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1. Introduction.

Despite the title this article is not an attempt to be all things to all men.
For although random graphs and strongly regular graphs are often thought of as
opposite ends of a spectrum, the one being chaotic and disordered, the other being
structured and symmetric, there are certain occasions on which they might bear
similarities. These occasions are broadly of two kinds:

(i) there are extremal graph theory problems where both random graphs and
strongly regular graphs provide the extremal configurations, or, at least, the
best known approximations, and

(ii) there are instances where graphs with certain desired properties can be shown to
exist by random methods, but where the best constructed examples are strongly
regular, or close to strongly regular.

(Of course, these two instances overlap somewhat.) On these occasions both types
of graph may be thought of as being covered by the umbrella term ‘pseudo-random
graph’. The purpose of this paper is to try and make precise this similarity and to
offer the elements of a common treatment for both types of graph.
Caveat. Let it be said at once that we can prove nothing about random graphs
which cannot be proved better by standard methods, and our methods are of little
effect in sparse graphs anyway. Likewise we tackle only a restricted class of strongly
regular graphs, namely those with parameters (k, A, 1) where A = p (or equivalently
those whose two non-trivial eigenvalues are opposite in sign and approximately equal
in magnitude). However for this class it is possible to obtain some new results.
The aim of a common treatment for the different types of graph in case (i)
above would be to attempt a characterisation of the extremal graphs for the given
problem, and so perhaps help to compute the extremal function. This approach was
successful in the proof of Theorem 2.3 below and in establishing new upper bounds

for ramsey numbers; it also produced uﬁexpected results about another problem
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(discussed in section 6). The aim in case (ii) would be to provide a way to check
whether a given construction is ‘pseudo-random’, and so has the desired property.
Some results of this kind are discussed in section 5.

At present this discussion may appear a bit vague, but in section 3 we will
give a precise definition of a class of graphs (jumbled graphs) which will be our class
of pseudo-random graphs, and show that both random graphs and certain types of
strongly regular graphs fall into this class. In section 4 we develop some properties
of jumbled graphs and in section 6 look at some of the consequences. To begin with,
though, we look at some of the instances of the problems mentioned at the outset.

For matters concerning random graphs we refer to the recent treatise of
Bollobds [12]. The material in chapter 13 of that work is of particular relevance. The
notation §(n,p) will refer to the probability space of labelled graphs on n vertices
where the edges are chosen independently and at random with probability p. We
shall use the phrase ‘a random graph has property P’, where P is a graph property, to
mean that a graph in §(n, p) has P almost surely, that is, Pr(G € §(n,p) has P) — 1

as n — oo.

2. Some examples.

Here we give some examples of occasions when random graphs and strongly
regular graphs appear similar.

RAMSEY THEORY.

The best illustration is provided by the first ever result on random graphs.
Let r(K;) be the ramsey number of K;, that is, the smallest value of n such that
every colouring of the edges of the complete graphs K, of order n with two colours

yields a monochromatic K;.
Theorem 2.1. (Erdés [28], 1947) r(Ky) > 2t/2.

This lower bound is obtained because there is only a very small probability of finding
a K; in a random graph of order 2!/2 or its complement. Remarkably, there is no
known constructive lower bound which is provably of exponential order, the best
being r(K:) > exp((1 + o(1))(logt)?/4loglogt) by Frankl and Wilson [35]. When
it comes to exact values, though, strongly regular graphs appear. The only exact
values known are r(K3) = 6 and r(K4) = 18, the extremal colourings being provided
by the Paley graphs Q5 and Q7. The Paley graph Q,, of order n has vertex set the
finite field F,, n = 1 (mod 4), with zy € E(Qs) if z—y is a square in F,. Elementary
character sums show that Q,, is a conference graph; that is, it is (n — 1)/2-regular,
each edge is in (n — 5)/4 triangles, and that the same holds for the complement. A
conference graph is strongly regular with parameters ((n—1)/2, (n—5)/4, (n—1)/4).
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Conference graphs resemble random graphs with edge probability 1/2 in that each
vertex has degree around n/2 and each pair of vertices has around n/4 common
neighbours. This suggests that lower bounds for ramsey numbers are provided by
randomr-like graphs. (Indeed, by considering the extremal graphs for the function
7(K}) as being pseudo-random it is possible to obtain a new upper bound for 7(K}),
as described in section 6.) More generally it would suggest that if n is large, a
colouring of K,, with few monochromatic K;’s is random-like, leading to the following
conjecture. Let k;(G) denote the number of complete subgraphs in G of order ¢, and

let G denote the complement of G. Let

ct(n) = min { k:(G) + k:(G); |G| =n } (7:) _1

where |G| is the order of G. (We use the notation of [11].) So ¢;(n) is the min-
imum proportion of monochromatic Ky’s in a colouring of K,. Then r(K;) =
min{n;c;(n) > 0}. It is easily shown that c;(n) increases with n so ¢; = lim,_.oc1(n)

exists.

Conjecture. (Erdés [29], 1962). ct = 21-(3).

Note that 2!~ (3) is the proportion of monochromatic K;’s in a random colouring.

In fact it will be shown later (Theorem 4.8) that a conference graph yields the same
proportion of monochromatic K;’s. This suggests that the extremal graphs for the
function c¢(n) are ‘pseudo-random’, and so might be those characterised in sec-
tion 3. Indeed the corresponding conjecture involving complete bipartite subgraphs
of bipartite graphs has been completely proved by Erdés and Moon [30]. (The cor-
responding conjecture is that the minimum proportion of monochromatic subgraphs
is the same as the average proportion.) Surprisingly, it turns out Erdés’ conjecture
is false; counterexamples can be constructed by modifying certain pseudo-random
graphs. We will return to this in section 6.

THE PROBLEM OF ZARANKIEWICZ.

This extremal problem (or a typical case of it) is that of computing the
function Z(n,t), the greatest number of edges in a graph of order n which contains
no complete bipartite subgraph K;;. For a general discussion see Bollobds [11].
Upper bounds on Z(n,t) are due to Kévéri, Sés and Turdn [49] and Zném [72].

Theorem 2.2. In2-2 0+ < Z(n,t) < L(t — 1)Vtn2"1/t 4 Lt — 1)n.

The general lower bound is obtained from random graphs with the appropriate
number of edges. For ¢ = 2 a better lower bound is obtained by considering

graphs constructed from finite geometries. The graph constructed with vertex set
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PG(2,q) by joining a:bic to c:f:y if aa + b8 + ¢y = 0 (Erdés and Rényi [31]),
shows Z(n,2) = %na/"’ (1 + o(1)) if n is large. This graph is not strongly regular,
but the degrees differ by at most one and the number of common neighbours of a
pair of vertices varies by at most one. In a similar vein Brown [22] constructed from
AG(3,q) bipartite graphs with n vertices and order n%/3 edges, containing no Ks3.
The vertices of this graph consist of two copies of AG(3,q), with (z1,z2,3) joined
to (y1,Y2,¥3) if Z?=l(z¢ — y;)? = —s, where s is some fixed quadratic non-residue.
The graph is (¢2 — g)-regular and no pair of vertices has more than g + 1 common
neighbours. At least to this extent the extremal graphs for the Zarankiewicz problem
are pseudo-random.

SUBCONTRACTIONS.

The fundamental extremal problem involving subcontractions is to deter-
mine the greatest number of edges in a graph G of given order which does not
contract to a complete graph of order t; we write G ¥ K;. It is not hard to show
that the function

b(t) = lim inf{b; |G| =n and (G) > b|G| implies G > K; }

exists, and is at most 2¢~3. Mader [51] proved t —2 < b(t) < 8(t —2)|log,(t —2)] for
t > 4. Only recently it was noticed that random graphs show b(t) > %t\ﬂ@(l +
0(1)) (de la Vega [68], Kostochka [48], Thomason [61]), and the latter two references
contain proofs that t4/logt is the correct order for b(t). The next result is from [61].

Theorem 2.3. 0-265t+/log, t(1 + o(1)) < b(t) < 2-68¢+/log, ¢(1 + o(1)).

It might be expected that the extremal graphs for this problem are pseudo-
random, and it was by examining subcontractions in pseudo-random graphs that the
simple proof in [61] was discovered.

THE DIAMETER.

The function n(D, A), the greatest number of vertices in a graph of max-
imum degree A and diameter D seems very hard to determine. It is easily shown
that n(D,A) < (A(A —1)P — 2)/(A —2). From below the de Bruijn graphs show
n(D,A) > |A/2]P. The vertices of the de Bruijn graph dB(k,d) are the k¢ vectors
with d coordinates which are integers between 1 and k. Two vectors are adjacent in
the graph if the first £ — 1 coordinates of one agree with the last k£ — 1 coordinates of
the other. Most of the best results about n(D, A) are quite recent. For good surveys
covering different aspects of this area see Bermond and Bollobés [7], Bermond, Bond,
Paoli and Peyrat (8] and Bollobds [12]. From our point of view we note that random

regular graphs provide the best known bounds for many instances of n(D, A). This
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is natural in that the paths from a vertex in an extremal graph must spread out as
much as possible, and that is a property of random regular graphs. The extremal
graphs are pseudo-random but this is a case where the methods of section 3 do not
apply easily, because the edge density is too low, and so we can make no worthwhile
contribution.

EXPANDER GRAPHS.

A bipartite graph with vertex classes X and Y each of order n is (n,a, b)-
expanding if every subset A C X of order a has at least b neighbours in Y. It is an
(n,k, B)-expander if it is (n,z,z(1 + B(1 — z/n)))-expanding for all z < n/2. Much
interest has been shown lately in graphs with few edges which are good expanders.
They are used for instance in the construction of concentrators and superconcen-
trators (Margulis [52], Valiant [67], Chung [25]), and the expanding properties of
graphs are used implicitly or explicitly in the construction of parallel sorting algo-
rithms (Haggkvist and Hell [43], Bollobds and Thomason [19], Ajtai, Komlés and
Szemerédi [1], Alon [3]). Random graphs provide the best upper bounds known for
the size of expanders (see Chung [25]). Many constructions have been found, some
such as that of Margulis [52] requiring deep techniques for proof. The construction
of concentrators requires expanders whose sizes are linear in the number of vertices,
and such graphs are again too sparse for our techniques to be amenable. But some-
times a dense expander needs to be constructed (say for sorting applications) and

here we can make some contribution. We will return to this in section 5.

3. Jumbled graphs.

In a random graph in G(n,p), each induced subgraph H satisfies e(H) =
p(l‘zl), where e(H) is the number of edges of H. The least we might require of a
graph which mimics a random graph of edge probability p is that the same property
holds. To this end, we call the quantity |e(H) - p(lgn)' the error of the subgraph H,
and we will define a pseudo-random graph to be one in which no induced subgraph
has large error. It is the choice of error term which determines the usefulness of the
definition; the one we choose was described in [62].

Definition. Let p, o be real numbers with 0 < p < 1 < «. A graph G is"’
said to be (p, a)-jumbled if every induced subgraph H satisfies

et ("% ')| < ol

The reason for choosing this form of error term is first of all that it depends only on
H, so implying
(a) if G is (p, @)-jumbled then G is (1 — p, @)-jumbled, and
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(b) if G is (p, @)-jumbled and G’ is an induced subgraph of G then G’ is (p, @)-
jumbled.
The form of error term also enables us to prove Theorems 3.1 and 3.2 below, which
we will discuss later.

What is the significance of the parameter a? Of course, every graph of
order n is (p,n/2)-jumbled but if a graph is known to be (p,o(n))-jumbled quite a
lot can be said about its properties, as we shall see. A conference graph of order n
is (p,/n)-jumbled by Theorem 3.1 below; in fact a theorem of Erdds and Spencer
[32] (or more precisely a theorem proved by a method similar to a proof in [32])
shows that if G is (p, @)-jumbled then & # o(,/pn). Observe that the definition
permits us to say nothing useful about subgraphs H of G if p|H| = O(a). Since we
often need information about the neighbourhood of a vertex, which will usually have
order around pn, we mostly need oo = o(p?n). Because of this inequality and the
relation o # o(\/ﬁ) our methods will be most easily applied to dense graphs, that is
with p > n~1/3, From time to time we shall use the term ‘jumbled graph’ by itself,
without specifying the values of p and «, to mean a (p, a)-jumbled graph where a is
suitably small (say o = o(p?n)). The word ‘jumbled’ is intended to convey the fact
that the edges are evenly spread through the graph.

We aim to show that jumbled graphs mimic in many ways the large scale
properties of random graphs with edge probability p. But before describing the
properties of jumbled graphs, let us see some examples of them. There are essentially
two ways to test whether a graph is (p, @)-jumbled for some small a. First of all,
each subgraph H might be tested against the definition. In this way it can be shown
that a random graph is (p, 2,/pn)-jumbled; this is fortunate, for otherwise our class
of pseudo-random graphs would not contain random graphs themselves. However

we are not always put to so much trouble.

Theorem 3.1. Let G be a graph of order n, with minimum degree pn. If no pair
of vertices has more than p?n + | common neighbours, G is (p, \/(p + !)n)-jumbled.

This is a remarkable (though simply proved) result, since it shows that the
condition on vertex degrees and common neighbours, which we noticed in earlier
examples, is actually sufficient to make a graph behave like a random graph. This
theorem is very useful for showing that specific constructions, such as Paley graphs
and others in the following list, are jumbled. The need to examine all induced
subgraphs is removed, and all that remains is a simple degree check. (The proof
of the theorem is indeed simple, depending only on the Cauchy-Schwartz inequality
or second moment method, and so is probably implicit in several earlier works by
other authors. In fact the conditions in the theorem imply a somewhat stronger
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conclusion, namely that the error of an induced subgraph H is at most (1 + v/pn +
VI|H|)|H)|. Under certain circumstances this would yield information about H when
the conclusion of Theorem 3.1 was too weak, for instance if ! ~ /n and |H| ~ n5/8.
Of course we could modify our definition of a jumbled graph to take account of this
extra strength, for instance by calling a graph (p, a, 8)-jumbled if the error of any
induced subgraph H is at most (a+ 8+/]H]|)|H|. Our reason for not doing so, apart
from the extra complication that would arise with a fancier error term, is that no
correspondingly stronger version of Theorem 3.2 below would be obtained. In any
case no occasion has arisen so far where the full strength of the proof of Theorem 3.1
was needed. N.b. A gap in the proof of Theorem 3.1 given in [62] is filled in [66].)
SOME JUMBLED GRAPHS.

(a) A random graph in §(n,p) is (p,2,/pn)-jumbled.

(b) A random graph in §(n,p), with edges added to form a clique of order ,/pn, is
(p, 3/pn)-jumbled.

(c) The vertex disjoint union of a random graph in §(n,p) and a clique K s is
(p,34/pn)-jumbled.

The above examples show that the small subgraphs of a jumbled graph may be far
from random.

(d) The Paley graphs Q, are (1/2,+/n)-jumbled.

(¢) Let n = 2kr + 1 be a prime power. The graph whose vertices are the elements
of the finite field F,,, with z joined to y if z —y is a k’th power, is (1/k, 2n%/4)-

_jumbled. This follows from Theorem 3.1 and estimates of Weil [70] for character
sums. This graph is not strongly regular unless k¥ = 2, when it is the Paley
graph. If we let zy be an edge if z — y is in one of 5 specified cosets of the k’th
powers we obtain a graph which is (j/k, 2n3/4)-jumbled.

Hence we have specific constructions which emulate graphs in §(n,p) for any fixed
rational value of p.

(f) The previous construction works if we join = to y whenever z + y is a k’th
power. This graph is not strongly regular even if kK = 2. The example is
interesting, though, because an obvious generalisation enables us to construct
pseudo-random hypergraphs. This subject is explored further by Haviland and
Thomason [44].

(g) Let the vertices of a graph be the vectors of the space AG(2,q), and partition
the set of g+ 1 lines in this space into two sets P and N, with |P| = k. Join x to
y if x —y is parallel to a line in P. Then G is strongly regular with parameters
(k(¢—1),(k—1)(k—2)+q—2,k(k—2)), as recorded by Hubaut {45] and Seidel
[57], and is (k/g,n%/*)-jumbled.
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(h) Let the vertices of the graph T} be the n = 22¥ vectors in AG(2k,2), with x
joined to y if ¢+ (x —y) # 0, where

a((z1,%25- -, Tok)) = T1T2 + T3Tg + -+ + Tok—1T2k-

The graph T is defined similarly by using ¢~, where ¢~ (x) = z1 + 22 + ¢* (x).
The graphs T,f: are strongly regular with parameters (22"_1 T ok=l 92kn2 —
2k—1 92k=2 4 2k—1) (see for example Thomason [63], Seidel [57] or Hubaut
[45]), and so are (1/2,73/4)-jumbled.

jumbled. When k=2 this graph is the Erd8s-Rényi graph mentioned in section 2.

Note that g ~ n1/*, so we have a way to model graphs in 4(n, n_l/k).

(3) The previous example may be viewed, when ¢ = 2, as the graph whose vertices
are the non-empty subsets of a set of order k + 1, two vertices being adjacent if
their intersection has even order. Let G be the subgraph spanned by the subsets
of even order. Then G is (1/2,21/n)-jumbled, where n = 2¥ — 1. In fact if k is
even then G is strongly regular, with parameters ((n—3)/2, (n—11)/4, (n—3)/4).

(k) In the previous example we could have looked at the subgraph spanned by the
vertices of odd order. This is also (1/2,2/n)-jumbled.

() Let the vertices of the graph B(n,t) be the elements of the field F,, where n is
prime, and let ¢ be an integer, 1 < ¢ < n. Join z to y if the fractional part of
(z — y)%/n is at most t/n. A theorem of Bollobds quoted in section 5 implies
this graph is (t/n,3n%/4log n)-jumbled.

(m) Let G be a graph of order r, and let m > 1 be an integer. Denote by moG the
graph of order mr obtained by taking r disjoint sets of vertices V, z € G, with
|Vz| = m, and joining v, € V, to vy € Vy if z is joined to y in G. Note that
my0(m20G) = (mim3)oG. If G is (p, o)-jumbled then moG is (p,ma + m)-
jumbled.

(n) The graph 2eG is formed from two disjoint copies G; and Gz of Gj; if z; € Gy
and y, € G2 then z1y; € E(20G) if z = y or zy ¢ E(G). For suitable choices of
G this graph provides good lower bounds for ramsey numbers, as Mathon [53]
showed. However there is no profit in iterating the operation 2e, since 2¢(2¢G)
is isomorphic to 2¢(20G).

These are just a few graphs we have selected, either because they are well
known, or because they will be used as examples later, or simply to illustrate how
easy it is to find examples of jumbled graphs. There are many others. Some more

are given in [62], and there are many more strongly regular graphs with A = g,
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such as those listed in [45] or some new ones of Brouwer [21]. The point is that

Theorem 3.1 gives a very easy way of checking whether a given graph is jumbled.
From the point of view of describing the extremal graphs for certain prob-

lems, the following theorem from [62] gives a property of graphs which are not

jumbled.

Theorem 3.2. Let G be a graph of order n, let nn be an integer between 2 and
n — 2, and let w > 1 be a real number. Suppose each induced subgraph H of order nn
satisfies |e(H) - p(";)l < nna. Then G is (p,7\/ne/n/(1 —n))-jumbled. Moreover
G contains an induced subgraph G* of order at least |1 — WISTS,?W n which is
(p, wer)-jumbled.

The proof is by no means as straightforward as that of Theorem 3.1. To
see how this theorem might be used, let Gy, G2, ... be a sequence of graphs with
|Grn| = n, and let 77 be a constant between zero and one. Let a(n) be any function of
n satisfying a(n) = o(n), and choose w(n) so that w(n)a(rn) = o(n) and w(n) — oo.
Then the theorem shows that there is a constant § = §(n) such that either G,
contains an induced subgraph G}, of order (1 + o(1))n which is (p, o(n))-jumbled
(which is often as good as Gy, itself being jumbled), or G, contains an induced
subgraph H of order |nn| with [e(H) — p('gl)l > 6n2. An example of the use of

this theorem occurs in section 6.

4. Properties of jumbled graphs.
Here we give some properties of jumbled graphs which illustrate their claim

to be pseudo-random. The first few are basic properties of vertex degrees.

Theorem 4.1. Let G be a (p, a)-jumbled graph of order n, and let 0 < € < 1. Then
at least (1 — €)n of the vertex degrees of G lie in the range p(n — 1) + 10ae™!.

Theorem 4.2. Let G be a (p, a)-jumbled graph of order n, and let 0 < € < 1. Let
H be an induced subgraph of G of order k. Then at least n — ¢k of the vertices of
G have between pk — 21ae™! and pk + 21ae~! neighbours in H.

Under the degree conditions of Theorem 3.1 (by which phrase we shall
speak of a graph, such as a conference graph, with minimum degree pn, in which
no pair of vertices has more than p?n + [ common neighbours for some small ),
it is possible to show that almost all sets of k vertices have around p*n common
neighbours. For general graphs these conditions don’t apply, but we do have the
following result. In this the number of vertices joined to every vertex in a set U;

and to no vertex in a set Us is denoted v (U, Us).



Thomason: Pseudo-random graphs 182

Theorem 4.3. Let G be a (p, a)-jumbled graph of order n, let k,l > 0 be integers
and let 0 < € < 1. Then |v(U1,Uz) — p*¢'n| < 21(k + I)?ae™? for at least (1 —
€) (%) ("7%) choices of sets Uy and U, with |U;| = k and |Uy| = 1. (Here g=1—p.)

These degree conditions and the definition of a (p, &:)-jumbled graph enable
us to establish many analogues of well known random graph properties for jumbled
graphs. We list just a few of the more obvious ones.

THE DIAMETER.

It is easily seen that a random graph in §(n,p) has diameter 2 if p?n —
2logn — oco. For jumbled graphs we come fairly close.

Theorem 4.4. Let G be a (p, @)-jumbled graph. Let u,w € G be vertices with
degree at least d. If pd > 4a there is a2 u-v path of length at most 3 in G. In
particular, if §(G) > 4ap~! then G has diameter at most 3.

THE CONNECTIVITY.
For a random graph in §(n,p) the vertex connectivity equals the minimum
degree (see Bollob4s and Thomason [20]).

Theorem 4.5. Let G be a (p, @)-jumbled graph of order n. Then £(G) > 6(G) —
d4ap~l 4+ 1.

For graphs satisfying the degree conditions of Theorem 3.1 this can be
improved to x(G) = §(G).

HAMILTON CYCLES.

A random graph is hamiltonian if pn — logn — loglogn — oo (this is not
easy to prove; see [12]). The same is certainly not true for a jumbled graph if p is
small, even if we impose a minimum degree condition; consider example (c). But if

p is larger we can make progress.

Theorem 4.8. Let G be a (p, a)-jumbled graph of order n, with minimum degree
at least pn. If (p — k/n)?n > 6(a + 2k), where k is a non-negative integer, then G
has a set of k + 1 edge disjoint hamilton cycles.

Theorem 4.7. Let G be a (p, @)-jumbled graph of order n, with minimum degree
pn > m = [6ap~']. Then G has at least (pn)!/m! hamilton cycles.

These theorems show for instance the existence of an exponentially large
number of hamilton cycles, and a set of (n/100) edge disjoint hamilton cycles, in
the Paley graphs. This answers a question of Calkin [24]. Theorems 4.6 and 4.7 are
proved using the Chvital-Erdds theorem [26] to generate hamilton cycles, rather
than applying the flipping method commonly used in random graph results. This
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method has also been applied to find a linear expected time hamilton cycle algorithm
for graphs in G(n,p) if p > 12n~1/3; see [64].

INDUCED SUBGRAPHS, CLIQUES AND THE CHROMATIC NUMBER.

We turn now to induced subgraphs, since one of our original aims was to
investigate the apparently extremal graphs for Erdés’ conjecture. Previous methods
for estimating complete subgraphs have been rather ad hoc. Several authors (Blan-
chard [9], Bollobés and Thomason [18], Graham and Spencer [39]) have shown that
k(@) = 2-(3) (1) (1+O(n=1/2)) by using Weil’s estimates [70] for character sums.
For t = 4 the exact result, k4(Qn) = n(n — 1)((n — 5)(n — 17) + 4(a® — 1))/1536,
where n = a? + b2 and a is odd and coprime to n, was obtained by Evans, Pulham
and Sheehan [34] and Thomason [80]. The only general result so far was due to Gi-
raud [37] who shows that k4(G) +k4(G) = % (3)(1+0(n~/?)) if G is a conference
graph. The following theorem extends this to a much larger class of graphs, and for

all values of ¢.

Theorem 4.8. Let G be a (p, a)-jumbled graph of order n, where p < /2. Let F
be a graph of order r > 3 with m edges, and let A be the order of its automorphism
group. Suppose € satisfies 0 < € < 1 and €2p"™n > 42ar?. Then the number of
induced subgraphs of G isomorphic to F lies between (1 — e)"p""q(;)_"‘A“ln" and
1+ e)'p"‘q(;)_"‘A‘ln', where g =1 — p.

Rosenfeld asked if a strongly regular graph could be found containing a
given graph F as an induced subgraph. A graph containing every graph of order
r as an induced subgraph was called r-full by Bollobés and Thomason [18], who
showed that the Paley graphs of large order are r-full. Theorem 4.8 combined with
Theorem 3.1 offers a great many more examples.

Theorem 4.8 shows that in a (1/2,0(y/n))-jumbled graph the number of
complete subgraphs is around 2-(3) (;‘) for ¢t up to about %logz n. It would be
reasonable to hope to push this up to log, n. But although this may be true for the
Paley graphs, as we see at the end of section 6, it is in general untrue. In the graph
of example (j) the number of K;’s constructed by first choosing k/2 independent
mutually orthogonal vectors and then choosing r = t—k/2 more in the space spanned
by the first k/2 is of order 2-(3)+(3) ('t‘), as shown in [62]. So Theorem 4.8 cannot
be improved in general.

If we ask for the clique number of a (1/2,0(y/n))-jumbled graph, Theo-
rem 4.8 shows it is at least %log2 n. No example is known where it is so small,
but the clique number of example (k) is only log, n. On the other hand the clique
number may be as large as 1/n, as many of our examples show. Of course it will not
be much larger since it follows directly from the definition that the clique number
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of a (p, @)-jumbled graph is at most 1 + 2a(1 — p)~1. This contrasts with random
graphs in G(n, !/2), where the clique number is known always to within one and
usually exactly (see Matula [54] or Bollobds and Erdés [17]). Estimates for the
chromatic number are related to those of the clique number, so by a greedy algo-
rithm we can colour a (1/2,0(y/n))-jumbled graph with at most 2n/log, n colours,
the corresponding value for random graphs being n/ log, n (Grimmett and McDi-
armid [40]). However, there is a lower bound of n/2log, n for the chromatic number
of a random graph, whereas the chromatic number of a (1/2, O(y/n))-jumbled graph
may be as low as y/n. This is the case, for example, in the Paley graph @, if n is a
perfect square.

SUBCONTRACTIONS AND TOPOLOGICAL CLIQUES.

The contraction cliqgue number ccl(G) of a graph G is the largest value of
t for which G > K;. The topological clique number tcl(G) is the largest value of ¢
for which G contains a subdivision of K;. Of course, ccl(G) > tcl(G). The values
of ¢cl(G) and tcl(G) were investigated by Bollobéds, Catlin and Erdés [15] and by
Bollobds and Catlin [14] in relation to the conjectures of Hadwiger and Hajés. (The
former conjectured ccl(G) > x(G), which holds for almost every graph, the latter
speculated that ¢cl(G) > x(G), which fails for almost every graph.) They found
ccl(G) = n/+/logy n(1 + o(1)), where b = 1/(1 — p), and tel(G) = 24/n/(1 —p)(1 +
o(1)) almost surely, for G € §(n,p), with p constant. Use of the theorems at the
beginning of this section and the techniques of [81] gives the following.

Theorem 4.9. Let p,C be constants, let Gy be a (p, Cy/n)-jumbled graph of order
n, and let b=1/(1 — p). Then, as n — oo,

ccl(Gyr) > (14 0(1))n/+/logy n
and 2(14 C)(1 —p)~1/n > tel(Gy) = (1 + o(1))/pn.

A more general result for tcl(G) is available in [62]. We give no upper
bound for ccl(G). For consider the graph G with vertex set {z;,y;;1 < 7 < n/2},
where z;y; € E(G) and for each pair 1 < ¢ < j < n/2 the vertex z; is joined to
exactly one of z; and y; chosen at random, and so is y;. Then G is (1/2,24/n)-
jumbled, and indeed the graphs spanned by {z1,...,Z,/2} and {y1,...,¥n/2} are
randomly chosen members of G(n/2, 1/2). But ccl(G) > n/2. In fact ccl(G) cannot
be much bigger than this since the clique number must be at least ccl(G) — n/2.

5. Other techniques.
The methods used to obtain results in sections 3 and 4 were elementary

though complicated. Other techniques have been used on jumbled graphs, apart
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from those alluded to so far. Here we describe briefly one or two of them. For the
Paley graphs, Bollobas used the method of Gauss sums to obtain the following.

Theorem 5.1. (Bollobas [13]) The number of edges between a set of k vertices of
the Paley graph Q, and another disjoint set of I vertices lies between %kl - % kln
and 1kl + 1vkin.

This improves on Theorem 4.3 for this particular graph. In particular if n
is large, we see v(Uy,Us;) # 0. This implies that every first order graph property
is either possessed by almost every graph in G(n,p) and by Q,, for all large n or is
possessed by almost no graph in §(n, p) nor by Q,, for all large n (see for instance
12)).

The theorem also shows that Theorem 3.1 cannot be significantly improved
if we require say every three vertices to have around p®n common neighbours. For
@y contains complete subgraphs of order /n if n is a perfect square, and so is not
(1/2, a)-jumbled for @ < y/n/2. Moreover none of the other results of section 4 can
be improved significantly for this graph.

Recall the graph B(n,t) of example (1). This graph is clearly regular of
degree d = |{z € Fp;z% € {1,...,t}}|. If t > n'/%logn then d/t — 1; in fact the
Pélya-Vinogradov inequality (see Ayoub [B]) states |d — t] < 4/nlogn, and a deep
improvement by Burgess [23] reduces the \/n to At1~1/(rt1)pl/4r where A is an
absolute constant and r is any positive integer. The following theorem of Bollobds
gives bounds on the number of common neighbours a pair of vertices might have.

The pleasing proof is based on that of Pélya.

Theorem 5.2. (Bollobés [12]) No two vertices of the graph B(n,t) have more than
t2/n + y/nlog? n common neighbours.

Consequently the graph B(n,t) can be shown to be (p, 323/ log n)-jumbled
by Theorem 3.1. A universal analogue of this graph has been constructed by Bollobés
and Erdés [16]. Denote by R(n,a,6) the graph with vertex set {1,...,n}, in which
¢ is an edge if the fractional part of (¢ — j)%a is less than §; here we require a to
be irrational and 0 < § < 1 but n need no longer be prime. Pinch used classical
results of Hardy and Littlewood to prove a conjecture of Bollob4s and Erdds about
R(n, a,6), which shows that it is (6, 0(n))-jumbled.

Theorem 5.3. (Pinch [58]) For every irrational a there is a function fo : N — N
such that fo(n) = o(n), and such that no two vertices in any graph R(n,c,6) have

more than 62n + fo(n) common neighbours.

Quite a few techniques have been developed for use on expander graphs.
(Recall the definitions of section 2.) Margulis was the first to construct a family of
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linear expanders as follows. The vertex classes X and Y are both copies of Z,, X Z,.
Join (a,b) in X to (a,b), (a + 1,b), (a,b+1), (a,a + b) and (—b,a) in Y, and call
the resulting graph M(m). Using fairly deep techniques from representation theory,

Margulis proved an expansion property for these graphs.

Theorem 5.4. (Margulis [52]) There is an absolute constant o such that M(m)

is an'(m?2, 5, Bo)-expander.

Unfortunately no lower bound is provided for 8o. However variants of this
construction have been shown to be good expanders by some authors, and Gabber
and Galil [38] were able to give explicit values of (3, using fourier analysis. These
have been further refined; see for example Alon and Milman [5], Jimbo and Maruoka
[46] and Alon, Galil and Milman [4] (among many others. The papers cited contain
many references to the literature). A useful idea of Tanner [59], developed by Alon
[2], gives a valuable sufficient condition for a graph to be a good expander. Alon was
able to go considerably further, though, and show the necessity of the condition. A
graph is a strong (n, k, B8)-expander if it is (n,z,z(1 + B(1 — z/n)))-expanding for
all £ < n. Given a graph G we define A(G) to be the second smallest eigenvalue of
the matrix D — A, where D is the diagonal matrix of vertex degrees and A is the
adjacency matrix. It is easily checked that if G is regular the smallest eigenvalue is
0 and A(G) > 0.

Theorem 5.5. (Alon [2]) Let G be a k-regular bipartite graph. If G is a strong
(n,k,B)-expander then A > $2/(1024 + 262%). If B < (2dX — A2)/d? then G is a
strong (n, k, #)-expander.

This is a very useful result, especially since the best expanders are generated
randomly and we can estimate the expansion properties very quickly by this method,
though to compute the expansion properties exactly is known to be coNP-complete;
see Blum, Karp, Vornberger, Papadimitriou and Yannakakis [10]. It is also possible
to verify explicit constructions.

For the purposes of constructing superconcentrators very sparse (in fact
linear) expanders are needed. But some applications, notably parallel sorting in few
rounds, make use of dense expanders, and here the ideas of section 3 start to bear
fruit. To sort n objects which are ordered in some unknown way in just two rounds
using m parallel processors, m pairs of objects, determined by some algorithm (which
of course is just a graph of order n and size m) are compared. All possible deductions
are made by transitivity, and any pairs whose relative order is still hidden are then
compared. The algorithm is successful if it leaves at most m pairs to be compared in
the second round. After Higgkvist and Hell [43] constructed an algorithm, Bollobds
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and Thomason [19] found the correct order for the minimal value of m by showing
that a random graph with n3/2 log n edges produces a succesful algorithm. Moreover
a random graph with n?/3 logl/ 3 n edges produces a successful algorithm even if we
allow only two step deductions between rounds (that is, we can deduce a < b only
if the first round yields a < ¢ and ¢ < b for some c). Once again, this is the correct
order of magnitude. Known constructions for algorithms are less efficient. Alon
[3] used eigenvalue methods to show that the bipartite graph whose vertex classes
are the points and the hyperplanes of AG(d,q), adjacency in the graph reflecting
incidence in the geometry, is (n,z,n — n1+1/d/z)-expanding for all z. In the case
d = 4 it is straightforward to take such an expander and construct a two round
sorting algorithm with two step deductions using only (22/3 + 0(1))n/* edges, not
far from optimal. The expanding properties of this graph can also be verified by the
following analogue of Theorem 3.1 for bipartite graphs.

Theorem 5.6. Let G be a bipartite graph with vertex classes X and Y, both of
order n. Suppose each vertex in X has degree at least pn and that no two vertices of
X have more than p?n+ 1 common neighbours. Then G is (n,z,n — (lz + pn)/p®z)-

expanding for all .

This allows the construction of many dense expanders to be verified. For
example, the graph due to Brown [22] described in section 2 is (n,z,n — 6nl/2 —
n/3 /z)-expanding for all z, and, as already mentioned, the graphs described in the
previous paragraph are (n,z,n — n!*1/¢/z)-expanding for all z. The proof of the
theorem can also be used to show the existence of a two round sorting algorithm
with two step deductions using only (3 + o(1))n%/* edges. Further details are given
in [65].

Theorem 5.6 was used by Dyer and Frieze [27] along with Theorem 3.1 to
develop a polynomial expected time algorithm for a minimum cut. The algorithm
seeks to find the minimum number of edges in a cut which partitions the vertices
into two equal-sized subsets. The graphs are uniformly distributed among those of
order 2n which have a ‘small cut’, that is, a cut with at most (3 — €)e(G) edges for
some fixed € > 0. The theorems above are needed to prove that the cut, once found,

is indeed minimum.

6. Ramsey theory.

In this final section we examine some consequences of the previous work
for ramsey theory. Recall Erdés’ conjecture from section 1, that ¢; = 21=(3). This
conjecture is trivially true for ¢ = 2, and for ¢ = 3 follows at once from a result

of Goodman [38]. However this case is much easier than ¢ > 4 since, as Lorden
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[50] showed, the number of monochromatic triangles depends only on the degree
sequence. For ¢ > 4 very little is known, the only general result being due to
Giraud [37] who showed that ¢4 > k.

It turns out this conjecture is false. Recall the definition of moG from

example (m) of section 3.

Lemma 6.1.  k;(moG) + ky(moG) = o3(G)2'~(3) (j) 14 0(1)),

t
where o:(G) = z(i)—,lp—t{ukt (G) + Y 515t )ks (a‘)}.
7=1
Here G has order p, n = mp = |moG|, and the o(1) term is with p,t fixed and
m — oo. S(t,7) is a Stirling number of the second kind and represents the number
of ways of partitioning t labelled objects into j non-empty parts.

A consequence of this lemma is that any graph G provides an upper bound
for ¢¢, namely ¢; < 21_(;)ot(G). To find counterexamples to Erdés’ conjecture we
need graphs with o; < 1. These are by no means easy to find; certainly 04(Q,) > 1
for the Paley graphs, as the calculation of k4(Q,) cited in section 4 shows. But the
graphs T} from example (h) do the trick. The graph spanned by the neighbours of
the zero vector in T is denoted P . The next results are from [63].

Theorem 6.2. 04(P5) < 0-976 and 0+(T;") < 0-936 for t > 5.
Corollary 6.3. ¢ < 21_(;) fort > 4.

A modification of 20P;" can be used to show ¢4 < 7.

The failure of Erd8s’ conjecture is a considerable surprise, since it has
always been thought that the best ramsey colourings for complete graphs were,
roughly speaking, symmetric with respect to the two colours and such that the
edges of any given colour were spread evenly through the graph. This is not true, in
the following sense. Let us call a sequence Gy, Gz, ...of graphs such that |G| =n

-and k¢(Gr) + k:(Gr) = cz(n)(}) an extremal sequence for K;. Clearly Corollary 6.3
means we cannot characterise the graphs of an extremal sequence as pseudo-random
graphs, as we had once intended. But we can still uncover some properties of the
extremal sequence. Theorem 4.8 shows that G, is not itself (1/2, 0(n))-jumbled, nor
indeed can it contain an induced subgraph of order n + o(n) which is (1/2,0(n))-
jumbled. The remarks following Theorem 3.2 now have the following consequence.

Theorem 6.4. Let Gy, G2, ...be an extremal sequence for K;, and let n be a
constant with 0 < n < 1. Then there is a positive constant § = §(n) such that G,
contains an induced subgraph H,, of order |nn| with ‘e(H) - %(‘Izﬂ)l > 6n?.
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In other words, the graphs of an extremal sequence contain large subgraphs
with a significant bias towards one colour. Unfortunately this does not imply that
the graphs themselves are biased toward one colour, since for example the complete
bipartite graph K, /2 /2 contains large biased subgraphs.

These results have some bearing on the actual ramsey numbers for complete

graphs. Székely defined the quantity

k(n) = min{ Y k(@) + ke(G); |Gl =n }

>0
and showed that estimates for k(n) could be used to estimate ramsey numbers, as
follows. Let r(G, H) denote the ramsey number which is the smallest value of n
such that any colouring of the edges of K, with red and blue yields a red G or a
blue H. The number r(G,G) is abbreviated r(G). This coincides with our earlier
definition of r(K}). The term r(k,!) stands for r(Kx, K;). Székely’s theorem gives

lower bounds for ramsey numbers in terms of the function k(n).

Theorem 6.5. (Székely, [58]) Given € > 0 there is an ng such that if n > ng then

both n(1/2-¢)s <k(n) < (10_1—2)!7'([5,2)r(k,3) co.r(k, k — 3)r(k, k — 2)r(k,k)?

and n0-2275 logn Sk(n) < n0-7214logn,

where s = max{l;r(l,l) < /n}.

Another function for which we can obtain a better bound is the ramsey
number r(Cy, K,), where Cy is a 4-cycle. It is easily c.hecked that no two vertices
of the Erdds-Rényi graph have two common neighbours. This means first that
the graph contains no C4, and secondly that we can apply Theorem 3.1 with p =
n~1/2 £ O(n=1) and | < n=Y/2, Thus the graph is (n=1/2,2n%/4)-jumbled, and so
contains no independent set of order 4n3/4. In fact, as remarked after Theorem 3.1,
the proof yields somewhat more, namely that the independence number is at most
nd/4 4 n1/2,

Theorem 6.6. r(Cs, Kp) > (1 + 0(1))n?/3.

This result was also obtained by Alon [38], using his eigenvalue method.

We conclude with some remarks about the ramsey numbers 7(K,) them-
selves. The usual proof of the existence of ramsey numbers involves a local argument,
that is, it is based on a discussion on vertex degrees. In this paper we have been
looking at how a more global approach might be fruitful. In this context it is inter-
esting to note some recent work of Gyérfés, Lehel, Schelp and Tuza [41], extended
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by Gyérfis, Lehel, Neset¥il, Rddl, Schelp and Tuza [42]. For a given graph G they
define ri°°(G) to be the smallest value of n for which any colouring of the edges
of K, with any number of colours yields a monochromatic G provided no more
than k colours appear at any vertex. (Of course, the first thing they have to do is
show that ri°°(G) exists.) We will then want to compare ri°°(K;) with r(K;). In
general ri°°(G)/r(G) can be arbitrarily large, though it is shown in [41] that if G
is connected then r}°°(G)/r(G) < 3/2. For complete graphs there is the following
sharper result, in which the graph K,, + K, consists of n vertices each joined to

every vertex of a K,y,.

Theorem 6.7. (Gyéarfés, Lehel, Schelp and Tuza [41]) r¥°°(Kp+K,) = r(Km+
K,) if m>n—1.

In particular, r(K;)=ri°°(K;). There are many other interesting compar-
isons and contrasts between local and global ramsey numbers contained in [41] and
[42].

As for the ramsey number r(K,, + Ky), it was conjectured in [60] to be
at most 2™(m + n — 2) + 2. This was backed up by a heuristic argument which in
vacuo has some appeal but now appears hopeless, especially in view of the failure
of Erdés’ conjecture. The conjecture is true for m = 1 (trivially) and m = 2 (by
Goodman’s theorem, as is implicit in Walker [69]), but is indeed false for m = 3. It
is shown in [66] that P contains no K3 + K, ifn>4F2,

Theorem 6.8. r(Ks + fn) >8n+2¢/n—1-7 if n=4F+1.

We mentioned earlier that the extremal colourings for r(K3) and r(Kj)
were provided by Paley graphs, and most of the hitherto best known bounds for
small ramsey numbers were derived from these graphs (though recently Mathon
[53] has improved these bounds considerably with other constructions, as mentioned
in section 3). The actual clique number ¢/(Q,) in a Paley graph is unknown if n
is prime (though if n is a perfect square the clique number is /n). Of course it
is at least as large as the smallest non-residue, which value is sometimes at least
elognloglogn for some € > 0 (Montgomery [55] assuming the Riemann hypothesis
for all L-functions of real characters). In order to improve the lower bound for
r(K:) given by Theorem 1.1 it would be necessary to show that cl(Q,) < 2log, n
infinitely often. As for lower bounds on ¢/(Qy), the results of [9],(18] and [39], or
Theorem 4.9, show that ¢l(Q,) > % log, n, though this follows from the fact that @
is self-complementary and r(K;) < 4¢. Perhaps it would be possible to improve the
methods of [9],[18] and [39] by replacing the estimates of Weil by the more recent
estimates of Deligne (see Katz [47]),. and so obtain ¢/(Q,) > log, n, but this would
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be a formidable undertaking. However we have the following general result from
[68].
Theorem 6.9. Let G be a (p, a)-jumbled graph of order n. Then G contains K, +

K, provided w = [p¥n — 2¢/(1 — p)] > 1.

If, in this theorem, G is such that w > r(t — u,t), then G contains a
monochromatic K;. Use of the classical bound r(k,) < (¥}77%) due to Erdés and
Szekeres [33] yields the next theorem, which in particular can be applied to Qy.

Theorem 6.10. Let G1, Gs, ... be a sequence of graphs in which G,, has order n
and is (p, O(y/n))-jumbled. Then ki(Gy) + ki(Gn) > 0 if t < £ log, n(1+ o(1)).

This theorem means that if the extremal colourings for the ramsey number
of K; are pseudo-random then r(K;) < (3:05)%. In general no upper bound of the
form r(K;) < (4—¢€)?, for fixed ¢, has been proved; the best is r(K:) < Clﬁfo%ts—t (?__12)
claimed by Yackel [71]. Now the Erdds-Szekeres bound derives from the inequality
r(k,l) < r(k — 1,I) + r(k,! —1). An examination of this proof reveals that any
extremal colouring for r(k,!) on anything approaching r(k—1,!) +r(k,l — 1) vertices
is jumbled. We can then apply Theorem 6.9 to show the existence of a red K or
a blue Kj, so giving a better upper bound for r(k,!). Certainly this approach gives
some improvement over the classical result. At the time of writing, the following

theorem at least seems quite likely. The details will be given in [66].

Theorem 6.11. There is an absolute positive constant € such that if (1 —e)k <
| < k-then r(k,l) < (k+1)~¢ (k:i_lz)
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