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PSEUDO-RANDOM GRAPHS
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We call a: graph G (p, «)-jumbled if, for every induced subgraph H of G, le(H)—
p(lg,) <«|H| holds; here p and « are real numbers with 0<p<1<a, and e(H)
is the number of edges in H. We show that a (p, ¢)-jumbled graph behaves in many

ways like a random graph with edge probability p, and some aspects of this similarity
are examined.

Since its introduction by Erd6s and Rényi, the theory of random graphs has
been greatly developed (for a modern treatment of the subject, see Bollobds [2]),
and many properties of a random graph have been studied in detail. Random
graphs have proved of great interest for various reasons, of which we mention
just two: they provide the best known extremal graphs for several extremal
problems, such as subcontractions [23], Zarankiewicz’s problem [19] and Ramsey’s
theorem [13], and they offer examples of graphs with certain properties, giving
us say expanders [11], graphs of small diameter [9] and parallel sorting algorithms
[7]. In all these cases it would be useful to have a criterion by which to decide
whether a specific graph behaves like a random graph, that is, has the property
(of almost all graphs) that interests us. Such a criterion might also be used to
describe the class of extremal graphs in the problems mentioned, which may
perhaps give uscful information about the problems themselves.

The purpose of this paper is to offer such a criterion and to explore some of its
consequences. As a result we are able to extend and simplify many earlier results.
For instance, results obtained by Bollobds and Thomason [6] using the Riemann
hypothesis for algebraic curves over finite fields, by Alon and Milman [1] using
eigenvalue methods, and by Gurevich and Shelah [18] using random graph
techniques, can be obtained in more general settings by elementary ar guments.
In the latter two cases, these are described elsewhere in more detail [25], [26].
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308 A. Thomason

A graph G is said to be (p, o)-jumbled if p, o are real numbers satisfying 0<p
<1<« and if every induced subgraph H of G satisfies

e(H)—p(";")

Here e(H) is the number of edges in H, following [2]. Equivalently, if d(H) is
the average degree inside H we may say

<a|H|.

4~ p(|H]|-1)| <20

holds for every induced subgraph H. We think of a (p, )-jumbled graph as behav-
ing somewhat like a random graph where each edge is chosen with probability p.
Of course, it is possible to suggest other definitions for a “pseudo-random”
graph but it seems they often reduce to this one. Note that if G is (p, «)-jumbled
then every induced subgraph is (p, «)-jumbled and the complement of G is
(1=p, @)-jumbled. Observe too that the clique number of G is at most
1420 (1 —p)~* and the independence number is at most 14 2ap~1.

Naturally every graph of order n is (p, n/2)-jumbled, so the definition begins
to be interesting when o is small compared to n. Although we require only o>1,
a theorem of Erdés and Spencer [16] shows that « is at least of order (pm)!/2.
(Their proof is stated only for p=1% but the extension to other values of p with

- pn—oo and (1—p)n—oo is straightforward.) Our results will be stated for all
values of p and « but they are best understood by thinking of o of order (pn)/2,
and p>n~1/3; the latter since many results require 6(G)~pn and pé>a.

In this paper we show ways in which jumbled graphs behave like random graphs,
and illustrate ways in which specific graphs may be shown to have random behav-
iour. The paper falls into three parts. First we give examples of (p, «)-jumbled
graphs with small o; these are typical of the “explicit random graphs” we have
in mind. Then we describe two ways of testing whether a graph is jumbled. The
first is more or less a degree condition, and can be applied to a specific graph
very easily. The second is a global condition. It tells us that if a graph G is not

>o|H| and |H|

. . . . H
(p, ®)-jumbled it contains a subgraph H with le(H)— p<|2|>

large. To this extent it gives information about the extremal graphs in the problems
cited earlier. Finally, we derive several properties of jumbled graphs. These
properties are chosen mainly because they have been studied frequently in the
random graph case and/or because they illustrate the techniques used in dealing
with jumbled graphs.
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Examples

Here are some examples of jumbled graphs. Some of them exhibit various kinds
of pathological behaviour and most will be used later to illustrate particular
points and to test the strength of theorems.

(1) Let G € 9(n, p), that is, the edges of G are chosen at random with prob-
ability p. Then G is almost surely (p, 2(pn)'/?)-jumbled (provided pn—co and
(1—p)n— 0. The constant 2 here is generous).

(2) Choose a graph in %(n, p), select a subset X of the vertices, with |X|=[(pn)!/],
and join each pair of vertices in X. Then G is almost surely (p, 3(pn)"/?)-jumbled.

(3) As in (2), but with |X|=|(pn)**]. Then G is almost surely (p, (pn)*'*)-jumbled.

(4) Let V(G)={X1, ..., X2, V15 -+» Vuj2}, Where n is an even integer. For each
pair i<, join x; to exactly one of x; and y;, chosen at random. Do the same for y;.
The graphs spanned by the x,’s and the y,’s are therefore randomly chosen:
elements of ¥(n/2, }). G itself is (%, n'/*)-jumbled.

(5) Let ¥(G) be as in (4). For each pair i<j, insert at random one of the four
paths x,X;Y;, X.y;Vi, X;%:¥5, X;9:9;. Add also the edges x;y;. Then G is (%, n'/*)-jumb-
led.

(6) Let k=2 be an integer, let n=2kl+1 be a prime power, and let F, be the
field of order n. Construct a graph G of order # by setting V(G)=F, and joining
xto yif x—yisa kth power in F,. If k=2 the graph we get, often called t he Paley
graph of order 7, is (%, n'/?)-jumbled. If k>2 the graph is (k™ !, 2#*/*)-jumbled.
The justification for these assertions will be provided later by Theorem 1.1.
(The appropriate values of u required by the conditions of Theorem 1.1 can
be taken as =14 for k=2 and p=n"’? for k>2. These values can be verified using
the elementary theory of characters over finite fields.)

(7) As in (6), but join x to y if x+y is a kth power. Again we get a (k~*, 2n3/%)-
jumbled graph, or (%, 2n'/*)-jumbled if k=2. This construction is more natural
than that of (6), except when k=2, and has an obvious generalisation to hyper-
graphs. Since we do not need —1 to be a kth power this time, it is enough if
n=kl+1.

(8) Let ¢ be a prime power and let ¥(G) be the elements of a vector space of
dimension two over F,; so G has n=g? vertices. Partition the g+1 lines of the
space into two sets P and &, where |P[ =k=p(g+1), 1<k<gq, and |[N|=g+1-k.
Join x to yif x—y is parallel toa line in P. Then G is (p, n*/*)-jumbled. This example
(when p=1) is due to Delsarte and Goethals and to Turyn (see [22]). G is in
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fact strongly regular with parameters (k(g—1), (k—1)(k—2)+q—2, k (k—1)).
If p=% we can choose the set P so as to obtain the Paley graph of order n.

(9) Let g be a prime and let ¥(G) be the set F,. Let # be an integer, 1 <t<gq.
Join x to y if the fractional part of (x—y)?/q is at most #/q. By Theorem XIIL.
16 of [2] and Theorem 1.1 below, this graph is (p, n*/* log #)-jumbled where p=1/q
and n=g. An infinite analogue of this graph was shown to have analogous pro-
perties by Pinch [21].

(10) Let g be a prime power and let ¥(G) be the vertices of the projective geometry
of dimension k over F,. Then G has n=(¢"*'—1)(¢g—1)~* elements. Join
X=Xo:!...:X; t0 y=yo:...:¥ if xoyo+...+xy,=0. Then (again by Theo-
rem 1.1) G is (1/q,ﬂ2(n/q)1/2)—jumbled. This graph is sometimes called the Erdos-
Rényi graph in the case k=2.

(11) The graph of example (10) may be viewed, when g=2, as formed by taking
as vertices the non-empty subsets of a set of order k+ 1, two vertices being joined
if their intersection has even order. Two subgraphs of this graph are particularly
interesting. For the first, let G be the graph whose vertices are the non-empty
even subsets of a set of order k+1, where k is even. Join two vertices if their
intersection is also even. Then G has order n=2—1and is (%, 2n"/ %)-jumbled. The
reason for choosing k even is just that the graph is fractionally easier to analyse
if we do. In fact in this case G is strongly regular with parameters ((n—3)/2,
(n—11)/4, (n—3)/4).

(12) For the second subgraph, let G be the graph whose vertices are the odd
subsets of a set of order k+ 1, two vertices being adjacent if their intersection is
even. Then G has order n=2* and is (%, 2n"/*)-jumbled.

(13) Let H be a (p, o)-jumbled graph of order m, and let k>1 be an integer.
For each vertex xe H, let xy, ..., x; be vertices of the graph G. Join x; to ¥y
in G whenever xy € H and 1<, j<k. Then G has order km and is (p, ket-+k)-
jumbled.

There are other specific examples of jumbled graphs with less dense edge sets.
For instance, in the graph of example (10) we may require more equations to be
satisfied before we join two vertices. We do not concentrate on these examples
since, as we mentioned earlier, our results are most effective if p is not too small.

§1. Conditions implying a graph is jumbled

We begin by considering two ways of checking whether a given graph is (p, «)-
jumbled. The first, Theorem 1.1, is a local approach, the second, Theorem 1.4,
is a global approach. We shall make use of the notation B(x), where x is a non-
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negative integer, to signify any real number y of absolute value at most x. Thus
y=B(x) means ly] <x, and 0<z<x implies B(z)=B(x). In this sense the notation
behaves like Landau’s O(x) notation. Using this, we may rewrite the deﬁnmon
of a (p, @)-jumbled graph G in the form i

e(H)=p<";'>+B(a 1))

for all induced H<=G.

Theorem 1.1. Let n be an integer, and let 0<p<1 and ;>0 be real numbers.
Let G be a graph of order n with minimum degree pn in which no two vertices have
more than p*n-+u common neighbours. Then G is (p, &)-jumbled, where 20=(pn

+(n—1p)* +p.

Proof. Let H be a subgraph of G of order k<n, and let the average degree in
H be d. Let ay, ..., a, be the degree sequence of H, and let by, ..., b,_, be the
numbers of edges between H and each of the n—k vertices of G— H. Then

ek
2
Il
=
Q

It
-

and

n—

Kook
b= Y (pn—a)=k(pn—d).
i=1

Moreover, since no two vertices have more than p?z+u common neighbours,

(9 E e
k(g)+(n —k) (k (pn _[;)/(n _IC))SG) (P’n+p).

Rearranging gives

we have

Sso

n—k
(d—pk)2<—n— [(k—1)p+np(l—p)],

which is somewhat stronger than the result claimed. []
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Obviously, many of our examples (such as (6)-(12)) of concrete random graphs
are shown by this theorem to be (p, ¢ (pn)'/*)-jumbled, for appropriate p and
constant ¢. For random graphs themselves though this theorem isn’t so effective,
since inthis case u is of order n'/2.

It is curious to note that the mini um degree condition in Theorem 1.1 can
be dropped if we require every pai of vertices to have p?n(1+0(1)) common
neighbours (here we imagine n—o0). For let v be a vertex of G with degree d.

Then each vertex in G—v has p?n (1+o0 (1)) neighbours in I'(v), so the number of
2

paths of length 2 in G—v with both ends in I'(v) is (n—1) <p 2”) (1+0(1)). But this

number is <;> p’n @ +0(1)),and we have the minimum degree condition back

again.

However, if we weaken the conditions of the theorem to require only every
edge to be in at most p°n+u triangles, the conclusion fails to hold. Suppose for
instance we are given a vertex-transitive pk-regular graph F of order k in which
every edge is in p*k triangles. (We will construct such a graph shortly.) Now for
each v € F take a set X(v) of order m, whete m is some integer, and form a graph
G with vertex set | ) X(v) with xy € G if x € X(u), y € X(v) and uv € F. Then G

veF
has order n=mk, is vertex-transitive and pn-regular, and every edge of G is in

precisely p®n triangles. But G is not (p, )-jumbled for any small value of « since
its independence number is at least n/k.

An example of a graph F of the type described can be constructed as follows
in the case p=1/6 and k=36. First take a K, with vertex set {v;, v,, v3, v4} and
edge colour it with colours 0, 1 and 2. Now construct four 9-cycles C’, 1<i<4,
with vertex sets {aj; 1<j<9} where a; is joined to @}, . Construct H from the
union of these four cycles by joining 4} to g if r=c (mod 3), where c is the colour
of v;v;. Then H has order 36, is 3-regular, vertex transitive and has girth 7. Form
F from H by setting V(F)=V(H) and joining  to v in F if dy(u, v)=2. Then Fis
6-regular, vertex-transitive and every edge is in exactly one triangle.

In contrast to Theorem 1.1 we can show a graph is jumbled if we have only
large scale information about it, namely, when we are given the number of edges
in subgraphs of some large fixed order.

Lemma 1.2. Let p, 1, m, n be positive real numbers with 0<p, n<l1, such that nn
is an integer with 2<yn<n—2. Let G be a graph of order n in which for every
induced subgraph H of order un,

e(H)—p (172”)! <m
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holds. Then

e(H)—p(lzc)lSSO mn~ 21 —n)"?

for every induced subgraph H of order k.

Proof. Let H be a subgraph of order k>#n. If we count the number of edges in

each of the <k) subgraphs L of H of order /=1n, we get

l

_ -1 _ =1
() () B )

K\ k(k—1) k 2k*m
-+(s)* 0= B(’")=p<2>+3(1—2)

(k)+B< 80m > aied
=p ——— ], asclaimed.
2, n*(1—n)*

Now suppose H is a subgraph of order k <min{(1 —#)n, ya}. L=t Fbza subgraph
of G— H of order #n, and let L bs a subgraph of H of order /, where 1</<k.
Then by the above,

- e(Hu F)=p(k+’7n)+B<2———(k+nzn) m> (a)
\ 2 (nn)
and
e(LuF)=p<l_}_2’7”>+B<2(l+”Z—)— m>. (b)
(nn)

k

Holding / fixed and summing over all ( l> subgraphs L, we have

Ye(LuF)=) {e(L)+e(L, F)+e(F)}

L L

=<’;:§>e(H)+<I;:i)e(H, F)+<'l‘>e(F),
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k

and dividing by <l

) and using (b) gives

(-1 - l (H F F
k(k'—l)e( )+?e\ ) )+€( )

l—]—;]n 2(I+I]Il)2
= +B R~ 2 -
p( ; ) ( WA

By means of (a) and the equation e(F)=p<)g1>+B(m) we can solve for e (H) to

find

k k—1 (k4+nn)*  k(I+qn)* k 1
H)= +B 2 = e ) |,
e(H) p(z) [k—l \'”( a? T e 22

Writing [= Ak, and since k<n,

2 1+4)2% 1 1
= Jo5(5(0+ g4 3)

Choosing / so that $<A<%, which we can if k=2, we have

e(H)=p<§>+B(40m)=p<§)+B<%>.

Finally, suppose (1—#mn<k<nn (this of course happens only if #>%). Using
the result of the previous paragraph we may sum the number of edges in all
subgraphs L of order /=(1—#)n to get

<I;:§>3(H):<I;)l:p <2l>+B(40m):,
e(H)=p<k)+@B(40m)

2) 7 1(1-1)

_ (k) B( 80m )
=p 2 + ;1——2(1—11)_2 ]
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Obviously the constant 80 in this lemma could be reduced. However if # is
small the argument in the first part of the proof shows that O(m#y~?) is the right
bound for the error, and if # is large, an examination of the graph 2K, , shows
that O(m(1—n)~2) is the right order (take k=mn/2, say). Hence the bound
O(mn~2(1—#)~?) cannot in general be improved.

An example of a direct application of Lemma 1.2 is as follows. Suppose we
have a sequence Gy, G,, ... where G, is a graph of order » such that every induced
subgraph H of G, of order #/2 satisfies

e(H)—p (’lé:)')’ £niP,

For instance, G, may be the graph of example (3). Then by Lemma 1.2 we can
say G, is (p, 13n3*)-jumbled, since

13n3/*k >min {320113/2, (g)}

for all k. Moreover the graphs in this example show that G, is not (p, nf)-jumbled
for any f<3/4, so this result is best possible. However, in this example the sub-
graphs with large error are fairly localised, and most subgraphs have smaller
error. In fact we shall now show (Theorem 1.4) that if w(n)—oco is a function
of n then the given conditions on G, imply that G, contains a subgraph G¥ of
order n(1+o(1)) which is (p, wn'/*)-jumbled, so that the errors in G are much

smaller.
Before proving Theorem 1.4 we need an analogue of Lemma 1.2 tor multi-

partite subgraphs.

Lemma 1.3. Let r>2 be an integer and let p, 7, m, n and G be as in the ststement of
Lemma 1.2. Let H be an induced r-partite subgraph of G whose vertvx classes
have orders ky, k,, ..., k.. Then

le(H)—p Y kik;|<360my~2(1—n)~2
1<i<y<r

Proof. Choose an integer / with r/3</<r/2. There are (il> partitions of the

vertex classes into two groups, one with / classes and the other with r--/ classes.
Each edge of H joins classes in different groups for2<’2_i

Consider some fixed partition, and let H; be the subgraph formed by the classes

of these partitions.
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in the first group. Put i=|H,| and H,=H— H;. By Lemma 1.2

e(H1)=p<]2l>+B(2A)

and

e(H,)= p(k ;h>+B(2A)

where k= ]H] and A=40mn*(1—n)*. Hence e(H,, H,)=ph(k—h)+ B (44).
Summing over all partitions gives

2<’l' 1>e(H) 2( );/ <')B(4A)

$0
rir—1)
e(H)= pl;/ ki + e l)lB(4A)
=pY kik;+B(94). O

i<j
Theorem 1.4. Let p, 7, o, n, o be positive real numbers with 0<p, n<1 such that

nn is an integer with 2<nyn<n-—2. Let G be a graph of order n in which for ever y
induced subgraph H of order in,

e(H)—p <’72”>I <nno

holds. Then G contains a subgraph G* of order at least

880
1——2 n
( n(l—m) w>

which is (p, wa)-jumbled.

Proof. We first construct G, by repeatedly removing “dense” subgraphs Hj,
H,, ..., H, such thate(H,)— p(l )>k wa,where |Hj|=k; and H;cG— | ) H,.

1<_,

Stop when it is no longer possible to choose another H,,, and let Go=G— U H,.
i=1
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Let H= ) H, and k=|H|=Y k. By Lemma 1.2 e(H)<p(lzc>+2A, where
i=1 i=1
A=40n=2(1—#)"2ne, and by Lemma 1.3

e(H)— Y e(H)=pY kik;—94,
i=1

SO

r

Y e(H)< zp(’;‘)ﬂm,
i=1

i=1

giving Y kywa<114 and k<114/wa. Now construct G* by removing from G,
i=1

‘sparse’ subgraphs Fj, ..., F, such that e(F;)—p 2i <—fiwa, where f;=|F|.

By a similar argument, |Go— G*|<114/wa. Thus |G— G*| <224/wa as asserted.
O

There are a couple of ways in which one might wish to weaken the conditions
of Theorem 1.4 but they fail to give the desired conclusion. The first is to require

e(H)—p<”2">

this is a requirement satisfied by a complete bipartite graph K5, ,/» (assuming

<nno holds not for all H of order #n but for almost all. However,

p=4%) and so it cannot be strong enough. The second way to weaken the con-

2
This too is inadequate, since the r.m.s. value depends only on the number of

ditions is to ask only that the root mean square value of’e(H)—p<nn>] be small.

pairs of edges and this in turn depends only on the degree sequence. Indeed if G

has order » and has E=p<;21 edges, with degree sequence (p (n—1)+e¢)'-{,

then looking at all subgraphs H of order & one finds

-1 ./ 2
(sl

1 o -1 ]_2 n
=3P(n—k)<l2€>(nzz> {(l—p)(n—k—l)-k—c—E—i;lsiZ}.

Once again this condition fails to discriminate against bipartite graphs.
Finally, suppose we take a typical jumbled graph, say a (%, n'/*)-jumbled graph
G of order n. One might ask, in the spirit of Theorem 1.4, whether G contains
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a subgraph G* of order almost 7 in which the errors in subgraphs of order k
are small, provided k is small (say k<n*; of course in G we have no information
about such small subgraphs). The answer is no. Consider say the graph of example

1
(6) when k=2 and nis a square. The 7(;) edges are covered by several complete

subgraphs of order \/ﬁ, each edge being in the same number of these. Thus if
|G*|=(1—¢&)n, one of these complete subgraphs meets G* in at least (1—2e)\/n
vertices, for otherwise a short calculation shows G—G* would have more than

(8;) edges. We can therefore say no more about small subgraphs in G* than

we can in G.

§2. Properties of jumbled graphs

We now examine consequences of the definition of jumbled graphs. These
graphs have many properties which are well known to hold for random graphs.
The following two lemmas will be fundamental in our study.

Lemma 2.1. Let G be a (p, «)-jumbled graph of order n, and let 0<e<1. Then at
least (1—&) n of the vertex degrees of G lie in the range p(n—1)£10ae™ .

Proof. Let S be a subgraph of order s, and let the sum of the degrees (in G) of
the vertices of S be sd. Then sd=2e(S)+e(S, G—S). But

e(S)+e(S, G—S)=e(G)—e(G—S)

=p(’21)—p<n;S>+B((IJl)+B(OC(n—S))

and
e(S)=p<;>+B(as) ,
SO

sd=2p(;)-i-ps(n—s)+B(an)+B(a(n—s))+B(o:s)

=ps(n—1)+B(2an).

Thus d=p(n—1)+ B(2ans™"). Taking S to be the [en/2] vertices of smallest degree,
we see that the average of these degrees is at least p(n—1)—10xe~! (since the
lemma js vacuous if en< 10, and otherwise |en/2]>2en/5). The proof is completed
by then taking S to be the |en/2] vertices of largest degree. []
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Lemma 2.2. Let G be a (p, a)-jumbled graph of order n, and let 0<e<1. Let H
be an induced subgraph of G of order k. Then at least n—cek of the vertices of G
have between ple—2lae™" and plc+2lee™" neighbours in H.

Proof. By Lemma 2.1 at least (1—¢/2)k of the vertices of H have degree p(k —1)
+B(200e™ ") =pk+ B(2lae™") in H. If G— H#, let S be a non-empty subgraph.
of G— H with |S|=s. Define d by sd=e(S, H). Then

sd=e(SUH)—e(S)—e(H)

AT Ao

=psk+B(2a(s+k)),

SO

d=pk+B(2u(l+ks™").

Choose S to be the |ek/4] vertices of G— H which send the least number of”
edges to H. Since we may as well assume ke>21 we see [ek/4]>ek/4—1>¢ek/5
so B(Zcx(l+ks_1))=B(2oz(1+5£‘1))=B(12aa_1). Thus all but ¢k/4 vertices of”
G— H have at least pk— 120z~ ! neighbours in H, and likewise all but ek/4 ver-

tices have at most pk+12a¢™" neighbours. []

For a set U of vertices of a graph G, denote by N(U) the set of vertices of G— U
which are joined to every vertex in U, and denote by N(U) those vegtices of G— U
joined to none of the vertices of U. If U, and U, are disjoint sets of vertices, we
denote [N(U,) n Jml by v(Uy, U,).

Under the conditions of Theorem 1.1 it is possible to show easily that almost
all k-tuples of vertices have about p*n common neighbours. This is done by enumer--
ating the k-tuples, letting d; be the number of neighbours of the ith k-tuple, and

estimating )'d; and Z( (zll> This works for &k up to log, n, where b=1/p. The

following theorem does the same for any jumbled graph, though the argument
works only as far as k=14 log, n.

Theorem 2.3. Let G be a (p, o)-jumbled graph of order n, let k, [>0 be integers-
and let 0<e<1. Then

[o(Uy, Uy)—p'q'n| <21 (k+1)%ae™?



320 A. Thomason

for at least (1 —¢) n)(n—k choices of sets U, and U,, where |U,|=k, |U,|=1
k l
and g=1—p.

Proof. Let §=¢(k+1)~1. First choose u; € G with degree pn+B(2lad™Y); by
Lemma 2.2 there are at least (1 —d)n choices for u}. Then choose #? € G— U,
with p2n+2B(21aé™") neighbours in common with #!. By Lemma 2.2 there are
at least (1—d)(n—1) choices for uj. Repeating the procedure in G—{ul,?}
shows there are at least (1—dJ)n(n—1)...(a—k+1) choices of sequences u?,
uf, ..., uy with p"n+kB(2lad™") common neighbours. Let U,={u}, ..., u"}.
Likewise we may choose a sequence u3,...,u5 such that if U,={u3,..., 15}
then v(Uy, U,)=p*¢'n+(k+1)B(21a6™"), and this may be done in at least
(1= (m—k)...(n—k—1I1+1) ways. Since U, and U, may arise from k!/! different

choices of sequences, we get at least (1—5)"'”(2) <n—l—k)>(1—e) (Z) (n;k)
different choices of U; and U, such that

IU(U1 , UZ)—p"q'nl <21 (k+D%ec™. O

Note that even under the conditions of Theorem 1.1 we cannot show |N(U)|
~p*n for all k-subsets U, even for k=3. In the graph of example (9), for instance,
1v( U)[ ~27% where d is the dimension of the subspace spanned by U; d may take
any value between [log,|U|] and |U|. However, for the Paley graphs (example (6))
Bollobds and Thomason [6] have shown [N(U)|~p*n for all k<% log, n.

Given a set U<V, let I'(U) denote the set of vertices of G— U joined to at
least one vertex of U. Then I'(U)=G—U ——]le). A graph is called an expander
graph if, loosely speaking, I'(U) is as large as possible for every set U. Under our
definition of a jumbled graph we can speak usefully of I(U) for all U only if
|U |>>oc. However, under the conditions of Theorem 1.1 we get information about
I'(U) for smaller U, as is discussed in [25].

‘The diameter

The next few graph properties we shall look at, such as diameter and connect-
ivity, are only interesting when the graph has no isolated vertices or vertices of
low degree. For this reason we shall consider (p, ¢)-jumbled graphs of order n
and minimum degree pn. To apply these results to jumbled graphs in general,
note by Lemma 2.1 a jumbled graph has most vertex degrees near pn and so
contains a large subgraph of large minimum degree, to which the following
theorems will apply.
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It is easy to see that the diameter of a graph in ¥(#, p) is almost surely at most 2
if p>n—2logn—oco. For a jumbled graph we can do almost as well.

Theorem 2.4. Let G be a (p, a)-jumbled graph. Let u, w € G be vertices with degree
at least d. If pd>4a there is a u—w path of length at most 3 in G. In particular,
if 6(G)>4ap~1 then G has diameter at most 3.

Proof. Choose Ucl(w), Wel(w) with |U|=|W|=d. If Un W#@, we are
home; otherwise the number of U— W edges is .

p|U[|W|+B(U|x)+B(W|a)+B(([U|+|W])e)

>pd*—4da>0,

so there is a u—w path of length at most 3. [

Connectivity

For random graphs it is wéll known that the connectivity is almost surely the
same as the minimum degree (see Bollobds and Thomason [8] for a proof that
this holds over the entire range 0<p<1). For jumbled graphs we have the follow-

ing.
Theorem 2.5. Let G be a (p, o)-jumbled graph of order n. Then
K(G)>8(G)—4ap™ ' +1.

Proof. Let S be a vertex cut of G. As in the proof of Theorem 2.4, if k>4ap~*
there is at least one edge between any two subgraphs of order &, so a smallest
component of G—.S has order at most 4ap~*. But such a component together
with S contains at least 6(G)+ 1 vertices. []

Note that the expanding properties referred to after Theorem 2.3 of a jumbled
graph G satisfying the conditions of Theorem 1.1 allow us to rule out very small
components of G—S and so to show (G)=d(G) for such graphs.

Hamilton cycles

A graph in ¥(n, p) is almost surely hamiltonian if np—log n—log logn—co.
Likewise if p is not too small a jumbled graph is hamiltonian, and indeed has
many hamilton cycles. We will find. all these cycles by means of the following

lemma.
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Lemma 2.6. Let G be a graph, and let P be a path in G of length 1>0. (4 path of
length O is just a vertex.) If G has no independent set of order k(G)—I+1 then G
has a hamilton cycle containing P.

Proof. A theorem of Chvdtal and Erdos [12] says if G has no independent set
of order x(G) then G has a hamilton cycle between any two specified vertices.
Applying this to the graph G’, obtained from G by removing the middle /—1
vertices of P (or removing P if /=0) gives the result claimed. [J

Theorem 2.7. Let G be a (p, a)-jumbled graph, and let P be a path in G of length
120.If .

5(G)=60p ' +1,
G has a hamilton cycle containing P.

Proof. The largest independent set in G has order at most 2ap~ " + 1, which by
Theorem 2.5 is no larger than x(G)—/. Apply Lemma 2.6. [

Corollary 2.8. Let G be a (p, a)-jumbled graph of order n with minimum degree
at least pn. If

(p—k/n)2n>6(oc+2k),

where k is a nonnegative integer, then G has a set of k+1 edge-disjoint hamilton
cycles.

Proof. Theorem 2.7 gives the case k=0, and shows G has a hamilton cycle.
Removing the edges of this gives a graph G’ of order n# which is (p—2/n, a+2)-
Jjumbled with minimum degree pn—2. We again apply Theorem 2.7 to find a
hamilton cycle, and repeating k times gives the result claimed. [

Calkin [10] asked whether there is an exponentially large number of hamilton
cycles in the Paley graph (example (6)). By Corollary 2.8 we can find a set of
n/100 edge-disjoint cycles and Corollary 2.2 of [23] then assures us of at least
(7/100)? hamilton cycles. But we can do much better.

Corollary 2.9. Let G be a (p, «)-jumbled graph of order n, with minimum degree
pnzm=[6ap=1). Then G has at least 3{pn)!/m! hamilton cycles.
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Proof. Choose a vertex x. There are at least pn(pn—1)...(pn—1+1) paths of
length / beginning at x. If /=pn—m, Theorem 2.7 shows each of these paths is in
a hamilton cycle, and each cycle contains at most two such paths. [] '

Applying this to the Paley graphs gives us almost (n/2)! hamilton cycles.

Induced subgraphs

We now examine small induced subgraphs of a jumbled graph. There are
various reasons for this. For instance, Erdos [14] has conjectured the minimum
- k
Z 2" @1 4oy,
and it is known that this bound is attained if the colouring is random. Theorem
2.10 shows it is enough for the colouring to be jumbled; this was shown by Giraud
[17] in the case k=4 for graphs satisfying the conditions of Theorem 1.1. Theo-
rem 2.10 also shows that a (4, «)-jumbled graph of order n contains an induced
copy of every graph of order r if n>cr*2?" and « is of order #*. Such graphs were
called r-full by Bollobds and Thomason [6], who in answer to a question of
Rosenfeld showed that several of our examples of jumbled graphs are r-full.
The restriction to p<% in the following theorem is for convenience only, and.
for graphs with p>% the theorem can be applied to the complement.

number of monochromatic K,’s in an edge 2-colouring of K,,is (

Theorem 2.10. Let F be a graph of order r =3 with m edges, and let z be the order
of its automorphism group. Let G be a (p, o)-jumbled graph of order n, where p<3.
Suppose ¢ satisfies 0<e<1 and *p'n>=420r2. Then the number of induced sub-
graphs of G which are isomorphic to F lies between

(1 _£>rpmq<2)—mz —lnr

and

(1 +£)rpmq(2)_mz —lnr’
where g=1—p.
Proof. Define 6>0 by

(148)* D2 =14,
Then

I—g<(1=0)"*1/2,
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and," since <1,

(1 =8 L9 = PPHEHIF =T 4
holds. Moreover d>¢/r. We conclude therefore

8*(1=8)""p" " n=e’pnf4rip210,

and it is the outer inequality we will use.

Let V(F)={wy, ..., w,}. We estimate in how many ways we may choose a
sequence Xy, ..., X, of vertices of G spanning an induced subgraph isomorphic
to F (so x; corresponds to w; etc.). )

To begin with, we have n choices for x,, and of these all but at most 21a/dp
are ‘normal’, that is, have degrees in the range pn(l+ B{J)); this comes from
Lemma 2.2 using the Value 21a/dpn for the ¢ there. Suppose now we have chosen
X1, .0 X, J<r, and let X7, j<i<r, be the set of vertices of G—{x, ..., x;} such
that x e X,-J is joined to .Xk, k<j,if and only if w,w, € F. In other words, when we
later choose x;, we will have to choose it from X7. Note that the X7 need not be
distinct. We now have exactly X7, | choices for x;,;. Lemma 2.2 once agairn
shows that, for each i>j+1, all but at most 2]«/dp choices have p|X7|(1 +B(5))
neighbours in X7; for these choices we will have

|X{*t | =p|XI| (1+B(5))
or

| X7 =g |X{|(1+B(5))
according as w;,,w; is or is not an edge of F. We call x;,, normal if it has
p|X!|(1+ B(8)) neighbours in X7 for each i, so there are at most (r—j—1)21e/dp
abnormal choices for x; ;.

For 2<i<r, let f(i) be the number of neighbours of w; among {wy,
W2, ..., Wi—1}. If x4, ..., x; are all normal choices, we have

X s >80,
where f=f(j+1), so there are at least

(1-8)'p’q’In—(r—j—1)21a/sp ot
=(1-6)" lpqu—fn
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normal choices for x; ; this inequality holds since (for j+ 1 <r)

op
(r—j—1)2la
>52(1 _(S)r—lpj-i-ln
21(r—j—1Da

5(1—8)p'q"'n

52 __syr=1l_y=1
5 (1=0)""p " 'n
2la

=1,

and if j+ 1=r all choices are normal. Hence there are at least
r+1 r
(1—6)( 2 )pmq(Z) "’nr
normal choices for the sequence xy, ..., x,. Likewise we have
|X) [ <(+8Yp g n,

so we obtain at once that there are at most

N:(l +5)(Zr)pmq(£)—mnr

normal choices for xy, ..., x,. It can be seen that each edge w;w; of F contributes
a factor (14J)p to N, since

[xil<(+8)p|xi™],

and likewise each non-edge contributes a factor (1+J)g. However, if x; is an
abnormal choice we may say only |X/|<|X{~!|, and so the factors (1+d)p or
(14 0)g are lost for any edge or non-edge incident with a vertex chosen abnormally.
So the number of choices of x, ..., x, where some fixed subsequence x;, ..., x
is chosen abnormally is at most

r— k r— k-1 21 ’
N[(1+5)( k)H(Z)p’q( bi(2) '] n"‘(—;r) ,
p

where ¢ is the number of edges of F incident with at least one of Wigs ey Wi
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Hence the number of choices of xy, ..., X, with & abnormal choices is at most

Ak
(”) [t +5)p]'('“k’k'(§);z‘k<21i) N
k 5p
([ C 2lar "N
\(k>[6pn[(1+5)p]('“”’2]

3 k
r\ o 2lar Y o
<o) e | ve(i) o
so the total number of choices for xy, ..., x, does not exceed (1+J)"N.

We have now shown that the number of ways to construct the sequence
X1, ..., X, lies between

r+1 r
(2) ’“nr

(1-8) * 'p"q

and
r+1 r i
(1 ! 5)( 2 )pmq(z) nr.

The proof is completed by noting that

(r+1

(1+0) * '=(1+e),

¢ —6)(r;1)>(1 —e),

and that each subgraph isomorphic to F corresponds to exactly z sequences
Xiy ouus Xex [

This theorem shows that (4, a)-jumbled graphs with & of order n* are r-full
for r up to about % log, n. It is natural to ask whether the estimates of Theo-
rem 2.10 could be extended to larger values of r by using a slightly less blunt
method. Alas, this is not so. Let us estimate the number of K,’s in the graph of
example (11) with k=2s and r=s+¢. Let W be a subset of the vertex set. Regard-
ing the vertex set as elements of a vector space, let U be the subspace generated
by W. Then the set of vertices joined to every element of W is precisely U™, the
subspace orthogonal to U under the dot product. Now dim U'=k—dim U and
if W spans a complete subgraph then U=U" so dim U<s. If we construct K,’s



Pseudo-random graphs 327

by first choosing s independent mutually orthogonal vectors and then choosing
¢t more in the subspace spanned by the first s, we have at least

-rlT(z’f‘1 —1)(2F2=2)(2F =4 (25T =2 ) (2 —s—1)...(25=7)

n
|

! s r t
T 52_(2)’1:‘2~st=£’nr2_(2)+(2)
r! 7!

K.’s, where n= [] (1 —47%, which is Z(Z)n times the expected number suggested
i>0

by Theorem 2.10.

Cliques and the chromatic number

Theorem 2.10 shows that the clique number of a jumbled graph must be at
least % log, n (if & is of order (pn)*). The graph of example (12) shows the clique
number need not exceed log, #, since a clique corresponds to a set of linearly
independent vectors. This contrasts with the case of a random graph, where the
clique number is known very precisely (see Matula [20] and Bollobds and Erdés
[5]), and is around 2 log, n. More striking is the possibility of large cliques.
We mentioned that a clique has order at most 2a(1—p)~ !4 1. Several of our
examples have such large cliques. In the Paley graph (example (6)) if 7 is a square,
the elements in the subfield of order n* form a clique.

The graph of example (11), looked at in the previous section, is particularly
interesting from the point of view of maximal cliques, since every maximal clique
is the same size. Indeed if W is the set of vertices of a clique then W is contained
in a subspace of dimension k/2 which spans a clique. Thus the greedy algorithm
always produces a clique of the maximum order. The Paley graph has fewer large
cliques, and many small maximal ones. In the case n=p? and p=3 (mod 4),
every edge is contained in a clique of order #n*. Another large clique is given by
the vertices z', 1 <i<(p+ 1)/2, together with 0; here z=g®~1 and g is a primitive
root for the prime p. To see that these vertices form a clique, it is enough to show
that 1—z is a square. Putting z' =y, we see

1 _y)(pz~1)/2=(1 _y)(p-l) (pt+1)/2

(1 _y)p (pt+1)/2
‘[(1—y)]
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1_yp (p+1)/2 l—y—l (p+1)/2
=[1—y] =[—1—y ]

+1)/2
)(p )/ =1,

:(—y

the fourth equality holding since y?**=1.

Bounds on the chromatic number follow at once from bounds on the clique
(or independence) number. Thus for a (3, n*)-jumbled graph of order n, the
chromatic number is at most 2r/log, n, need not be less than n/log, n, and must
be at least n*. The greedy algorithm may use as many as n/2 colours, as for
instance on the graph of example (4) if the vertices are ordered x1, 3y, ..., X2, Vuj2-

Contractions and subdivisions

Given a graph G, we define the contraction-cliqgue number ccl(G) to be the largest
integer k such that G has a subcontraction to K. Bollobds, Catlin and Erdds
[4] showed that for G € 9(n, p), p constant,

ccl(G)=n(log(1—p)/log n)%'(l +o(1))

almost surély, and so proved that almost all graphs satisfy Hadwiger’s conjecture.

Thomason [24] proved that graphs of order » with p<;> edges satisfy

ccl(G)> pn(log,(pn))~*/6 ;

in fact, using the technique of [24] and Lemma 2.3 one can show that, for (p, a)-
jumbled graphs with p constant and a=O(n' ~%),

ccl(G)=n(log(1—p)/logn)(1+o(1)).

Note that the graph of example (5) shows we may have ccl/(G) = pn.

Finally, we consider the topological cligue number of G, denoted tc/(G), which
is the largest k for which G contains a subdivision of K. By estimating tc/(G)
for G € 9(n, p) Erdés and Fajtlowicz [15] showed that almost every graph is a
counterexample to Hajés’ conjecture. Bollobds and Catlin [3] showed

tcl(G)=2(n/(1—p))*(1+0(1))

for almost every G € 4(n, p), p constant. It is interesting that we are able to give
good bounds on #cl(G) for a jumbled graph.
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Lemma 2.11. Let G be a (p, &)-jumbled graph of order n. Then
1el(G)<2(@+n*)(1—p)~t.
Proof. Let W be the set of branch vertices of a subdivision of K, contained in G.

Then |W|=Fk. There are at most p<§>+alc edges of G in W, so G contains at

least (1—p) <§>~a/c disjoint paths (of length at least 2) joining the vertices of W.

Thus
n—-k?(l—p)(?)—-ak,
or
2 14 2
P s ) P
1-p 1-p]| 1-p
But if

k>2(a+n*)(1—p)~*

this inequality fails to hold. [J

The lower bound we give could be sharpened with more work or if the condi-
tions of Theorem 1.1 were assumed. But still the upper and lower bounds we

give are of the same order if p is constant and « is of order n'/%.

Theorem 2.12. Let G be a (p, o)-jumbled graph of order n, and suppose ¢>0 satisfies
ep*n>40a. Then

tcl(G)= (1 —¢)(pn)*].
Proof. We may assume e¢<1; let k=[(1—¢)(pn)'/?|. By Lemma 2.1 there are
nf3=k vertices of degree at least pn—20x. Let W be a set of such vertices with

]W]=k. We will construct one by one a set of (126) paths of length at most 3
/

joining the vertices of W such that W is thereby the set of branch vertices of a
subdivided K. To do this, let u, w e W and let G* be the graph obtained from
G by removing W — {u, w} along with the other vertices of the paths constructed
so far. Then we have removed at most

k—2+2[(§>—1]<k2
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vertices, so in G* u and w have degree at least d, where
d>pn—20e—k>>epnf2>4ap™" .

By Theorem 2.4 there is a u—w path of length at most 3 in G¥, and this is the

path we require. [ .
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