivalent to some v_p . Any valuation on a number field K is equivalent to some v_P .

Proof. Let \mathfrak{o}_K be the ring of integers of K , v a valuation of K . Then as R_v is integrally closed, $R_v \supset \mathfrak{o}_K$. As $\text{Frac } \mathfrak{o}_K = K$, v is nontrivial on \mathfrak{o}_K . Therefore $P = \mathfrak{m}_v \cap \mathfrak{o}_K$ is a non-zero prime ideal of \mathfrak{o}_K . Then $x \in \mathfrak{o}_K \setminus P \subset R_v \setminus \mathfrak{m}_v \implies v(x) = 0$, and so $R_v \supset \mathfrak{o}_{K,P}$. Then by Thm.1.3(iii), $R_v = \mathfrak{o}_{K,P}$ and v factors through $v_P: K^*/\mathfrak{o}_{K,P}^* \xrightarrow{\sim} \mathbb{Z}$. \square

Definition. K a field. A map $|-|: K \rightarrow \mathbb{R}_{\geq 0}$ is an *absolute value* (AV) if for all $x, y \in K$:

$$(AV1) \quad |x| = 0 \text{ iff } x = 0$$

$$(AV2) \quad |xy| = |x| \cdot |y|$$

$$(AV3) \quad |x + y| \leq |x| + |y|$$

$$(AV4) \quad \exists x \in K \text{ with } |x| \notin \{0, 1\}.$$

If (AV3) can be replaced by

$$(AV3N) \quad |x + y| \leq \max(|x|, |y|)$$

then it is said to be a *nonarchimedean* AV. If not, say it is *archimedean*.

Obvious archimedean AVs are usual (Euclidean) absolute value on \mathbb{R} , and modulus on \mathbb{C} .

Theorem 1.7. *Fix $\rho \in (0, 1)$. Let v be a valuation on K . Then $|x|_v = \rho^{v(x)}$ is a nonarchimedean AV on K , and $v \rightarrow |-|_v$ is a bijection between valuations and NAAVs on K .*

Proof. Obvious from definitions. Recover v from $|-|_v$ by $v(x) = \log |x|_v / \log \rho$. \square

For example, v_p on \mathbb{Q} gives rise to the p -adic AV, usually normalised by taking $\rho = 1/p$:

$$|p^n u/v|_p := \frac{1}{p^n}, \quad (p, uv) = 1.$$

If $|-|$ is a non-arch. AV then so is $|-|^r$, any $r > 0$. We say $|-|$, $|-|^r$ are *equivalent* AVs.

Proposition 1.8. *Let $|-|$ be an AV on K . Then the function $d(x, y) = |x - y|$ is a metric on K , invariant under translation, for which the field operations are continuous. Equivalent AVs determine equivalent metrics.*

Proof. Follows instantly from the axioms. \square

In particular, any AV on K makes K into a topological field, the topology only depending on the equivalence class of the AV.

It's convenient to weaken the definition of AV to replace (AV3) with

(AV3') for some $\alpha \in (0, 1]$, $|x + y|^\alpha \leq |x|^\alpha + |y|^\alpha$.

With this definition, the square of complex modulus is an AV on \mathbb{C} . If $|-|$ satisfies (AV3') then $|-|^r$ satisfies (AV3), so this definition is not significantly different.

We've already classified NAAVs of \mathbb{Q} . For archimedean ones, one has:

Theorem 1.9 (Ostrowski's Theorem). *Any archimedean AV of \mathbb{Q} is equivalent to the Euclidean AV.*

Proof. Omitted. \square

2 Completion

Let K be a field with an AV $|-|$, satisfying (AV3). Mimicing one of the usual constructions of \mathbb{R} from \mathbb{Q} , we can enlarge K to a complete field:

Theorem 2.1. *There exists a field \widehat{K} with an AV $|-|^\wedge$, together with an isometric embedding $\iota: K \hookrightarrow \widehat{K}$, such that:*

- i) \widehat{K} is complete w.r.t the metric given by $|-|^\wedge$;
- ii) $\iota(K)$ is dense in \widehat{K} ; and
- iii) any isometric embedding $(K, |-|) \xrightarrow{\iota} (K', |-'|)$ of K into a complete field factors uniquely through ι .

Proof. (Sketch) Let $R \subset K^{\mathbb{N}}$ be the set of Cauchy sequences in K , and $I \subset R$ be the subset of null sequences. It's easy to see that R is a ring, and I is an ideal. Moreover I is maximal: let $x = (x_n) \in R \setminus I$. As $x \notin I$, $|x_n|$ is bounded below by some $\epsilon > 0$ for all $n \geq N$ sufficiently large. Set $y_n = 1/x_n$ for $n \geq N$. Then

$$|y_n - y_m| = \frac{|x_m - x_n|}{|x_m x_n|} \leq \epsilon^{-2} |x_m - x_n|$$

so the sequence $y = (y_n)$ (where we define $y_n = 0$ if $n < N$) is Cauchy, and $xy \in 1 + I$. So R/I is a field, and easily check that it is complete with respect to the absolute value

$$|(x_n)_{n \in \mathbb{N}}| = \lim_{n \rightarrow \infty} |x_n|.$$

If $j: K \hookrightarrow K'$ is an embedding of K into a complete field as in (iii), then it defines a map $R \rightarrow K'$ by $(x_n) \mapsto \lim j(x_n)$, whose kernel is I . \square

If $K = \mathbb{Q}$ and $|-|$ is Euclidean AV then $\hat{K} = \mathbb{R}$.

Lecture 4

If $K = \mathbb{Q}$ and $|-| = |-|_{\infty}$, Euclidean absolute value, then $\hat{K} = \mathbb{R}$.

Until the end of this section, we consider only non-archimedean valuations. Then it's clear that the extension $|-|^\wedge$ is also non-archimedean. We'll simply denote it $|-|$ if there is no confusion. Then if $|-| = |-|_v$ for some valuation v of K , we get an extension of v to a valuation of \hat{K} , which we'll also denote v .

Example: $K = \mathbb{Q}$, $|-| = |-|_p$ the p -adic absolute value. Then \hat{K} is denoted \mathbb{Q}_p , the *field of p -adic numbers*. Its valuation ring is written $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid v_p(x) \geq 0\}$, the *ring of p -adic integers*.

Let's give a completely explicit description of \mathbb{Q}_p and \mathbb{Z}_p .

Proposition 2.2. *Every element of \mathbb{Z}_p has a unique representation as a series*

$$x = a_0 + a_1 p + \cdots = \sum_{n=0}^{\infty} a_n p^n, \quad a_n \in \{0, 1, \dots, p-1\}.$$

Every element of \mathbb{Q}_p has a unique representation as a series

$$x = a_{-N} p^{-N} + a_{-N+1} p^{-N+1} + \cdots = \sum_{n=-N}^{\infty} a_n p^n, \quad a_n \in \{0, 1, \dots, p-1\}$$

for some N . In either case, $v_p(x) = \min\{n \mid a_n \neq 0\}$.

Proof. Let $x_n = \sum_{i \leq n} a_i p^i$. Then if $n > m$,

$$|x_n - x_m|_p = \left| \sum_{i=m}^{n-1} a_i p^i \right|_p \leq \max\{|a_i p^i|_p \mid m \geq i < n\} \leq p^{-m}$$

so (x_n) is Cauchy and the series converges. Conversely, suppose $x \in \mathbb{Z}_p$ and $n > 0$. Claim there exists a unique $y_n \in \mathbb{Z}$ with $0 \leq y_n < p^n$ and $|x - y_n|_p \leq p^{-n}$. In fact, as \mathbb{Q} is dense in \mathbb{Q}_p , there exists $a/b \in \mathbb{Q}$ with $|x - a/b|_p \leq p^{-n}$. As $|x|_p \leq 1$, the strict triangle equality (AV3N) implies $|a/b|_p \leq 1$, so WLOG $(p, b) = 1$. Choose $c \in \mathbb{Z}$ with $bc \equiv 1 \pmod{p^n}$. Then $v_p(bc) = 0$, i.e. $|bc|_p = 1$, so

$$|x - ac|_p \leq \max(|x - bcx|_p, |bcx - ac|) = \max(|x|_p |bc - 1|_p, |x - a/b|_p) \leq p^{-n}$$

Let $y_n \in \{0, 1, \dots, p^n - 1\}$ be the unique element with $y \equiv ac \pmod{p^n}$. Then $y_n = y_{n+1} \pmod{p^n}$ and so there exists a unique sequence $(a_i) \in \{0, \dots, p-1\}^{\mathbb{N}}$ such that for every $n > 0$,

$$y_n = \sum_{i=0}^{n-1} a_i p^i.$$

Thus every element of \mathbb{Z}_p has a unique representation in the given form. As \mathbb{Z}_p is the valuation ring of \mathbb{Q}_p with respect to $|-|_p$, $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$, so writing $x \in \mathbb{Q}_p$ as x/p^N with $x \in \mathbb{Z}_p$ gives the second part.

For the last, suppose $x = \sum_{n \geq 0} a_n p^n \in \mathbb{Z}_p$ with $0 \leq a_n < p$. Then $x = a_0 + py$, $y = \sum_{n \geq 1} a_n p^{n-1} \in \mathbb{Z}_p$, so $v_p(x) = 0 \iff v_p(a_0) = 0 \iff a_0 \neq 0$. The formula for $v_p(x)$, $x \in \mathbb{Q}_p$ follows at once. \square

In other words, p -adic numbers may be represented as “backwards decimals” (in base p , of course!), and addition and multiplication can be carried out in the same way as for decimal expansion of real numbers.

A more sophisticated, and more general, way to see this uses the concept of *inverse limit*.

Let X_n ($n \in \mathbb{N}$) be a sequence of sets (or groups, rings or ...) and $\pi_n: X_n \rightarrow X_{n-1}$ a collections of maps (or homomorphisms) between them. We call the system (X_n, π_n) an *inverse system*. Its *inverse limit* is defined to be

$$\varprojlim(X_n, \pi_n) = \varprojlim X_n := \{(x_n)_n \mid \forall n, x_n \in X_n, \pi_n(x_n) = x_{n-1}\} \subset \prod_{n \in \mathbb{N}} X_n.$$

Typically we wil only be concerned with inverse systems in which the π_n are surjective. If X_n are groups (or rings, or ...) and π_n are homomorphisms, then $\varprojlim X_n$ is also a group (or ring...) under the obvious operations.

Remark. More generally, we may replace \mathbb{N} with any partially-ordered set I in which every pair of elements has an upper bound. View I as a category, with one morphism $f_{ij}: i \rightarrow j$ whenever $i \geq j$. Fix a category \mathcal{C} (sets, groups, rings...). A *projective system* in \mathcal{C} is a functor $X: I \rightarrow \mathcal{C}$. So for each $i \in I$ we have an object $X(i)$, and for each pair i, j with $i \geq j$ a morphism $X_{ij}: X(i) \rightarrow X(j)$. If \mathcal{C} is a concrete category (the objects are sets with some additional structure) we may form

$$\varprojlim X = \{(x_i)_{i \in I} \mid x_i \in X(i), X_{ij}(x_i) = x_j \text{ if } i \geq j\} \subset \prod_{i \in I} X_i.$$

Depending on \mathcal{C} , this may or may not be an object of \mathcal{C} — if it is, we call it the *projective limit* of X .

Example: let $X_n = \mathbb{Z}/p^n\mathbb{Z} \xrightarrow{\pi_n} \mathbb{Z}/p^{n-1}\mathbb{Z}$, reduction modulo p^{n-1} . Then I claim that (at least as a set) $\varprojlim \mathbb{Z}/p^n\mathbb{Z}$ is precisely \mathbb{Z}_p . This is clear from the proof of

Proposition 2.2, using the standard bijection $\{0, 1, \dots, p^n - 1\} \simeq \mathbb{Z}/p^n\mathbb{Z}$.

Completion: let R be a ring, $I \subset R$ an ideal, I^n its n -th power (recall that the product of ideals I and J is

$$IJ = \{\text{finite sums } \sum x_n y_n \mid x_n \in I, y_n \in J\}$$

which is an ideal). The I -adic completion of R is

$$\widehat{R} = \varprojlim R/I^n$$

where the maps $\pi_n: R/I^n \rightarrow R/I^{n-1}$ are the obvious ones. Clearly \widehat{R} is a ring, and there is a homomorphism $R \rightarrow \widehat{R}$ given by

$$(x \in R) \mapsto ((x_n = x + I^n)_n \in \varprojlim R/I^n)$$

whose kernel is $\bigcap_n I^n$.

Example: $R = k[T]$ polynomial ring over a field k , $I = (T)$. Then R/I^n is the ring of truncated polynomials $\{\sum_{0 \leq i < n} a_i T^i\}$, and it's easy to see that \widehat{R} is the ring of formal power series

$$k[[T]] = \{\sum_{n \geq 0} a_n T^n\}.$$

Lecture 5

Last time: R ring, I ideal; I -adic completion $\widehat{R} = \varprojlim R/I^n$. We say R is I -adically complete if the natural map $R \rightarrow \widehat{R}$ is an isomorphism.

Topology on the inverse limit: let $X = \varprojlim X_n$, and let $pr_m: X \rightarrow X_m$ be the m -th component map: $(x_n) \mapsto x_m$. We define the *inverse limit* topology to be the smallest topology for which the maps pr_m are continuous (for the discrete topology on X_m). This means that the open sets of X are arbitrary unions of sets of the form

$$U_{m,a} = pr_m^{-1}(a).$$

Proposition 2.3. (i) $\varprojlim X_n$ is totally disconnected.

(ii) Suppose each X_n is finite. Then $\varprojlim X_n$ is compact.

Proof. (i) Let $x = (x_n), y = (y_n) \in \varprojlim X_n$. Suppose $x \neq y$. Then for some m we have $x_m \neq y_m$, and then $\varprojlim X_n$ is the disjoint union of the open sets

$$U_{m,x_m} \quad \text{and} \quad (pr_m^{-1}(x_m))^c = \bigcup_{x_m \neq a \in X_m} U_{m,a}$$

with x belonging to the first and y to the second. So $\varprojlim X_n$ is totally disconnected.

(ii) Each X_n is compact for the discrete topology. Tychonoff's theorem (product of compact spaces with the product topology is compact) implies that $\prod X_n$ is compact. Then $\varprojlim X_n \subset \prod X_n$ is a closed subspace with the induced topology (check!) hence is compact. \square

Theorem 2.4. Let v be a valuation of K , R the valuation ring. Let \widehat{K} be the completion of K with respect to $|-|_v$, and \widehat{R} its valuation ring. Then for any $\pi \in R \setminus 0$ with $v(\pi) > 0$, there is a canonical topological isomorphism between \widehat{R} and $\varprojlim R/\pi^n R$.

Proof. Let $(x_n) \in \varprojlim R/\pi^n R$. For each n choose $y_n \in R$ lifting x_n . Then if $n > m$, $y_n - y_m \in \pi^m R$ so $|y_n - y_m|_v \leq |\pi|_v^m$. As $|\pi|_v < 1$, (y_n) is a Cauchy

sequence, converging to a unique element $y \in \hat{K}$, and $|y| = \lim |y_n| \geq 0$, so $y \in \hat{R}$. If (y'_n) is another set of liftings, converging to $y' \in \hat{R}$, then $|y'_n - y_n| \leq |\pi|^n$, so $(y'_n - y_n)$ is a null sequence and $y' = y$. This defines the map $\varprojlim R/\pi^n R \rightarrow \hat{R}$.

which is easily checked to be a continuous homomorphism.

In the other direction, let (y_n) be a Cauchy sequence in K converging to some $y \in \hat{K}$ with $|y| \leq 1$. Then (see example sheet) $|y_n| = |y|$ for $n \geq N$ sufficiently large, in particular $y_n \in R'$ for $n \geq N$. Choose a subsequence (z_n) of (y_n) such that $|z_{n+1} - z_n| \leq |\pi|^n$. Then $z_{n+1} - z_n \in \pi^n R$, so $(z_n) \in \varprojlim R/\pi^n R$. Exercise to check this is the required continuous inverse. \square

Hensel's lemma: origin of p -adic numbers:

Problem. Let $f \in \mathbb{Z}[T]$, and suppose $a \in \mathbb{Z}$ with $f(a) \equiv 0 \pmod{p^n}$, some $n > 0$. Can we find $b \in \mathbb{Z}$ with $b \equiv a \pmod{p^n}$ and $f(b) \equiv 0 \pmod{p^{n+1}}$?

Example: take $p = 2$, $f = T^2 + 1$, $a = 1$. Then even for $n = 1$ answer is no (-1 is not a square mod 4).

If we could do this for every n , this would give a sequence $x_n \in \mathbb{Z}$ such that $x_{n+1} \equiv x_n \pmod{p^n}$ and $f(x_n) \equiv 0 \pmod{p^n}$. Then the limit $x = \lim(x_n) \in \mathbb{Z}_p$ exists and is a root of f .

Theorem 2.5 (Hensel's Lemma). *Let R be a complete DVR, uniformiser π . Suppose $f, g_1, h_1 \in R[T]$ with g_1 monic, $(\bar{g}_1, \bar{h}_1) = 1$ and $f \equiv g_1 h_1 \pmod{\pi}$. Then there exist unique $g, h \in R[T]$ with g monic such that $g \equiv g_1$, $h \equiv h_1 \pmod{\pi}$ and $f = gh$.*

(Here $\bar{g} \in k[T]$ denotes the reduction of g mod π .)

Corollary 2.6. *Let $f \in R[T]$ be monic. Suppose $a \in R$ with $f(a) \equiv 0 \not\equiv f'(a) \pmod{\pi}$. Then there exists a unique $b \in R$ with $b \equiv a \pmod{\pi}$ and $f(b) = 0$.*

(Proof of corollary: write $f(T) = (T - a)h_1(T) + f(a)$, $h_1 \in R[T]$, $g_1 = T - a$ and apply Theorem.)

Proof. Let $N = \deg(f)$, $d = \deg(g_1)$. WLOG $\deg(h_1) \leq N - d$. Will inductively construct (g_n, h_n) in $R[T]$ such that g_n is monic of degree d , $\deg(h_n) \leq N - d$, $f \equiv g_n h_n \pmod{\pi^n}$ and $g_{n+1} \equiv g_n$, $h_{n+1} \equiv h_n \pmod{\pi^n}$, and such that at each stage, (g_n, h_n) is unique modulo π^n .

Granted this: by completeness of R , the sequences (g_n) , (h_n) converge coefficient-by-coefficient to some $g, h \in R[T]$ and $f = gh$. By the uniqueness at each stage, any g, h satisfying the conditions of the theorem has $g \equiv g_n$, $h \equiv h_n \pmod{\pi^n}$ hence the solution is unique.

Lecture 6

Construction: suppose we have (g_n, h_n) , so $f - g_n h_n = \pi^n q$ for some $q \in R[T]$, $\deg(q) \leq N$, and (g_n, h_n) unique mod π^n . Write

$$g_{n+1} = g_n + \pi^n u, \quad h_{n+1} = h_n + \pi^n v, \quad \deg(u) \leq d - 1, \quad \deg(v) \leq N - d.$$

Then

$$f \equiv g_{n+1} h_{n+1} \pmod{\pi^{n+1}} \iff g_n v + h_n u \equiv q \pmod{\pi}.$$

So enough to show there exist unique $\bar{u}, \bar{v} \in k[T]$ with $\deg(\bar{u}) \leq d - 1$, $\deg(\bar{v}) \leq N - d$ and

$$\bar{g}_n \bar{u} + \bar{h}_n \bar{v} = \bar{q}. \tag{*}$$

Now $(\bar{g}_n, \bar{h}_n) = (\bar{g}_1, \bar{h}_1) = 1$ in $k[T]$, so there exists a pair (\bar{u}, \bar{v}) satisfying $(*)$, and the pair is unique up to transformations $\bar{u} \mapsto \bar{u} + \bar{r}\bar{g}_1$, $\bar{v} \mapsto \bar{v} - \bar{r}\bar{h}_1$ with $\bar{r} \in k[T]$. So there is a unique choice of \bar{r} for which $\deg(\bar{u}) \leq d-1$, and $(*)$ then implies $\deg(\bar{v}) \leq N-d$. \square

Before we pass on to extensions, one final remark (which could have come earlier):

Proposition 2.7. *Let R be a valuation ring, $\pi \in \mathfrak{m}_R \setminus R$, and $\hat{R} = \varprojlim R/\pi^n R$.*

Then the map $R/\pi^n R \rightarrow \hat{R}/\pi^n \hat{R}$ is an isomorphism.

Proof. By Theorem 2.4, \hat{R} is the valuation ring of the completion \hat{K} of K , so $R \rightarrow \hat{R}$ is injective and $\pi^n \hat{R} = \{x \in \hat{K} \mid v(x) \geq nv(\pi)\}$. Therefore $\pi^n \hat{R} \cap R = \pi^n R$, so $R/\pi^n R \rightarrow \hat{R}/\pi^n \hat{R}$ is injective. As K is dense in \hat{K} , R is dense in $E\hat{R}$ and so for all $x \in \hat{R}$, there exists $y \in R$ with $x - y \in \pi^n \hat{R}$. Therefore the map is an isomorphism. \square

Examples. Take $R = \mathbb{Z}_p$ (p odd), $f = T^{p-1} - 1$. Then $f \equiv (T-1)(T-2) \cdots (T-p+1)$, so Hensel's lemma says that for each $a \in \{1, \dots, p-1\}$ there exists a unique $\hat{a} \in \mathbb{Z}_p$ with $\hat{a} \equiv a \pmod{p}$ and $(\hat{a})^{p-1} = 1$. So \mathbb{Z}_p contains all $(p-1)$ -st roots of 1.

More generally, let R be a complete DVR with finite residue field \mathbb{F}_q . Applying Hensel's lemma with $f = T^{q-1} - 1$ shows that R contains all $(q-1)$ -st roots of unity.