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EXTREMAL FUNCTIONS FOR GRAPH MINORS

A. THOMASON

The extremal problem for graph minors is to determine, given a fixed graph H,
how many edges a graph G can have if it does not have H as a minor. It turns
out that the extremal graphs are pseudo-random; the sense of this has best been
expressed by Vera T. Sés in a question answered by Joseph Myers.

This survey describes what is known about the extremal function and dis-
cusses some related matters.

1. INTRODUCTION

We say that the graph H is a minor or subcontraction of the graph G,
written G > H, if H can be obtained from G by deleting some vertices
and edges and by contracting some other edges. This is equivalent to the
statement that V' (G) contains disjoint subsets W,,, u € V(H), such that the
subgraph G[W,] induced by W, is connected for each v € V(H) and there
is an edge in G between W,, and W, whenever wv € E(H).

This survey describes what is currently known about the fundamental
extremal question regarding graph minors, namely, how many edges are
needed in G to ensure that G > H? It is now possible to give a fairly
full answer to this question. In the first place, it turns out that there is
a close connection with the theory of random graphs and with the theory
of pseudo-random graphs. This connection is expressed best by a question
of Vera T. Sés; her question, and the answer subsequently given by Joseph
Myers, are discussed in §5. Secondly, the variation of the extremal function
with H can be described in terms of a structural property of H, reminiscent
of the way in which, in classical extremal graph theory, the extremal func-
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tion depends on the chromatic number. In the present case, the relevant
structural property is again a kind of partition of H, by means of weights,
that is defined in §1.2 and discussed in detail in §6.

We also describe briefly (in §8 and §9) some other extremal problems for
minors, such as what connectivity or girth forces a graph to have a given
minor. This area has enjoyed some substantial recent advances, but there
remain significant open questions about which little, as yet, is known.

1.1. Background

The source of the basic extremal problem for minors is, arguably, the
remarkable paper of Wagner [38], in which he proved that the Four Colour
Theorem is equivalent to the assertion that G > Kj for every graph G that
needs five colours to colour it. Hadwiger [10] in 1943 famously conjectured
that G > K, for every graph G that needs ¢ colours to colour it. This
assertion is trivial for ¢t < 3, and Hadwiger proved it for ¢ = 4. Much more
recently, Robertson, Seymour and Thomas [31] have proved the conjecture
for t = 6 by showing that it follows from the Four Colour Theorem. For a
good survey of Hadwiger’s conjecture see Toft [37].

In 1964 Wagner [39] proved that G > K; provided the chromatic number
of G is sufficiently large (2'=3 will do). Mader [22] then developed the
idea that the chromatic number might not be the significant parameter;
he showed that G > K; provided merely that the average degree of G is
sufficently large. He therefore introduced the function

o(t) =min {c : e(G) > c|G| implies G >~ K,},

proving that c(¢) < 2'73 (see Lemma 2.1) and later [23] that c(¢) <
8[tlogyt]. Thus we are led to the extremal problem for complete graph
minors.

In fact, for small ¢, much more precise information is available. Write
F + G for the join of two graphs F' and G, meaning their disjoint union with
all edges added between. Observe that the graph K;_s + K, _¢12 does not
have a Ky minor, and neither does the graph K;_s + P if P is a maximal
planar graph. These graphs all have (¢t — 2)|G| — (151) edges. Dirac [7]
demonstrated that if £ < 5 then this is the exact maximum number of edges
in G if G # Ky, and Mader [23] extended this to t < 7. But the seductive
pattern stops here; as Mader pointed out, the complete 5-partite graph
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with two vertices in each class has 40 = 6|G| — 20 edges and no Kg minor.
(Jorgensen [12] later proved that this is the maximum size of graphs with
no Ky minor, and characterized the extremal graphs. He could thereby
(see [11]) extend to t < 8 the cases in which the following conjecture is
known to hold: that if G has a partition into V1, ..., V; such that G[V; UV}]
is connected for ¢+ # 7, then G > K;. This conjecture is one of several,
related to Hadwiger’s conjecture, made by Las Vergnas and Meyneil [21].)

For larger values of ¢ the divergence of the extremal function from the
simple pattern just described is much greater. Random graphs provide
examples showing that c(t) is of order at least ty/logt. This was noticed
by several people at about the same time (for example Kostochka [15, 16],
and also Fernandez de la Vega [9] based on Bollobds, Catlin and Erdés [2]).
Kostochka [15, 16] proved that the correct order of growth for ¢(t) is indeed

ty/logt (see also [32]).
1.2. Recent developments

Recently, the asymptotic value of ¢(t) was determined.

Theorem 1.1 ([34]). There exists a constant o = 0.3190863 . .. such that
c(t) = (a+o(1)) ty/log t.

The constant « can be explicitly described (see §3); it is simply the best
constant that can be obtained from randomly generated lower bounds (note
that logarithms are natural unless stated otherwise).

It is evident from Theorem 1.1 that there is a connection between
random graphs and extremal functions for minors, though the connection
is still closer than first appears. The extremal graphs must be pseudo-
random graphs of specified order and density, or else a more-or-less disjoint
union of such graphs ([34, 27]). The connection has been captured best
by Vera T. Sés in a question which, loosely speaking, is this: if a graph
of positive density has no minor bigger than what might be found in a
random graph of the same density, must the graph itself be pseudo-random?
Myers [26] has given a positive answer to this question. We explain this
question more precisely, together with its answer, in §5.

Even more recently, the asymptotic value of the average degree that
implies a general H minor has been determined, and the strong connection
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with pseudo-random graphs persists. Let
¢(H) =min {c : ¢(G) > |G| implies G = H},

so that ¢(t) = ¢(K;). The results about ¢(H) are expressed in terms of a
parameter y(H) of the graph H, defined as the minimum average vertex
weight amongst weightings satisfying a certain condition.

Definition 1.2. Let H be a graph of order . We define

BN 1 —w(uw)w)
v(H) = min - Z w(u) such that Z t <4,
u€H wel(H)

where the minimum is over all assignments w : V(H) — R" of non-negative
weights to the vertices of H.

A uniform weighting w shows that 0 < v(H) < 1 for all H and, more
generally, v(H) < /7 if H has at most lH|1+T edges. In §6.2 we shall
describe ways of estimating v(H) fairly precisely, but it is worth pointing
out here that, amongst H with |H |1+T edges, almost all H and all regular H
satisfy y(H) =~ +/7; indeed, v(H) will not be significantly smaller than this
unless H has some very restrictive structure.

The extremal result for H, if H has t vertices, is then this.

Theorem 1.3 ([28]). There exists a constant a = 0.3190863 . .. such that

o(H) = (v(H)a+ o(1)) t/logt

for every graph H of order t, where the o(1) term is a term tending to zero
as t — oo.

1.8. Contents of this article

We begin in §2 with some preliminary remarks about the extremal function;
in particular, it is seen why only dense graphs are of importance in the
study of the extremal problem. There follows in §3 a discussion of minors of
random graphs and in §4 an explanation of what lies behind Theorem 1.1.
The discussion of Sés’s question in §5 should nevertheless be comprehensible
without first reading the earlier parts.
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After that, we go on in §6 to consider the general extremal problem
for contractions to a fixed graph H (not necessarily complete). In §7 we
comment on an application of the extremal problem to linking in graphs.
We finish with some remarks about other conditions on a graph that imply
it has large minors; in §8 it is seen how large girth can replace large minimal
degree as such a condition, and lastly in §9 we look at how large connectivity
might do the same.

2. INITIAL OBSERVATIONS

Here is a simple lemma that implies the existence of the function c(t).

Lemma 2.1. Let d be an integer and let G be minimal, with respect to

taking minors, in the class
{G :e(G) > d|G|}.

Then every edge of G is in at least d triangles; in particular, if H is the
neighbourhood subgraph of some vertex, then e(H) > %\H |

Proof. If G is minimal then G is non-empty and, for every edge uwv, the
graph G/uv obtained by contracting wv satisfies e(G/uv) < d(|G| — 1).
Thus more than d edges are lost by contracting uv, meaning that v is in at
least d triangles. So, if H is the neighbourhood graph of w, then ¥(H) > d.
|

The bound ¢(t) < 273 follows at once from Lemma 2.1 by induction on ¢,
because a graph G with e(G) > 2873|G| contracts to a graph containing a
vertex u joined to a graph H with H > K;_1.

Now if G is minimal in { G : e(G) > d|G|} then e(G) = d|G]| (else just
remove an edge), so if u is a vertex of minimal degree then |H| = 6(G) < 2d.
Thus, if we can find a large complete minor in any graph H with 6(H) >
|H|/2, we can find a large complete minor in any graph at all. In fact, the
function c¢(t) is completely determined by minors of dense graphs, as we
explain in §4.

The simple idea of Lemma 2.1 can be exploited further by considering
graphs minimal in the class {G ce(G) > f(IG)), 1G] > m} where f(n) is

an integer-valued function chosen so that f(m) > (7;7) for some m. Then the
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class contains no graph of order m so a minimal graph must, by the argument
above, satisfy G = H where |[H| < 2f(|G|) and 6(H) > f(|G]) — f(|G|-1).
A couple of choices that are helpful in different contexts, both essentially
due to Mader [23], are these.

First, let f(|G]) = d|G| — kd. Provided k < d/2 we can take m = d.
This choice gives the same conclusion as Lemma 2.1 but with the extra
property that x(G) > k + 1, as can easily be shown. This choice is useful
when determining the extremal function c¢(¢).

Secondly, with the choice f(G) = l_ﬂd|G|(1 + log (|G|/Bd) )/2-’, where
f satisfies 1 = B(1+ log(2/8)), we can take m = [Bd]. The function is
chosen both so that f(|G|) — f(|G| — 1) is large for |G| < 2d and also so
that the graph H from Lemma 2.1, with |H| < 2d and §(H) > d, lies in
the class. Applying the above arguments to this H produces, after a little
calculation, the following result.

Lemma 2.2. Let 8 = 0.37... be as above. Let G be a graph with
e(G) > d|G|. Then G - H, where |H| < d+2 and 20(H) > |H|+ |fd] — 1.

The main point of this lemma is that the minimum degree is bounded
below away from |H|/2. This has useful consequences, as we describe in §7.

3. RANDOM GRAPHS

Let G(n,p) denote a graph of order n whose edges are chosen independently
and at random with probability p.

Theorem 3.1. Given € > 0 there exists T = T'(¢) with the following
property. Let t > T, let ¢ < p < 1—¢,let ¢q =1—p and let n =

\_(1 —¢)t,/log/q t_l. Then G(n,p) » K; with probability less than €.

By choosing ¢ = A where A = 0.284668. .. is the root of the equation
1— X+ 2Xlog A = 0, we obtain from Theorem 3.1 graphs that have no K;
minor and that have average degree pn ~ aty/logt where o = (1 — \)/
2+/log(1/)). This straightaway gives half of Theorem 1.1, namely c(t) >
(a+o(1)) tv/Iogt.

Theorem 3.1 is best possible, as shown by Bollobas, Catlin and Erdés [2],
in the sense that if n = (1 +¢€)t, /log;/,t then G(n,p) almost surely has a
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K, minor, but this follows in any case from the stronger Theorem 4.1 in §4.
For our purposes, random graphs are needed only as a supply of graphs
without H minors, for any specified H.

It is worth seeing what determines whether or not G(n,p) = H with
high probability. Let the vertices of G(n,p) be partitioned into sets W,
u € V(H). We need G[W,] to be connected and we need an edge between
W, and W, whenever uv € E(H). The first of these is, in practice, easily
arranged — it is the second condition that is the harder to satisfy. The
probability that it is satisfied for a particular partition is

T (1—g™elwel) & exp{ S q|w.t||wv|},

weEFE(H) uwweE(H)

So the partitions most likely to work are those where ), B(H) gVl IWol §g
minimized, and it is the way in which this sum minimizes, for a particular H,
that decides which random graphs have H minors and so, in turn, decides
the value of ¢(H).

By far the most common case is that where, in the minimizing choice,
all |Wy| are equal; that is, |[Wy,| = n/t where t = |H|. The expected number
of successful partitions is then around ¢" exp{ —e(H )q"z/ KZ}, there being
about t" possible partitions. For a graph with e(H) = t'*7 edges this
expected value is small or large according to whether n is less than, or

greater than, /7 ¢, /log; /q b, so this is the threshold value of n at which H

minors appear.
For general H, put w(u) = [Wy|/,/log,, t, and write W = n/t, /log; ),

for the average value of w. Choosing |W,| to minimize the sum above
is the same as choosing w to minimize 3, pcx) t~w@w) - Writing M

for this minimum value, the expectation becomes t" exp(—M); since n =
wt,/logy/,t, the threshold region for n is when M is approximately t. It

can now be seen that the quantity W determining this threshold is precisely
the parameter y(H) defined in §1.2.

4. COMPLETE MINORS OF DENSE GRAPHS

The main theorem relevant to the extremal properties of complete minors
is the following one, a slightly weakened version of that appearing in [34].
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Theorem 4.1 ([34]). Given € > 0 there exists T' = T'(¢) with the following
property. Let t > T, let ¢ < p < 1—¢, let ¢ = 1—p and let n =

[ (1 +¢)t,/log; /qt]. Then every graph G of order n and connectivity

k(G) > n(logloglogn)/(loglogn) has a K; minor.

Thus, every graph of positive density (except those which are nearly dis-
connected) has complete minors at least as large as those in random graphs
of the same density. Some kind of connectivity requirement is obviously re-
quired since, for example, the minors of a union of two disjoint graphs of
order n/2 and density 1/2 are the minors in the individual components, and
they would not be expected to correspond to the minors in a typical graph
of order n and density 1/4.

To prove Theorem 4.1 we must find a partition of V(G) into sets Wy,
u € V(I{;), such that each G[WW,] is connected and such that there is an
edge between W, and W, whenever wv € E(K}). Just as in §3, the first
requirement can be arranged fairly straightforwardly, and it is the second
that needs care. A natural approach would be to take a random partition of
the n vertices into ¢ parts of size n/t each, in the hope that, even if not all
the required edges materialize, at most o(t) of them fail, and by dropping
any vertex of K; that is incident with one of these failed edges, we are still
left with a complete minor on ¢ — o(t) vertices, which is good enough.

The reason this approach does not succeed directly is because the degrees
in the graph G may vary wildly. In order for the argument to work it is
necessary that a randomly chosen part of size [ = /logt be joined to all
but not much more than ng' vertices; a second random part would then fail
to have an edge to the first random part with probability around ¢"*, so
behaving much as if the graph were itself random. However, the expected
number of vertices not joined to our first random part is ) q(:ﬂ)l, where
x has ¢(z)n non-neighbours, and this expected value can be much larger
than nq' if the degrees differ.

It transpires that two properties of a randomly chosen part are needed
to make things work: both the part itself, and its set of non-neighbours,
must be spread uniformly throughout the vertices of different degrees; that
is, these sets must contain their fair share of the vertices of each degree,
in a sense that can be made precise. All but o(t) of the parts, which can
be discarded, have both these two properties, and between the remaining
parts, all but o(t) of the desired edges materialize, and so we can proceed
according to our initial strategy. (In the proof given in [34], the parts are in
fact chosen at random only from those that are spread uniformly through
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the vertices, and so only the spread of the non-neighbours is an issue. On the
other hand, in the proof given in [28] of Theorem 6.2 below, which extends
Theorem 4.1 to general H, the parts are chosen entirely at random.)

4.1. The extremal function c(t)

The remaining half of Theorem 1.1, that is, the upper bound on ¢(t), can be
derived from Theorem 4.1 in this way. Writing d = at\/Togt, it is enough to
show that if G is minimal in the class { G : e(G) > d|G|} then G - K,. This
minimal graph G is either small and dense, or sparse but large. In the first
case, Theorem 4.1 implies straightaway that G > K;. In the second case,
we can assume by the arguments of §2 that G is reasonably well connected
and that each edge is in at least d triangles. A few judicious applications
of Theorem 4.1 then produce a large number of small minors that can be
combined to form a K; minor. In fact, a minor much larger than K can be
formed, and from this it follows that extremal graphs arise only from the
first case, and they are therefore essentially disjoint unions of small dense

pieces.

4.2. Directed graphs

All the above arguments can be made to work for directed graphs, where the
minor being sought is DI, the complete directed graph of order ¢ with an
edge in each direction between each pair of vertices. The extremal digraphs
turn out just to be those obtained from the undirected case by replacing
each edge by a double edge — details are in [34].

5. PSEUDO-RANDOMNESS AND SOS’S QUESTION

As indicated in the §4.1, the extremal graphs for the function ¢(t) are formed
by first taking random-like graphs of the appropriate order and density, and
then forming as large a graph as desired by taking (almost) disjoint unions
of the random-like pieces. Thus extremal graphs must be looked for in the
class of pseudo-random, or quasi-random, graphs as discussed by Chung,
Graham and Wilson [4] or in [33].
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Now it is not true that all pseudo-random graphs behave as well as
random graphs in terms of not having large minors. In fact, in [35] it
is shown that most of the standard examples of pseudo-random graphs
with n vertices have complete minors with ©(n) vertices, compared with
only @(n/ \/@) for random graphs. Indeed, Mader’s request [25] for
an explicit graph whose largest complete minor has o(n) vertices remains
unanswered; in general it seems hard to find a graph G whose largest minor
has 0(6(G)) vertices. Alon [1] has nevertheless shown that random Cayley
graphs have minors no larger than ©(n/\/logn |2

Sés has expressed the connection between the extremal theorems and
quasi-randomness in the most succinct way. Although quasi-randomness
does not preclude the presence of large minors, she asked whether quasi-
randomness is necessary for the absence of large minors. To be precise, she
asked whether a graph of density p and order ¢, /log; /, ¢, and having no K
minor, must necessarily be quasi-random.

The standard arguments about quasi-random graphs, even when prop-
erly quantified, are not quite strong enough to answer Sés’s question. The
issue has been settled by Myers [26] in the following way (at the same
time giving a more precise description of the extremal graphs for the func-
tion ¢(t).)

To understand Myers’ theorem, consider a graph G whose vertex set is
partitioned into two sets, X and Y, and define the three densities

e(X) e(X,Y) e(Y)
Px = @, Pxy = W’ py = (Igl)

where e(X), e(Y) and e(X,Y) are the numbers of edges of G spanned
by X, spanned by Y and joining X to Y. Likewise define qx = 1 — px,
gxy = 1—pxy and gy = 1 —py. It is the principal feature of quasi-random
graphs that G is quasi-random if and only if py/ differs little from px for
every X' with |X'| = |X|, which of course implies that each of px, pxy
and py are close to p, the density of G. Note that, whether or not G is
quasi-random, the density of G satisfies

g ="qx +2z(1 — z)qxy + (1 — 2)°gy

if G is large, where ¢ = 1 — p and z = | X|/|G].
Consider now a randomly generated graph G(n,z,px,pxy,py), baving
n vertices partitioned into two sets X and Y, where | X| = zn; the edges are
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chosen independently, with probability px inside X, pxy between X and YV
and py inside Y. The proof of Theorem 3.1 is readily modified to show
that the threshold value of n at which a /; minor almost surely appears in

G(”; -T:p)OPXY:pY) is

n=(1+0(1) tyflog /et where "= g§ 0 .

By taking logarithms and applying Jensen’s inequality it can be seen that
729

with equality if and only if ¢x = gxy = gy = q.

Thus, so far as the sizes of complete minors are concerned, the con-
strained random graph G(n,z,px,pxy,py) of density 1 — ¢ behaves like
the ordinary but denser random graph G(n,1 — ¢*).

We can now state Myers’ generalization of Theorem 4.1.

Theorem 5.1 (Myers [26]). Given € > 0 there exists T = T'(¢) with the
following property. Lett > T, let e < p < 1—¢, let ¢ = 1—p and let

n = [(1 +¢€) t, /logl/qt-’. Let G be a graph of order n and connectivity
k(G) > n(logloglogn)/(loglogn), having a vertex partition into X and Y
as described above, wheree < qx,qxy,qy < 1landq* < 1—e. Then G = K,

where
s | [los(l/a),
log(1/q) |

In other words, a graph G with a partition as described will have com-
plete minors at least as large as those found in G(n,1 — ¢*). It follows
immediately that if a graph as described in Theorem 4.1 has no minor sig-
nificantly larger than K; then ¢x is approximately equal to ¢ for every
subset X of size xn, implying that G is quasi-random.

The proof of Theorem 5.1 is similar to that of Theorem 4.1, except that
the vertices of X and Y are ordered separately, and the parts W, are chosen
so that each is sure to contain a representative sample of both X and Y. The
principal difficulty is that the ordering of X, say, must respect the number
of neighbours a vertex has both in X and in Y’; however, by ordering with
respect to a certain subtle parameter, a suitable linear order can be effected.



370 A. Thomason

6. THE EXTREMAL PROBLEM FOR GENERAL H

In this section we describe what is known about the function c¢(H) for
general H. Up until recently nothing was known, but although the situation
at the time of writing is still a little fluid, the following description should
be fairly accurate. Throughout this section ¢ will stand for the number of
vertices of H.

We would like to answer the following questions: (a) how does the
function ¢(H) behave, (b) is there some reasonable structural property that
determines its value and (c) do the extremal graphs continue to be pseudo-
random?

The answer to these questions appears to be that the function c¢(H)
behaves very similarly to c¢(t) (indeed, for most graphs H, ¢(H) is indis-
tinguishable from c(t)) and that, at least for graphs with more than t'+¢
edges, the extremal graphs behave in much the same way as before. When
asking for a structural property that determines ¢(H) we have in mind the
classical situation of the Erdds-Stone-Simonovits theorem [8], in which the
extremal function (for whether H must appear as an ordinary subgraph) is
determined by the chromatic number of [.

The fact that the extremal graphs here are pseudo-random, however,
makes the situation more complicated than the classical case, for two rea-
sons. First of all, the results must necessarily be of an asymptotic kind (that
is, as |H| — oo, as opposed to the classical case where perhaps n — oo but
H is allowed to be fixed). Secondly, the extremal function will be insensitive
to small changes in the structure of H, such as the addition of an edge, or a
handful of edges. This is because such a change in H will have a negligible
effect on whether H appears as a minor of a random graph, and random
graphs are the extremal graphs. This insensitivity to change is in marked
contrast to the classical case, where of course the addition of a single edge
can increase the chromatic number and so dramatically affect the extremal

function.

As evidenced by Theorem 1.3, ¢(H) can be described in terms of the
parameter y(H) defined in §1.2. The implication of the previous remarks
is that some leeway is possible in the definition; if +/(H) were another
parameter with v'(H) = y(H)+o0(1), where o(1) denotes something tending
to zero as t — oo, then 4/(H) could be used just as well as y(H) in all the
results. The definition given is chosen because it seems to be the cleanest
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one that works, and its form is easily related to the appearance of H as a
minor in G(n,p), as we noted in §3.

6.1. General H minors

Here are two theorems that generalize Theorems 3.1 and 4.1 to general H.
The way we state them, though, is slightly different to before.

Theorem 6.1 ([28]). Given € > 0 there exists T = T(g) with the following
property.
Let H be a graph with t > T vertices and with v(H) > €. Let

e<p<l—¢g letq=1—pandletn = [fy(H)t.,/logl/th. Then H

is a minor of a random graph G(n,p — €) with probability less than €.

The essence of the proof of this theorem has already been given in §3.
More work is needed to prove the next theorem, in which the density of G,

E(G)|/(3)-
Theorem 6.2 ([28]). Given € > 0 there exists T' = T'(¢) with the following
property.

Let H be a graph with ¢ > T vertices and with v(H) > €. Let
e<p<l—gletg=1—pandletn= [V(H) ty/1081/4 tJ. Let G be a graph
of order n, density p+e and connectivity k(G) > n(logloglogn)/(loglogn).
Then H is a minor of G.

as usual, means

Theorems 3.1 and 4.1 show that the threshold probability p at which
an H minor appears in G(n,p) is the threshold density at which A minors
appear in every reasonably connected graph of density p. This fact is at the
heart of why Theorem 1.3 is true.

The modification to the proof of Theorem 4.1 needed to prove Theo-
rem 6.2 is that the size of the parts W, varies, being in fact proportional to
the optimal weight w(u) that determines y(H). This is the reason behind
the change of approach remarked upon in §4.

Arguments similar to those in §4.1, in particular the separate treatment
of dense and sparse minimal graphs and the finding of large complete minors
in sparse minimal graphs, can be used to derive the extremal function c(H)
from Theorem 6.2, so proving Theorem 1.3. The discussion in §5 can also
be carried over to general H minors, showing that, apart from a change in
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constants, the extremal graphs have the same pseudo-random structure as
they do when H is complete.

6.2. Estimating ~(H)

It is straightforward to evaluate y(H) when H is complete or complete
bipartite, but otherwise it appears to be difficult. We know, though, that
if H has t!™7 edges then assigning weight /7 to every vertex shows that
v(H) < /7. Suppose that w is an optimal weighting of V(H) that realizes
~v(H). Then there cannot be a significant proportion of edges uv such that
w(u)w(v) < 7. So, if we group together vertices of roughly equal weight,
there will be almost no edges between the class containing v and the class
containing v if w(u)w(v) < 7. This leads us to approximate H as a subgraph
of a blowup of a small graph, in the following way.

A shape is defined to be a pair (F, f), where F' is a graph (in which
loops, but not multiple edges, are allowed) and f : V(F) — R is a function
assigning non-negative numbers to the vertices such that ZUEV(F) Fla) =1.
We say that the graph H of order ¢ is an e-fit to shape (F, f) if there is
a partition of V(H) into sets V,, a € V(F), such that | f(a)t] < |V4| <
[ f(a)t], and

[{quE(H) tu € Vg, vEV;and a,bgéE(F)}[ <t |E(H)|.

So H is an e-fit to (F, f) if there is a partition of H into classes indexed
by V(F) and of sizes proportional to f, so that all but a tiny fraction of
the edges of H lie between classes corresponding to edges of F'. The fact
that F might have loops allows H to have edges within the corresponding
classes; in particular, every H fits the shape consisting of a single vertex
with a loop.

The parameter of the shape (F, f) that is related to y(H) is the para-
meter m(F, f), given by

m(F, f) = max in  2(a)x(b).
)= 208 e, M)

Here the maximum is over all functions z € [0,00)" ") of V(F), and z - f
stands for the standard inner product )~ x(a) f(a). This definition allows
x(a) > 1 even though we always have f(a) < 1. The constant function
z(a) = 1 satisfies - f = 1 and so m(F, f) > 1 always holds. Also, if " has
a single vertex a with a loop then f(a) =1 and m(F, f) = 1.
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Some calculation then supplies the crucial fact that, if H has t!*7 edges,
then H is an e-fit to some shape (F, f) with |F| < (1/¢) and v(H) >
VT/m(F, f) —4y/e. So a lower bound on y(H) can be given by checking
that H is not an e-fit to any small shape (F, f) with m(F, f) large. In so
doing it is necessary only to check critical shapes: these are shapes (F, f)
for which m(F’, f') < m(F, f) for any F’ resulting from F either by the
addition of an edge or by the merger of two vertices of F. (The merger of
a,b € F is the replacement of a and b by a single vertex ¢ joined to every
vertex previously joined to either a or b, with f'(¢) = f(a)+ f(b) and f' = f
on the other vertices of F'.) This is because if H is an e-fit to (F, f) then
it is also an e-fit to (F”, f').

What makes these observations useful is that the check required is quite
short; there are very few critical shapes, and we can describe them explicitly.

Theorem 6.3 ([28]). A shape (F, f) with |F| = k+1 is critical if and only
if F'is the half-graph of order k + 1 that is,

V(F)={0,1,...,k} and E(F)={ij : i+j > k},
and moreover [ satisfies

f(k) _ fe=1) _ S(k=(E=1)/2))
F0) ~f(1) F(L(k=1)/2])

For these shapes,
k -2
m(F, f) = { > VI k- )} :
i=0

So, if we know the structure of H, it is fairly easy to check whether H is
an e-fit to a small critical shape, and hence to get a lower bound on v(H).
The simplest, and commonest, case is where H fails to fit any shape apart
from the shape with one vertex and a loop. This case can be reformulated in
the statement that H has a tail, which is a large subset 1" whose neighbours
lie almost entirely inside a smaller subset S; here is a precise version.

Theorem 6.4 ([28]). Let ¢ > 0 and let H be a graph of order t > 1/¢?
with t1¥7 edges such that y(H) < /7 — 5y/6. Then H has an e-tail —
that is, V(H) has a partition RUSUT, with |T| > |S| + €t, such that
|E(T,TUR)| < t1+7==,
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Now regular graphs cannot have a tail, nor indeed can graphs that are
almost regular, and this includes almost all graphs. We have the following
conclusion.

Corollary 6.5. All regular graphs and almost all graphs H of order t with
t1*7 edges have yv(H) = /7 + o(1).

As a further corollary we can evaluate v(H) for, for example, complete
multipartite graphs; these all have v(H) = 1 unless the largest part has size
pt with § > 1/2, in which case y(H) ~ /40(1 — ).

It should be pointed out, however, that this method for approximating
v(H) can sometimes give a bound much less than the correct value. This
is because the property of being an e-fit to a shape is insensitive to the
introduction of a very sparse subgraph H*, though this subgraph might
be what actually determines v(H). The situation is analogous to that in
the classical extremal theory where the chromatic number of H might be
determined by x(H*) and not just by the chromatic number of some dense
subgraph. An example is when H is the union of /¢ /g 7;/g with a t1/2_regular
graph H* on the same vertex set. We know that v(Ky/g 7¢/s) = VT/440(1)
whereas y(H*) = 1/v2 + o(1). So v(H) > max(v7/4,1/v/2) + o(1) =
1/V2 4 o(1). But, for every € > 0, if ¢ is large this graph is an e-fit to a two
vertex shape with f = (1/8,7/8) and m(F, f) = 16/7, so our lower bound
method gives only y(H) > V7/4+ o(1).

We conclude this section with another lower bound on y(H) based just
on the density of the graph. This shows that v(H) can never be close to
zero for graphs of positive density.

Theorem 6.6 ([28]). Let H be a graph of order t > (1/5)1/E and density p.
Then v(H) > p — 5+/.

7. LINKING

A graph G is said to be k-linked if, for any sequence si,...,sk,t1,..., 1t
of distinct vertices, we can find s;—t; paths F; that are disjoint, 1 < ¢ <
k. Larman and Mani [20] and Jung [13] noticed that if x(G) > 2k and
(G contains a subdivided complete graph of order 3k then G is k-linked.

k
Mader [22] proved that if the average degree of a graph exceeds 2(2) then it
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contains a subdivided K}, and so, if x(G) is sufficiently large, G is k-linked.
(For a survey of subdivisions of graphs, see Mader [24].)

Robertson and Seymour [30], as part of their deep study of graph minors,
established a connection between linking and graph minors; they strength-
ened the above remarks by showing that G is k-linked if x(G) > 2k and
G = Kjp. It follows from Theorem 1.1 that the connectivity required to
force k-linking is only O(k+/logk ).

Bollobés and Thomason [3] weakened the condition G = K3, still further
to G = H where H is any graph such that 26(H) > |H| 4+ 4k — 2. In
consequence of Lemma 2.2 they could then show that G is k-linked provided
K(G) > 22k.

The reason we point this out in this survey is to contrast the average
degree required to obtain some specific H with 26(H) > |H| + 4k — 2, with
that needed to achieve just some H. By Theorem 1.3 and Theorem 6.6 the
former would still require average degree @(k:\/m ) , whereas Lemma 2.2
shows the latter to hold given average degree only O(k).

Added in proof. Thomas and Wollan have recently shown that G is k-
linked if x(G) > 10k.

8. MINORS AND GIRTH

The simple fact underlying the observations in §2 is that contracting an
edge of a graph tends to increase the average degree unless the edge lies in
many triangles. In particular, if a graph has large girth then many edges
can be contracted, each contraction increasing the average degree.

Thomassen [36] made a systematic study of this phenomenon — his aim
was to show that many consequences of a graph having large average degree
could be derived also for graphs having minimum degree only three but
having large girth. His fundamental tool was the following theorem, whose
simple and elegant proof we include here. We use ¢g(G) to denote the girth

of G.

Theorem 8.1 (Thomassen [36]). If §(G) > 3 and g(G) > 4k — 5 then
G » H where 6(H) > k.
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Proof. We may assume k > 4. Take a partition Ay,...,A; of V(G) with
t maximal such that G[A;] is connected and |4;] > 2k — 3 for 1 <7 < ¢t
If G[A;] contains a cycle C, then |C| > 4k — 5, so by splitting C' into two
paths we can partition A; into A} and A?, with G[A}] is connected and
]Ail > 2k — 3 for | = 1,2; the maximality of ¢ thus implies G[A4;] must in
fact be a tree. Suppose now we could find 4; and A; with 1 <7 < j <t
for which there were three edges between A; and A;. Then we could find
vertices v € A; and v € A; together with three disjoint u—v paths Py, Py, s
in G[A; U Aj]. Any two of these paths have at least 4k — 5 edges between
them and so in particular two of them, say P; and P, must have length at
least 2k — 2. So we could partition A; U A; into three sets Al, A%, A3, with
Al containing 2k — 3 vertices from P, — {u,v}, [ = 1,2, and A% containing
the rest of P U P, U P3, such that G[Al] is connected and IAZI > 2k — 3 for
[ = 1,2,3. Hence the maximality of ¢ implies that there arc at most two
edges between A; and A; for 1 <i < j <t

Now, of course, we contract each A; to a single vertex a;. In the resultant
multigraph H*, every pair of vertices is joined by at most two edges; throw
away one edge from each double edge to obtain a graph H. The degree of
a vertex a; in H* is at least 3|4;| — 2(|A4;] — 1) > 2k — 1, and so its degree
in H is at least [(2k — 1)/2] =k, as desired.

Diestel and Rempel [5] have reduced the girth required here to 6log, k+
4. More recently, Kithn and Osthus [18] reduced it to 4log, k£ + 27. They
obtained results close to best possible for minors with specified minimum
degree and girth; an example is this.

Theorem 8.2 (Kiihn and Osthus [18]). Let &k > 1 and d > 3 be integers,
and let ¢ = 4k + 3. If g(G) > g and 6(G) > d then G >~ H where

S(H) > (d—1)9+D/4 /48,

As a further consequence of their methods they also show that Had-
wiger’s conjecture holds for graphs of girth at least 19 (Kawarabayashi [14]
also found this result).

One natural way of weakening the constraint of large girth is to forbid
K, as a subgraph, in the hope that this constraint still yields complete
minors in graphs of low average degree. (Note that forbidding a non-
bipartite subgraph will not help, since the extremal graphs for complete
minors contain bipartite subgraphs with at least half as many edges.) Kiihn
and Osthus [19] have investigated this condition, obtaining the following
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result, which is again close to best possible provided a standard conjecture
about the extremal function for K is true..

Theorem 8.3 (Kiihn and Osthus [19]). Given s > 2 there exists a constant
c = c(s), such that every K, s-free graph of average degree at least r has a
K; minor for t = Lc7“1+2/(3'1)(10g 7')_3J .

As might be expected, the proofs of these results are much more sub-
stantial than the proof of Theorem 8.1.

9. MINORS AND CONNECTIVITY

Large average degree is the simplest property forcing a graph to have a
Ky minor. Robertson and Seymour, in their series of papers on Graph
Minors, have investigated more complex structural properties that give rise
to minors; one of their fundamental results [29] is that a graph has large tree-
width if and only if it contains a large grid minor. Diestel, Jensen, Gorbunov
and Thomassen [6] gave a short proof of this result, and introduced the
notion of external connectivity: a set X C V(G) is externally k-connected
if |X| > k and for all subsets Y,Z C X with |Y| = |Z| = k there are
|Y| disjoint Y-Z paths in G without inner vertices or edges inside X. A
large grid that has high external connectivity yields a large complete minor;
Kiihn [17] has shown that the same conclusion holds even if the large grid
is replaced by a large number of large disjoint binary trees, each having an
extra vertex joined to its leaves.

There is a simple, and as yet unsolved, problem relating (ordinary)
connectivity to complete minors. What connectivity is needed to force
a K; minor? Since x(G) < 0(G) with equality for random graphs, the
answer to this question is (2 + o(1))tv/log¢, by Theorem 1.1. But the
only examples achieving this are pseudo-random graphs of bounded (in )
order; the extremal graphs of larger order for Theorem 1.1 have very low
connectivity. It might well be that, for graphs of large order, a lower
connectivity will suffice for a K; minor. We therefore make the following

conjecture.

Conjecture 9.1. There is an absolute constant C and a function n(t) such
that if |G| > n(t) and &(G) > Ct then G » K.
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Perhaps even x(G) > t + 1 is enough (though x(G) = ¢ is not, as a 5-
connected planar graph joined to K;_ 5 shows). For ¢t = 6 Jgrgensen [12]
(see also [31]) has a related conjecture, that every 6-connected graph with
no K¢ minor has a vertex joined to all the others.

Myers [27] has a partial result in this area; if ¢ is odd, a (t+1)-connected
graph G, with a long sequence of cutsets S1, Sy, ... of size t+ 1 such that S
separates S1,...,Sj-1 from Sji1,Sj19,..., has a K;_3 minor if the G[S;]’s
are 2-edge-connected.

Added in proof. Bohme, Kawarayabashi, Maharry and Mohar have re-
cently shown that every large 23t-connected graph has a K; minor.

REFERENCES

(1] N. Alon, personal communication.

[2] B. Bollobas, P. Catlin and P. Erdés, Hadwiger’s conjecture is true for almost every
graph, Burop. J. Combin. Theory, 1 (1980), 195-199.

[3] B. Bollobds and A. Thomason, Highly linked graphs, Combinatorica 16 (1996),
313-320.

[4] F.R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combi-
natorica, 9 (1989), 345-362.

[5] R. Diestel and C. Rempel, Dense minors in graphs of large girth, (preprint).

[6] R. Diestel, T. Jensen, K. Gorbunov and C. Thomassen, Highly connected sets and
the excluded grid theorem, J. Combinatorial Theory Ser. B, 75 (1999), 61-73.

(7] G. A. Dirac, Homomorphism theorems for graphs, Math. Ann., 153 (1964), 69-80.

[8] P. Erdds and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math.
Hungar., 1 (1966), 51-57.

[9] W. Fernandez de la Vega, On the maximum density of graphs which have no
subcontraction to ¥, Discrete Math., 46 (1983), 109-110.

[10] H. Hadwiger, Uber eine Klassifikation der Streckenkomplexe, Vierteljahresschr.
Naturforsch. Ges. Ziirich, 88 (1943), 133-142.

[11] L. Jergensen, Contractions to complete graphs, Annals of Discrete Maths., 41
(1989), 307-310. 18 (1994), 431-448.

[12] L. Jgrgensen, Contractions to Ks, J. Graph Theory, 18 (1994), 431-448.

[13] H. A. Jung, Verallgemeinerung des n-fachen zusammenhangs fiir Graphen, Math.
Ann., 187 (1970), 95-103.

14] K. Kawarabayashi, Hadwiger’s conjecture on girth condition, (pre-print).
g



Extremal Functions for Graph Minors 379

(15]
(16]
(17]

(18]
[19]
[20]

30
31]
32]
33]

34)

A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean
degree of vertices (in Russian), Metody Diskret. Analiz., 38 (1982), 37-58.

A. V. Kostochka, A lower bound for the Hadwiger number of graphs by their
average degree, Combinatorica, 4 (1984), 307-316.

D. Kiihn, Forcing a I, minor by high external connectivity, J. Graph Theory, 39
(2002), 241-264.

D. Kiihn and D. Osthus, Minors in graphs of large girth (preprint).
D. Kiihn and D. Osthus, Complete minors in K s-free graphs (preprint).

D.G. Larman and P. Mani, On the existence of certain configurations within graphs
and the 1-skeletons of polytopes, Proc. London Math. Soc., 20 (1970), 144-160.

M. Las Vergnas and H. Meyniel, Kempe classes and the Hadwiger conjecture,
J. Combin. Theory Ser. B, 31 (1981), 95-104.

W. Mader, Homomorphieeigenschaften und mittlere Kantendichle von Graphen,
Math. Ann., 174 (1967), 265-268.

W. Mader, Homomorphiesatze fiir Graphen, Math. Ann., 178 (1968), 154-168.

W. Mader, Topological minors in graphs of minimum degree n, Contemporary
trends in discrete mathematics (Stitin Castle, 1997), DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, (1999), 199-211.

W. Mader, personal communication.

J. S. Myers, Graphs without large complete minors are quasi-random, (to appear
in Combinatorics, Probability and Computing).

J. S. Myers, Extremal theory of graph minors and directed graphs, Ph.D. thesis,
University of Cambridge (2002).

J. S. Myers and A. Thomason, The extremal function for non-complete minors (in
preparation).

N. Robertson and P. D. Seymour, Graph Minors. V. Excluding a planar graph,
J. Combin. Theory Ser. B, 41 (1986), 92-114.

N. Robertson and P. D. Seymour, Graph Minors. XIII. The disjoint paths problem,
J. Combin. Theory Ser. B, 63 (1995), 65-110.

N. Robertson, P. Seymour and R. Thomas, Hadwiger’s conjecture for Kg-free
graphs, Combinatorica, 13 (1993), 279-361.

A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cam-
bridge Phil. Soc., 95 (1984), 261-265.

A. Thomason, Pseudo-random graphs, in: Random Graphs ’85 (M. Karonski and
Z. Palka, Eds), Annals of Discrete Math., 33 (1987), 307-331.

A. Thomason, The extremal function for complete minors, J. Combinatorial Theory
Ser. B, 81 (2001), 318-338.

A. Thomason, Complete minors in pseudo-random graphs, Random Structures and
Algorithms, 17 (2000), 26-28.



380

A. Thomason

[36]
[37]
(38]

(39]

C. Thomassen, Girth in graphs, J. Combinatorial Theory Ser. B, 35 (1983), 129~
141.

B. Toft, A survey of Hadwiger’s conjecture, Surveys in graph theory (San Francisco,
CA, 1995), Congr. Numer., 115 (1996), 249-283.

K. Wagner, Uber eine Eigenschaft der ebenen Komplexe, Math. Ann., 114 (1937),
570-590.

K. Wagner, Beweis einer Abschwichung der Hadwiger-Vermutung, Math. Ann.,
153 (1964), 139-141.

Andrew Thomason

Department of Pure Mathematics and
Mathematical Statistics

Centre for Mathematical Science
Wilberforce Road

Cambridge CB3 0WB, U.K.

A.G.Thomason@dpmms.cam.ac.uk



