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0. Introduction

A theorem of Smith (see Tutte [8]) states that in any cubic graph the number of
hamiltonian cycles containing a given edge is even. If the graph is cubic and
bipartite, a theorem of Kotzig (see Bosdk [2]) tells us that the total number of
hamiltonian cycles in the graph is even too. These two theorems are in fact
consequences of a more general result, which we prove in Section 1 below. We
also look at sets of edge-disjoint hamiltonian cycles in multigraphs (loops are
allowed). Let m =2 and for two edges x and y of a multigraph G (with at least
three vertices) let P(x, y) be the set of all collections of m edge-disjoint hamilto-
nian cycles in G. The main result of Section 2 states that |P(x, y)| is even.

These results were discovered whilst investigating uniquely edge colourable
graphs. We denote by x'(G) the edge chromatic number of a graph G. (We adopt
the terminology of [1].) If G has no isolated vertices, and if all edge colourings of
G induce the same partition of the edges into independent sets, we say that G is
uniquely k-edge colourable (where k = x'(G)); this is sometimes abbreviated to
uniquely edge colourable. Let « and B be two of the colours used to colour a
uniquely k-edge colourable graph, and let C,; be the subgraph induced by the
edges of colour « and the edges of colour 8. We may swap the colours a and 8 in
any component of C,; and get another edge colouring of G; hence C,; is
connected, and is a path or an (even) cycle. If G is k-regular then C,; is a
hamiltonian cycle, since there is an edge of colour « (and one of colour ) at each
vertex.

Obviously any uniquely 2-edge colourable graph is a path or an even cycle; it is
clear also that the star K, is uniquely k-edge colourable (K;, has vertex set
{u}U{vy, ..., v} and edge set {uv,, ..., uv,}). Suppose now that G is uniquely
3-edge colourable. If G contains a triangle we may contract the triangle to a
single vertex and get another uniquely 3-edge colourable multigraph; conversely
we may replace any vertex of degree 3 by a triangle to get a larger uniquely
3-edge colourable graph. This fact led Greenwell and Kronk [4] to conjecture that
every uniquely 3-edge colourable graph other than K, ; contains a triangle; they
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Fig. 1. Tutte’s counterexample.

also conjectured that every cubic graph with exactly three hamiltonian circuits is
uniquely edge colourable. A counterexample to the first conjecture was found by
Tutte [9]; see Fig. 1.

A conjecture of Cantoni (see [9]) states that every cubic planar graph with
exactly three hamiltonian cycles contains a triangle. This leads naturally to the
conjecture stated by Fiorini [3], that every uniquely 3-edge colourable planar
graph other than K, ; contains a triangle.

For x'(G)=4 the stars are the only uniquely edge colourable graphs; we prove
this in Section 3. It was first stated by Wilson [10] as a conjecture.

1. Hamiltonian cycles

Throughout this section we shall be concerned with hamiltonian paths in a
multigraph G =(V, E) which begin with a certain sequence of edges. (Paths and
cycles are always considered as sequences or sets of edges, rather than as
sequences of vertices.) We select a path s=ey, ..., e, in G, where the endvertices
of the edge e are v; and v, 1<i<m. The path s is called a stick. The
definitions to follow, and the statement of Theorem 1.1, depend on our choice of
s; we obtain corollaries to Theorem 1.1 by making suitable specific choices of s.

Let |V|=n, and for a vertex ve V let d(v) be the degree of v in G. Further let
¢(v) be the number of edges between v and the set of vertices {vy,. .., v,,}, that
is, all the vertices of the stick except the last. Let h=e,, ..., e,_; be a hamilto-
nian path beginning with the stick s, where the edge ¢; has endvertices v; and v;.4,
1<i<n-—1. Let e, be another edge with endvertices v, and v,, k=m+1, where

e #e,_,. Then the set T={e;,...,e,} is called a lollipop." It contains two
hamiltonian paths beginning with the stick s, namely h=e;,...,e, and h'=
€1+ €u_ts €n En_1s- - - » €xsq- Note that if e, is a loop then h=h'; we regard §

as then containing two copies of h.

We now define the lollipop graph 9 (G, s) to be a multigraph whose vertex set is
the set of hamiltonian paths of G beginning with the stick s. f (G, s) has an edge e
for each lollipop T of G, the endvertices of e being the vertices h and h' of
?(G, s). Again, note that if h=h' then e will be a loop of ¥ (G, s).

1 The letter ? (koppa) is an episemon, originally coming between 7 and p in the Greek alphabet.
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Suppose h is a hamiltonian path in G beginning with the stick s and ending in a
vertex v,. Then the degree of h in ¢ (G, s) is exactly the number of copies of h
contained in the lollipops, namely d(v,)—e&(v,)—1; this holds even if there are
loops in G at v,,.

Theorem 1.1. The number of hamiltonian paths in G beginning with the stick s and
ending in a vertex of the set W={we V:d(w)—e(w) is even} is even.

Proof. These paths are exactly the vertices of odd degree in 7(G, s).

Corollary 1.2. Let G be a multigraph, let u, v € V, and suppose that d(w) is odd for
each vertex we V—{u, v} # (. Then the number of hamiltonian paths in G from u to
v is even.

Proof. We may assume that u and v are adjacent vertices (if they are not we may
add an edge between them); let e be an edge between u and v. We choose the
stick s to be the edge e with u=wv; and v = v,; if we V then &(w) is the number
of edges from u to w. Consequently a hamiltonian path h beginning with s and
ending in w gives rise to exactly e(w) hamiltonian paths from u to v. But by
Theorem 1.1 the number of such paths ending in the set W={w € V: e(w) is odd}
is even.

Note that the case of Corollary 1.2 in which G is cubic and u is adjacent to v is
precisely Smith’s theorem.

Corollary 1.3. Let G be a multigraph with n vertices, n=4. Let u,v, we V and
suppose that d(x) is odd if x € V—{u, v, w}. Suppose that every path of length n—2
from v to w passes through the vertex u. Then the number of paths of length n—2
from u to v which do not contain w is even.

We prove Corollary 1.3 in the following equivalent form.

Corollary 1.4. Let G be a multigraph with n vertices, n=4. Let u, v, we V, with
uw, wo € E, and let d(x) be odd if x e V—{u, v, w}. Suppose that every (n—1)-cycle
in G passes through the vertex u. Then the number of hamiltonian cycles containing
both the edges uw and wo is even.

Proof. We take our stick to be s =e,, e, where e; =uw, e;=wv, v;,=U, V,=Ww
and v;=o. Let h be a hamiltonian path starting with s and ending in a vertex v,,.
Then v, cannot be joined to w since there is no (n —1)-cycle in G which doesn’t
pass through the vertex u. Thus v, is joined to u by e(v,) edges and so h gives
rise to (v,) hamiltonian cycles containing the edges e; and e,. By Theorem 1.1,
the number of such paths ending in the set W={xe€ V: g(x) is odd} is even, and
the result then follows.
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In the particular case when G is cubic and bipartite, let we V, and let w have
neighbours u;, u, and u;. By Corollary 1.4 the number of hamiltonian cycles
containing the edges u;w and wu, is even; similarly for u;w and wus, and for u,w
and wus. Thus the total number of hamiltonian cycles in G is even, and we obtain
Kotzig’s theorem.

If we restrict ourselves to cubic graphs we can obtain the following stronger
result.

Corollary 1.5. Let G be a cubic graph, and let H be the number of hamiltonian cycles
in G. For any vertex v e V, let g(v) be the number of (n—1)-cycles not containing v,
and for any two incident edges e and f let h(e, f) be the number of hamiltonian
cycles containing both e and f. Then

g(v)=h(e, f)= H(mod 2).

Proof. Let s=e,, e, be a stick in G. Let a be the number of hamiltonian paths
beginning with s and ending in a vertex adjacent to v, but not v,. Let b be the
number of hamiltonian paths beginning with s and ending in a vertex adjacent to
v, but not v;. Let ¢ be the number of hamiltonian paths beginning with s and
ending in a vertex adjacent to both v; and v,. Then h(e,, e,) = a +c, and since G
is cubic, g(vo)=b+c. By Theorem 1.1, a+b is even, and so h(e,, e,) =
g(vo) (mod 2). Let now fi, f> and f; be the edges incident with a vertex w. The
number of hamiltonian cycles not containing the edge f; is h(f,, f), so by Smith’s
theorem H = h(f,, f5) (mod 2), and the proof is complete.

Corollary 1.6. Let G be a graph in which every vertex has even degree. Let u be a
vertex of G, and let e be an edge incident to u. Then the number of hamiltonian
paths in G which begin at u, contain e, and end in a vertex not adjacent to u, is
even.

Given a multigraph G and a hamiltonian path h beginning with a stick s we can
always construct the lollipops which contain h and thus find the vertices adjacent
to h in the lollipop graph ?(G, s); thus we have an algorithm for constructing the
component of ?(G,s) which contains h. This is particularly simple in the case
when G is cubic, since then the components of ?(G, s) are paths and cycles. This
algorithm is illustrated in Fig. 2, where given one hamiltonian cycle containing the
two dark edges we may find another, since there is no 9-cycle which doesn’t
contain the vertex x. (This algorithm, applied to cubic planar graphs, was
discovered independently by Price [6].)
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Fig. 2. An algorithm illustrated.

2. Hamiltonian decompositions

Given a multigraph G =(V, E), a partition of E into edge-disjoint hamiltonian
cycles is called a hamiltonian decomposition of G. A pair {h, h} of edge-disjoint
hamiltonian cycles is called a hamiltonian pair. Let now G be 4-regular, that is,
d(v)=4 for each ve V, and let P be the set of all hamiltonian pairs. Since G is
4-regular a hamiltonian pair is a hamiltonian decomposition of G. For x, y € E, let
P(x, y) be the set of hamiltonian pairs in which x and y lie in the same cycle, and
let Q(x, y) be the set of hamiltonian pairs in which x and y lie in different cycles;
thus Q(x, y) = P— P(x, y). Note that if x, y,, y, and y; are the edges incident to a
vertex ve V, then P=J}_; P(x,y;) and so |P|=Y3_,|P(x, y;)|; in particular if
each |P(x, y;)| is even then so is |P|.

I would like to express here my thanks to Mr. Richard Pinch, of Trinity
College, Cambridge, whose computing work helped guide me towards the next
theorem.

Theorem 2.1. Let G be a 4-regular multigraph with at least three vertices, and let x
and y be any two edges of G. Then the number of hamiltonian pairs in which x and
y lie in the same cycle is even.

Proof. Suppose that the theorem is false, and let G be a counter-example with
fewest vertices. Then |P|>0, so G is connected and has no loops. Since the only
loopless 4-regular multigraph on 3 vertices is the fat triangle (Fig. 3) it follows
that |V|=4.

Fig. 3. The fat triangle.
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Let z, and z, be edges with a common endvertex v; say v is joined to vertices
u, and u, by z; and z, respectively and to vertices i, and i, by edges z, and z,
respectively. The multigraph G' is constructed from G by removing v, z;, 25, Z;
and Z,, and by then adding the edge z between u; and u, and the edge z between
i, and i,. Given {h, h}€ P(z,, z,) with z,, z, € h, say, then Z,, Z, € h, and there is a
corresponding hamiltonian pair {h’, '} in G’ with ze€ h' and Z € h'. Similarly it is
clear that to each pair {k’, k'}€ Q(z, Z) there corresponds a pair {k, k}e P(z,, z,),
and so |P(z;, z,)|=|Q(z, Z)|. But since G’ is not a counterexample to the
theorem it follows by the remarks made earlier that G' contains evenly many
hamiltonian pairs, and so |Q(z, Z)| is even. Hence in G, |P(zy, z,)| is even for any
two incident edges z, and z,, and in particular |P| is even.

Let now x and y be any two edges of G, and let x, y;, y5,...,¥,_1, ¥, =Yy be a
sequence of edges forming a path whose end edges are x and y. Now for any edge
z, the identity

Q(x, y)=P(x,z) AP(z, y)

holds (where the triangle denotes symmetric difference) since z is in either the
cycle containing x or that containing y. Hence we have for 1si<r-1,

|P(x, yi+1)| = |P| = |Q(x, yis1)| =]Q(x, yisa)l
= |P(x’ y:) A P(y;, }’i+1)|E |P(x’ Yi)|+ |P(}’i: )’i+1)|
=|P(x, y;)| (mod 2),

since y; and y;., have a common endvertex. Thus

|P(x, y)| = [P(x, y)|=|P(x, y,-1)|=" - - =|P(x, y,)|=0 (mod 2),

contradicting our choice of G as a counterexample.

Theorem 2.1 answers a question of Sloane [7], who asked whether the existence
of a hamiltonian pair in a graph G implied the existence of another such pair.
Sloane showed that if G contains a hamiltonian pair then it contains a third
hamiltonian cycle; Sloane’s result was improved somewhat by Ninédk [5] who
showed that G must contain at least six hamiltonian cycles. Corollary 2.2 includes
a further improvement on the estimate of the number of hamiltonian cycles in G.

Corollary 2.2. Let G be a 2m-regular multigraph with at least three vertices, where
m=1. If G has a hamiltonian decomposition, then
(i) each edge of G is in at least 3m —2 hamiltonian cycles,
(i1) G contains at least m(3m —2) hamiltonian cycles, and
(ili) G has at least B3m—2) Bm—5) -+ 7.4=3""(m—1)! hamiltonian decom-
positions.
In particular if G has a unique hamiltonian decomposition then G is a cycle.
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Proof. We prove statements (i), (ii) and (iii) by induction on m; they are obvious
if m=1. Suppose m =2. By Theorem 2.1 the number |P| of hamiltonian decom-
positions of G is even. Suppose e € E and {hy, h;}, {h,, h,}€ P with ec h, i=1, 2.
Then there is an edge fe hy-h,, so {hy, h,}€ P(e, f), and since |P(e, f)| is even it
follows that there is a third hamiltonian pair in G. Thus |P|=4, G has at least 8
hamiltonian cycles and each edge is in at least 4 hamiltonian cycles.

Now suppose k>2 and the statements are true for all values of m<k—1. Let
ecE and let {hy,..., i} be the given hamiltonian decomposition, with e € h;,
say. Let G; be the 4-regular subgraph induced by h;Uh, 2<i<k. G, has a
hamiltonian decomposition, and there are at least three further hamiltonian
decompositions {hy, h;}, 1<1<3, where e € h,. Now if i# ] then hy N hy < hy and
s0 hy# hy.. Let H={h;}U{hy:2<i<k, 1<I=<3}; then |H|=3k—2 and so state-
ment (i) is proved. Since each hamiltonian cycle contains n = | V| edges it follows
that G contains at least kn - (3k —2)/n hamiltonian cycles, and so statement (ii) is
proved. Further, if he H let G, =(V, E-h). Then G, is 2(k — 1)-regular and has
a hamiltonian decomposition, namely {h,, ..., h} if h=h, and {h,,..., h_,,
By Bivsy .o, WY if h=hy, 2<i<k, 1<I<3. Thus Gy, has at least 3k—5)---7-4
hamiltonian decompositions, and so G has at least (3k—2) (3k—-5)---74,
proving statement (iii).

An examination of a few arbitrarily chosen 4-regular graphs with fewer than 20
vertices suggested that the number of hamiltonian pairs in a 4-regular graph with
n vertices increases rapidly with n. However, for every n =10 there is a graph on
n vertices with exactly 32 hamiltonian pairs. Consider first the 4-regular graph T,

n=35, with vertex set {0, 1, ..., n—1} and with the vertex j joined to the vertices
j£1 and j+2 (addition mod n). Ty, is illustrated in Fig. 4.
For O0sk=n—1, the sequence of vertices 0,1,...,k—1, k+1, k, k+2,

k+3,...,n—1 gives rise to a hamiltonian cycle, and the remaining edges also
form a hamiltonian cycle; thus T,, has at least n hamiltonian pairs. If n is odd the
cycle 0,1,2,...,n—1 also yields a hamiltonian pair. Suppose now that {h, h} is a
hamiltonian pair. It is easily shown that if neither h nor h is given by 0,1, ..., n—
1 then h, say, must contain a path of the form j, j+2, j+1, j+3, say the path 0, 2,
1, 3. Since 3, 2, 4 is a path in h the edge (3,4) must be in h, so (3,5)eh, so
(4,5)€ h etc., and we see that {h, h} is one of the pairs described above, and that

Fig. 4. The graph T, and a typical decomposition.
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Fig. 5. A graph with 11 vertices and 32 hamiltonian pairs.

T, has exactly 2{3n} hamiltonian pairs, {r} denoting the least integer greater than
or equal to the real number r.

Now let n=10, and let n,+n,=n, with n;,=5, i=1,2. Let G, i=1,2, be
formed from T, by removing the vertex 0 and its incident edges and adding
vertices y; and v;; u; is joined to 1 and n;,—1 in T,, and v; is joined to 2 and n; —2.
Form G by identifying u, with u, and v, with v, (see Fig. 5). Then the number of
hamiltonian pairs in G is 2p,p,, where p; is the number of pairs in T, in which the
edges (0, 1) and (0, n—1) are in different cycles. But by the above remarks p, =4
and so G has exactly 32 hamiltonian pairs.

3. Uniquely edge colourable graphs

Let G be a graph with x'(G)=4, and suppose that G is edge coloured with the
colours b, g, r and y. We denote by u(b), say, a vertex u of degree 3 none of
whose incident edges are coloured b, and by v(g, r), say, a vertex v of degree 2
whose incident edges are coloured neither g nor r; that is, they are coloured b
and y.

If G is uniquely edge colourable, then the subgraph induced by the edges of
two given colours is connected, and so is a path or a cycle. We call these colour
paths and colour cycles.

Lemma 3.1. Suppose that K, , is not the only uniquely 4-edge colourable graph.
Then there is a uniquely 4-edge colourable graph G satisfying one of the following
two properties:

(i) G is 4-regular, or

(ii) There are two vertices u,ve V such that d(w)=4 for each we V—{u, v};
furthermore u and v both have degree 2 and their incident edges are coloured with
the same two colours.

Proof. Let H be a uniquely 4-edge colourable graph. We saw earlier that the
subgraph induced by the edges of any two given colours is connected. In
particular if H is a tree this means that H has no path of length three: thus
H =K, ,. Suppose now H# K, ,. If v is a vertex of degree 1, then the removal of
v and its incident edge gives a graph H' which is also uniquely 4-edge colourable;
since then H is not a tree we may assume that each vertex of H has degree at
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least 2. We set about adding edges and vertices to H to obtain uniquely edge
colourable graphs with fewer vertices of degree less than 4. If at some stage our
graph were to have two vertices of degree 3, u and v say, then either u = u(b) and
v=u0(b) or u=u(b) and v =v(g). In the first case we add the h-coloured edge uv,
and in the second we add the vertex w with a b-coloured edge uw and a g-
coloured edge vw. This shows that we may assume H has at most one vertex of
degree 3; since H cannot have just one vertex of odd degree, it has none at all.

Let now H have q vertices of degree 2, all other vertices having degree 4. If
q=0 then H is regular and we may take G = H, so we assume q=1. Let H have
p colour paths; then p<(5)=6. Furthermore each vertex of degree 2 is an
endvertex of exactly 4 colour paths (for instance, u(b, g) is an endvertex of the
b-r, b-y, g-r and g-y colour paths), and so 2p =4q; that is, p=2q. Since g=1
we have p=2, and since each path has two ends we must then have q=2; thus
q=3or q=2.

Suppose that q =3 (and so p=6) and that u, v, w are the vertices of degree 2.
If u=u(b, g) and v =wu(b, g), say, then neither u nor v is an endvertex of the b-g
colour path, which is impossible since the b—g colour path has two ends. Thus we
may assume that u = u(b, g) and v =v(g, r). Then we may add a g-coloured edge
uv. We now have two vertices of degree 3 and by the remarks above this reduces
to the case q=2.

In the final case q=2 let u and v be the vertices of degree 2, and let
u=u(b, g). Then the colour paths are coloured b-r, by, g-r and g-y, and so
either v =v(b, g) or v =v(r, y), since v is the other endvertex of each of these
paths. If v = v(b, g) we may take G =H. If v = v(r, y) we may identify u and v to
get a 4-regular uniquely edge colourable graph.

Theorem 3.2. The only uniquely k-edge colourable graph for k =4 is the star, K.

Proof. If G is uniquely k-edge colourable and G’ is the subgraph induced by the
edges of k' of the colours, k'<k, then G'is uniquely k’-edge colourable, so we
need prove Theorem 3.2 only in the case k =4.

Suppose then that G# K, 4 is a uniquely 4-edge colourable graph. We may
assume that G satisfies property (i) or property (ii) of Lemma 3.1. If G satisfies
property (i) then any colour cycle of G is a hamiltonian cycle which is contained
in a hamiltonian pair, hence G has at least 3 hamiltonian pairs. But given any
hamiltonian pair we may colour one cycle b-g and the other r-y to get an edge
colouring of G: this means that G has exactly 3 hamiltonian pairs. But this is
impossible by Theorem 2.1 and so G must satisfy property (ii).

Suppose then G has property (ii), and so has two vertices u(b, g) and v(b, g),
say. Then the (b-g)-coloured subgraph of G is an (n—2)-cycle C; (recall that G
has n vertices) and the (r-y)-coloured subgraph is a hamiltonian cycle C,. Let the
neighbours of u and v be u,, u, and vy, v, respectively. Construct the multigraph G’
from G by removing u and v and their incident edges and adding the edges
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X =u U, and y =v,v,. Then C, and C, give rise to a hamiltonian pair {C}, C4} in
G’ such that {x, y}< C5. By Theorem 2.1 there is another hamiltonian pair
{D1, D5} in G’ such that {x, y}< D%. Hence there is an (n—2)-cycle D, in G and
an edge-disjoint hamiltonian cycle D, such that {C,, C,}#{D,, D,}. By colouring
D, with b and g and colouring D, with r and y we get a new edge colouring of G.
This contradiction completes the proof of the theorem.
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