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THE SIMPLEST CASE OF RAMSEY’S THEOREM

A. THOMASON

This is a somewhat personalized, and far from comprehensive, essay on the
“simplest case” of Ramsey’s theorem, namely, the two-coloured graph case.

1. ERDOS AND RAMSEY’S THEOREM

The association of Paul Erdés with Ramsey’s theorem goes right back to his
youth, to his famous paper with Szekeres [43]. Somewhat later, his equally
famous proof of an exponential lower bound for Ramsey numbers [23] may
be regarded as introducing probabilistic methods to graph theory, though
the paper itself makes no mention of probability. Despite its antiquity,
the Erdds—Szekeres proof of Ramsey’s theorem is still the proof of choice.
Moreover, though in recent decades innumerable powerful and beautiful
combinatorial results have been obtained by probabilistic methods, Erdés’s
first application remains perhaps the most striking, because of its simplicity
and the extent to which the result he obtained is still unrivalled by any
other technique.

Many people can look back to the effect of Erdés at a critical point
in their lives, myself included. When I was an undergraduate taking a
course in graph theory, Erdds came to visit Béla Bollobés for a month or
two. Hallard Croft, who was responsible for directing my studies, somehow
arranged that Erdés would see a few of us once a fortnight to talk about the
course. Naturally, we had no idea of the privilege accorded us. Naturally,
Erdés took no notice of what was in the course. One week, he defined for us
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a projective plane, and asked us to go away and construct a plane of order
ten. We failed. Then he sent us away to find the Ramsey number 7(5).
This time we did a bit better — we beat the upper bound given to us in the
lectures. It turned out that Walker [103] had already improved the bound,
but the bug had bitten.

The subject of this article is Ramsey’s theorem in its “simplest case”,
as Ramsey himself calls it [77, p. 269], asserting that there exists a smallest
number (s) so that, whenever the edges of the complete graph K () are
coloured red and blue, a red or a blue K; will appear. The paper is not really
a survey — there are several good surveys covering this material and much
more besides (such as Graham, Rothschild and Spencer [54], Nesetfil [71],
Nesetfil and Rodl [72], Rédl [83] and, for actual numbers, Radziszowski [76])
— it is more in the way of a brief essay written as a token to acknowledge
Erdds’s decisive effect on me. Limitations of time and space prevent the
mentioning here of much that Erdés has done, and that he has inspired
others to do, concerning the general Ramsey theorem and in the wider field

of Ramsey theory.

2. BAsIic BOUNDS

It is remarkable that so little progress has been made, over so many years,
in improving either the upper or the lower bounds for Ramsey numbers. It
would seem that making progress is not easy. Indeed, it has been written
that “perhaps the first question which one is tempted to consider is the
problem of the actual size of a set which guarantees the validity of Ramsey’s
(and Ramsey type) theorem. One should try to resist the temptation since
it is well known that Ramsey numbers are difficult to determine and even
good asymptotic estimates are difficult to find (and improve)” (Nesetfil [71,
p. 346]). But resisting temptation is not always easy either.

2.1. Classical upper bounds

Ramsey [77], when introducing the theorem that now bears his name, proved
first the infinite case, and then adapted his argument to the finite case.
His argument, when restricted to the two-colour graph case, can easily be
described. It shows that r(s) < 2(3) and, more generally, that if n > 2k
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and K, is two-coloured then a monochromatic Ks_; + K appears. The
proof is by induction on s. We may assume there is a red K,_3 + K, where
m = 2571k, Let M be the set of m vertices joined to the red K,;_o by red
edges. Select v; € M, and some 2°~2k other vertices of M joined to v; by
edges of the same colour. If these edges are red we have our K;_1 + Ky, so
we may assume they are blue. Next, amongst those 2572k vertices, pick vy
and 2573k others joined to v, by edges of the same colour, which we may
again assume to be blue. Proceeding in this way we get a set {v1,...,vs—1}
spanning a blue K;_; and joined to a further set of k vertices by blue edges,
which is a blue Ks_1 + K}, as claimed.

Ramsey proved his theorem whilst investigating a problem in logic, in
pursuit of an algorithm for decidability. He states “we should at the same
time like to have information as to how large” Ramsey numbers actually
are. He notes that his general estimates are inefficient in the two-colour
graph case, for, since it may be assumed that M contains no vertex of red

degree k, the same argument works with s!k in place of 2(;)k, so r(s) < sl.
Remarkably, he went so far as to observe that there can be no (k—1)-regular
graph of order s!k —1 when & is even, so the value s! can be lowered slightly
further, but “this value is, I think, still much too high”. He was right.

Definition 2.1. We call a colouring of K orderable if its vertices can be
ordered so that all edges with the same first vertex have the same colour.

(An orderable K is called good by Nesetfil [71].) It is easily seen that
a two-coloured Kyt contains an orderable K;y1; as in Ramsey’s argument,
pick any first vertex, select 2!~! other vertices joined to it by the same
colour, and repeat the argument within these vertices. Now associate with
each vertex the colour of those edges of which it is the first vertex. The
pigeonhole principle, applied to the vertex colours, shows at once that an
orderable Ko,_5 contains a monochromatic K, and hence r(s) < 9o

The reason that Ramsey’s bound is so poor, and the reason his proof
is frustrating to read for the modern reader weaned on the Erdds-Szekeres
proof, would seem to be his failure to apply the pigeonhole principle in the
last step! Ramsey, in effect, finds an orderable K (5)+1 and then argues as
follows. The first vertex colour may as well be red. Then, either some
vertex amongst the next two is red, or both of them are blue, so after three
vertices we have two of the same colour, say red. After that, either some
one of the next three is red, or all three are blue, so after six vertices we
have three of the same colour. Continuing in this way, we need (;) vertices
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to find s — 1 of the same colour, which together with the last vertex make
a monochromatic K.

When considering the argument above, that shows r(s) < 22573 it is
easy to spot that it should be possible to improve it because, when building
up our orderable Ko;_» with a view to finding a monochromatic Kj, if the
first few vertex colours are red, then we are closer to a red K than to a
blue K, and so we could afford to choose for the next vertex one whose
red degree is smaller than its blue degree. Put another way, if at each
stage we cannot find a vertex joined to more than half the rest by the same
colour, then we may as well choose red edges each time, and so get home
in s steps rather than 2s — 2. Pursuing this thought leads naturally to the
simple, but important, idea that one should consider situations where the
red goal graph and the blue goal graph may differ. So we define r(s,t) to be
the smallest number such that, whenever the edges of the complete graph
K, (s, are coloured red and blue, a red K or a blue K; will appear. By
now, a moment’s reflection will show that the end result of this argument
is no more than the famous recurrence

t—2
r(s,t) <r(s—1,t) +r(s,t —1) whence 7(s,t) < (S—tl_ ) >
This recurrence is, of course, that of Erdés and Szekeres [43]; Erdés [23]
attributes it to Szekeres. Sadly, the gain it gives over the bound r(s) < 225-3
is small (though see the remark in §4.2), because (253__12) ~ (2/\/7rs ) x 22573,

2.2. More recent upper bounds

The Erdés-Szekeres bound has been improved, but barely. Frasnay [50]

showed that 7(s) < (8/9)(**77); he did this by calculating the gain implied

by the fact that r(s,t) < r(s—1,t)+7(s,t —1) — 1 whenever both r(s—1,1)
and r(s,t— 1) are even. The first to establish that r(s,t) = of (s‘;_tIQ)) was
R6dl [82], who proved that

A s+t—2
r(s,8) < B(

e for s,t>3,
(log (s + 1)) t—1 )

where A and B are absolute constants (for a proof of the weaker bound

r{s,t) < G(S“t"_tf)/log log (s +t — 2), see Graham and R&dl [55]). Another
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upper bound [100], which is an improvement when t//logt < s < t, is

’I‘(S,t) S t—5/2t+A/\/ lOgt(S + t I 2) for 1 S S S t

The methods used in the proofs are similar, both being based on counting
the number of monochromatic triangles (as in §5.1); if there are k triangles
sharing a common edge then we have a monochromatic (say red) K + K,
and if k& > r(s — 2,t) then we get a red K; or a blue K;. But the
improvement achieved this way is small in comparison with the work put
in, and the calculations are quite delicate — an initial estimate, ignoring
the smaller error terms, suggested a stronger result might be attainable [99,
Theorem 6.11], but this turned out to be over-optimistic. The method offers
no hope of deciding whether r(s) < (4 — €)° for some absolute € > 0, which
remains an outstanding question (but see §4.2).

In the extreme asymmetric case when s is fixed and ¢ is large, Graver and
Yackel gave a long argument for the bound r(s, t) = O(¢*~!(loglogt)/log ).
A breakthrough was made by Ajtai, Komlés and Szemerédi [2], who showed

for s fixed, r(s,t) = O(ts_l/(log t)s_z)-

In particular they established the bound r(3,t) = O(¢?/logt) (which is best
possible; see §2.3). Their method was cleaned and polished by Shearer [86],
obtaining r(3,t) < 2/ log (t/e).

Finally, the achievement of McKay and Radziszowski [68], in proving

r(5,5) < 49,

must be mentioned. Their approach greatly extends the triangle counting
method by considering many carefully chosen combinations of small sub-
graphs, and it requires a large amount of computation.

2.3. Lower bounds

It is not easy to think of a better lower bound for r(s) than that obtained
from Turan’s colouring of s—1 disjoint red K;_; joined by blue edges, namely
the bound r(s) > (s — 1)2. In view of this, Erdés’s proof in 1947 [23] that

r(s) > 252 for §>3.
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is breathtaking. As mentioned earlier, the paper never uses the language
of probability, but the argument is simply that the expected, or average,

S

number of monochromatic K, over all colourings of K, is 2(’;)2_(2), SO
if this number is less than one, which it is if n < 25/2) then there is a
colouring of K, with no monochromatic K. The argument in fact yields
r(s) > 25/2 (s/e\/i) .

In introducing this argument, namely, proving existence by probabilistic
means, Erdés had an incalculable effect on the future course of combina-
torics, and it is an idea that will be forever associated with his name. The
idea took a little while to mature, and perhaps it did not really take off until
his probabilistic proofs, in 1959 [25] of the existence of graphs of large girth
and large chromatic number, and in 1961 [26] that 7(3,t) > c(t/logt)?. In
his 1962 paper [27], which we shall discuss in §5.2, he notes that the number
of monochromatic K3s in a random colouring is more or less minimal, and
he states “it is perhaps surprising that a crude probabilistic argument gives
a result which for k = 3 is so close to the correct one. This phenomenon
can often be observed in this subject [ref]”, where the reference [ref] is to the
above cited papers [23, 25, 26]. It is noteworthy that Erd6s chose identical
titles for the latter two papers.

All the best lower bounds for Ramsey numbers use the probabilistic
method, or a clever combination of probability and determinism, as in [26].
When Erdés and Lovész [36] introduced the Local Lemma to treat almost
independent events, Spencer [94] applied it to improve the lower bound
for 7(s). Despite the power of the lemma, the improvement is only a factor
of two; it gives

r(s) > ?25/ 2
This remains the best bound for the diagonal case, though McDiarmid
and Steger [67] have shown that the same bound can be also achieved by
colourings that are regular, self-complementary and pseudo-random (in the
sense of §4.2). Spencer [95] likewise obtained the lower bound

for s fixed, r(s,t) > cs(t/logt)tV/2

and the same result was obtained by Krivelevich [63] using large deviation
inequalities.

It is fitting that the Ramsey number 7(3,¢) has been sharply estimated
from both above and below, in each case by probabilistic means. In fact,
the method of repeatedly selecting random subsets, used by Ajtai, Komlds
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and Szemerédi [2] to prove r(3,t) = O(¢?/logt) and used spectacularly by
Rodl [81], was the same as that used by Kim [61] in proving his celebrated

lower bound )

t
t —,
r(3,t) > clogt

Of course, the latter proof requires probabilistic tools not available until
recently, including some developed specifically for the job.

2.4. Problems and conjectures

Let us note some problems, posed by Erdés about the Ramsey numbers
r(s,t), which are very simple in appearance, but which seem to be out of
reach.

o Is limsupr(s)/® < 47
o Is liminfr(s)/* > /27
o Does limr(s)"/* exist?

Does there exist € > 0 such that 7(s +1,s) > (1 +¢)r(s, s)?

Does r(3,t + 1) — r(3,t) = o0?

Isr(3,t+ 1) —r(3,t) = o(t)?

Does r(4,t) > t37¢ provided ¢ is large, for every £ > 0?

These questions illustrate how little is known even about two-colour
graph Ramsey numbers. Some of these questions arose out of Erdés’s work
with with Sés and with Faudree, Rousseau, and Schelp; such questions, and
related conjectures, appear in many of Erdés’s lists of problems, such as [28,
30].

A naive heuristic argument in [97] led to the conjecture that (s, t)
r*(s,t), where r*(s,t) was given by a certain formula. In the case s =
the conjecture became r(s) < 257!(s — 2) + 2, which is exact for s <
and is true for s = 5 ([68], see §2.2). In fact, of the 9 pairs 3 < s < ¢ for
which r(s, t) is known exactly, in 6 cases the value is r*(s,t). Some support
for the conjecture came from the fact that a similar heuristic led to the
proof in [97] of the conjecture of Beineke and Schwenk [13], that every two-
colouring of the complete bipartite graph K, , contains a monochromatic

<
t
4
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K,y if n > 2°(t — 1). (For large s,t, the bound implied by Fiiredi [61] is
better than this.)

On the other hand, the same heuristic implies lower bounds on the
number of monochromatic K, in a large two-coloured K, that are false if
s > 3 (see §5.2). It also implies that K, contains a monochromatic K + K},
if n = 2%(s + k — 2) + 2, which is true if s <2 (see §5.1, and Rousseau and
Sheehan [84] for a study), but it is false for s = 3 (see §5.3). Most fatally for
the conjecture, Kim’s lower bound for 7(3,t) (see §2.3) shows it to be false
in this extreme off-diagonal case, because r*(3,t) = O(t?/(log t)2). The
shakiest small case is 7*(3,10) = 40 < (3, 10), shown by Exoo [45].

2.5. Constructive lower bounds

Probabilistic arguments offer good lower bounds for Ramsey numbers, but
they offer little help in displaying good colourings. So it is natural to ask
for explicit colourings having no monochromatic K. However, even beating
the Turén bound r(s) > (s —1)? in this way is not straightforward. In
1972 Abbott [1] proved r(s) > s?*¢ constructively, and Nagy [70] proved
r(s) > (sgl). Nagy’s construction is to take, as vertices, all 3-element
subsets of a set of s — 1 elements, two being joined by a red edge if they
intersect in exactly one element. In fact, two copies of this colouring, joined
entirely by red edges, shows r(s) > 2(531) for s > 15. The properties
of the colouring are best verified by an ad hoc argument. However, some
information can be derived from the generalization of Fisher’s inequality
proved by Ray-Chaudhuri and Wilson [78], stating that if A is a family of
¢-subsets of an h-set then |A| < (}tl), where ¢t = | {land| : a,be A, a # b} I .

Frankl’s construction [48] of a super-polynomial lower bound for 7(s)
was a great advance. The best construction to date remains that of Frankl
and Wilson [49], giving the lower bound

r(s) > exp { (1+0(1)) log? s/4loglog s } .

The example of Frankl and Wilson is also defined by subset intersections,
and arises out of their elegant theory of set intersections modulo a prime.
One of their theorems is that, if A is a family of £-subsets of an h-set, such
that [aNb| Z £ (mod g) where ¢ is a prime power, then |A| < (qfl). Now
take, as the vertices of a complete graph, all (g% —1)-element subsets of some
h-element set, and colour ab red if [aNb| = —1 (mod ¢). The theorem just
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stated shows that any blue K satisfies s < (qﬁl). The Ray-Chaudhuri-

Wilson theorem gives the same bound for a red Ky, and taking h = ¢ gives
the claimed lower bound for 7(s).

Recently, Grolmusz [58] has given a different colouring that achieves
almost the same lower bound for r(s) as the Frankl-Wilson colouring, the
constant 4 being replaced by a somewhat larger one. His colouring is, in
some sense, antithetical to the previous example, insofar as it is based on
constructions of set systems showing that the Frankl-Wilson theorem very
strongly fails to hold for non-prime power moduli. The colouring is of the

complete graph K, on n = k¥ vertices, with vertex set {1,...,k}k. For
each subset T' C {1,...,k}, a non-negative integer ar is chosen. Given two
vertices z = (21,...,2x) and y = (y1,...,Yk), let azy = Y pgar, where

S = {i : z; = y;}. Colour zy red if agy is odd. Now if we can choose the
numbers ar so that agzz =0 (mod 6) but azy Z0 (mod 6) if z # y, then
the Frankl-Wilson theorem implies that a monochromatic K must satisfy
s < (g), where b = 3 arklTl.

To find such numbers a7, take a polynomial @) in k variables, with
integer coefficients, that represents NAND (modulo 6); that is, if z =
(z1,...,2) € {0,1}*, then Q(2) = 0 (mod 6) if and only if z; = -+ =
z;, = 1. Since we are interested only in the values of Q(z) modulo 6 and
only in z € {0,1}’“, we may reduce Q to a sum of monomials, namely,
Q(z) = Y rarzr, where the monomial z7 is the product of the variables
indexed by T', and 0 < ar < 5. Such a choice for ar works (take z; = dg,y,),
and gives the bound h < 10k??/d!, where d is the degree of the polynomial Q.
One possibility for Q is 1 — 2123 ... 2, which has degree k, but the smaller
the degree, the better the end result.

A good choice for Q is Q(z1,...,2x) = P(1—21,...,1—2), where P(z)
is the polynomial representing OR (modulo 6) found by Barrington, Beigel
and Rudich [12]. They take integers e and f with 23/ > k, and define

Gaz)= Y. (~D)THap and Gs(z)= Y. (=)

0<|T|<2¢ 0<|T|<3f

Now G3(z) = 0 (mod 2) if and only if [{z : 2z =1} =0 (mod 2)¢,
and G3(z) has a similar property. Thus P(z) = 3G2(z) + 4G3(z) satisfies
P(z) =0 (mod 6) if and only if z; = -+ = 2z, = 0, as desired. In this
way, the degree d of () can be made at most v6k. Then, from the above
observations, the bound r(s) > exp{ (1+0(1)) log? 5/108 log log s} follows.

In an attempt to quantify the difficulty in finding good constructive
lower bounds for Ramsey numbers, Babai [10] conjectured that such colour-
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ings cannot be defined by real polynomials. To be precise, he conjectured
that there is an absolute positive constant € and, for each real polynomial
P(z,y,z), a positive constant cp, such that the colouring on vertex set
{1,...,n}, defined by ¢j being red if and only if P(, j,n) > 0, contains a
monochromatic K; where s > cpn®. Note that the polynomial (i — j)2 —-n
gives a colouring akin to the Turdn colouring. Alon [3] proved a weakened

vlogn

It is thought that good constructive lower bounds for r(s) might prove
helpful in complexity theory, or in derandomization procedures. There are
techniques for producing colourings on 25/2 vertices without using as many
random bits as does a random colouring. Razborov [79] gives an economical
method. He proves that there is a sequence of Boolean formula® f; of s
variables, such that the colouring on 25/2 vertices, defined by ab being red
if fs(a,b) = 1, has no monochromatic Ky, and moreover fs is computable
by a circuit of depth 3 comprising only O(s%log s) randomly chosen binary
A-gates and @-gates. For a connection between constructive bounds (such
as the Frankl-Wilson bound) and Shannon capacity, see Alon [6].

form of Babai’s conjecture, with cpn® replaced by cv/2

2.5.1. Paley graphs. The only two values of r(s) known are 7(3) = 6
and r(4) = 18, and the colourings of K5 and K7 giving the lower bounds
are unique, as Greenwood and Gleason [57] discovered. The colourings are
symmetric in red and blue; the red graphs are the Paley graphs Ps and Py7.
There is a Paley graph P, of order g if ¢ is a prime power with ¢ = 1 (mod 4).
Its vertices are the elements of the finite field of order g, and ab is an edge
if @ — b is a square.

There is a long history of association between Paley graphs and Ram-
sey’s theorem. This is partly because Paley graphs give the best lower
bounds for r(3), (4) and 7(3,5), and modifications of them give good lower
bounds for many other values (see Radziszowski [76]). But it is also because
Paley graphs mimic random graphs very well in some ways (see §4.2).

However, it is known that not all Paley colourings can perform as well
as random ones. To see this, observe that, if ¢ is a prime, then the clique
number of P, is at least as large as the smallest non-square (modulo g).
Now all the numbers up to z are squares if, and only if, all the primes up to
z are squares. There are about z/logz of these primes, and if each prime
is a square ‘independently with probability 1/2’ then, with ‘probability at
least 1/¢’, all the primes up to logqloglogq are squares. This ‘implies’
that P, contains a clique of size loggloglogg infinitely often, whereas a
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random colouring of K, has no clique larger than 2log, q. Of course, this
discussion is purely heuristic, but the statements can easily be justified if one
assumes the Generalized Riemann Hypothesis, as Montgomery [69] proved.
Moreover, Graham and Ringrose [55] have given an unconditional proof that
P, contains a clique of size clog qlog log log ¢ infinitely often.

The previous paragraph is not fatal for the Paley graphs — it may be
that they do give good colourings infinitely often, or even most of the time.
But an analysis of cliques in Paley graphs requires estimates for character
sums, and such estimates are notoriously difficult. From the character sum
point of view, though, a more natural sequence than the sequence of all
primes is the sequence of powers of a fixed prime. Perhaps the graphs F,
for ¢ = 5%+ offer good examples (we leave out those g that are squares,
since the subfield of order /g spans a complete subgraph). But the technical
problems are severe.

More information about Paley colourings is given in §4.2.

2.5.2. Off-diagonal constructions. As for off-diagonal constructions,
Erdés [24] described graphs showing that r(3,t) = Q(¢t1¢) and later [28]
that r(3,t) = Q(¢"13) for large t. This was improved by Cleve and
Dagum [20] to r(3,t) = Q(¢t1?%) and together with Chung [16] to r(3,t) =
Q(t1%), and Alon [5] obtained 7(3,t) = Q(t*/3). The best bound to date
was achieved by Alon [4], namely

r(3,1) = Q(t3/?).

Another Q(#3/2) construction is given by Codenotti, Pudldk and Resta [21].
The vertices of Alon’s graph are the elements of the field of order 23%, where
k is not divisible by 3. Two vertices are adjacent if their sum, represented
as a binary vector, has the form (wo, w§, w§) + (w1, w?, w}), where wy and
w) are regarded as elements of the field of order 2%, and are such that the
leftmost bits of w] and w] are 0 and 1 respectively. The graph is a Cayley

graph, and its properties are derived from certain BCH codes.

Until recently there was no constructive proof that r(s,t) > ¢2 for any
fixed s and all large . But, developing the properties of the norm graphs of
Kollar, Rényai and Szabé [62], Alon and Pudlék [9] have now constructed

examples to show that

T'(S, t) > tc\/logs/ loglogs’
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where ¢ is an absolute constant. They begin with the norm graph N(g,t)
whose vertices are the elements of the field of order ¢, two vertices a
and b being adjacent if |ja + b|| = 1, where the norm ||z| of z equals
glta+a®+-+4"""  The construction required is then the clique graph, whose
vertices are the cliques of order [¢/2] in N(g,t), two cliques K and L being
adjacent if there is an edge wv of N(g,t) withu € K\ L and v € L\ K. The
verification of the properties of this graph involves rather deep methods.

3. CANONICAL RAMSEY THEORY

In §2.1 we defined an orderable colouring of K;. We might define p(s) to
be the smallest n such that every two-colouring of K, yields an orderable
K,. From the argument of §2.1 it can be seen that p(s) < 7(s) < p(2s —2),
and thus the study of p(s) is intimately bound up with that of r(s).

Now the definition of orderability holds good even if we allow more than
two colours. So for the purposes of this section we shall permit ourselves
to wander from our brief of studying only the simplest case of Ramsey’s
theorem, and we shall think about more general situations.

Consider colourings of K, in which an unrestricted number of colours
may be used. Richer [80] has studied the parameter CR(s,t), the smallest
n such that any colouring of K, yields either an orderable K or a distinctly
coloured K;, the latter meaning that the edges of K; all have different
colours. Richer proves that

s—2
((;) - 2) +1 < CR(s,t) < 335t 4

In particular, CR(s,t) = 29(slogt) Tt is worth remarking, in the light of §2.3,
that although a similar lower bound can be obtained probabilistically, the
bound stated is proved deterministically, and the constants are better.

The definition of CR(s,t) is related to, and is, of course, to a great
extent motivated by, the canonical Ramsey theorem of Erdés and Rado [38].
In the graph case, this states that there is a number ER(2,s) such that,
if n > ER(2,s) and the graph on vertex set {1,...,n} is coloured with
any number of colours, there will be a K coloured in one of four specific
ways: either it is monochromatic, or the colour of an edge is determined
by its first vertex, or the colour of an edge is determined by its last vertex,



The Simplest Case of Ramsey’s Theorem 679

or it is distinctly coloured. Note that, in the second and third cases, the
colours must be distinct for each vertex, so the requirement is stronger than
orderability.

Clearly CR(s) < ER(2,s). The Erdés-Rado numbers ER(2,s) have
been studied by Lefmann and R&dl [64, 65]; they prove that

20152 S ER(Z, S) S 2626‘2 log s

for some constants ¢; and cs.

In the general case of the Erdés—Rado theorem, where k-sets are
coloured, there are 2F canonical colourings rather than just four, namely,
for each subset S C {1,...,k}, a colouring in which the colour of an edge
is determined by the |S|-subset of its vertices indexed by S. For the cor-
responding numbers ER(k, s), Lefmann and Rddl [65] gave a lower bound
which was a tower of twos of height £ — 1 topped by cxs?, and an upper
bound which was a tower of height k. The gap was closed by Shelah [88],
who showed that ER(k,s) is at most a tower of k — 1 twos topped by a
polynomial in s.

It follows that the Erd6s-Rado numbers are generally no bigger than
the ordinary Ramsey numbers, in which ! colours are used and we ask
for a monochromatic s-subset, for it is known that these numbers too are
bounded below by tower functions, which for [ > 4 have height £ —1 (Erdds
and Rado [39], Erdés, Hajnal and Rado [35], Erds and Hajnal [31, 32],
Duffus, Leffman and R&dl [22]).

For two or three colours, however, the towers in the lower bounds have
height only k — 2 (for k¥ > 3). The most basic outstanding problem is to
decide whether the two-colour Ramsey number for triples (k = 3) is singly
or doubly exponential (see Erdés, Hajnal and Rado [35]). Erdés, Hajnal,
M4té and Rado [34] are encylopzdic on these matters.

But we have now strayed very far from the simplest case of Ramsey’s
theorem, and it is time to return to earth.

4. RANDOM-LIKE COLOURINGS

The arguments in §2.1 for the upper bounds on r(s) are tightest when
the colouring has the property that every vertex has equal red and blue
degree, and within each vertex neighbourhood the same holds, and so on.



680 A. Thomason

Thus, in these colourings, red and blue edges appear to be spread around
very uniformly, in a way that is typically found in a random colouring.
Moreover, the best lower bounds for r(s), described in §2.3, all come from
random colourings.

For these reasons, many have felt that the extremal colourings for 7(s)
will turn out to be randomlike in appearance. The argument for this is
not entirely convincing — for example, random colourings themselves don’t
come close to optimality in the hypergraph case (see §3), in the multi-colour
graph case (see Chung and Grinstead [55]) and in a natural extension of the
two-colour graph case (see §5.2 below) — but nevertheless the argument
retains a strong appeal.

4.1. Induced subgraphs

One property that random colourings of K, enjoy is having a large number
of non-isomorphic induced subgraphs. Indeed, they have exponentially
many. Moreover, they are clogn-universal, where k-universal means that
every colouring of Ky is a subgraph. The second of these properties is
enjoyed by pseudo-random colourings (in the sense studied in [98] and by
Chung, Graham and Wilson in [17]) and probably the first is too.

These observations prompted a couple of explorations by Erdds and
his co-authors. In one direction, Erdés and Hajnal [32] showed that, if
0 < ¢ < 1/k, then for n > ng(c, k) every two-colouring of K, with no
monochromatic K, s = ec\/@, is k-universal. Promel and R&dl [75] then
proved that, for any ¢; > 0, there is a ¢z > 0 such that every colouring with
no monochromatic K¢, jogn is c2 log n-universal.

To state some results in another direction, suppose we are given a
colouring of K,. Define s to be the order of a largest complete monochro-
matic subgraph and I to be the number of distinct (non-isomorphic) induced
subgraphs. Erdés and Rényi [40] conjectured that, for every ¢; > 0, there
exists cg > 0 such that if s < ¢jlogn then I > 2°". In the same vein,
at the conference held in Erdés’s honour on his 75" birthday [11], Hajnal
conjectured that if I = o(n?) then s = (1 —o(1)) n.

Alon and Bollobés [7] and Erdés and Hajnal [33] independently proved
strong forms of Hajnal’s conjecture. Erd6s and Hajnal [33] show further
that, for example, if s < n/k, k fixed, then I > nVk. Alon and Hajnal [8]
came close to proving the Erdés-Rényi conjecture by showing that I >
on/2s°1°6 %) pinally, Shelah [89] proved the full conjecture.
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4.2. Pseudo-random colourings

It is curious that, in the argument of §2.1, if we are unable to make a
gain in just the first two steps, then overall we can display a huge gain.
To make this precise, suppose that we have a colouring of K, in which
every red and blue vertex degree is at most n/2, and in which the red
and blue neighbourhoods of each vertex have red and blue degrees at most
n/4. Then, by [98, Theorem 1.1] or [99, Theorem 3.1], the colouring is
(1/ 2,v/n ) -jumbled, where a (p, @)-jumbled colouring is one in which every
subset of k vertices spans between p(g) — ak and p(’z”) + ak red edges. The
properties of these colourings ([98, Theorem 1.1] or [99, Theorem 6.9]) then
imply that there is a blue K, + K,,, provided w = |_2““n - 4\/ﬁ-| 2 1L
Clearly, if w > r(s,s — u) then we have a monochromatic Ks. Taking
u = | (1/2)logyn| — 3 and using the Erdés—Szekeres bound for r(s, s — u),
we obtain s > 0.64log, n for large n, whereas the argument of §2.1 gives
only s > 0.5logy n.

To put it another way, if it were true that extremal colourings for the
Ramsey numbers 7(s) had a uniform distribution of colours at the first two
steps, as described, then it would be true that r(s) < 3°. Paley graphs
(see §2.5.1) give excellent examples of colourings with such a distribution;
hence the Paley colouring P, contains a monochromatic Kg.6410g,4 and no
Paley colouring can ever show r(s) > 3%.

Of course, if we relax the uniformity condition very slightly we still get
a better bound than that of Erdds—Szekeres. But the rate at which the
gain achieved diminishes with the relaxation is disappointingly rapid, and
so the above observations for uniform colourings, when combined with the
argument of §2.1 for non-uniform colourings, fail to give an improvement
on the upper bounds for r(s) given in §2.2.

5. THE NUMBER OF MONOCHROMATIC SUBGRAPHS

It follows from Ramsey’s theorem that a two-colouring of K, contains many
monochromatic K if n is large. Indeed, as Erdés [27] observed, a “crude

=i .
estimate” shows there are at least (’;) (T(Ss)) of them. In this section we
shall consider just how many there must be.



682 A. Thomason

Definition 5.1. Let K, be two-coloured with red graph G. Then k(G)
denotes the number of monochromatic K in the colouring. Moreover, let

ks = lim min ksELG).
n—oo |Gl=n ( )

)
So ks is the limiting minimum density of subgraphs of order s that are
monochromatic, taken over all two-colourings. (The limit does indeed exist,
since the minimum increases with n.)

5.1. Monochromatic triangles

Clearly k1 = ko = 1. Let us consider s = 3. If K, is two-coloured with red
graph G, and if r;, 1 < ¢ < n are the red degrees and b; = n — 1 —r; the
blue degrees, then counting pairs of incident red and blue edges, and noting
that a triangle contains exactly two such pairs if it is not monochromatic,

we have
n

n 1
k3(G) = (3> -5 ;ribi.
So the number of monochromatic triangles depends only on the degree
sequence, and it is minimized when the red and blue degrees are all the
same; this can be achieved exactly if n =1 (mod 4). Thus

1 1
> —_— —_ —_ = —
k3(G) > 24n(n 1)(n—25) and k3 &

This lower bound for k3(G) is due to Goodman [53]. Sauvé [85] and
Lorden [66] offered “simple proofs”. All three state the degree formula for
k3(G) in one form or another (it is Goodman’s Lemma 1). It is customary to
credit the formula to either Sauvé or Lorden, but, in fact, it is mainly their
minimization arguments that makes their proofs simple; Goodman, perhaps
because his formulation was less transparent, makes rather heavy weather
of the job. Lorden also cites Sauvé, though in another context (see §5.5).

It follows from the lower bound that some edge lies in at least (n —
5)/4 monochromatic triangles, so every two-colouring of K2 contains a
monochromatic Ko + K (this is often tight; if ¢ = 4k + 1 is a prime power,
the Paley graph P, contains no K3 + K}). In general, if K, contains no
monochromatic K then 3k3(G) < (3)(r(s —2,s) — 1). Moreover, no set of
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(s — 1) vertices can be joined by red to one vertex and by blue to another,
s0 Y ;b <n(n—1)(r(s—1) —1). In this way, the recurrences

r(s) <4r(s—2,s)+2 and 7(s)<r(s—2,s)+3r(s—1)-1

were derived by Walker [103] and by Huang [59]. As noted in §2.2, recur-
rences of this kind underlie the upper bounds for r(s) described in that
section.

5.2. Uncommon graphs

Goodman [53] suggested that his methods should extend to the minimiza-
tion of the number of “full and empty quadrilaterals, and figures of a higher
number of sides”. Erdés in [27] takes up this problem. He observes that

ks £ 21_(;), since random colourings give this bound. After making the ob-
servation about probabilistic methods cited in §2.3, he remarks that it seems
“Goodman’s problem will be much more difficult for k > 3 than for k = 3,
since it does not seem easy to find graphs which give values as small” as
random examples. It is rather easier nowadays to find such examples, since
any pseudo-random colouring, such as Paley colourings and others listed
in [98], will do. The number of monochromatic Kys in the Paley colouring
P, was, in fact, computed exactly by Evans, Pulham and Sheehan [44] for
prime ¢, and for all ¢ in [97], namely

1 1

= aq(q— 1){((]— 5)(q — 17) + 4(a® - 1)}

k4(Pq)

where ¢ = a2 + b, a is odd and is coprime to ¢ = p' if p = 1 (mod 4).
Franek and Rédl [46] showed that k4(G) > (1/32+0(1)) (}}) holds also if G
is a small perturbation of a pseudo-random graph.

Erdos suggests “it seems likely that” ks = 21-(3) , and later in the paper
he refers to this as a conjectured value for k;. This conjecture accords with
the feeling, referred to in §4, that extremal colourings for monochromatic
complete graphs are random-like. For more than two colours, though, this is
clearly not the case — for example, the density of monochromatic triangles
in the 3-colouring described by a ‘blow-up’ of a two-coloured P; is only
1/25. On the other hand, for the somewhat related problem of minimizing
the number of transitive subtournaments in a large tournament, random
tournaments are indeed best. For let t; be the limiting minimum density of
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transitive subtournaments of order s; then for a tournament with outdegree
and indegree sequences (d;") and (d; ), we have

(521 (20 ren(E)] 2 ez (1)

i=1

giving t; > 3!2_(;), which is exactly the random density.

Burr and Rosta [15] took this notion a step further: they conjectured
that, for every graph G, the minimum density of monochromatic copies
of G in large two-coloured complete graphs would be attained by random
colourings. This conjecture was a step too far. Sidorenko [90] showed that
it failed if G is a triangle with a pendant edge; the density of G in the
colouring consisting of a complete bipartite red graph, with just a faint
random sprinkling of red edges within the two vertex classes, is less than
1/8. Later, Clark [19] gave examples of G for which the ratio of the minimum
density to the random density is arbitrarily small.

In fact, Erdés’s conjecture itself is false for all s > 4, as shown in [101]
and described below in 5.3. This prompts the following slightly loose, but
hopefully clear, definition.

Definition 5.2. A graph G is called common if the limiting minimum
density of monochromatic copies of G in two-coloured complete graphs is
attained by random colourings.

(Common graphs are called randomness friendly by Sidorenko [93],
who gives an interesting study of this and related properties.) Various
graphs are known to be common, such as cycles (Sidorenko [90]), tree-
like structures built from triangles (Sidorenko [92]) and even-spoked wheels
(Jagger, Stovicek and Thomason [60]).

Every non-bipartite graph can be made uncommon by appending a large
enough path ([60, Theorem 4]). On the other hand, it is thought that every
bipartite graph G is common. In fact, this is a phenomenon of extremal
graph theory, rather than Ramsey theory. Indeed, Erdés and Simonovits (41,
42), in their studies of supersaturation, conjecture that the graphs of given
order and size and “having roughly the minimum number of copies of G tend
to look like random graphs” [42, p. 205]. A related conjecture has been made
by Sidorenko: to state it, we define a homomorphic copy of G in H to be a
map f : V(G) = V(H) such that f(a)f(b) € E(H) whenever ab € E(G).



The Simplest Case of Ramsey’s Theorem 685

Conjecture 5.3 (Sidorenko [91]). Let G be a bipartite graph and let H
be a graph of order n and average degree pn. Then H contains at least
nlG1pe(G) homomorphic copies of G.

The conjecture has been verified for complete bipartite graphs (Erdds
and Moon [37]), trees (Sidorenko [92], see also [60]) and even-length cycles
(Sidorenko [91], where a stronger form of his conjecture is made).

The most general result about uncommon graphs is found in [60], where
it is shown that every graph G containing K4 is uncommon. In this sense,
almost every graph is uncommon. The proof is described in below. There
is no known common graph with chromatic number greater than three;
whether the five spoked wheel is common is the outstanding problem in this
area.

5.3. Graph products

The original proof in [101], that the colourings given were counterexamples
to Erdés’s conjecture for s > 4, is not very transparent. Different examples
for the case s = 4 were given by Franek and Rodl [47]. Stovicek saw that the
examples of [101] could be analyzed much more cleanly, and his thoughts
form the basis of the arguments in [60], where it is proved that the same
examples serve to show any graph containing K4 is uncommon. In fact, it
turns out to be possible to give a wide variety of simple examples, as noted
in [102]. Here is a brief description.

Let G be a graph on the vertex set {1,...,s}. Let J be a coloured Kj.
From J we can produce a colouring of Kj, by replacing each vertex u €
V(J) by m copies of itself, colouring blue the edges between the different
copies of u, and colouring the edges between these copies and the copies of
v € V(J) the same colour as uv. The number of (labelled) monochromatic
G in this colouring is at most m*h(J;G), where h(J;G) is the number of
homomorphic copies f : V(G) — V(J) of G in the red graph of J (see §5.2),
plus the number of homomorphic copies in the blue graph (though in the
blue case we allow f(a) = f(b) if ab € E(G)). The random colouring of
Kjm has about 2!17¢(%)j5ms labelled monochromatic Gs. So we can show
that G is uncommon by finding a single fixed J with h(J; G) < 21~ |J}°,
where |J| = 7, and by letting m grow large. But how do we find such a J?

We can compute h(J; G) by associating with J the j X j matrix A(J)

(a(u,v)) uwev(sy Where a(u,v) = —1 if uv is a red edge, and a(u,v) =1
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otherwise; thus the diagonal entries of A(J) are 1. It is readily verified that

if
s 2 ) ]I atusw)

u1€V(J) us€V(J) ijeE(F)

then

W(J;G) = 2749 |J1°d(J;G) where d(J;G) = o(J;F),
FCG

the sum being over all spanning subgraphs F' of G with an even number of
edges. Our target has now become to find a J with d(J;G) < 1.

What makes these observations useful is that, for certain types of colour-
ings J, it is easy to compute d(J; G), because ¢ is multiplicative: that is,

0(J1 ® Jo; F) = p(Jy; F)p(Ja; F)

where J; ® J; is the product colouring of K ,|x|s,| on vertex set V(J1) x
V(Jz), defined by A(J; ® J2) = A(J1) ® A(J2). (Here, as usual, if A =
(aij)?,jzl and B = (bkl)zlzl then (A ® B)(i,k)(j,l) = ai]-bkl.)

Observe that, in this terminology, the m-fold replication of J described
above is just the colouring J ® N, where N is the all-blue colouring of K,,.
Since ¢(N; F') = 1 for all F, we always have d(J ® N;G) = d(J;G).

It turns out to be easy to find suitable J this way, just by trial and
error, at least for small G. As an illustration, let G = K4. The subgraphs
of G of even size are the empty graph E, 12 paths P of length 2, 3 matchings
M of size 2, 12 triangles with pendant edge T', 3 4-cycles C and one Kj.
Now ¢(J; E) = 1 for every J. Table 1 gives the values of ¢(J; F) for the
three colourings J = Rg (the red triangle), J = My (two independent red
edges in an otherwise blue K4) and J = R4 (the red K4). The values in the
table can easily be computed by hand.

J P M T C Ky
R3 0.1111 0.1111 —0.1852 0.4074 —0.4815
My 0.2500 0.2500 0.1250 0.2500 0.5000
Ry 0.2500 0.2500 —0.1250 0.2500 —0.5000
Gis 0.0000 0.0000 0.0000 0.1001 0.1975

Table 1. The values of ¢(J, F) for various graphs J and for F' C K4
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It is immediate from the table that K4 is uncommon. For consider the
colouring J = R?k , meaning the product of k red triangles, on 3* vertices.
By the multiplicativity of ¢ we have

d(J; Kq) = 1F4+12x(0.11)F+3x (0.11)F+12x (—0.18)*+3x (0.41) ¥+ (—0.48)*

which is less than one if k is large and odd!

The colouring G1g in the table is the complement of K:?Q ® Ky; it has
order 18 and is 9-regular. The colourings Ry ® My ® G1g ® N have order
 n = 288|N]|, are vertex-transitive and are n/2 regular. Now d(Ry ® My ®
Gis; K4) = 0.9693 < 32/33. Therefore

i<lc <i
46 - ™ 33

where the lower bound comes from the ingenious work of Giraud [52].

The drawback of this approach is that, when s is large, it is hard to
compute the sum ¢(J; F') even for small graphs J. However, the colourings
My and R4 of order 4 have algebraic formulations, and it is by exploiting
this fact that the values of p(My; F) and ¢(Ry4; F') were computed in [60].
Hence the values of d(T}; ; G) can be estimated, where T, = R4 ® Mf(k_l),
and so it is shown that every graph G containing K4 is uncommon. The
colourings T}, whose red graphs are the strongly regular orthogonal towers,
provided the original counterexamples to Erdds’s conjecture in [101].

As mentioned in [101], the colourings described there also give coun-
terexamples to the case s = 3 of a conjecture mentioned in §2.4, namely,
that if n > 8k + 10 then a two-colouring of K, contains a monochromatic
K3 + K. This conjecture was made independently by Sheehan [87], whose
guess was inaccurate though his title was not. In fact, if & = 4% + 1 then
there are colourings of K, withn = 8k+2+v/k — 1—8 with no monochromatic
K3 + ?k-

It is fairly easy to see that, if it could be shown that ks is very much
smaller than 21_(;), then the known lower bounds for 7(s) could be im-
proved. Conversely, R6dl has arguments to show that good lower bounds
on ks would improve the known upper bounds for r(s). Unfortunately, the
upper bounds for ks given by the above methods are useless for this pur-
pose, being never smaller than 0.75 X 21—(;), and if s > 5 no lower bound
for ks is known other than Erdds’s “crude estimate” stated at the beginning
of §5.
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5.4. Bounds on Ramsey numbers

In an interesting piece of work, Székely [96] gives some tantalizing rela-
tionships between the number of monochromatic subgraphs and the Ram-
sey numbers R(s,t) themselves. Let G(n) be the minimum number of
monochromatic subgraphs in a two-colouring of K,; here, all monochro-
matic subgraphs are counted, regardless of order. Székely gives the following
absolute bounds on G(n), for large n:

n0.261910gn < G’(n) < n0.721410gn_

The upper bound comes from a random colouring (0.7214 = (2log2)™") but
the lower bound requires a bit of work (in fact, Székely obtains 0.2275 in
the exponent but a slightly simpler argument, using the average instead of
the minimum degree, gives a slightly better constant).

The function G(n) can also be bounded in terms of Ramsey numbers,
independently of the above absolute bounds. Let () be an inverse function
to R(); that is, r(n) is the maximum value of ¢ such that R(t) < n. Then
Székely shows the following, where s = r(n) + 1:

n(1/2+eW)r(VR) < G(n) < R(s,2)R(s,3)...R(s,s — 2)R(s)>.

1
(s —2)!

These bounds come from straightforward counting arguments.

Substantial improvements in any of the four above inequalities would
give improved bounds on R(s). For example, reducing the bound G(n) <
n0-721410gn woyld increase the bound R(s) > 2%/2, both of which bounds
come from random colourings. Less obvious is the fact that, as shown
in [96], if G(n) > n%%612106™ holds then R(s) < (4 —4)° holds for some
absolute ¢ > 0.

Székely makes the conjecture that, in an extremal colouring for R(s),
most monochromatic subgraphs have around r(n) vertices. More precisely,
he conjectures that given ¢ > 0, if n = R(s) — 1 is large and G is the
red subgraph of a two-colouring of K, with no monochromatic Ky, then
Dt<(l—e)s k(G) < €Y, kt(G). Note that if this conjecture were true then
the extremal colourings would not be truly random. The conjecture has an
even stronger and more unexpected consequence. It implies that G(n) >
n(e/2Dlogn  provided r(n) > (c + €)logn for large n. The absolute upper
bound on G(n) then gives ¢ < 1/log2; that is, R(s) > (2 —¢)° infinitely
often.
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5.5. Blue-empty colourings

We finish with a look at a related problem, considered by Erdds, but for some
reason overlooked until recently. Goodman [53] asked what is the minimum
number of red triangles in a colouring of K, that contains no blue triangles?
If n is even then this minimum is the same as the minimum number of
monochromatic triangles in any colouring — the blue complete bipartite
colouring achieves this. But, as Erdés proved in a letter to Sauvé [85], the
two minima differ if n > 7 is odd.

The exact minimum number of red triangles in a blue-free colouring
was found by Lorden [66]. He showed, by a succinct argument based on the
degree formula in §5.1, that for odd » > 9 the minimum is attained by the
colouring whose blue edges form the complete bipartite graph K|, 2], [n/2]-

Erdés [27] looked at a generalization of this problem. He defined
f(n,k,l) to be the minimum number of monochromatic Kis in a red-blue
colouring of K, containing no blue K;. Prompted by Lorden’s result, he
stated that

STit=1
“perhaps” f(n,k,l)=Z( 1;1 ) if n>mng(k,l).

1=0

That is to say, if n is large, perhaps the minimum is attained when the blue
graph is the (I — 1)-partite Turdn graph of order n. Goodman’s remark
and Lorden’s theorem confirm the suggestion about f(n,3,3). Erdés stated
“the simplest case which I can not do is f(3n,3,4) = 3('31)”: this case is
mentioned by Bollobds [14, Problem 11, p. 361].

Nikiforov [73] has now shown that Erdés’s suggestion is, in general,
incorrect. Indeed, let ¢k = lim,o0 f(1, K, 1) (’,:)_1. It is easily shown that
the limit exists, and if Erdés’s suggestion were true then cx; = (I — 1)_(’“—1)
would hold. But Nikiforov has proved that, for £ > 3 and [ > 3,

(—1)2k1—142
(r3,0) —1) "

Cky <

holds, which is less than (I — 1)—('“_1) for all but finitely many pairs k
and [, in view of the lower bounds on r(3,!) given by Erdés and by Kim
(see §2.3). For k = 4 and ! = 3 Nikiforov’s inequality is c43 < 3/25; he
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has shown [74] that if this inequality is strict then the extremal colourings
cannot be regular.

The colourings that Nikiforov uses to establish this bound are similar
to those of §5.3. Indeed, let J be a colouring with |J| = r(3,1) — 1 having no
red K; and no blue triangle. Then the colouring J ® N, where N is large,
has no red K; and few blue Ks. Reversing the colours gives the required
examples.

For the case | = 4 Nikiforov gives the better bound

4-3%—8-2F 45
ck,4§ 17k—1

This comes via the colourings Pj7 ® N, where P;7 is the Paley colouring of
K7 that is the unique extremal colouring for r(4).

The case highlighted by Erdés, that perhaps c3 4 = %, remains open.

REFERENCES

[1] H. L. Abbott, Lower bounds for some Ramsey numbers, Discrete Math., 2 (1972),
289-293.

[2] M. Ajtai, J. Komlés and E. Szemerédi, A note on Ramsey numbers, J. Combinatorial
Th. (Ser. A), 29 (1980), 354-360.

[3] N. Alon, Ramsey graphs cannot be defined by real polynomials, J. Graph Theory,
14 (1990), 651-661.

[4] N. Alon, Explicit Ramsey graphs and orthonormal labelings, Electron. J. Combin.,
1 (1994), Research Paper 12.

[5] N. Alon, Tough Ramsey graphs without short cycles, J. Algebraic Combin., 4 (1995),
189-195.

[6] N. Alon, The Shannon capacity of a union, Combinatorica, 18 (1998), 301-310.

[7] N. Alon and B. Bollobés, Graphs with a small number of distinct induced subgraphs,
Discrete Math., 75 (1989), 23-30.

[8] N. Alon and A. Hajnal, Ramsey graphs contain many distinct induced subgraphs,
Graphs Combin., 7 (1991), 1-6.

[9] N. Alon and P. Pudlak, Constructive lower bounds for off-diagonal Ramsey numbers,
Israel J. Math., 122 (2001), 243-251.

[10] L. Babai, Open problem, in: Combinatorics, Proceedings of the Conference in Keszt-
hely, Hungary, 1976, Vol. 2. North-Holland (1978), 1189.
[11] A tribute to Paul Erdés, (A. Baker, B. Bollobds and A. Hajnal, eds), Cambridge

University Press (1990).



The Simplest Case of Ramsey’s Theorem 691

[12]
[13)
[14]
[15]
[16]
[17)
[18]
[19]
[20]
[21]
[22)
[23]
[24]

[25]
[26]
[27]

(28]

29]

(30]

(31]

32]

D. A. M. Barrington, R. Beigel and S. Rudich, Representing Boolean functions as
polynomials modulo composite numbers, Comput. Complezity, 4 (1994), 367-382.

L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem,
in: Proceedings of the Fifth British Combinatorial Conference 1975, Congressus
Numerantium XV (1976), 17-22.

B. Bollobds, Eztremal Graph Theory, Academic Press, London (1978).

S. A. Burr and V. Rosta, On the Ramsey multiplicities of graph problems and recent
results, J. Graph Theory, 4 (1980), 347-361.

F. R. K. Chung, R. Cleve and P. Dagum, A note on constructive lower bounds for
the Ramsey numbers 7(3,t), J. Combinatorial Theory (Ser. B), 57 (1993), 150-155.

F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combi-
natorica, 9 (1989), 345-362.

F. R. K. Chung and C. M. Grinstead, A survey of bounds for classical Ramsey
numbers, J. Graph Theory, T (1983), 25-37.

L. Clark, The minimum number of subgraphs in a graph and its complement,
J. Graph Theory, 16 (1992), 451-458.

R. Cleve and P. Dagum, A constructive (¢!2) lower bound for the Ramsey number
R(3,t), International Computer Science Institute Tech. Rep. TR-89-009 (1989).

B. Codenotti, P. Pudldk and G. Resta, Some structural properties of low rank
matrices related to computational complexity, to appear in Theor. Comp. Sci.

D. Duffus, H. Lefmann and V. Rddl, Shift graphs and lower bounds on Ramsey
numbers 7y (l;r), Discrete Math., 137 (1995), 177-187.

P. Erdés, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947),
292-294.

P. Erdés, Remarks on a theorem of Ramsey, Bull. Res. Council Israel. Sect. F, TF
(1957), 21-24.

P. Erdés, Graph theory and probability, Canadian J. Math., 11 (1959) 34-38.

P. Erdés, Graph theory and probability. II, Canadian J. Math., 13 (1961) 346-352.

P. Erdés, On the number of complete subgraphs contained in certain graphs, Publ.
Math. Inst. Hung. Acad. Sci., VII, Ser. A3 (1962) 459-464.

P. Erdés, On the construction of certain graphs, J. Combinatorial Theory, 17 (1966),
149-153.

P. Erdds, Some new problems and results in graph theory and other branches of
combinatorial mathematics, in: Combinatorics and Graph Theory (Calcutta, 1980)’,
Lecture Notes in Mathematics 885, Springer-Verlag (1981), 9-17.

P. Erdds, Some of my favorite solved and unsolved problems in graph theory,
Queastiones Mathematice, 16 (1993), 333-350.

P. Erdés and A. Hajnal, On Ramsey like theorems, Problems and results. Combina-
torics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford), Inst. Math. Appl.,
Southend-on-Sea (1972), 123-140.

P. Erd6s and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math., 25 (1989),
37-52.



692 A. Thomason

[33] P. Erdés and A. Hajnal, On the number of distinct induced subgraphs of a graph,
Discrete Math., 75 (1989), 145-154.

[34] P. Erdés, A. Hajnal, A. Mdté and R. Rado, Combinatorial set theory: partition
relations for cardinals, in: Studies in Logic and the Foundations of Mathematics,
106, North-Holland (1984).

[35] P. Erdés, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta
Math. Acad. Sci. Hungar., 16 (1965), 93-196.

[36] P. Erdés and L. Lovész, Problems and results in 3-chromatic hypergraphs and some
related questions, in: Infinite and Finite Sets, (A. Hajnal, R. Rado and V. T. S6s,
eds) North-Holland (1975), 609-628.

[37] P. Erdés and J. W. Moon, On subgraphs of the complete bipartite graph, Canad.
Math. Bull., 7 (1964), 35-39.

[38] P. Erdés and R. Rado, A combinatorial theorem, J. London Math. Soc., 25 (1950),
249-255.

[39] P. Erdés and R. Rado, Combinatorial theorems on classification of subsets of a given
set, Proc. London Math. Soc., 2 (1952), 417-439.

[40] P. Erdés and A. Rényi (attributed).

[41] P. Erdds and M. Simonovits, Supersaturated graphs and hypergraphs, Combinator-
ica, 3 (1983), 181-192.

[42] P. Erdés and M. Simonovits, Cube-supersaturated graphs and related problems, in:
Progress in Graph Theory (J. A. Bondy and U. S. R. Murty, eds), Academic Press
(1984), 203-218.

[43] P. Erdés and G. Szekeres, A combinatorial problem in geometry, Compositio Math.,
2 (1935), 463-470.

[44] R. J. Evans, J. R. Pulham and J. Sheehan, On the number of complete subgraphs
contained in certain graphs, J. Combinatorial Theory (Ser. B), 30 (1981), 364-371.

[45] G. Exoo, On Two Classical Ramsey Numbers of the Form R(3,n), SIAM J. Discrete
Mathematics, 2 (1989), 488-490.

[46] F. Franek and V. Rédl, Ramsey problem on multiplicities of complete subgraphs in
nearly quasirandom graphs, Graphs and Combinatorics, 8 (1992), 299-308.

[47] F. Franek and V. Rddl, 2-colorings of complete graphs with small number of
monochromatic K4 subgraphs, Disc. Math., 114 (1993), 199-203.

[48] P. Frankl, A constructive lower bound for some Ramsey numbers, Ars Combinatoria,
3 (1977), 297-302.

[49] P. Frankl and R.M. Wilson, Intersection theorems with geometric consequences,
Combinatorica, 1 (1981), 357-368.

[50] C. Frasnay, Sur les fonctions d’entiers se rapportant au théoréme de Ramsey, C. R.
Acad. Sci. Paris, 256 (1963) 2507-2510.

[51] Z. Fiiredi, An upper bound on Zarankiewicz’ problem, Combin. Probab. Comput.,
5 (1996), 29-33.

[52] G. Giraud, Sur le probléeme de Goodman pour les quadrangles et la majoration des
nombres de Ramsey, J. Combinatorial Theory (Ser. B), 27 (1979), 237-253.

[53] A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math.
Monthly, 66 (1959), 778-783.



The Simplest Case of Ramsey’s Theorem 693

(54]

[55]

[56]
[57]
[58]

[59]

[60]
(61]
[62]
(63]
[64]
[65]
[66]
(67]
(68]
[69]
[70]
[71]
[72]
(73]
[74]

(75]

R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Wiley, New
York (1990).

R. L. Graham and V. Rddl, Numbers in Ramsey theory. Surveys in Combina-
torics 1987, London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press,
Cambridge-New York (1987) 111-153.

J. E. Graver and J. Yackel, Some graph theoretic results associated with Ramsey’s
theorem, J. Combinatorial Th., 4 (1968) 125-175.

R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs,
Canad. J. Math., 7 (1955), 1-7.

V. Grolmusz, Superpolynomial size set-systems with restricted intersections mod 6
and explicit Ramsey graphs, Combinatorica, 20 (2000) 71-86.

R. Y. Huang, Two average value theorems on the Ramsey problem and an initial
exploration of their applications (in Chinese), J. Shanghai Univ. Nat. Sci., 1 (1995),
365-368.

C. N. Jagger, P. Stovicek and A. Thomason, Multiplicities of Subgraphs, Combina-
torica, 16 (1996) 123-141.

J. H. Kim, The Ramsey number R(3,t) has order of magnitude t2/logt, Random
Structures and Algorithms, 7 (1995), 173-207.

J. Kolldr, L. Rényai and T. Szabé, Norm-graphs and bipartite Turdn numbers,
Combinatorica, 16 (1996), 399-406.

M. Krivelevich, Bounding Ramsey numbers through large deviation inequalities,
Random Structures and Algorithms, 7 (1995), 145-155.

H. Lefmann and V. Rédl, On canonical Ramsey numbers for complete graphs versus
paths, J. Combinatorial Theory (Ser. B), 58 (1993), 1-13.

H. Lefmann and V. Rédl, On Erdés-Rado numbers, Combinatorica, 15 (1995), 85—
104.

G. Lorden, Blue-empty chromatic graphs, Amer. Math. Monthly, 69 (1962), 114-
120.

C. McDiarmid and A. Steger, Tidier examples for lower bounds on diagonal Ramsey
numbers, J. Combin. Theory (Ser. A), T4 (1996), 147-152.

B. McKay and S. P. Radziszowski, Subgraph counting identities and Ramsey num-
bers, J. Combin. Theory (Ser. B), 69 (1997), 193-209.

H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math-
ematics, 227, Springer-Verlag (1971).

Zs. Nagy, A certain constructive estimate of the Ramsey number (in Hungarian),
Mat. Lapok, 23 (1972), 301-302.

J. Nesetfil, Ramsey theory. Handbook of combinatorics, Vol. 1, 2, 1331-1403, Else-
vier, Amsterdam (1995).

Mathematics of Ramsey theory, (J. Nesetfil and V. Rédl, eds.) Algorithms and
Combinatorics, 5 Springer-Verlag, Berlin, (1990) xiv+269pp.

V. Nikiforov, On the minimum number of k—cliques in graphs with restricted
number of independence, Combin. Probab. Comput., 10 (2001), 361-366.

V. Nikiforov, Minimal number of 4-cliques in a graph with triangle-free complement
(preprint).

H.-J. Prémel and V. R6dl, Non-Ramsey graphs are clogn universal, J. Combinato-
rial Theory (Ser. A), 88 (1999), 379-384.



694 A. Thomason

[76] S. P. Radziszowski, Small Ramsey numbers, Dynamic Survey 1, Electron. J. Com-
bin., 1 (1994).

[77] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30(2) (1929)
264-286. .

[78] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math., 12 (1975),
735-744.

[79] A. A. Razborov, Formulas of bounded depth in the basis {&, @} and some combi-
natorial problems (in Russian), Voprosy Kibernet., (Moscow) 134 (1988), 149-166.

[80] D. C. Richer, Unordered canonical Ramsey numbers, Journal Comb. Theory (Ser. B)
80 (2000), 172-177.

[81] V.Rédl, On a packing and covering problem, European J. Combin., 6 (1985), 69-78.

[82] V. Rédl, Upper bounds on Ramsey numbers R(k,[), unpublished manuscript.

[83] V. Rédl, Some developments in Ramsey theory, in: Proceedings of the International
Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 1455-1466, Math. Soc. Japan,
Tokyo (1991).

[84] C. C. Rousseau and J. Sheehan, Ramsey numbers for books, Problemes combina-
toires et théorie des graphes, Collog. Internat. CNRS, 260 (1978), 367-369.

[85] L. Sauvé, On chromatic graphs, Amer. Math. Monthly, 68 (1961), 107-111.

[86] J. B. Shearer, A note on the independence number of a triangle-free graph, Discrete
Math., 46 (1983), 83-87.

[87] J. Sheehan, Finite Ramsey theory is hard, in: Combinatorial mathematics, VIII
(Geelong, 1980), Lecture Notes in Math. 884, Springer (1981), 99-106.

[88] S. Shelah, Finite canonization, Comment. Math. Univ. Carolin., 37 (1996), 445-456.

[89] S. Shelah, Erdés and Rényi conjecture, J. Combinatorial Theory (Ser. A), 82 (1998),
179-185.

[90] A. F. Sidorenko, Cycles in graphs and functional inequalities, Mathematical Notes,
46 (1989), 877-882.

[91] A. F. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin., 9
(1993), 201-204.

[92] A. F. Sidorenko, An analytic approach to extremal problems for graphs and hyper-
graphs, in: Eztremal problems for finite sets (Visegrdd, 1991), Bolyai Soc. Math.
Stud. 3, Janos Bolyai Math. Soc. (1994), 423-455.

[93] A. F. Sidorenko, Randomness friendly graphs, Random Structures Algorithms, 8
(1996), 229-241.

[94] J. Spencer, Ramsey’s theorem — a new lower bound, J. Combinatorial Th. (Ser. A),
18 (1975), 108-115.

[95] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math., 20
(1977), 69-76.

[96] L. A. Székely, On the number of homogeneous subgraphs of a graph, Combinatorica,
4 (1984), 363-372.

[97] A. Thomason, On finite Ramsey numbers, Burop. J. Combinatorics, 3 (1982), 263-
273.

[98] A. Thomason, Pseudo-random graphs, in: Random Graphs ’85, (M. Karonski and
7. Palka, eds) Ann. of Discrete Math. 33 (1987) 307-331.



The Simplest Case of Ramsey’s Theorem 695

[99] A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs,
in: Surveys in Combinatorics, 1987 (C. Whitehead ed.), LMS Lecture Note Series
123 (1987), 173-195.

(100] A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory, 12
(1988) 509-518.

(101] A. Thomason, A disproof of a conjecture of Erdés in Ramsey theory, J. London
Math. Soc., 39 (1989), 246-255.

[102] A. Thomason, Graph products and monochromatic multiplicities, Combinatorica,
17 (1997) 125-134.

[103] K. Walker, Dichromatic graphs and Ramsey numbers, J. Combinatorial Theory, 5
(1968), 238—243.

Andrew Thomason

DPMMS

Centre for Mathematical Sciences
Wilberforce Road

Cambridge CB8 0OWB

United Kingdom

e-mail: A.G.Thomason@dpmms.cam.ac.uk



