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3 Riemannian geometry

3.1 Riemannian metrics and the Levi–Civita connection

Let M be a smooth manifold.

Definition. A bilinear symmetric positive-definite form

gp : TpM × TpM → R

defined for every p ∈ M and smoothly depending on p is called a Riemannian metric
on M .

Positive-definite means that gp(v, v) > 0 for every v 6= 0, v ∈ TpM . Smoothly depending
on p means that for every pair Xp,Yp of C∞-smooth vector fields on M the expression
gp(Xp, Yp) defines a C∞-smooth function of p ∈M .

Alternatively, consider a coordinate neighbourhood on M containing p and let xi,
i = 1, . . . , dimM be the local coordinates. Then any two tangent vectors u, v ∈ TpM
may be written as u = ui( ∂

∂xi
)p, v = vi( ∂

∂xi
)p and gp(u, v) = gij(p)u

ivj, where the functions
gij(p) = g(

(
∂
∂xi

)
p
,
(
∂
∂xj

)
p
) express the coefficients of the metric g in local coordinates. One

often uses the following notation for a metric in local coordinates

g = gijdx
idxj.

The bilinear form (metric) g will be smooth if and only if the local coefficients gij = gij(x)
are smooth functions of local coordinates xi on each coordinate neighbourhood.

Example 3.1. Recall (from Chapter 1) that any smooth regularly parameterized surface S
in R3,

r : (u, v) ∈ U ⊂ R2 → r(u, v) ∈ R3.

is a 2-dimensional manifold (more precisely, we assume here that S satisfies all the defining
conditions of an embedded submanifold). The first fundamental form1 Edu2 + 2Fdudv +
Gdv2 is a Riemannian metric on S.

The following formulae are proved in multivariate calculus.
• A curve on S may be given as γ(t) = r(u(t), v(t)), a ≤ t ≤ b. The length of γ is then

computed as
∫ b
a
|γ̇(t)|dt =

∫ b
a

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt.

• The area of S is
∫∫

U

√
EG− F 2 du dv.

1E = (ru, ru), F = (ru, rv), G = (rv, rv) using the Euclidean inner product
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Theorem 3.2. Any smooth manifold M can be given a Riemannian metric.

Proof. Indeed, M may be embedded in Rm by Whitney theorem (cf. Q9 Example Sheet 1).
Then the restriction (more precisely, a pull-back) of the Euclidean metric of Rm to M
defines a Riemannian metric on M .

Remark . A metric, being a bilinear form on the tangent spaces, can be pulled back via a
smooth map, f say, in just the same way as a differential form. But a pull-back f ∗g of a
metric g will be a well-defined metric only if f has an injective differential.

Remark . As a Riemannian metric on M is an inner product on the vector bundle TM ,
Theorem 3.2 is also a consequence of Q2 of Example Sheet 3.

Definition. A connection on a manifold M is a connection on its tangent bundle TM .

Recall that a choice of local coordinates x on M determines a choice of local trivial-
ization of TM (using the basis vector fields ∂

∂xi
on coordinate patches). The transition

function ϕ for two trivializations of TM is given by the Jacobi matrices of the correspond-
ing change of coordinates (ϕii′) = ( ∂x

i

∂xi
′ ).

Let Γijk be the coefficients (Christoffel symbols) of a connection on M in local coordi-

nates xi. For any other choice xi
′

of local coordinates the transition law on the overlap
becomes (cf. Chapter 2, eqn. (2.12a))

Γijk = Γi
′

j′k′
∂xi

∂xi′
∂xj

′

∂xj
∂xk

′

∂xk
+
∂xi

∂xi′
∂2xi

′

∂xj∂xk
(3.3)

One can see from the above formula that if Γijk are the coefficients of a connection on M
then Γikj also are the coefficients of some well-defined connection on M (in general, this
would be a different connection).

The difference T ijk = Γijk − Γikj is called the torsion of a connection (Γijk). The trans-

formation law for T ijk is T ijk = T i
′

j′k′
∂xi

∂xi′
∂xj

′

∂xj
∂xk

′

∂xk
, thus the torsion of a connection is a well-

defined antisymmetric bilinear map sending a pair of vector fields X, Y to a vector field
T (X, Y ) = T ijkX

jY k on M .

Definition. A connection on M is symmetric if its torsion vanishes, i.e. if Γijk = Γikj.

Notation: given a connection (covariant derivative) D : Ω0
M(TM) → Ω1

M(TM) and a
smooth vector field X on M , we write DX for the composition of D and contraction of
1-forms (in Ω1

M(TM)) with X. Thus DX : Ω0
M(TM) → Ω0

M(TM) is a linear differential
operator acting on vector fields on M . In local coordinates, it is expressed as (DXY )i =
Xj∂jY

i + ΓijkY
jXk.

It is not difficult to see, by comparing with the definition on page 31, that a family
of operators DX , depending on a vector field X, defines a covariant derivative precisely if
DXY is C∞(M)-linear in X, R-linear in Y and satisfies the Leibniz rule

DX(hY ) = (Xh)Y + hDXY, (3.4)

for each h ∈ C∞(M) and a vector field Y (recall Xh equals the contraction of dh with X).
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Here is a way to define a symmetric connection independent of the local coordinates.

Proposition 3.5. A connection D is symmetric if and only if DXY −DYX = [X, Y ].

The proof is an (easy) straightforward computation.

Theorem 3.6. On any Riemannian manifold (M, g) there exists a unique connection D
such that
(1) d(g(X, Y ))(Z) = g(DZX, Y ) + g(X,DZY ) for any vector fields X, Y, Z on M ; and
(2) the connection D is symmetric.

D is called the Levi–Civita connection of the metric g.

The condition (1) in the above theorem is sometimes written more neatly as

dg(X, Y ) = g(DX, Y ) + g(X,DY ).

Proof. Uniqueness. The conditions (1) and (2) determine the coefficients of Levi–Civita in

local coordinates as follows. A ‘coordinate vector field’ ∂
∂xi

with constant coefficients has
covariant derivative D ∂

∂xi
= Γpik

∂
∂xp

dxk. The condition (1) with X = ∂
∂xi

, Y = ∂
∂xj

, Z = ∂
∂xk

becomes
∂

∂xk
gij = Γpikgpj + Γpjkgip. (3.7a)

Cycling i, j, k in the above formula, one can write two more relations

∂

∂xj
gki = Γpkjgpi + Γpijgkp, (3.7b)

∂

∂xi
gjk = Γpjigpk + Γpkigjp. (3.7c)

Let (giq) denote the inverse matrix to (giq), so Γpjkgqpg
iq = Γijk. Adding the first two

equations of (3.7) and subtracting the third, dividing by 2, and multiplying both sides of
the resulting equation by (giq), one obtains the formula

Γijk =
1

2
giq
(
∂gqj
∂xk

+
∂gkq
∂xj
− ∂gjk
∂xq

)
(3.8)

(also taking account of the symmetry condition (2)). Thus if the Levi–Civita connection
exists then its coefficients in local coordinates are expressed in terms of the metric by (3.8).

Exericise. By adapting the above method to arbitrary vector fields X, Y, Z on M , using
the symmetry condition (2) in the form DXY −DYX = [X, Y ], show that the Levi–Civita
connection is uniquely determined by the identity

g(DXY, Z) =
1

2

(
Xg(Y, Z)+Y g(Z,X)−Zg(X, Y )−g(Y, [X,Z])−g(Z, [Y,X])+g(X, [Z, Y ])

)
.

(3.9)
Verify that D defined by (3.9) satisfies the conditions (1) and (2) in Theorem 3.6 (this
might be argued by essentially following your calculation of (3.9) backwards).
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Existence. Proof 1. One way of proving the existence is to check that the Γijk computed
by the formula (3.8) are indeed the coefficients of a well-defined connection on M . This
can be done by verifying that the Γijk’s transform in the right way, i.e. as in (3.3), under

a change of local coordinates. The transformation law for gij is gi′j′ =
∂xi

∂xi′
gij

∂xj

∂xj′
, by the

usual linear algebra. Differentiating this latter formula and using the respective formula
for the induced inner product on the dual spaces, i.e. on the cotangent spaces to M , we
can verify that the coefficients given by (3.8) indeed transform according to (3.3) and so
the Levi–Civita connection of the metric g on M is well-defined.

Proof 2. Alternatively, assuming the exercise above, we shall be done if we show that
DxY defined by the formula (3.9) is C∞(M)-linear in X and satisfies the Leibniz rule in Y .
For the first property, we note that [fX,Z] = fXZ−Z(fX) = f [X,Z]−(Zf)X, for every
f ∈ C∞(M). Then 2g(DfXY, Z) becomes

fXg(Y, Z) + Y g(Z, fX)− Zg(fX, Y )− g(Y, [fX,Z])− g(Z, [Y, fX]) + g(fX, [Z, Y ])

= fXg(Y, Z) + (Y f)g(Z,X) + fY g(Z,X)− (Zf)g(X, Y )− fZg(X, Y )

−g(Y, f [X,Z]− (Zf)X)− g(Z, (Y f)X + f [Y,X]) + fg(X, [Z, Y ]),

using the Leibniz rule for vector fields. It follows that g(DfXY, Z) = g(fDXY, Z), thus D
is C∞(M)-linear in X.

For the Leibniz rule we calculate, with h a smooth function,

2g(DX(hY ), Z) = X(hg(Y, Z)) + hY g(Z,X)

− Z(hg(X, Y ))− hg(Y, [X,Z])− g(Z, [hY,X]) + g(X, [Z, hY ])

= (Xh)g(Y, Z) + hXg(Y, Z) + hY g(Z,X)− (Zh)g(X, Y )− hZg(X, Y )

−hg(Y, [X,Z])− hg(Z, [Y,X]) + (Xh)g(Z, Y ) + hg(X, [Z, Y ]) + (Zh)g(X, Y )

= 2(Xh)g(Y, Z) + 2hg(DXY, Z)

which gives (3.4) as required. Since DXY is clearly R-linear in Y we have proved that D
is a connection on M .

3.2 Geodesics on a Riemannian manifold

Let E →M be a vector bundle endowed with a connection (Γijk). A parameterized smooth
curve on the base M may be written in local coordinates by (xi(t). A lift of this curve
to E is locally expressed as (xi(t), aj(t)) using local trivialization of the bundle E to define
coordinates aj along the fibres. A tangent vector (ẋ(t), ȧ(t)) ∈ T(xi(t),aj(t))E to a lifted
curve will be horizontal (recall from the chapter 2, eqn. (2.10b)) at every t precisely when
a(t) satisfies a linear ODE

ȧi + Γijk(x)ajẋk = 0, (3.10)

where i, j = 1, . . . , rankE, k = 1, . . . , dimB.
Now if E = TM then there is also a canonical lift of any smooth curve γ(t) on the

base, as γ̇(t) ∈ Tγ(t)M .
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Definition. A curve γ(t) on a Riemannian manifold M is called a geodesic if γ̇(t) at
every t is horizontal with respect to the Levi–Civita connection.

Thus we are looking at a special case of (3.10) when a = ẋ. The condition for a path
in M to be a geodesic may be written explicitly in local coordinates as

ẍi + Γijk(x)ẋjẋk = 0, (3.11)

a non-linear second-order ordinary differential equation for a path x(t) = (xi(t)) (here
i, j, k = 1, . . . , dimM). By the basic existence and uniqueness theorem from the theory
of ordinary differential equations, it follows that for any choice of the initial conditions
x(0) = p, ẋ(0) = a there is a unique solution path x(t) defined for |t| < ε for some
positive ε. Thus for any p ∈ M and a ∈ TpM there is a uniquely determined (at least
for any small |t|) geodesic with this initial data (i.e. ‘coming out of p in the direction a’).
Denote this geodesic by γp(t, a) (or γ(t, a) if this is not likely to cause confusion).

Proposition 3.12. If γ(t) is a geodesic on (M, g) then |γ̇(t)|g = const.

Proof. We shall first make a rigorous sense of the equation

Dγ̇ γ̇ = 0 (3.13)

and show that (3.13) is satisfied at each γ(t) if and only if γ is a geodesic curve. The
problem with (3.13) at the moment is that γ̇ is not a vector field defined on any open set
in M , but only along a curve γ. We define an extension, still denoted by γ̇, on a coordinate
neighbourhood U of γ(0) as follows. It may be assumed, without loss, that γ̇(0) = (ẋi(0))
has ẋ1(0) 6= 0. We may further assume, taking a smaller U if necessary, that γ ∩ U , is
a graph of a smooth function x1 7→ (x2(x1), . . . , xn(x1)). In particular, ẋ1(t) 6= 0 for any
small |t| and also any hyperplane x1 = x10, such that |x10 − x1(γ(0))| is small, meets the
curve γ∩U in exactly one point. Denote by π the projection along hyperplanes x1 = const
onto γ ∩ U . Define, for every p ∈ U , γ̇(p) = γ̇(π(p)) and then γ̇ is a smooth vector field
on U , such that (γ̇)p = γ̇(t) whenever p = γ(t).

Now let Γijk be the coefficients of the Levi–Civita in the coordinates on U . So DZY =

(Z l∂lY
i + ΓijkY

jZk)∂i for any vector fields Z = Z l∂l, Y = Y i∂i on U . Let Y = Z = γ̇.

Then at any point p = γ(t) we have Z l∂lY
i = ẋl

∂ẋi

∂xl
= ẍi by the chain rule. It follows

that the equation (3.11) is equivalent to (3.13) if the latter if restricted to the points of
the curve γ. It can also be seen, by inspection of the above construction, that Dγ̇ γ̇ at the
points of γ is independent of the choice of extension of γ̇(t) to a vector field on U .

We have γ̇(γ̇, γ̇)g = (Dγ̇ γ̇, γ̇)g + (γ̇, Dγ̇ γ̇)g on U from the defining properties of the
Levi–Civita. Hence γ̇

(
|γ̇|2g
)

= 0 at each γ(t) ∈ U , by (3.13). From the construction of the

extension γ̇ on U , we find that the directional partial derivative γ̇
(
|γ̇|2g
)

at the points γ(t)

is expressed as ẋl
∂

∂xl
|γ̇|2g =

d

dt
|γ̇(t)|2g by the chain rule again, whence |γ̇|g = const as we

had to prove.
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Examples. 1. On Rn with the Euclidean metric
∑

(dxi)2 we have Γiik = 0, so the Levi–

Civita is just the exterior derivative D = d. The geodesics ẍi = 0 are straight lines
γp(t, a) = p+ at parameterized with constant velocity.

2. Consider the sphere Sn with the round metric (i.e. the restriction of the Euclidean
metric to Sn ⊂ Rn+1). Then p ∈ Sn and a ∈ TpS

n may be regarded as the vectors
in Rn+1. Suppose a 6= 0, then the orthogonal reflection L in the 2-dimensional subspace
P = span{p, p+a} is an isometry of Sn. Now L preserves the metric and p and a, the data
which determines the geodesic γp(·, a). As γp(·, a) is moreover uniquely determined it must
be contained in the fixed point set of L. But the fixed point set is a curve, the great circle
P ∩ Sn. We find that great circles, parameterized with velocity of constant length—and
only these—are the geodesics on Sn.

Observe that for any geodesic γp(t, a) and any real constant λ the path γp(λt, a) is also
a geodesic and γp(λt, a) = γp(t, λa).

By application of a general result in the theory of ordinary differential equations, a
geodesic γp(t, a) must depend smoothly on its initial conditions p, a. Furthermore, there
exist ε1 > 0 and ε2 > 0 independent of a and such that if |a| < ε1 then γp(t, a) exists for
all −2ε2 < t < 2ε2. It follows that γp(1, a) is defined whenever |a| < ε = ε1ε2.

Definition. The exponential map at a point p of a Riemannian manifold (M, g) is

expp : a ∈ Ball ε(0) ⊆ TpM → γ(1; p, a) ∈M.

Proposition 3.14. (d expp)0 = id(TpM)

Proof. We use the canonical identification a ∈ TpM → d
dt

(ta)|t=0 to define (d expp)0 as a
linear map on TpM (rather than on T0(TpM)).

Let |a| < ε, so γp(t, a) = γp(1, ta) is defined for 0 ≤ t ≤ 1. Then we have

(d expp)0a = d
dt

expp(ta)|t=0

= d
dt
γp(1, ta)|t=0

= d
dt
γp(t, a)|t=0

= γ̇(0, a) = a.

Corollary 3.15. The exponential map expm defines a diffeomorphism from a neighbour-
hood of zero in TmM to a neighbourhood of m in M .

Proof. Apply the Inverse Mapping Theorem (page 11 of these notes).

Corollary 3.15 means that the exponential map defines near every point p of a Rieman-
nian manifold a system of local coordinates—called normal (or geodesic) coordinates
at p. It is not difficult to see that the geodesics γp(t, a) are given in these coordinates by
rays emanating from the origin.
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It also makes sense to speak of geodesic polar coordinates at p ∈ M defined by the
polar coordinates on TpM via a diffeomorphism

f : (r,v) ∈ ]0, ε[×Sn−1 → expp(r v) ∈M. (3.16)

Here ]0, ε[×Sn−1 is regarded as a subset in TpM ∼= Rn via the inner product g(p). If
0 < r < ε then the image Σr = f({r} × Sn−1 ⊂ TpM) of the metric sphere of radius r
is well-defined on M and is called a geodesic sphere about p. (So Σr is an embedded
submanifold of M .) The following remarkable result asserts that ‘the geodesic spheres are
orthogonal to their radii’.

Gauss Lemma. The geodesic γp(t, a) is orthogonal to Σr. Thus the metric g in geodesic
polar coordinates has local expression g = dr2 + h(r, v), where for any 0 < r < ε, h(r, v) is
the metric on Σr induced by restriction of g.

Proof. Let X be an arbitrary smooth vector field on the unit sphere Sn−1 ⊂ TpM . Use
polar coordinates to make sense of X as a vector field (independent of r) on the punctured
unit ball B \ {0} ⊂ TpM . Define a vector field X̃(r,v) = rX(v) on B \ {0}. The map
expp induces a vector field Y (f(r,v)) = (d expp)rvX̃(r,v) on the punctured geodesic ball
B′ \ {p} = expp(B \ {0}) in M .

We shall be done if we show that Y is everywhere orthogonal to the radial vector
field ∂

∂r
. Note that, by construction, any geodesic from p is given in normal coordinates

by γp(t, a) = at, so γ̇p(t, a)/|a| = ∂
∂r

. Here |a| means the norm in the inner product gp
on the vector space TpM . By application of Corollary 3.15, the family γ̇p(t, a), where
|a| = 1 and 0 < |t| < ε, defines a smooth vector field on B′ \ {p}. Recall from (3.13) that
Dγ̇ γ̇ = 0 for any geodesic γ, where D denotes the Levi–Civita covariant derivative. Also
d
dt
g( ∂

∂r
, ∂
∂r

) = d
dt
g(γ̇, γ̇) = 0 by Proposition 3.12, so g( ∂

∂r
, ∂
∂r

) = 1. It remains to show that
g(Y, γ̇) = 0.

Using the diffeomorphism f in (3.16) to go to polar geodesic coordinates, we obtain

Dγ̇Y −DY γ̇ = (df)
(
D ∂

∂r
X̃ −DX̃

∂
∂r

)
= (df)

d

dr
X̃ = (df)(X̃/r) = Y/r,

with the help of Proposition 3.5. Therefore, we find

d

dr
g(Y, γ̇) = g(Dγ̇Y, γ̇) + g(Y,Dγ̇ γ̇) = g(Dγ̇Y, γ̇) = g(DY γ̇ +

1

r
Y, γ̇) =

1

r
g(Y, γ̇).

as 2g(Dγ̇, γ̇) = d g(γ̇, γ̇) = 0 by Proposition 3.13. Thus d
dr
G = G/r, where G = g(Y, γ̇).

Hence G is linear in r and d
dr
G independent of r. But limr→0

d
dr
G = limr→0 g(X, ∂

∂r
) = 0, as

(d expp)0 is an isometry by Proposition 3.14, and so g(Y, γ̇) = 0 and the result follows.

3.3 Curvature of a Riemannian manifold

Let g be a metric on a manifold M . The (full) Riemann curvature R = R(g) of g is, by
definition, the curvature of the Levi–Civita connection of g. Thus R ∈ Ω2

M(End(TM)),
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locally a matrix of differential 2-forms R = 1
2
(Ri

j,kldx
l ∧ dxk), i, j, k, l = 1 . . . n = dimM .

The coefficients (Ri
j,kl) form the Riemann curvature tensor of (M, g). Given two vector

fields X, Y , one can form an endomorphism field R(X, Y ) ∈ Γ(End(TM)); its matrix in
local coordinates is R(X, Y )ij = Ri

j,klX
kY l (as usual X = Xk∂k, Y = Y l∂l). Denote

Rkl = R(∂k, ∂l) ∈ End(TpM) (here p is any point in the coordinate neighbourhood).
Recall that in local coordinates a connection (covariant derivative) may be written as

d+ A, with A = Γijkdx
k = Akdx

k. We write Dk = D ∂

∂xk
= ∂

∂xk
+ Ak. The definition of the

curvature form of a connection (Chapter 2, p. 31) yields an expression in local coordinates

Ri
j,kl =

(
DlDk

∂
∂xj
−DkDl

∂
∂xj

)i
, or Rkl = −[Dk, Dl], (3.17)

considering the coefficient at dxl ∧ dxk. Now DX = XkDk and so we have −[DX , DY ] =
−[XkDk, X

lDl] = −Xk(∂kY
l)Dl − XkY lDkDl + Y k(∂kX

l)Dl + XkY lDlDk = XkY lRkl −
[X, Y ]lDl. We have thus proved

Lemma 3.18. R(X, Y ) = D[X,Y ] − [DX , DY ].

One also can combine (3.17) with (3.8) and thus obtain an explicit local expression for
Ri
j,kl in terms of the coefficients of the metric g and their first and second derivatives.

It is convenient to consider Rij,kl = giqR
q
j,kl, which defines a map on 4-tuples of vector

fields (X, Y, Z, T ) 7→ g(R(X, Y )Z, T ).

Proposition 3.19.

(i) Rij,lk = −Rij,kl = Rji,kl;

(ii) Ri
j,kl +Ri

k,lj +Ri
l,jk = 0 (the first Bianchi identity 2);

(iii) Rij,kl = Rkl,ij.

Proof. (i) The first equality is clear. For the second equality, one has, from the definition
of the Levi–Civita connection, ∂gkl

∂xi
= g(Di

∂
∂xk

, ∂
∂xl

) + g( ∂
∂xk

, Di
∂
∂xl

), and further

∂2gkl
∂xj∂xi

= g(DjDi
∂

∂xk
,
∂

∂xl
) + g(Di

∂

∂xk
, Dj

∂

∂xl
) + g(Dj

∂

∂xk
, Di

∂

∂xl
) + g(

∂

∂xk
, DjDi

∂

∂xl
).

The right-hand side of the above expression is symmetric in i, j as ∂2gkl
∂xi∂xj

= ∂2gkl
∂xj∂xi

. The
anti-symmetric part of the right-hand side (which has to be zero) equals Rij,kl +Rji,kl.

(ii) Firstly, (Dk
∂
∂xj

)i = Γijk = (Dj
∂
∂xk

)i, by the symmetric property of the Levi–Civita.
The claim now follows by straightforward computation using (3.17).

We note for use in the proof of (iii) that multiplying (ii) by giq gives Rij,kl + Rik,lj +
Ril,jk = 0.

(iii) We organize the argument using the vertices and faces of an octahedron (see the
next page).

2also known as the algebraic Bianchi identity, not to be confused with the differential Bianchi identity
in Chapter 2.
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Assign to each vertex a simulta-
neous application of the two iden-
tities in (i). Then, for each shaded
face, we may arrange the three co-
efficients of R to have the same
first index (indicated by a letter
in the middle of the face) so that
the Bianchi identity (ii) can be ap-
plied. Adding the instances of (ii)
for the two upper shaded faces and
subtracting those for the two lower
shaded faces, we obtain the re-
quired identity (iii) as all the terms
in the vertices of the equatorial
square cancel.3

Remark . Notice that the proof of (ii) shows the first Bianchi identity is valid for every
symmetric connection on M .

Corollary 3.20. The Riemann curvature tensor (Rij,kl)p defines, at any point p ∈ M a
symmetric bilinear form on the fibres of Λ2TpM .

There are natural ways to extract “simpler” quantities (i.e. with less components) from
the Riemann curvature tensor.

Definition. The Ricci curvature of a metric g at a point p ∈M , Ricp = Ric(g)p, is the
trace of the endomorphism v → Rp(x, v)y of TpM depending on a pair of tangent vectors
x, y ∈ TpM .

Thus in local coordinates Ric(p) is expressed as a matrix Ric = (Ricij), Ricij =
∑

q R
q
i,jq.

That is, the Ricci curvature at p is a bilinear form on TpM . A consequence of Proposi-
tion 3.19(iii) is that this bilinear form is symmetric, Ricij = Ricji.

Definition. The scalar curvature of a metric g at a point p ∈ M , s = scal(g)p is a
smooth function on M obtained by taking the trace of the bilinear form Ricij with respect
to the metric g.

If local coordinates are chosen so that gij(p) = δij at a point, then the latter definition
means that s(p) =

∑
i Ricii(p) =

∑
i,j Rij,ji(p). For a general gij, the formula may be

written as s =
∑

i g
ij Ricij, where gij is the induced inner product on the cotangent space

with respect to the dual basis, algebraically (gij) is the inverse matrix of (gij).

3I learned this argument from the lectures of M.M. Postnikov.
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3.3.1 Some examples

(1) It makes sense to consider the condition

Ric = λg (3.21)

for some constant λ ∈ R, as both the metric and its Ricci curvature are symmetric bilinear
forms on the tangent spaces to M . When the condition (3.21) is satisfied, the Riemannian
manifold (M, g) is called Einstein manifold. In particular, if (3.21) holds with λ = 0 then
M is said to be Ricci-flat.

(2) Recall that if Σ is a surface in R3 (smooth, regularly parameterized by (u, v) in an
open set in R2) then there is a metric induced on Σ, expressed as the first fundamental
form Edu2 + 2Fdudv + Gdv2. The second fundamental form Ldu2 + 2Mdudv + Ndv2 is
defined by taking the inner products L = (ruu,n), M = (ruv,n), N = (rvv,n) with the
unit normal vector to Σ, n = ru × rv/|ru × rv| (the subscripts u and v denote respective
partial derivatives). The quantity

K =
LN −M2

EG− F 2

is called the gaussian curvature of Σ. A celebrated theorema egregium, proved by Gauss,
asserts that K is determined by the coefficients of first fundamental form, i.e. by the metric
on Σ (and so K is independent of the choice of an isometric embedding of Σ in R3).

Taking up a general view on Σ as a 2-dimensional Riemannian manifold, one can check
that 2(EG − F 2)−1R12,21 = s, the scalar curvature of Σ. From the results of the next
section, we shall see (among other things) that the scalar curvature of a surface Σ is twice
its gaussian curvature s = 2K.

3.4 Riemannian submanifolds

When a manifold Mn is an embedded submanifold of a Riemannian manifold, say V n+r,
the Riemannian metric gV on V induces, by restriction, a Riemannian metric gM on M .
What is the relation between the Levi–Civita connection D̃ of gV and the Levi–Civita
connection D of gM?

To see this relation, it is convenient to consider the vector bundle E = ι∗(TV ) over M ,
where ι : M ↪→ V is the embedding map. (Informally, E is just the restriction of TV to M
if the latter is regarded as a subset of V .)

In the next proposition, we write xk for local coordinates on M , yγ for local coordinates
on V , and α, β, γ = 1, . . . , n+ r.

Proposition 3.22. Any connection ∇̃ on V induces in a canonical way a connection on E
with the coefficients Γαβk = ∂yγ

∂xk
Γαβγ, where Γαβγ are the coefficients of ∇̃ and y = y(x) is the

local expression of the embedding ι.

We shall still denote by ∇̃ the connection on E defined by the above proposition. For
p ∈ E, consider the tangent space TpE as a subspace of TpV and then the corresponding
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horizontal subspace of TpE is just the intersection Sp ∩ TpE, where Sp ⊂ TpV is the
horizontal subspace for the connection on V .

There is also an interpretation in terms of the covariant derivatives (needed for the
proof of Gauss–Weingarten formulae below). Any local vector field X on M (respectively
local section σ of E) can be extended smoothly to a local vector field X̃ (respectively σ̃)
on V . Then (∇̃X̃ σ̃)|M = ∇̃Xσ, where in the left-hand side we use the connection on E. In
particular, the right-hand side is independent of the choices of extensions X̃ and σ̃.

Thus the connection ∇̃ on E makes natural sense from all three points of view. Note
that we did not require any metric to define this induced connection.

Each fibre Ex of E contains TxM as a subspace. Using now the metric on M we obtain
a direct sum decomposition

Ex = TxM ⊕ (TxM)⊥. (3.23)

The disjoint union of the orthogonal complements tx∈M(TxM)⊥ forms a vector bundle of
rank r over M called the normal bundle of M in V , denoted NM/V . Exercise: verify
that NM/V is indeed a well-defined vector bundle (recall Theorems 1.8 and 2.4).

For any two vector fields X, Y on M , we can decompose the covariant derivative
(∇̃XY )x = (∇XY )x + (h(X, Y ))x, according to (3.23), where h(X, Y ) is some section
of NM/V . It turns out that ∇ is a well-defined covariant derivative (connection) on M and
h is a bilinear map TxM × TxM → (TxM)⊥ (depending smoothly on x). Furthermore, in
the case when ∇̃ = D̃ is the Levi–Civita connection on V we obtain.

Theorem 3.24 (Gauss formula). For any vector fields X, Y on M ,

D̃XY = DXY + II(X, Y ),

where D is the Levi–Civita connection of the induced metric on M , and II is a symmetric
bilinear map called the second fundamental form of M in V .

Theorem 3.25 (Weingarten formula). For any vector field X on M and section ξ of the
normal bundle NM/V ,

D̃Xξ = −SξX +∇′Xξ,
where for any ξ, Sξ is a endomorphism of the vector bundle TM called the shape operator
and ∇′ is a connection on NM/V . Furthermore, the shape operator is symmetric with respect
to the induced Riemannian metric M ,

gM(SξX, Y ) = gM(X, SξY ) = gV (II(X, Y ), ξ),

for any vector field Y on M .

By direct application of the above, we can compute the Riemann curvature R = (Rij,kl)
of M in terms of the curvature of the ambient manifold and the second fundamental form.

Theorem 3.26 (Gauss).

R(X, Y, Z, T ) = R̃(X, Y, Z, T ) + gV (II(X,Z), II(Y, T ))− gV (II(X,T ), II(Y, Z)).
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Corollary 3.27. The curvature of a submanifold M of a flat manifold is determined by
the second fundamental form of M .

When M is a surface in the Euclidean R3, this is equivalent to theorema egregium
discussed in the previous section.

3.5 Laplace–Beltrami operator

Throughout this section M is a connected oriented Riemannian manifold of dimension n.
Let g denote a metric on M and let the orientation be given by a nowhere-zero n-form ε.

Starting from the vector fields ∂
∂x1
, . . . ∂

∂xn
at a point x in a coordinate neighbourhood

U , we can apply Gram–Schmidt process with x as a parameter. Thus we obtain a new
system of (smooth) vector fields e1, . . . , en which give an orthonormal basis of tangent
vectors on a perhaps smaller neighbourhood of p (still denote this neighbourhood by U).
Let ω1, . . . , ωn on U be the dual 1-forms to e1, . . . , en, in the sense that

ωj(ei) = δij at any point in U.

Then ωj give at every point p of U a basis of T ∗pM , the dual basis to ej.
The metric on M induces, for every p = 0, . . . , n an inner product on the bundle ΛpT ∗M

by making {ωi1(x) ∧ . . . ∧ ωip(x) : 1 ≤ i1 < . . . < ip ≤ n} an orthonormal basis of ΛpT ∗xM .
If ω′j is another system of local 1-forms, on another coordinate neighbourhood U ′ say,

and ω′j are orthonormal at every point in U ′ then

ω′1 ∧ . . . ∧ ω′n = det(Φ)ω1 ∧ . . . ∧ ωn on U ′ ∩ U,

for some orthogonal matrix Φ (depending on x ∈ U ′ ∩ U). Assuming, as we can on
an oriented M , that all the coordinate neighbourhoods are chosen so that the Jacobians
det(Φ) are positive on the overlaps, we find that ω1∧ . . .∧ωn is a well-defined nowhere-zero
n-form ωg on all of M . We can further ensure that ωg = aε for some positive function
a ∈ C∞(M). Then ωg is called the volume form of M .

In (positively oriented) local coordinates, ωg =
√

det gijdx
1 ∧ . . . ∧ dxn.

Definition. The Hodge star on M is a linear operator on the differential forms

∗ : ΛpT ∗xM → Λn−pT ∗xM,

such that for any two p-forms α, β ∈ ΛpT ∗xM one has α ∧ ∗β = 〈α, β〉g ωg(x), where ωg is
the volume form on M .

It follows that if ωi is an orthonormal basis of a cotangent space T ∗xM then necessarily
∗(ω1 ∧ . . . ∧ ωp) = ωp+1 ∧ . . . ∧ ωn. In particular, ∗1 = ωg and ∗ωg = 1. By permutations
of indices and by linearity, the Hodge star is then uniquely determined for any differential
form on M . Further, it follows that ∗∗ = (−1)p(n−p) on the p-forms.

Using the Hodge star we construct a differential operator

δ : Ωp(M)→ Ωp−1(M)

putting δ = (−1)n(p+1)+1 ∗ d∗ if p 6= 0 and δ = 0 on Ω0(M) = C∞(M).
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Definition. The Laplace–Beltrami operator, or Laplacian, on M is a linear differen-
tial operator ∆ : Ωp(M)→ Ωp(M) given by

∆ = δd+ dδ.

Straightforward computation shows that when M is the Euclidean Rn the definition

gives ∆f = − ∂2f

(∂x1)2
− . . . − ∂2f

(∂xn)2
for any smooth function f . For a general metric

g = (gij), the local expression becomes ∆gf = − 1√
det g

∂

∂xj

(√
det g gij

∂f

∂xi

)
.

Proposition 3.28. The operator δ is the adjoint 4 of d in the sense that∫
M

〈dα, β〉g ωg =

∫
M

〈α, δβ〉g ωg,

for every compactly supported α ∈ Ωp−1(M), β ∈ Ωp(M).

Using the inner product on the spaces ΛpT ∗pM , p ∈M , we can define an inner product on
Ωp(M), called the L2 inner product, by putting 〈α, β〉L2 =

∫
M
〈α, β〉g ωg. The inner product

makes each Ωp(M) into a normed space, with L2-norm defined by ‖α‖ = (〈α, α〉L2)1/2. In
particular, α = 0 if and only if ‖α‖ = 0.

Thus Proposition 3.28 says that 〈dα, β〉L2 = 〈α, δβ〉L2 and, consequently, 〈∆α, β〉L2 =
〈α,∆β〉L2 . It follows immediately that the Laplace–Beltrami operator is self-adjoint.

A differential form α ∈ Ωp(M) is called harmonic if ∆α = 0.

Corollary 3.29. Every harmonic differential form on a compact manifold is closed and
co-closed: ∆α = 0 if and only if both dα = 0 and δα = 0.

Proof. Integration by parts, 0 = 〈δdα + dδα, α〉L2 = 〈δα, δα〉L2 + 〈dα, dα〉L2 .

It is also easily checked that ∗∆ = ∆∗ on any Ωp(M). Therefore the Hodge star of any
harmonic form is again harmonic.

Hodge Decomposition Theorem. Let M be a compact oriented Riemannian manifold.
For every 0 ≤ p ≤ dimM , the space Hp of harmonic p-forms is finite-dimensional. Fur-
thermore, there are L2-orthogonal direct sum decompositions

Ωp(M) = ∆Ωp(M)⊕Hp

= dδΩp(M)⊕ δdΩp(M)⊕Hp

= dΩp−1(M)⊕ δΩp+1(M)⊕Hp

(where we formally put Ω−1(M) = {0}).

Remark: the compactness condition on M cannot be removed.5

4It is more correct to say that δ is the ‘formal adjoint’ of d for reasons that have to do with the Analysis.
5The reason is that certain results in Analysis fail on non-compact sets, but this is another story.
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Short summary of the proof. We need to introduce the concept of a weak solution of

∆ω = α. (3.30)

A weak solution of (3.30) is by definition, a linear functional l : Ωp(M)→ R which is
(i) bounded, |l(β)| ≤ C‖β‖, for some C > 0 independent of β, and
(ii) satisfies l(∆ϕ) = 〈α, ϕ〉L2 .

Any solution ω of (3.30) defines a weak solution by putting lω(β) = 〈ω, β〉L2 .
The proof of Hodge Decomposition Theorem requires some results from Functional

Analysis.

Regularity Theorem. Any weak solution l of (3.30) is of the form l(β) = 〈ω, β〉L2, for
some ω ∈ Ωp(M) (and hence defines a solution of (3.30)).

Compactness Theorem. Assume that a sequence αn ∈ Ωp(M) satisfies ‖αn‖ < C and
‖∆αn‖ < C, for some C independent of n. Then αn contains a Cauchy subsequence.

We shall assume the above two theorems (and the Hahn–Banach theorem below)
without proof.

Compactness Theorem implies at once that Hp must be finite-dimensional (for,
otherwise, there would exist an infinite orthonormal sequence of forms). As Hp is finite-
dimensional, we can write an L2-orthogonal decomposition Ωp(M) = Hp ⊕ (Hp)⊥.

It is easy to see that ∆Ωp(M) ⊆ (Hp)⊥ (use Proposition 3.28). For the reverse inclusion,
suppose that α ∈ (Hp)⊥. We want to show that the equation (3.30) has a solution.
Assuming the Regularity Theorem, we shall be done if we obtain a weak solution l :
Ωp(M)→ R of (3.30).

Define l first on a subspace ∆Ωp(M), by putting l(∆η) = 〈η, α〉L2 . It is not hard to
check that l is well-defined. Further, (ii) is automatically satisfied (on this subspace); we
claim that (i) holds too. To verify the latter claim, we show that l is bounded below on
∆Ωp(M) using, once again, the Compactness Theorem.

In order to extend l to all of Ωp(M), we appeal to

Hahn–Banach Theorem. Suppose that L is a normed vector space, and L0 a subspace
of L, and l : L0 → R a linear functional satisfying l(x0) < ‖x0‖, for all x0 ∈ L0. Then l
extends to a linear functional on L with l(x) < ‖x‖ for all x ∈ L.

Thus we obtain a weak solution of (3.30) and deduce that Ωp(M) = ∆Ωp(M) ⊕ Hp

as desired. The two other versions of the L2-orthogonal decomposition of Ωp(M) follow
readily by application of Proposition 3.28.

Corollary 3.31. Every de Rham cohomology class a ∈ Hr(M) of a compact oriented Rie-
mannian manifold M is represented by a unique harmonic differential r-form α ∈ Ωr(M),
[α] = a. Thus Hr ∼= Hr(M).

Proof. Uniqueness. If α1, α2 are harmonic p-forms and α1 − α2 = dβ then ‖dβ‖2 =
〈dβ, α1 − α2〉L2 = 〈β, δ(α1 − α2)〉L2 = 0.

Existence. If α is such that dδα = 0 then ‖δα‖ = 0. Hence any closed p-form must
be in dΩp−1(M)⊕Hp.
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Corollary 3.31 is a surprising result: an analytical object (harmonic forms) turns out to
be equivalent to a topological object (de Rham cohomology) via some differential geometry.
Here is a way to see ‘why such a result can be true’.

A de Rham cohomology class, a ∈ Hr(M) say, can be represented by many differential
forms; consider the (infinite-dimensional) affine space

Ba = {ξ ∈ Ωr(M) | dξ = 0, [ξ] = a ∈ Hr(M)}
= {ξ ∈ Ωr(M)|ξ = α + dβ, for some β ∈ Ωr−1(M)}.

When does a closed form α have the smallest L2-norm amongst all the closed forms in a
given de Rham cohomology class Ba?

Such a form must be a critical point of the function F (α+ dβ) = ‖α+ dβ)‖2 on Ba, so
the partial derivatives of F in any direction should vanish. That is, we must have

0 =
d

dt

∣∣∣∣
t=0

〈α + t dβ, α + t dβ〉L2 = 2〈α, dβ〉L2 .

Integrating by parts, we find that
∫
M
〈δα, β〉g = 0 must hold for every β ∈ Ωr−1(M). This

forces δα = 0, and so the extremal points of F are precisely the harmonic forms α.
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