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Chapter 1

Lebesgue spaces

This chapter is devoted to the derivation of fundamental properties of Lebesgue spaces Lp(Rd) .
After recalling classical inequalities (Hölder, Minkowski and Young), we introduce the complex
interpolation method which is a powerful tool to derive estimates. We then give a self con-
tained proof of the critical Hardy-Littlewood-Sobolev estimates which are essential for many
applications in mathematical physics and are a first intrusion into harmonic analysis methods.

1.1 Banach space structure and duality

In this section, we briefly recall basis classical properties of Lebesgue spaces in a general
measured topological space (X,O, µ) . Classical references on Lebesgue spaces are [3], [17] et
[34].

1.1.1 Banach space structure

Let us recall the definition of Lebesgue spaces.

Definition 1.1.1. Let (X,µ) be a measured topological space. If 1 ≤ p < +∞ then Lp =
Lp(X,µ) is the space of equivalence classes (for the µ almost everywhere equality) of borelian
functions f on X with values in R ou C such that |f |p is integrable. We let

‖f‖Lp
def
=

(∫
X
|f(x)|pdµ(x)

) 1
p

.

If p = +∞, we define L∞(X,µ) as the set of equivalence classes for borelian functions f
on X such that the set of λ > 0 satisfying µ

(
{x ∈ X / |f(x)| > λ}

)
> 0 is bounded. We let

‖f‖L∞
def
= sup

{
λ > 0 / µ

(
{x ∈ X / |f(x)| > λ}

)
> 0
}
·

The following Theorem is fundamental and relies on the construction of the measure.

Theoreme 1.1.1 (Banach space structure). (Lp(X,µ), ‖ · ‖Lp) is a Banach space.

The vectorial space structure follows for 1 ≤ p <∞ from

|f(x) + g(x)|p ≤ 2p−1(|f(x)|p + |g(x)|p).

The rest of the proof (see e.g. [5, 34] for détails) relies essentially on Hölder’s inequality.
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Lemma 1.1.1 (Hölder’s inequality). Let p ∈ [1,+∞] . Let p′
def
=

p

p− 1
be the conjuguate

exponent (with the rule 1/0 =∞). Then

∀f, g ∈ Lp × Lp′ , ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lp′ .

Proof of Lemma 1.1.1. It is obvious if p is 1 or ∞ . In the other cases, the concavity of the
log function ensures that for (a, b) ∈ R∗+ × R∗+ and θ ∈ [0, 1] ,

θ log a+ (1− θ) log b ≤ log(θa+ (1− θ)b).

Exponentiating yields
aθb1−θ ≤ θa+ (1− θ)b. (1.1)

By homogeneity, we may without loss of generality assume ‖f‖Lp = ‖g‖Lp′ = 1 . Applying the
above inequality with θ = 1/p, a = |f(x)|p et b = |g(x)|p′ yields

|f(x)| |g(x)| = (|f(x)|p)
1
p (|g(x)|p′)

1
p′ ≤ 1

p
|f(x)|p +

(
1− 1

p

)
|g(x)|p′ .

which integration with respect to µ concludes the proof.

Remark. Hölder implies that ‖ · ‖Lp is a norm. Indeed,

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1

≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.

Since f + g belongs to Lp , |f + g|p−1 belongs to Lp′ , and from Hölder:∫
Ω
|f(x) + g(x)|pdµ(x) ≤ (‖f‖Lp + ‖g‖Lp)

(∫
Ω
|f(x) + g(x)|pdµ(x)

)1− 1
p
.

We conclude that ‖ · ‖Lp satisfies the triangle inequality (known as Minkowski’s inequality) :

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

The proof that (Lp, ‖ · ‖Lp) is complete is then very similar to the ones of Theorems 3.2.4 p.
81 and 3.3.2 p 87 of [3], and is detailed in [34].

The following variant of Hölder are very useful, the proof is left to the reader.

Corollary 1.1.1 (Hölder type inequalities). There holds:

(i) let 1 ≤ p, q ≤ ∞, 0 ≤ θ ≤ 1, then

‖f‖Lr ≤ ‖f‖θLp‖f‖1−θLq with
1

r
=
θ

p
+

1− θ
q
· ;

(ii) let 1 ≤ p1, · · · , pN , r ≤ +∞ then

‖
N∏
i=1

fi‖Lr ≤
N∏
i=1

‖fi‖Lpi with
1

r
=

N∑
i=1

1

pi
·

The separability of Lp for p < +∞ relies on classical density arguments, see [34].
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Proposition 1.1.1 (Separability). For 1 ≤ p < +∞ , for every borelian set A of Rd and
measure µ absolutely continuous with respect to the Lebesgue measure, the space Lp(A,µ) is
separable. Moreover, simple functions 1 are dense in Lp(A,µ) , and so is the set of continuous
functions with compact support in the closure of A.

Let us insist that the result if false for p = +∞ , and the limit cases p ∈ {1,+∞} should
always be treated with caution.

1.2 Complex interpolation

We present in this section a technical tool, elementary but very powerful, known as complex
interpolation. We will give application of the method when proving Strichartz estimates for
the free Schrödinger equation. Other related methods of real interpolation can be found in
[33].

1.2.1 Riesz-Thorin interpolation Theorem

The main result of complex interpolation is the following:

Theoreme 1.2.1 (Riesz-Thorin). Let 1 ≤ p0, p1, q0, q1 ≤ ∞. Let (X,µ) et (Y, ν) be two
measured space. Let T be a linear operator from Lp0(X,µ) + Lp1(X,µ) into Lq0(Y, ν) +
Lq1(Y, ν), which is bounded from Lp0(X,µ) into Lq0(Y, ν) and from Lp1(X,µ) into Lq1(Y, ν).
Assume that there exists θ ∈]0, 1[ such that

1

p
=

1− θ
p0

+
θ

p1
et

1

q
=

1− θ
q0

+
θ

q1
,

then T is also bounded from Lp(X,µ) into Lq(Y, ν) with

‖T‖L(Lp;Lq) ≤ ‖T‖1−θL(Lp0 ;Lq0 )‖T‖
θ
L(Lp1 ;Lq1 ).

The proof relies on the maximum principle for holomorphic functions.

Lemma 1.2.1 (Phragmen-Lindelöf). Let F be a function of the complex variable which is
continuous and bounded in the band

S
def
=
{
x+ iy / x ∈ [0, 1], y ∈ R

}
and holomorphic in the interior of S. Let

M0 = sup
y∈R
|F (iy)| and M1 = sup

y∈R
|F (1 + iy)|.

Then
∀(x, y) ∈ [0, 1]× R, |F (x+ iy)| ≤M1−x

0 Mx
1 .

Proof of Lemma 1.2.1. By possibly perturbing F by a constant which can be chosen arbitrarily
small, we may assume that M0,M1 are non negative. Let G(z) = M z−1

0 M−z1 F (z), then G
has the same properties of F and is bounded by 1 on the boundary of S . We need to prove
that G is bounded by 1 on all S . Let the sequence (Gn)n≥1 defined on S by

Gn(z) = G(z) exp

(
z2 − 1

n

)
·

1ie finite linear combination of characteristic function of mesureable disjoint sets of finite measure
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Since G is bounded on S, (Gn)n∈N converges pointwise to G on S , hence we need only prove
that Gn is bounded by 1 for n large enough. For all n ∈ N, Gn is continuous bounded on
the whole rectangle {x + iy / 0 ≤ x ≤ 1, |y| ≤ N} , holomorphic inside this rectangle. The
maximum principle ensures that Gn attains its maximum on the boundary of the rectangle.
Since G is bounded on S and |Gn(z)| ≤ |G(z)| exp(−y2/n), we conclude that if N has been
chosen large enough then |Gn| does not exceed 1 on the boundary of the rectangle, and hence
is bounded by 1 on the whole rectangle. Letting N → +∞ , we conclude that Gn is bounded
on the whole band S .

Proof of Theorem 1.2.1. By duality (Lemma 2.2.4), we equivalently need to prove

∀f ∈ Lp(X,µ), ∀g ∈ Lq′(Y, ν),

∣∣∣∣∫
Y
T (f) g dν

∣∣∣∣ ≤M θ
0M

1−θ
1 ‖f‖Lp‖g‖Lq′ . (1.2)

From Proposition 1.1.1, we need only prove the result when f and g are simple functions
(at least when p and q′ are finite), and we may therefore assume that

f =

p∑
j=1

aj1Aj and g =

q∑
k=1

bk1Bk

where the coefficients aj et bk are all non zero and the sets Aj and Bk are µ-mesurables. Up to
renormalization, we may assume ‖f‖Lp = ‖g‖Lq′ = 1. Let z ∈ S as in the Phragmen-Lindelöf
Lemma, let

fz =

p∑
j=1

aj
|aj |
|aj |

p( 1−z
p0

+ z
p1

)
1Aj and gz =

q∑
k=1

bk
|bk|
|bk|

q′( 1−z
q′0

+ z
q′1

)
1Bk .

then fθ = f, gθ = g and for given x , the functions z 7→ fz(x) and z 7→ T (gz)(x) are holo-
morphic in the interior of S and continuous bounded in S. Using the Theorem of holomorphic
dependance below the integral, we conclude that F defined on S by

F (z) =

∫
Y
T (fz) gz dν

satisfies the assumptions of the Phragmen-Lindelöf Lemma. More precisely, ∀t ∈ R,

‖fit‖Lp0 = ‖f‖p/p0Lp = 1, ‖f1+it‖Lp1 = ‖f‖p/p1Lp = 1

and
‖git‖Lq′0 = ‖g‖q

′/q′0
Lq′

= 1, ‖g1+it‖Lq′1 = ‖g‖q
′/q′1
Lq′

= 1.

We conclude using Hölder, the above estimates and our assumption on T,

|F (it)| ≤ ‖T (fit)‖Lq0‖git‖Lq′0 ≤M0‖fit‖Lp0 = M0,

|F (1 + it)| ≤ ‖T (f1+it)‖Lq1‖g1+it‖Lq′1 ≤M1‖f1+it‖Lp1 = M1.

The Phragmen-Lindelöf implies

∀x+iy ∈ S, |F (x+ iy)| ≤M1−x
0 Mx

1 .

Noticing that F (θ) is the lhs of (1.2) concludes the proof.
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1.2.2 Extension to space-time Lebesgue spaces

We extend the above results to space time Lebesgue spaces, the proof is elementary and left
to the reader. These functional spaces play a distinguished role in the study of linear and non
linear wave equations as we shall see when studying the Schrödinger equation in chapter 5.

Let E be a Banach space, (X,µ) a measured topological space and p ∈ [1,+∞]. We define
Lp(X;E) as the equivalence set of measurable functions f from X to E such that

‖f‖Lp(X;E)
def
=

(∫
X
‖f(x)‖pE dµ(x)

) 1
p

<∞.

Proposition 1.1.1 still holds in the folllowing form, (see for example the appendix of [13]).

Theoreme 1.2.2 (Space time Lebesgue spaces). (Lp(X;E), ‖ · ‖Lp(X;E)) is a Banach space.
Moreover, if p is finite, then there exists an isomorphism from the topological dual of Lp(X;E)
onto Lp

′
(X;E′).

We will use the space time Lebesgue spaces only when X is an interval I of R and E is a
Lebesgue space of Rd. The corresponding space will be denoted Lp(I;Lq(Rd)). Riesz-Thorin
becomes the following:

Theoreme 1.2.3 (Riesz-Thorin for space time Lebesgue spaces). Let 1 ≤ m0,m1, p0, p1, q0, q1, r0, r1 ≤
∞. Let T be a linear operator from Lm0(I;Lp0) + Lm1(I;Lp1) onto Lq0(I;Lr0) + Lq1(I;Lr1),
which is bounded from Lm0(I;Lp0) into Lq0(I;Lr0) and from Lm1(I;Lp1) into Lq1(I;Lr1).
Then ∀θ ∈ [0, 1], T is also bounded from Lmθ(I;Lpθ) into Lqθ(I;Lrθ) with

1

mθ
=

1− θ
m0

+
θ

m1
,

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
,

1

rθ
=

1− θ
r0

+
θ

r1
·

and moreover

‖T‖L(Lmθ (I;Lpθ );Lqθ (I;Lrθ )) ≤ ‖T‖1−θL(Lm0 (I;Lp0 );Lq0 (I;Lr0 ))‖T‖
θ
L(Lm1 (I;Lp1 );Lq1 (I;Lr1 )).

1.3 Convolution estimates

We present here the classical convolution estimates which appear in many physical models
and various analysis problems. It is also a central tool for Fourier analysis. We extend the
classical Young inequalities to the Hardy-Littlewood-Sobolev inequalities which allows for the
treatment of the singular kernels of mathematical physics. The proof relies onto the atomic
decomposition of Lp space which is another intrusion into harmonic analysis techniques.

1.3.1 Convolution estimates

Definition 1.3.1 (Convolution). Let φ ∈ Cc(Rd) and f ∈ L1
loc(Rd) , then

φ ? f(x) =

∫
Rd
φ(x− y)f(y)dy. (1.3)

The standard convolution estimate is Young’s inequality.
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Lemma (Inégalité de Young). Let (p, q, r) ∈ [1,∞]3 with

1

p
+

1

q
= 1 +

1

r
, (1.4)

then the bilinear convolution map (1.3) extends uniquely as a bilinear continuous map with

∀(f, g) ∈ Lp × Lq, f ? g ∈ Lr et ‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq . (1.5)

Proof of Lemma 1.3.1. It suffices to prove (1.5) for (f, g) ∈ Cc × Cc , and then the extension
claim follows by extending the obtained continuous bilinear form on the dense subset Cc × Cc
of Lp × Lq . The proof we propose uses only Hölder, but we could as well rely on complex
interpolation (see exercice 1.3). The case r = +∞ is Hölder, assume now that r is finite, and
observe that we may without loss of generality assume f, g ≥ 0 and ‖f‖Lp = ‖g‖Lq = 1 . Then
∀θ ∈]0, 1[ ,

(f ? g)(x) =

∫
Rd
fθ(x− y)g1−θ(y)f1−θ(x− y)gθ(y) dy.

Hölder implies: ∀s ≥ 1 , ∀θ ∈]0, 1[ ,

(f ? g)r(x) ≤
(∫

Rd
fθs(x− y)g(1−θ)s(y) dy

) r
s
(∫

Rd
f (1−θ)s′(x− y)gθs

′
(y) dy

) r
s′

.

We choose θ and s such that θs = p and θs′ = q . Using (1.4), we obtain

θ =
r

r + 1
, s =

p(r + 1)

r
and s′ =

q(r + 1)

r
· (1.6)

We conclude

(f ? g)r(x) ≤
(∫

Rd
fp(x− y)g

p
r (y) dy

) r
s
(∫

Rd
f
q
r (x− y)gq(y) dy

) r
s′

.

Let
α =

qr

p
and β =

pr

q
·

Since r ≥ max{p, q} , both α and β are bigger or equal to 1 . Using Hölder with α (resp. β )
and the probability fp(x− y) dy (resp. gq(y) dy ), we obtain

(f ? g)r(x) ≤
(∫

Rd
fp(x− y)gq(y) dy

)r( 1
sα

+ 1
s′β

)
.

By definition of θ , s , α et β ,

r

(
1

sα
+

1

s′β

)
= r

(
rp

p(r + 1)qr
+

rq

q(r + 1)pr

)
=

r

r + 1

(
1

q
+

1

p

)
= 1.

Hence
(f ? g)r(x) ≤ (fp ? gq)(x).

and the claim follows by integration.
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Remark 1.3.1. Convolution extend to sequences : let (an)n∈Z, (bn)n∈Z, we define a ? b by

(a ? b)n
def
=
∑
m∈Z

ambn−m =
∑
m∈Z

an−mbm.

For p ∈ [1,∞[, let `p be the set of sequences (an)n∈Z such that

‖(an)n∈N‖`p
def
=

(∑
n∈Z
|an|p

) 1
p

and `∞ be the set of bounded sequences. Then the above proof ensures: ∀(p, q, r) ∈ [1,∞]3

satisfying (1.4) and (a, b) ∈ `p × `q , there holds

a ? b ∈ `r et ‖a ? b‖`r ≤ ‖a‖`p‖b‖`q .

The weakness of Young’ inequality is that it cannot address the case of singular convolution
kernels. For example, the Coulomb potential created by a distribution of mass (ρ(x), x ∈ R3)
is given by 2

V = − 1

4π|x|
? ρ,

but the kernel 1
|x| does not belong to any Lp(R3) space. Howeve, the following holds.

Theorem (Hardy-Littlewood-Sobolev inequality). Let α ∈]0, d[ et (p, r) ∈]1,∞[2 such that

1

p
+
α

d
= 1 +

1

r
· (1.7)

Then
∀f ∈ Lp(Rd), ‖ | · |−α ? f‖Lr(Rd) ≤ Cr,p‖f‖Lp(Rd).

This result is a special case of more general convolution estimates which precise Young’s
inequality.

Definition 1.3.2 (weal Lq space). Let q ∈ [1,+∞[, then the weak Lq space noted Lqw is the
set of fonctions g on Rd Lebesgue mesurable such that

‖g‖q
Lqw

def
= sup

λ>0
λq | {|g| > λ} |<∞.

Remark. Lq ⊂ Lqw since

λq | {|g| > λ} |≤
∫
|g|>λ

|g(x)|q dx ≤ ‖g‖qLq . (1.8)

However,
1

|x|α
∈ L

d
α
w (1.9)

but does not belong to any Lp .

We may now state the precised convolution estimates which together with (1.9) immediately
imply Hardy-Littlewood-Sobolev.

2après normalisation des constantes physiques.
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Theoreme 1.3.1 (Precised convolution estimates). Let (p, q, r) ∈]1,∞[3 satisfiying (1.4).Then
there exists C such that for all (f, g) ∈ Lp(Rd)× Lqw(Rd), there holds

‖f ? g‖Lr ≤ C‖f‖Lp‖g‖Lqw .

Remark 1.3.2. The standard proof of Hardy-Littlewood-Sobolev relies on the maximal function
(see exercice 1.5) but does not allow one to obtain Theorem 1.3.1. Some exponents of the Hardy-
Littlewood-Sobolev can also be recovered through Sobolev embedding Theorems, see exercice 4.20.

The end of this chapter is devoted to the proof of Theorem 1.3.1 which requires the intro-
duction of the atomic decomposition of Lp spaces.

1.3.2 Atomic decomposition of Lp spaces

We call atomic decomposition of a function f ∈ Lp (with 1 ≤ p < +∞) a characterization
given by the following proposition

Proposition 1.3.1. Let (X,µ) be a measured space and 1 ≤ p < +∞. For all f ∈ Lp positive,
there exists a sequence (ck)k∈Z and a sequence of positive bounded functions (fk)k∈Z (called
atoms) with support two by two disjoints such that

f =
∑
k∈Z

ckfk

with

µ(Supp fk) ≤ 2k+1, (1.10)

‖fk‖L∞ ≤ 2
− k
p , (1.11)

1

2
‖f‖pLp ≤

∑
k∈Z

cpk ≤ 2‖f‖pLp . (1.12)

Proof of Proposition 1.3.1. We need only treat p = 1. Indeed, f ∈ Lp iff |f |p ∈ L1 and

‖f‖pLp = ‖|f |p‖L1 .

Let then f ∈ L1 positive. Let Eλ
def
= {f > λ}. The function λ 7→ µ(Eλ) is non increasing on

R+, and converges to 0 at infinity (from (1.8)). For k ∈ Z, let

λk
def
= inf

{
λ /µ(Eλ) < 2k

}
, ck

def
= 2kλk and fk

def
= c−1

k 1{λk+1<f≤λk}f.

The sequence (λk)k∈Z is non increasing and converges to 0 as k tends to +∞. Moreover, since
Eλk+1

=
⋃
λ>λk+1

Eλ, we have µ(Eλk+1
) ≤ 2k+1, and hence (1.10) is satisfied. Clearly ‖fk‖L∞ ≤

2−k . Express ∑
k∈Z

ck =
∑
k∈Z

2kλk =
∑
k∈Z

∫ ∞
0

2k1]0,λk[(λ) dλ.

From Fubini, ∑
k∈Z

ck =

∫ ∞
0

( ∑
k / λk>λ

2k
)
dλ.
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By definition of (λk)k∈Z , λ < λk implies µ(Eλ) ≥ 2k and hence

∑
k∈Z

ck ≤
∫ ∞

0
λ

( ∑
k / 2k≤µ(Eλ)

2k
)
dλ ≤ 2

∫ ∞
0

µ({f > λ}) dλ.

Using Fubbini again∫ ∞
0

µ(Eλ) dλ =

∫ ∞
0

∫
X
1{f>λ} dµ(x) dλ =

∫
X

(∫ f(x)

0
dλ

)
dµ(x) = ‖f‖L1 .

To conclude the proof of (1.12), we notice that since the supports of the functions (fk)k∈Z
are two by two disjoints, there holds:

‖f‖L1 =
∑
k∈Z

ck‖fk‖L1 .

Now (1.10) and (1.11) imply

‖fk‖L1 ≤ 2 pour tout k ∈ Z,

and the left inequality in (1.12) is proved.

Proof of Theorem 1.3.1. Let (f, g) ∈ Lp × Lq as in the assumptions of the Theorem, and let
h ∈ Lr

′
. We may without loss of generality assume that these functions are positive with

‖f‖Lp = ‖g‖Lqf = ‖h‖Lr′ = 1 . Let

I(f, g, h)
def
=

∫
Rd×Rd

f(y)g(x− y)h(x) dx dy.

Let Cj
def
= {z ∈ Rd , 2j ≤ g(z) < 2j+1} , then

I(f, g, h) ≤ 2
∑
j∈Z

2jIj(f, h) with (1.13)

Ij(f, h)
def
=

∫
Rd×Rd

f(y)h(x)1Cj (x− y) dx dy. (1.14)

Since ‖g‖Lqf = 1, we have ‖1Cj‖Ls ≤ 2−j
q
s for all s ∈ [1,∞]. We now apply Young’s inequality

with p , q and r and obtain that Ij(f, h) ≤ 2−j . This is not sufficient to prove the convergence
of the series

∑
2jIj(f, h). We therefore introduce the atomic decomposition

f =
∑
k∈Z

ckfk et h =
∑
k∈Z

dkhk

given by Proposition 1.3.1. We have

Ij(f, h) =
∑
k,`

ckd`Ij(fk, h`).

The gain with this new (apparently more complicated) decomposition is that the atoms fk
and h` all belong to Lebesgue spaces. We may therefore play with the full range of Young and
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Hölder inequalities to bound each term of the sum. Let (a, b) ∈ [1,∞]2 such that b ≤ a′, then
for all (k, `) ∈ Z2,

Ij(fk, h`) ≤ ‖fk‖La‖h`‖Lb‖1Cj‖Lc′ with
1

a
+

1

b
= 1 +

1

c
·

Hence
Ij(fk, h`) ≤ 2−jq(2− 1

a
− 1
b )‖fk‖La‖h`‖Lb .

Using Proposition 1.3.1, we obtain

2jIj(fk, h`) ≤ 2
jq
(

1
q
−2+ 1

a
+ 1
b

)
2
k
(

1
a
− 1
p

)
2`(

1
b
− 1
r′ ).

The condition (1.4) on (p, q, r) implies

2jIj(fk, h`) ≤ 2
(jq+k)

(
1
a
− 1
p

)
2(jq+`)( 1

b
− 1
r′ ). (1.15)

Let ε def
= 1

4

(
1
p −

1
r

)
· Since q > 1 , the condition (1.4) implies that p < r, and hence ε > 0.

Choose then a and b such that

1

a

def
=

1

p
− 2ε sg(jq + k) et

1

b

def
=

1

r′
− 2ε sg(jq + `)

with sg n = 1 if n ≥ 0 , and sg n = −1 if n < 0 . By noticing that b ≤ a′, the estimate (1.15)
becomes thanks to the triange inequality

2jIj(fk, h`) ≤ 2−2ε|jq+k|−2ε|jq+`| ≤ 2−ε|jq+k|−ε|jq+`|−ε|k−`|.

Using now remark 1.3.1, we conclude

I(f, g, h) ≤
∑
j,k,`

ckd`2
−ε|jq+k|−ε|jq+`|−ε|k−`| ≤ C

ε

∑
k,`

ckd`2
−ε|k−`| ≤ C

ε2
‖(ck)‖`p‖‖(d`)‖`p′ .

Since r′ ≤ p′, we have a fortiori,

I(f, g, h) ≤ C

ε2
‖(ck)‖`p‖‖(d`)‖`r′ .

In view of the properties of (ck) and (d`) given by Proposition 1.3.1, we conclude that there
exists C > 0 such that I(f, g, h) ≤ C for all positive functions f ∈ Lp, g ∈ Lq and h ∈ Lr′

with norm 1 , and Theorem 1.3.1 is proved.

1.4 Exercices

Exercice 1.1 (Cavalieri’s principle). Let p ∈ [1,+∞[ and µ a borelian measure.

(i) Show that for all Borelian function f , there holds

‖f‖pLp = p

∫ ∞
0

λp−1µ(|f | > λ) dλ. (1.16)
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(ii) Show more generally that if Φ : R+ −→ R+ is C1 non decreasing with Φ(0) = 0 , then∫
Ω

Φ(|f(x)|) dµ(x) =

∫ +∞

0
Φ′(λ)µ(|f | > λ) dλ.

Exercice 1.2 (Schur’s Lemma). Let K ∈ R+ and k : Rd × Rd → R be a locally integrable
function with pp x ∈ Rd and pp y ∈ Rd,∫

Rd
|k(x, y′)| dy′ ≤ K and

∫
Rd
|k(x′, y)| dx′ ≤ K.

Given f integrable on Rd, we define Tf(x) =
∫
Rd k(x, y)f(y) dy.

(i) Show that the linear map T is continuous from L1(Rd) to L1(Rd).

(ii) Let p ∈ [1,+∞]. Show that T extends uniquely as a linear map from Lp(Rd) to Lp(Rd)
and

∀f ∈ Lp(Rd), ‖Tf‖Lp ≤ K‖f‖Lp .

Hint: use a similar approach like for the proof of Young or use the Riesz-Thorin inter-
polation theorem.

Exercice 1.3. Propose an elementary proof of Young using the Riesz-Thorin interpolation
theorem.

Exercice 1.4. Let T be a linear defined on the set Cc of continuous functions with compact
support, and with value into the set of measurable functions. We assume that T commutes
with translations ie for h ∈ Rd and f ∈ Cc,

T (f ◦ τh) = (T (f)) ◦ τh.

(i) Show that for all f ∈ Cc and p ∈ [1,∞], there holds

lim
h→∞

‖f + f ◦ τh‖Lp = 2
1
p ‖f‖Lp .

(ii) Conclude that if T can be extended as a bounded operator from Lp to Lq , then neces-
sarily q ≥ p.

Exercice 1.5 (Maximal function and Hardy-Littlewood-Sobolev inequality). Given
f a Borelian function on R, we let ‖f‖L1

f
:= supλ>0 λµ(Eλ) where µ is the Lebesgue measure,

and Eλ := {|f | > λ}. We associate to f the maximal funtion Mf defined on R by

Mf(x) := sup
r>0

1

2r

∫ x+r

x−r
|f(y)| dy.

(i) (a) Let (Ij)j∈{1,··· ,p} be a family of open intervals of R. Show that there exists a sub
family (Ijk)k∈{1,··· ,q} of two by two disjoints intervals such that

q∑
k=1

µ(Ijk) = µ

( q⋃
k=1

Ijk

)
≥ 1

3
µ

( p⋃
j=1

Ij

)
.

Hint : argue by induction after ordering the Ij by decreasing order.
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(b) Let λ > 0 and K ⊂ Eλ(Mf) compact.
i. Show that K can be covered by a finite number of intervals Ij with∫

Ij

f(x) dx > λµ(Ij).

ii. Conclude that λµ(K) ≤ 3‖f‖L1 .

(c) Show that
∀f ∈ L1(R), ‖Mf‖L1

f
≤ 3‖f‖L1 .

(d) Generalize to higher dimension d ≥ 2 by defining the maximal function through

Mf(x) := sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)| dy.

(ii) Let f ≥ 0 , f ∈ Lp for p ∈]1,+∞[ . Let α ∈]0, 1[. We recall

‖f‖pLp = p

∫ +∞

0
λp−1µ

(
{f > λ}

)
dλ.

(a) Show that ‖Mf‖L∞ ≤ ‖f‖L∞ .
(b) Show that ∀λ > 0,

{Mf > λ} ⊂ {Mfλ > (1− α)λ} avec fλ := (f − λα)1{f≥λα}.

(c) Show that there exists C independant of d such that

µ
(
{Mfλ > (1− α)λ}

)
≤ C

(1− α)λ
‖fλ‖L1 .

(d) Conclude that there exists C such that for all p ∈]1,+∞] and f ∈ Lp, there holds

‖Mf‖Lp ≤ C
1
p

p

p− 1
‖f‖Lp .

(e) What about p = 1 ?

(iii) Let us now fix α ∈]0, d[ and 1 < p, q < +∞ with 1+1/q = 1/p+α/d. Given f ∈ C∞c (Rd),
x ∈ Rd and R > 0, let

T1f(x) =

∫
|y|<R

f(x− y)

|y|α
dy et T2f(x) =

∫
|y|≥R

f(x− y)

|y|α
dy.

We note Tf := T1f + T2f.

(a) Check that there exists C > 0 such that for all x ∈ Rd,

|T2f(x)| ≤ CRd( 1
p′−

α
d

)‖f‖Lp .

(b) By decomposing
∫
|y|<R in

∑∞
k=0

∫
2−(k+1)R<|y|≤2−kR, show that

∀x ∈ Rd, |T1f(x)| ≤ CRd−αMf(x).

(c) Conclude that there exists C > 0 (independant of f ) such that

∀x ∈ Rd, |Tf(x)| ≤ C(Mf(x))p/q‖f‖1−p/qLp

and obtain the Hardy-Littlewood-Sobolev inequality.
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Chapter 2

Functional analysis

We present in this chapter basic elements of functional analysis in Hilbert and Banach spaces.
The key concept is compactness in infinite dimension which is a central tool throughout this
series of lectures. We assume that the reader is familiar with the basic concepts of Hilbertian
analysis (projection onto a closed convex set, Riesz representation Theorem, existence of a
Hilbertian basis and Parseval identity in the separable case). We refer to [3, 4, 9, 18] for
an overview of these notions. A more systematic study of Banach spaces can be found in
[5, 33, 36].

2.1 Compactness in Banach spaces

We recall in this section the notion of compactness in metric and Banach spaces.

2.1.1 Compactness in a metric space

Compactness is a central tool in mathematical physics to derive the existence of a limit for
sequences involving an infinite dimensional space. Let us recall the abstract notion of com-
pactness in a topological space.

Definition 2.1.1 (Compact set). A topological separated space (X,O) is said to be compact
if one can extract from every covering of X by open sets a finite covering.

In metric spaces, the Bolzano-Weierstrass Theorem yields the sequential characterization
of compact sets.

Theorem (Bolzano-Weierstrass). A metric space (X, d) is compact iff every sequence of X
admits a converging subsequence in X .

In finite dimension, a set is compact iff it is bounded and closed. This result is false in
infinite dimension.

Theoreme 2.1.1 (Riesz). Let E be a vectorial space, then E is finite dimensional iff the unit
ball of E is compact.

The correct conclusion is that compactness for the strong norm topology is too much to
ask: one must weaken the topology to recover a large set of compact sets.
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2.1.2 Compact operators

A bounded operator is a continuous linear operator between normed vector spaces. We now
define the class of compact operators.

Definition 2.1.2 (Compact operator). Let E,F be two Banach spaces. A bounded operator
u ∈ L(E;F ) is compact iff the image by u of the unit ball of E it has compact closure in F .

Remark 2.1.1. By linearity, u(A) is a compact of F for every bounded set of E . In practice,
we often use the following characterization.

Lemma 2.1.1 (Sequential formulation of compactness). Let E,F be two Banach spaces. Then
u ∈ L(E;F ) is compact iff for every bounded sequence (xn)n∈N of E , we can extract a subse-
quence such that u(xφ(n)) converges in F .

Proof of Lemma 2.1.1. Assume that u is compact and let a bounded sequence xn of E, M def
=

supn ‖xn‖E . Then u(xn) ∈ u(BE(0,M)) which closure is compact. Hence we can extract
(u(xφ(n)))n∈N converging sequence in F. Let now A a bounded set of E and yn ∈ u(A) , then
there exists zn ∈ u(A) with

‖yn − zn‖F ≤
1

n
·

By assumption, we can extract zφ(n) converging sequence and then yφ(n) is also convergent.

Example. A finite rank operator, that is an operator which image is finite dimensional, is
always compact.

A canonical way to produce compact operators is the following.

Proposition 2.1.1 (Compact operators define a closed set). Let E,F be two Banach spaces.
Then the set of compact operators is a closed subset of L(E;F ). Equivalently, a uniform limit
of compact operators is compact.

Proof of Proposition 2.1.1. The following proof is canonical of compactness methods and relies
on the diagonal extraction argument. Let u be the uniform limit of a sequence of compact
operators un ie

∀ε > 0, ∃N(ε) tel que ∀n ≥ N(ε), ∀x ∈ E, ‖un(x)− u(x)‖F ≤ ε‖x‖E . (2.1)

Let (xp)p∈N be a bounded sequence of E with ‖xp‖E ≤ 1 . Since u0 is compact, we may
extract from (u0(xp))p∈N a subsequence (u0(xφ0(p)))p∈N which converges in F . By induction,
we construct for all n ≥ 0 extractions φ0, · · · , φn, · · · such that (un(xφ0◦···◦φn(p)))p∈N converges
in F . We then consider the diagonal sequence defined by

φ(n) = φ0 ◦ · · · ◦ φn(n)

which satisfies by construction

∀n ∈ N,
(
un(xφ(p))

)
p∈N

converges in F. (2.2)

Let us now show that the sequence
(
u(xφ(p))

)
p∈N is a Cauchy sequence in F which concludes

the proof. Indeed, let ε > 0 and N = N(ε) such that (2.1) holds, then

‖u(xφ(p′))− u(xφ(p))‖F
≤ ‖u(xφ(p′))− uN (xφ(p′))‖F +‖uN (xφ(p′))− uN (xφ(p))‖F +‖uN (xφ(p))− u(xφ(p))‖F
≤ 2ε+ ‖uN (xφ(p′))− uN (xφ(p))‖F ≤ 3ε

for p, p′ ≥ P (ε) large enough by (2.2) applied to n = N(ε) .
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2.2 Weak convergence

The weak topology will allow to us to obtain more compact sets, which is the key to derive
the existence of limits in infinite dimension. We present first this notion in separable Hilbert
spaces which are the simplest examples of infinite dimensional Banach spaces, and then we
briefly present its generalization to Banach spaces. We refer to [5, 9, 36] for a more systematic
presentation.

2.2.1 Weak convergence in separable Hilbert spaces

Let (H, (·|·)) be a separable (i.e. which admits a dense countable set) Hilbert space. The
scalar product is a sesquilinear form which is anti-linear for the second coordinate. Let us
recall that a separable Hilbert space always admits a Hilbertian basis (ei)i∈N .

Proposition 2.2.1 (Hilberatian basis and Parseval identity). Let H be a separable Hilbert
space. Then there exists a Hilbertian basis (ei)i≥0 such that

x =
+∞∑
i=0

xiei ∈ H ⇐⇒
+∞∑
i=0

|xi|2 < +∞,

and there holds the Parseval identity: :

‖x‖2 =

+∞∑
i=0

|xi|2 avec xi = (x|ei).

More generally,
∀x, x′ ∈ H, 〈x, x′〉 =

∑
i≥0

〈x, ei〉〈x′, ei〉 (2.3)

The weak topology is defined as follows.

Definition 2.2.1 (Weak topology). Let (xn)n∈N a sequence of elements of H . Let x ∈ H ,
then xn weakly converges to x iff

∀h ∈ H , lim
n→∞

(xn|h) = (x|h).

We note xn ⇀ x.

Proposition 2.2.2 (Properties of weak convergence). Let (xn)n∈N and (yn)n∈N be two se-
quences of elements of H and x, y deux two elements of H . Then:
(i) Strong convergence implies weak convergence:

xn → x =⇒ xn ⇀ x.

(ii) Boundedness

xn ⇀ x =⇒ (xn)n∈N is bounded and ‖x‖ ≤ lim inf ‖xn‖. (2.4)

(iii) Weak strong convergence:

xn → x and yn ⇀ y =⇒ lim
n→∞

(xn|yn) = (x|y). (2.5)
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Proof of Proposition 2.2.2. (i) follows from Cauchy-Schwarz:

∀h ∈ H, |(xn|h)− (x|h)| ≤ ‖h‖ ‖xn − x‖ → 0 as n→ +∞.

(ii) is a direct consequence of the Banach-Steinhaus theorem : let E,F be two Banach spaces
and un ∈ L(E,F ) such that

∀x ∈ E, sup
n
‖un(x)‖F < +∞,

then there exists C > 0 such that

∀n, ‖un‖L(E,F ) ≤ C.

Applying this to the sequence of linear forms un(h) = 〈xn, h〉 and noticing that ‖un‖L(E,C) =
‖xn‖ yields the claim. Moreover

‖xn − x‖2 = ‖xn‖2 − 2〈x, xn〉+ ‖x‖2 = ‖xn‖2 − 2〈x, xn − x〉 − ‖x‖2 (2.6)

and hence
‖x‖2 ≤ ‖xn‖2 − 2〈x, xn − x〉

which taking the lim inf yields and using 〈x, xn − x〉 → 0 yields:

‖xn‖ ≤ lim inf ‖xn‖.

For (iii):

|(xn|yn)− (x|y)| ≤ |(xn − x|yn)|+ |(x|yn − y)| ≤ ‖xn − x‖ ‖yn‖+ |(x|yn − y)|,

and since (2.4) ensures that (yn)n∈N is bounded:

|(xn|yn)− (x|y)| ≤
(
sup
n∈N
‖yn‖

)
‖xn − x‖+ |(x|yn − y)| → 0 when n→ +∞.

Example. A Hilbertian basis (ei)i≥0 is the canonical example of a sequence which converges
weakly

ei ⇀ 0 as i→ +∞

but not strongly for the norm. Indeed,

x =

+∞∑
i=0

(x|ei) ei,
∑
i=0

|xi|2 < +∞

implies xi = 〈x, ei〉 → 0 . But since the sequence is orthonormal,

‖e1 − ej‖2 = ‖ei‖2 + ‖ej‖2 = 2 for i 6= j,

it is not a Cauchy sequence for the norm.

Weak convergence can be characterized in terms of coordinates in the Hilbertian basis.

Lemma 2.2.1 (Coordinate characterization of weak convergence). Let (xn)n≥0 be a sequence
of H which coordinate xni = 〈xn, ei〉 in a Hilbertian basis (ei)i≥0 . Then

xn ⇀ x∞ ⇔ (∀i ≥ 0, lim
n→+∞

xni = x∞i and sup
n
‖xn‖ < +∞).
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Proof of Lemma 2.2.1. The ⇒ implication follows from the definition and (2.4). Conversely,
let h ∈ H and pick ε > 0 . Then by quadratic convergence of

∑
i≥0 |hi|2 , Cauchy Schwarz and

the boundedness of xn :

∑
i≥I(ε)

|xni hi| ≤

 ∑
i≥I(e)

|xni |2
 1

2
 ∑
i≥I(ε)

|hi|2
 1

2

≤ ε sup
n
‖xn‖2 . ε.

Hence there exists I(ε) such that

∀n ≥ 1,
∑
i≥I(ε)

|xni hi| ≤ ε.

Moreover for any J :
J∑
i=1

|x∞i |2 = lim
n→+∞

J∑
i=1

|xni |2 ≤ sup
n
‖xn‖2

and hence letting J → +∞
+∞∑
i=1

|x∞i |2 < +∞

which ensures that x∞ def
=
∑+∞

i=0 x
∞
i ei ∈ H . We then estimate similarily∑

i≥I(ε)

|x∞i hi| ≤ ε.

Hence for all n ≥ 1 using (2.3):

|〈xn − x∞, h〉| =

∣∣∣∣∣∣
I(ε)−1∑
i=0

(xni − x∞i )hi +
+∞∑
i=I(ε)

(xni − x∞i )hi

∣∣∣∣∣∣
≤

I(ε)−1∑
i=0

|xni − x∞i ||hi|+
+∞∑
i=I(ε)

(|xni + |x∞i |)|hi| .
I(ε)−1∑
i=0

|xni − x∞i ||hi|+ ε

and by the convergence of the I(ε) first coordinates

|〈xn − x∞, h〉| . ε for n ≥ N(ε) large enough.

We may also quantify the lack of strong convergence through the uniform control of high
frequencies.

Lemma 2.2.2 (Default of strong convergence). Let xn ⇀ x in H . Let (ei)i∈N an Hilbertian
basis and xni = (xn|ei). The following conditions are equivalent:

(i) Uniform control of high frequencies:

∀ε > 0, ∃I(ε) such that ∀n ∈ N,
∑
i≥I(ε)

|xni |2 < ε. (2.7)
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(ii) Convergence of the norm: ‖xn‖H → ‖x‖H quand n→ +∞.

(iii) Strong convergence: xn → x quand n→ +∞.

Proof of Lemma 2.2.2. The fact are (i) and (ii) are equivalent follows from (2.6). (iii) implies
(i) is obvious. We now prove that (i) implies (ii) . Indeed, pick ε > 0 , then for I(ε) large
enough, (2.7) and the convergence

∑
i≥0 |x∞i |2 < +∞ ensure

∀n ≥ 1,
∑
i≥I(ε)

|xni |2 + |x∞i |2 ≤ ε.

Now on the I(ε) first coordinates we have xni → x∞i from Lemma 2.2.1, and hence for n ≥ N(ε)
large enough:∣∣∣∣∣

+∞∑
i=0

|xni |2 − |x∞i |2
∣∣∣∣∣ ≤

I(ε)∑
i=0

|xni |2 − |x∞i |2 +

+∞∑
i=I(ε)+1

|xni |2 + |x∞i |2 ≤ 2ε.

Example. Lemma 2.2.2 allows us to recognize a typical compact set in infinite dimension: let

(ai)i∈N with
+∞∑
i=0

|ai|2 < +∞ , then the Hilbert’s cube
{
x =

+∞∑
i=0

xiei, |xi| ≤ |ai|
}

is a convex

compact subset of H .

Now that the topology has been weakened, we recover the compactness of the unit ball.

Theoreme 2.2.1 (Weak compactness of the unit ball). Let H be a separable Hilbert space,
then the unit ball is weakly compact. Equivalently, let xn be a bounded sequence of H , then we
can extract a weakly convergent subsequence.

Proof of Theorem 2.2.1. This a diagonal extraction procedure. Let M = supn∈N ‖xn‖ , xni =
(xn|ei), then i ∈ N et n ∈ N,

∀i, n, |xni |2 ≤
+∞∑
j=0

|xnj |2 ≤M2

and hence all sequences (xni )n∈N are bounded. For i = 0 , we may extract (x
φ0(n)
0 )n∈N conver-

gent in C :
lim

n→+∞
x
φ0(n)
0 = x∞0 as n→ +∞.

We build by induction on m φ1, · · · , φm such that

xφ0◦···◦φm(n)
m = (xφ0◦···◦φm(n)|em) −→ x∞m as n→ +∞.

The diagonal extraction φ(n) = φ0 ◦ · · · ◦ φn(n) satisfies by construction

∀m ∈ N, xφ(n)
m → x∞m as n→ +∞. (2.8)

Since the coordinates of the bounded sequence (xφ(n))n≥1 all converge, it is a weakly converging
sequence by Lemma 2.2.1.
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2.2.2 Adjoint operator

Let us recall the notion of adjoint in a Hilbert space which is a direct application of Riesz’
representation Theorem.

Definition (Adjunction). Let T ∈ L(H1,H2) . There exists a unique T ∗ ∈ L(H2,H2) such
that

∀(x, y) ∈ H1 ×H2, (T (x)|y)H1 = (x|T ∗(y))H2 .

T ∗ is the adjoint of T and satisfies

‖T ∗‖L(H2;H1) = ‖T‖L(H1;H2).

Remark 2.2.1. The adjoint can be defined in a more general case, [5, 36]. In the chapter 5,
we will use the case when the bounded operator T : H → B is defined form H Hilbert onto B
Banach. Letting B′ be the topological dual of B de B, ie the set of continuous forms on B ,
we notice that for x′ ∈ B′, the map1

x 7−→ 〈x′, T (x)〉B′×B
def
= x′(T (x))

is a continuous linear form on H. From Riesz representation Theorem, there exists T ∗(x′) ∈ H
such that

〈x′, T (x)〉B′×B = (x | T ∗(x′))H for all x ∈ H.

An important consequence of the existence of the adjoint is the equivalence of strongly
continuous and weakly continuous linear maps.

Definition 2.2.2. A linear map T : H1 → H2 is said to be weakly continuous faiblement
continue iff (xn ⇀ x⇒ T (xn) ⇀ T (x)).

Proposition 2.2.3 (Weak continuity is equivalent to strong continuity). A linear map T ∈
L(H1,H2) is continuous iff it is weakly continuous.

Proof of Proposition 2.2.3. Let T ∈ L(H1,H2) linear continuous and xn ⇀ x in H1 . Then
∀y ∈ H2,

(T (xn) | y)H2 = (xn | T ∗(y))H1 −→n→+∞ (x | T ∗(y))H1 = (T (x) | y)H2

and hence T is weakly continuous. Conversely, let T weakly continuous. If T is not strongly
continuous, then T in unbounded and hence there exists xn ∈ H1 with ‖xn‖H1 = 1 such that

‖T (xn)‖H2 → +∞ as n→ +∞. (2.9)

By weak compactness of the unit ball, we may extract (xφ(n))n∈N and x ∈ H1 with xφ(n) ⇀ x,
and hence by assumption T (xφ(n)) ⇀ T (x). Proposition 2.2.2 implies that (T (xφ(n)))n∈N is
bounded in H2 which contradicts (2.9).

Remark 2.2.2. We will systematically use the following corollary in the sequel. Let two
Hilbert spaces H1,H2 , H1 ⊂ H2 , such that the embedding Id : (H1, ‖ · ‖H1) 7→ (H2, ‖ · ‖H2) is
continuous, then

xn ⇀ x∞ in H1 ⇒ xn ⇀ x∞ in H2.

1where the conjuguate is to maintain coherence with respect to the above definition of the adjoint in a
Hilbert space.
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2.2.3 Compact operator in the Hilbertian setting

Weak convergence is a powerful tool to characterize compact operators between Hilbert spaces:
they are exactly the bounded operators which transform weakly convergent series into strongly
convergent series.

Proposition 2.2.4 (Characterization of compactness through weak convergence). Let T ∈
L(H1,H2) , then T is compact iff

xn ⇀ x∞ in H1 ⇒ T (xn)→ T (x) in H2. (2.10)

Remark 2.2.3. By linearity, it suffices to check (2.10) with x∞ = 0.

Proof of Proposition 2.2.4. ⇒ If T is compact, let xn ⇀ x∞ in H1 , then T is continuous,
hence weakly continuous, and hence T (xn) ⇀ T (x) in H2 . xn is weakly convergent and hence
bounded in H1 , and since T is compact, we conclude that we may extract T (xφ(n)) strongly
convergent in H2 , hence weakly convergent and hence by uniqueness of the weak limit

T (xφ(n)) ⇀ T (x) in H2.

Hence the sequence T (xn) takes value in a compact set of H2 , and the only accumulation
point is T (x) , and hence

T (xn) ⇀ T (x) in H2.

⇐ Let (xn)n∈N be a bounded sequence of H1, then we can extract xφ(n) weakly convergent in
H1 and hence T (xφ(n)) is strongly convergent in H2 by assumption, and hence T is compact.

Lemma 2.2.3 (Compactness and adjoint). Let T ∈ L(H1,H2) , then T is compact iff T ∗ is
compact.

Proof of Lemma 2.2.3. If T is compact, let yn ⇀ y in H2 . Since T ∗ is continuous and
hence weakly continuous, there holds T ∗(yn) ⇀ T ∗(y) in H1 . Hence since T is compact:
T (T ∗(yn))→ T (T ∗(y)) in H2 . Moreover

‖T ∗(yn)‖2H1
= (T ∗(yn) | T ∗(yn))H1 = (yn | T (T ∗(yn)))H2 → (y | T (T ∗(y)))H2 = ‖T ∗(y)‖2H1

since yn ⇀ y and T (T ∗(yn)) → T (T ∗(y)). Hence ‖T ∗(yn)‖H1 → ‖T ∗(y)‖H1 and T ∗(yn) ⇀
T ∗(y), which ensures by Proposition 2.2.2 that T ∗(yn)→ T ∗(y) and T ∗ is compact by Propo-
sition 2.2.4. The converse claim follows from (T ∗)∗ = T.

Finally, we complete Proposition 2.1.1 by showing that all compact operator is the uniform
limit of a sequence of finite rank operators.

Proposition (Uniform approximation of compact operators). A bounded operator T : H1 →
H2 is compact iff it is the uniform limit of a sequence of finite rank operators.

Proof of Proposition 2.2.3. A finite rank operator is compact, and the uniform limit of a se-
quence of compact operators is compact by Proposition 2.1.1. Conversely, let T : H1 → H2

compact. Let K def
= T (B(0, 1)) be a compact of H2. Let m ≥ 1 and εm = 1

m , we may extract
from the covering K ⊂ ∪y∈KB(y, εm) a finite covering . Let (ymi )1≤i≤N(m) be the center of the

corresponding balls of radius εm . The set Fm
def
= Vect(ym1 , . . . , ymN(m)) is a finite dimensional

vector space, hence closed and convex. Let Pm be the projection onto Fm , then

∀y ∈ K, dist(y, Fm) = ‖y − Pm(y)‖H2 ≤ εm
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and hence
∀x ∈ B(0, 1), ‖T (x)− Pm ◦ T (x)‖H2 ≤ εm

and hence T is the uniform limit of the sequence of finite rank operators Pm ◦ T.

2.2.4 Weak∗ convergence in Banach spaces

We conclude this chapter by a brief presentation of weak∗ convergence in Banach spaces which
application to Lp is very useful in non linear problems.

Definition 2.2.3 (Weak∗ convergence). Let E be a C or R Banach space, let E′ be its
topological dual. We say that a sequence fn ∈ E′ converges weakly∗ to f ∈ E′ iff

∀x ∈ E, 〈fn, x〉E′×E → 〈f, x〉E′×E .

We note fn ⇀ f faible *.

Weak∗ convergence has properties very similar to weak convergence in Hilbert spaces.

Proposition 2.2.5 (Properties of weak∗ convergence). Let (xn)n∈N be sequence of the Banach
space E and (fn)n∈N a sequence of E′. Let x ∈ E and f ∈ E′. Then:

(i) fn ⇀ f =⇒ (fn)n∈N is bounded and ‖f‖E′ ≤ lim inf ‖fn‖E′ ;

(ii) limn→+∞ ‖fn − f‖E′ = 0 =⇒ fn ⇀ f weak*;

(iii) xn → x and fn ⇀ f faible * =⇒ limn→+∞〈fn, xn〉E′×E = 〈f, x〉E′×E .

Proof of Proposition 2.2.5. Point (i) follows from Banach-Steinhaus. Point (ii) follows from
the definition of the norm:

|〈fn − f, x〉E′×E | ≤ ‖fn − f‖E′‖x‖E .

For point (iii), we write

|〈fn, xn〉E′×E − 〈f, x〉E′×E | ≤ |〈fn − f, x〉E′×E |+ |〈fn, xn − x〉E′×E |
≤ |〈fn − f, x〉E′×E |+ ‖fn‖E′‖xn − x‖E .

The first term converges to 0 by assumption, and since fn weakly convergent is bounded,
(‖fn‖E′)n∈N is bounded, and the conclusion follows.

We then recover the weak∗ compactness of the unit ball in a Banach space.

Theoreme 2.2.2 (Weak∗ compactness of the unit ball). Let E be a separable Banach space,
then every bounded sequence of E′ admits a weakly∗ converging subsequence.

Proof of Theorem 2.2.2. Since E is separable, there exists a dense countable family (ej)j∈N .
Let (fn)n∈N be a sequence of E′ bounded by M . As in the Hilbertian case, we diagonally
extract a subsequence (fψ(n))n∈N such that for all j ∈ N, the sequence (fψ(n)(ej))n∈N is
convergent. By linearity, the convergence holds on the vectorial space V spanned by the ej ,
and the limit function defined is a linear form on V . By assumption, the set {ej , j ∈ N} is
dense in E, and so is V. Since fn is bounded, the limit f is also bounded and hence f ∈ V ′ .
Since V is dense, we conclude that f uniquely extends as a linear form on E . It remains to
prove that ∀x ∈ E , limn→+∞(fψ(n)(x))n∈N = f(x) . Indeed, let x ∈ E and ε > 0. By density
of V in E , ∃y ∈ E with ‖x− y‖E ≤ ε, and then:

|fψ(n)(x)− f(x)| ≤ |fψ(n)(x)− fψ(n)(y)|+ |fψ(n)(y)− f(y)|+ |f(y)− f̃(x)|,

and since (fψ(n))n∈N et f are M -Lipschitz, the conclusion follows.
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2.2.5 Duality and weak compactness in Lp

We now apply the above concept to Lp spaces. We start with the following dual characteriza-
tion 2 of Lp functions.

Lemma 2.2.4 (Dual characterization of Lp ). Let (X,µ) be a measured space with µ σ -finie3,
let f be a measurable function and let p ∈ [1,+∞] . Then

f ∈ Lp ⇔ sup
‖g‖

Lp
′≤1

∫
X
|f(x)g(x)|dµ(x) <∞, (2.11)

and moreover if f ∈ Lp ,

‖f‖Lp = sup
‖g‖

Lp
′≤1

∣∣∣∣∫
X
f(x)g(x)dµ(x)

∣∣∣∣ .
Proof of Lemma 2.2.4. Assume that f is non zero µ p.p. Given λ ≥ 0, let Eλ

def
=
(
{|f | ≥ λ}

)
.

We start with p = +∞ . Fix λ > 0 such that µ
(
Eλ
)
> 0. Let g0 ∈ L1 , g0 ≥ 0 and supported

in Eλ , and with integral 1 . Let

g(x) =
f(x)

|f(x)|
g0 if f(x) 6= 0, et g(x) = 0 otherwise.

Then ∫
X
f(x)g(x) dµ(x) =

∫
X
|f(x)|g0(x) dµ(x) ≥ λ

∫
X
g0 dµ(x) ≥ λ

which shows that the quantity (2.11) is infinite if f is not in L∞, and

‖f‖L∞ ≥ sup
‖g‖L1≤1

∣∣∣∣∫
X
f(x)g(x)dµ(x)

∣∣∣∣
if f is in L∞. The converse inequality is obvious, and the case p = +∞ is proved.
Let now 1 ≤ p < +∞ , and consider an increasing sequence (Xn)n∈N with finite measure which
union is X. Let

fn = 1Xn∩{|f |≤n}f, gn(x) =
fn(x)|fn(x)|p−1

|fn(x)| ‖fn‖p−1
Lp

if fn(x) 6= 0 and gn(x) = 0 otherwise.

Then fn ∈ L1 ∩ L∞ ⊂ Lp and

‖gn‖p
′

Lp′
=

1

‖fn‖pLp

∫
X
|fn(x)|(p−1) p

p−1dµ(x) = 1.

The definitions of fn and gn ensures∫
X
f(x)1Xn∩(|f |≤n)gn(x)dµ(x) =

∫
X
fn(x)gn(x)dµ(x) =

(∫
X
|fn(x)|pdµ(x)

)
‖fn‖1−pLp

= ‖fn‖Lp
2which in setting of a general Banach space is a consequence of the Hahn-Banach Theorem, cf [5].
3i.e. there exist an increasing sequence of borelian sets (Xn)n∈N with finite measure which union is X
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and hecne ∫
X
|fn(x)|pdµ(x) ≤

(
sup

‖g‖
Lp
′≤1

∣∣∣∣∫
X
f(x)g(x)dµ(x)

∣∣∣∣
)p

.

If the rhs is finite, the monotone convergence Theorem applied to the nondecreasing sequence
(|fn|p)n∈N yields

f ∈ Lp and ‖f‖Lp ≤ sup
‖g‖

Lp
′≤1

∣∣∣∣∫
X
f(x)g(x) dµ(x)

∣∣∣∣.
Then if f ∈ Lp , let g(x) =

f(x)|f(x)|p−1

|f(x)| ‖f‖p−1
Lp

, then

‖g‖p
′

Lp′
=

1

‖f‖pLp

∫
X
|f(x)|(p−1) p

p−1dµ(x) = 1 et ‖f‖Lp =

∫
X
f(x)g(x) dµ(x),

and the claim is proved.

A fundamental corollary is the computation of the dual of Lp .

Theoreme 2.2.3 (Riesz representation Theorem). Let 1 ≤ p < +∞ and p′ be the conjuguate
Hölder exponent. Assume that µ on X is σ -finite. Let ϕ a continuous linear form on Lp .
Then ∃!u ∈ Lp′ such that

∀f ∈ Lp, 〈ϕ, f〉 def
= ϕ(f) =

∫
X
uf dµ(x).

and ‖ϕ‖(Lp)′ = ‖u‖Lp′ . Equivalently, the map T : u 7→ Tu defined for all u ∈ Lp′ and f ∈ Lp

by Tu(f) =
∫
X fu dµ(x) is an isomorphism from Lp

′ onto
(
Lp
)′
.

Proof of Theorem 2.2.3. We established in Lemma 2.2.4 that T : u 7→ Tu is an isometry of
Lp
′ onto(Lp)′. The surjectivity is non trivial and relies on geometric properties of the Lp norm

(Clarkson’s inequality), see [5].

Remark. The reader familiar with distribution theory knows that Theorem 2.2.3 is false for
p = +∞ : the Dirac mass

〈δ0, f〉
def
= f(0)

is the canonical example of continuous linear form on C(Rd, ‖·‖L∞) which cannot be identified
with a locally integrable function u . Hence the topological dual of L∞ is strictly bigger than
L1 : L1 ( (L∞)′.

Riesz representation Theorem implies that for for 1 < p < +∞ , Lp is a dual : Lp′ ' (Lp)′ ,
and is reflexive:

(Lp)′′ ' Lp.

Hence Lp is a reflexive separable Banach space in this case, and an immediate consequence of
Theorem 2.2.2 is the weak∗ compactness of the unit ball.

Corollary 2.2.1 (Weak compactness of the unit ball). Let 1 < p < +∞ and (fn)n∈N a
bounded sequence of Lp(A,µ) with A borélian of Rd and µ absolutely continuous with respect
to the Lebesgue measure. Then there exists a subsequence (fϕ(n))n∈N and f ∈ Lp(A,µ) such
that

∀g ∈ Lp′(A,µ), lim
n→+∞

∫
A
fϕ(n)(x)g(x) dµ(x) =

∫
A
f(x)g(x) dµ(x).
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Remark 2.2.4. Since any linear form on the separable space L1(A,µ) can be identified to
a function L∞(A,µ), Theorem 2.2.2 ensures that the above result remains true for p = +∞
even though L∞(A,µ) is not separable. It is however completely false for p = 1 (see exercice
2.9).

2.3 Exercices

Exercice 2.1. Let (X, d) be a complete metric space. Show that a subset A of X has compact
closure iff

∀ε > 0, ∃N ∈ N∗, ∃(xj)1≤j≤N ∈ AN / A ⊂
N⋃
j=1

B(xj , ε).

Exercice 2.2 (Continuation Theorem).

(i) Let (X, d) , (Y, δ) be two metric space, A a dense set of X and f a uniformly continuous
map from (A, d) to (Y, δ) . Show that if Y is complete, then there exists a continuous
map f̃ from (X, d) into (Y, δ) such that f̃|A = f, and f̃ is uniformly continuous.

(ii) Let E , F be two normed vector spaces, V a dense vectorial subset of E and L a linear
map from V into F . Assume that F is complete. Show that there exists a continuous
linear map L̃ from E to F such that L̃|V = L .

Exercice 2.3. Let H1 , H2 Hibert spaces with Hilbertian basis (en)n∈N , (fn)n∈N, respectively.
Let (εn)n∈N a sequence of complex numbers converging to 0.

(i) Show that there exists a unique T ∈ L(H1,H2) with

∀n ∈ N, T (en) = εnfn.

(ii) Show that T is compact.

Exercice 2.4. Let a sequence of functions (fn)n∈N in C([0, 1];R) which converges uniformly
to f on [0, 1] . Let x ∈ [0, 1] and xn → x . Show that

fn(xn)→ f(x).

Show that fn(x) = sin(nx) does not admit any converging subsequence in C([0, 1[, ‖ · ‖L∞) .

Exercice 2.5. Let (X, d) be compact metric space. Let Cα(X;K) (with K = R ou C) which
are Hölderian with index α ∈]0, 1] from X into K . Let the norm

‖f‖α = sup
x∈X
|f(x)|+ sup

(x,y)∈X2

x6=y

|f(x)− f(y)|
d(x, y)α

·

(i) Show (Cα(X;K), ‖ · ‖α) is a Banach space.

(ii) Show that for all α , the embedding of Cα(X;K) into the Banach space of continuous
functions from X in K is compact.

(iii) Show that given (fn)n∈N a bounded sequence of Cα(X;K) , there exists f in Cα(X;K)
and a subsequence with fψ(n) → f in (Cα

′
(X;K), ‖ · ‖α′ for all α′ ∈]0, α[.
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Exercice 2.6. Let H be an infinite dimensional separable Hilbert space. Find two sequences
(xn)n∈N and (yn)n∈N of elements of H such that

xn ⇀ x , yn ⇀ y et lim
n→+∞

(xn|yn) 6= (x|y).

Exercice 2.7. Let H be a Hilbert space (non necessarily separable). Show that every bounded
sequence of H admits a weakly convergent subsequence.

Exercice 2.8. Let H be a separable Hilbert space. Let A be a closed convex subset of H .
Let φ : A → R be a continuous convex function which lim‖x‖→+∞ φ(x) = +∞. Show that φ
is lower bounded and attains its infimum.

Exercice 2.9. Let ϕ ∈ C∞c (R) with integral 1. For n ≥ 1, we let ϕn(x) = nϕ(nx).

(i) Show that the sequence (ϕn)n≥1 is bounded in L1 , and compute the limit
∫
R ϕnf dx for

f ∈ L∞, which vanishes p.p. in a neighborhood of the origin.

(ii) Does the sequence weakly converge in L1 ?

Exercice 2.10 (Compactness of the convolution). Let k ∈ L2(Rd) and Tk(f) = k ? f . Show
that Tk is compact as a linear bounded map from L2(Rd) into L2(|x| ≤ 1) .
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Chapter 3

A brief overview of Distributions

We present in this chapter a brief overview of the theory of Distributions which is due to
Laurent Schwartz, and which generalizes the notion of function. The key point is the notion of
weak derivative which is extremely useful for the study of linear and nonlinear PDE’s, and the
notion of tempered distributions which allows us to define the continuous Fourier transform of
a priori rough objects. A reference book on the subject is [17].

In this chapter, all functions can be considered either real or complex valued. Given a
multiindex α = (α1, . . . , αd) ∈ Nd and φ ∈ C∞(Rd) , we define∣∣∣∣ |α| = α1 + · · ·+ αd

∂αφ = ∂α1
x1 . . . ∂

αd
xd
φ.

3.1 Test functions and regularization

3.1.1 Test functions

We introduce the space D(Rd) of test functions.

Definition 3.1.1 (Support of a function). Let φ ∈ C(Rd), we define

Supp(φ) = {x, φ(x) 6= 0}.

Definition 3.1.2 (Test functions). Let Ω be an open subset of Rd . We let Cc(Ω) be the set
of continuous functions on Ω which support is a compact subset of Ω . We let D(Ω) be the set
of C∞ functions on Ω which support is a compact subset of Ω .

Remark 3.1.1. D(Ω) is obviously non empty. For example a C∞ function with support the
unit ball is given by

ζ(x) =

∣∣∣∣∣ e−
1

1−‖x‖2 for ‖x‖ < 1
0 for ‖x‖ ≥ 1,

(3.1)

and since Ω contains a ball, the claim follows.

An element of D(Ω) has always its support strictly included in Ω in the following sense.

Lemma 3.1.1 (Strict inclusion of the support). Let Ω be an open subset of Rd and K ⊂ Ω
compact. Then there exists φ ∈ D(Ω) with 0 ≤ φ ≤ 1 and φ ≡ 1 on an open neighborhood of
K .
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Proof of Lemma 3.1.1. ∀x ∈ K , ∃rx > 0 such that B(x, rx) ⊂ Ω . Let ζ be given by (3.1)
and χx(y) = 2eζ

(
x−y
rx

)
, then Suppχx ⊂ B(x, rx) , χx > 0 and χx(x) = 2. Let Ux = {y ∈

Ω, χx(y) > 1} , then (Ux)x∈K is a covering of K compact, and hence K ⊂ Ux1 ∪ · · · ∪ Uxn .
The function f =

∑n
i=1 χxi satisfies∣∣∣∣∣∣

f ∈ C∞(Rd,R+)
Supp(f) ⊂ Ω
f > 1 on V = Ux1 ∪ · · · ∪ Uxn .

Let I ∈ C∞(R, [0, 1]) with

I(x) =

∣∣∣∣ 0 for x ≤ 0
1 for x ≥ 1

, I ′ ≥ 0

then φ = I ◦ f yields the claim.

3.1.2 Regularization by convolution

Definition 3.1.3 (L1
loc(Ω)). Let Ω be an open subset of Rd . We define L1

loc(Ω) as the set of
Lebesgue measurable functions on Ω which integral over any K ⊂ Ω compact is finite.

We recall the definition of the convolution operation: let φ ∈ Cc(Rd) and f ∈ L1
loc(Rd) ,

then
φ ? f(x) =

∫
Rd
φ(x− y)f(y)dy

which from Lemma 1.3.1 can be extended to all (f, g) ∈ Lp × Lq .

Lemma 3.1.2 (Regularity). Let φ ∈ D(Rd) and f ∈ L1
loc(Rd), then φ ? f(x) ∈ C∞(Rd) with

∂α(φ ? f) = (∂αφ) ? f.

Proof of Lemma 3.1.2. Let K = Suppφ ⊂ {|x| ≤ R}. Let x0 ∈ Rd , then

φ(x− y)f(y) 6= 0⇒ x− y ∈ K ⇒ |y| ≤ |x|+R.

Hence for |x− x0| ≤ 1 ,

φ ? f(x) =

∫
Rd
φ(x− y)f(y)dy =

∫
|y|≤|x0|+R+1

φ(x− y)f(y)dy

and the C∞ regularity with the computation of the derivative follow from Lebesgue’s Theorem
of derivability below the integral.

Lemma 3.1.3 (Control of the support). Let f ∈ Cc(Rd) , g ∈ C(Rd) , then

Supp(f ? g) ⊂ Suppf + Suppg ≡ {x+ y, (x, y) ∈ Suppf × Suppg}.

Proof. Let x ∈ Rd with f ? g(x) =
∫
Rd f(x − y)g(y)dy 6= 0 then there exists y ∈ Rd with

f(x− y) 6= 0 and g(y) 6= 0 and hence x = x− y + y ∈ Suppf + Suppg implies

Supp(f ? g) = {x, f ? g(x) 6= 0} ⊂ Suppf + Suppg.

We now claim that A compact and B closed implies A + B closed which yields the claim.
Indeed, let zn ∈ A+B be a converging sequence, then zn = an+bn → z and by compactness of
A : aφ(n) → a implies bφ(n) → z−a ≡ b ∈ B since B is closed, and hence z = a+b ∈ A+B .
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Definition 3.1.4 (Regularizing sequence). We call regularizing sequence a family (ζε)ε>0 with∣∣∣∣∣∣∣∣
ζε ∈ D(Rd)
Suppζε ⊂ {|x| ≤ rε}, limε→0 rε = 0
ζε ≥ 0∫
Rd ζεdx = 1.

Remark 3.1.2. Given ζ ∈ D(Rd) with ζ ≥ 0 and
∫
Rd ζdx = 1, then ζε(x) = 1

εd
ζ
(
x
ε

)
is a

regularizing family.

Theoreme 3.1.1 (Density of D(Rd) in Cc(Rd)). Let f ∈ Cc(Rd) and ζε a regularizing se-
quence, then ζε ? f ∈ D(Rd) and

lim
ε→0
‖ζ ? f − f‖L∞ = 0.

Proof of Theorem 3.1.1. Let Suppf ⊂ {|x| ≤ R} , then Supp(ζ ? f) ⊂ Suppζe + Suppf ⊂
{|x| ≤ R+ ε} and hence ζε ? f ∈ D(Rd) . Then

|ζε ? f(x)− f(x)| =

∣∣∣∣∫
Rd
ζε(y)(f(x− y)− f(y))dy

∣∣∣∣ ≤ sup
|y|≤rε

|f(x− y)− f(y)|
∫
|y|≤rε

ζε(y)dy

≤ sup
|y|≤rε

|f(x− y)− f(y)| → 0 as ε→ 0

where we used that f is continuous and compactly supported, and hence uniformly continuous.

Theoreme 3.1.2 (Density of D(Rd) in Lp(Rd)). Let 1 ≤ p < +∞. Then D(Rd) is dense in
Lp(Rd) . Moreoever,

lim
ε→0
‖ζε ? f − f‖Lp = 0.

Proof of Theorem 3.1.2. Let ζε be a regularizing sequence. Let f ∈ Lp(Rd) and η > 0 .
Since Cc(Rd) is dense in Lp(Rd) , there exists φ ∈ Cc(Rd) with ‖f − φ‖Lp < η . Then by
Haussdorf-Young:

‖f − ζε ? f‖Lp ≤ ‖f − φ‖Lp + ‖φ− ζε ? φ‖Lp + ‖ζε ? (f − φ)‖Lp
. η + ‖φ− ζε ? φ|Lp + ‖f − φ‖Lp‖ζε‖L1 ≤ 2η + ‖φ− ζε ? φ|L∞ ≤ 3η

for ε sufficiently small where we used that φ has compact support and Theorem 3.1.1. Now

‖f − ζε ? φ‖Lp . ‖f − ζ ? f‖Lp + ‖(f − φ) ? ζε‖Lp ≤ 2η

using Haussdorff-Young again, and the density claim follows since ζε ? φ ∈ D(Rd) .

Remark 3.1.3. Using Lemma 3.1.1, one can extend Theorem 3.1.1 and Theorem 3.1.2 to the
case of Ω open subset of Rd with C1 boundary.

3.2 The space D′(Ω)

3.2.1 Definition and extension of functions

Let Ω be an open subset of Rd . Distributions are defined as the dual of D(Ω) for a suitable
Frechet type topology on D(Rd) .
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Definition 3.2.1 (Convergence of test functions). Let Ω be an open subset of Rd . A sequence
φn ∈ D(Ω) is said to converge to φ ∈ D(Ω) iff there exists K ⊂ Ω compact with∣∣∣∣ ∀n, Suppφn ⊂ K

∀α ∈ Nd, limn→+∞ ‖∂αφn − ∂αφ‖L∞(K) = 0.

We define the dual associated to this topology as follows.

Definition 3.2.2 (Distributions D′(Ω)). Let Ω be an open subset of Rd . A distribution T on
Ω is a R or C linear form on D(Ω) which satisifies the following continuity property: ∀K ⊂ Ω
compact, ∃CK > 0 , ∃pK ∈ N such that ∀φ ∈ D(Ω) with Suppφ ⊂ K ,

|〈T, φ〉| ≤ CK max
|α|≤pK

‖∂αφ‖L∞(K).

If the integer pK can be chosen independently of K , then the smallest such p is called the
order of T . We let D′(Ω) be the set of distributions on Ω .

The link between the above dual definitions and the Frechet space topology is:

Lemma 3.2.1 (Sequential continuity of T ). Let Ω be an open subset of Rd . Let T ∈ D′(Ω) .
Then

φn → φ in D(Ω)⇒ lim
n→+∞

〈T, φn〉D′,D = 〈T, φ〉D′,D.

Proof of Lemma 3.2.1 . By definition, there exists K ⊂ Ω compact with Suppφn ⊂ K , and
hence by continuity of T :

|〈T, φn − φ〉D′,D| ≤ CK max
|α|≤pK

‖∂α(φn − φ)‖L∞(K) → 0 as n→ +∞.

We associate to f ∈ L1
loc(Ω) its distribution

〈T (f), φ〉D′,D =

∫
Ω
f(x)φ(x)dx. (3.2)

We claim that this map is injective, which allows us to identify T (f) and f and view distri-
butions as a strict generalization of locally integrable functions.

Theoreme 3.2.1 (Injection of L1
loc(Ω) into D′(Ω)). The linear map f 7→ T (f) from L1

loc(Ω)
to D′(Ω) is injective.

Proof of Theorem 3.2.1. Let Ω be an open subset of Rd and f ∈ L1
loc(Ω) such that

∀φ ∈ D(Ω), 〈T (f), φ〉D′,D =

∫
Ω
f(x)φ(x)dx = 0.

Let x∈Ω and r > 0 such that B(x0, 2r) ⊂ Ω . Let F (x) = 1B(x0,2r)f(x) and ζε be a
regularizing sequence, then from Theorem 3.1.2:

lim
ε→0
‖ζε ? F − F‖L1(Rd) = 0.

Let x ∈ B(x0, r) , we compute for ε > 0 small enough

ζε ? F (x) =

∫
Rd
F (y)ζε(x− y)dy =

∫
B(x0,2r)

f(y)ζε(x− y)dy =

∫
Rd
f(y)ζε(x− y)dy = 0

since (x− y) ∈ Suppζ implies |x− y| < rε � 1 . Hence F ≡ 0 p.p in B(x0, 2r) and f ≡ 0 p.p
in x ∈ B(x0, r) . The conclusion now easily follows.
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Remark 3.2.1. The above map is not surjective. The Dirac mass defined for x0 ∈ Rd by

〈δx0 , φ〉D′,D = φ(x0)

is an element of D′(Rd) which is not of the form Tf for some f ∈ L1
loc(Rd).

3.2.2 Convergence of distributions

The convergence in the sense of distributions is a sequential convergence.

Definition 3.2.3 (Convergence in D′(Ω)). Let Ω be an open subset of Rd . We say that

Tn ⇀ T in D′(Ω)

iff
∀φ ∈ D(Ω), lim

n→+∞
〈T, φn〉D′,D = 〈T, φ〉D′,D.

The classical Banach-Steinhaus Theorem for Banach spaces extends to Frechet spaces and
gives the following uniform boundedness principle.

Proposition 3.2.1 (Banach Steinhaus for D′(Ω)). Let Ω be an open subset of Rd . Let K ⊂ Ω
compact. Let (Tn)n≥0 ∈ D′(Ω) such that

∀φ ∈ D(Ω), Suppφ ⊂ K ⇒ 〈Tn, φ〉D′,D converges as n→∞.

Then ∃pK ∈ N , ∃CK > 0 such that

∀φ ∈ D(Ω), Suppφ ⊂ K ⇒ |〈Tn, φ〉D′,D| ≤ CK .

This automatically implies (like for linear maps between Banach spaces) that the limit of
a sequence of distributions is a distribution.

Corollary 3.2.1 (The limit of a sequence of distributions is a distribution). Let Ω be an open
subset of Rd . Let (Tn)n≥0 ∈ D′(Ω) such that

∀φ ∈ D(Ω), 〈Tn, φ〉D′,D converges as n→∞.

Then the linear form
〈T, φ〉D′,D ≡ lim

n→+∞
〈Tn, φ〉D′,D

is an element of D′(Ω) .

3.2.3 Operations on distributions

We now define a number of canonical operations on distributions. The most important one is
the notion of derivative in the sense of distributions.

Definition 3.2.4 (Derivation in D′(Ω)). Let Ω be an open subset of Rd . Let T ∈ D′(Ω) and
j ∈ {1, . . . , d}, we define the partial derivative of T along xj by

〈∂xjT, φ〉D′,D = −〈T, ∂xjφ〉D′,D.

More generally, given α ∈ Nd , we define

〈∂αT, φ〉D′,D = (−1)|α|〈T, ∂αφ〉D′,D.
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The fact that the above formula defines an element of D′(Ω) is a straightforward conse-
quence of the continuity condition. We claim that the derivation in D′(Ω) coincides with the
standard notion of partial derivatives for C1 functions.

Lemma 3.2.2 (Derivation in D′ for smooth functions). Let Ω be an open subset of Rd . Let
f ∈ C1(Ω) and T (f) be the associated distribution given by (3.2), then

∂xjTf = T (∂xjf).

Proof of Lemma 3.2.2. We may without loss of generality assume j = 1 . Let φ ∈ D(Ω) , then
by definition

〈∂x1T (f)− T (∂x1f), φ〉D′,D = −〈T (f), ∂x1φ〉D′,D − 〈T (∂x1f), φ〉D′,D

= −
∫

Ω
f(x)∂x1φ(x)dx−

∫
∂x1f(x)φ(x)dx = −

∫
Ω
∂x1(f(x)φ(x))dx.

The function g(x) = φ(x)f(x) is C1(Ω) and has compact support in Ω . Hence Suppg ⊂
[a1, b1]× · · · × [ad, bd] and∫

Ω
∂x1g(x)dx =

∫ b1

a1

· · ·
∫ bd

ad

∂x1g(x1, . . . , xd)dx1 . . . dxd.

Let

h(x1) =

∫ b2

a2

· · ·
∫ bd

ad

g(x1, . . . , xd)dx2 . . . dxd,

then the support property ensures h(a1) = h(b1) = 0 and hence integrating by parts:∫
Ω
∂x1g(x)dx =

∫ b1

a1

h′(x1)dx1 = h(b1)− h(a1) = 0,

and the claim is proved.

Derivation is a continuous operation for the topology of D′(Ω) .

Lemma 3.2.3 (Continuity of derivation). Let Ω be an open subset of Rd . Let (Tn)n≥1 ∈ D′(Ω)
with Tn ⇀ T in D′(Ω) , then ∀i ∈ {1, . . . , d} , ∂xiTn ⇀ ∂xiT in D′(Ω) .

Proof of Lemma 3.2.3. Let φ ∈ D(Ω) , then by definition

〈∂xiTn, φ〉D′,D = −〈Tn, ∂xiφ〉D′,Dφ〉D′,D → −〈T, ∂xiφ〉D′,D = 〈∂xiT, φ〉D′,D.

The fundamental weakness of the theory is that we cannot take the product of two distribu-
tions (we can through a para product but this relies in a much more refined Fourier analysis).
Multiplication by a C∞ solution is however canonically defined.

Definition 3.2.5 (Multiplication by a C∞ solution). Let a ∈ C∞(Ω) and T ∈ D′(Ω) , then
the product aT is defined by

∀φ ∈ D(Ω), 〈aT, φ〉D′,D = 〈T, aφ〉D′,D

and aT ∈ D′(Ω) .

The proof that aT ∈ D′(Ω) is a simple consequence of Leibniz rule and left to the reader.
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3.3 The Fourier tranform on the Schwartz space

The continuous Fourier transform

Ff(ξ) =

∫
Rd
f(x)e−ix·ξdx (3.3)

is a fundamental tool for the study of linear and nonlinear waves. We aim at propagating it
to distributions, but this requires a restricted class of test functions. Indeed, D′(Rd) is not
stable by F , but the Schwartz class defined below will be. We introduce the notation for
α = (α1, . . . , αd) ∈ Nd :

xα = xα1
1 . . . xαdd .

3.3.1 The Schwartz class

Definition 3.3.1 (Schwartz class). We let S(Rd) be the class of functions φ ∈ C∞(Rd) for
which all derivatives decay faster than any polynomial:

∀p ∈ N, Np(φ) =
∑

|α|,|β|≤p

‖xα∂βφ‖L∞ < +∞.

Definition 3.3.2 (Polynomial growth). We say that f ∈ C∞(Rd) has polynomial growth iff

∃n ∈ N, ‖f(x)

〈x〉n
‖L∞ <∞.

A natural topology on S is defined as follows.

Definition 3.3.3 (Converging sequences in S ). We say φn → φ in S iff

∀p ∈ N, lim
n→+∞

Np(φn − φ) = 0.

The density of D(Rd) in S follows from a straightforward localization argument.

Lemma 3.3.1 (Density of D(Rd) in S ). ∀φ ∈ S , ∃φn ∈ D(Rd) such that φn → φ in S .

This implies in particular using Theorem 3.1.2 that S is dense in Lp(Rd) , 1 ≤ p < +∞ .
We now state the basis stability properties of the Schwartz class.

Proposition 3.3.1. Let φ ∈ S , then

(i) ∀α ∈ Nd , ∂αφ ∈ S .

(ii) Let f ∈ C∞ such that all its derivatives have polynomial growth, then fφ ∈ S .

(iii) Let 1 ≤ q ≤ +∞ , then S ⊂ Lq ; more precisely, let (α, β) ∈ Nd × Nd with |α| ≤ p ,
|β| ≤ p , then

‖xα∂βφ‖Lq . (Np(φ))
1− 1

q (Np+d+1(φ))
1
q . (3.4)

Proof of Proposition 3.3.1. The first two points are a straightforward consequence of the defi-
nition of the Np semi norm and the Leibniz rule. We focus onto (3.4). The case p = +∞ is
obvious, and we let 1 ≤ p < +∞ and estimate:∫

Rd
|φ(x)|qdx ≤ ‖φ‖q−1

L∞

∫
|φ(x)|dx ≤ ‖φ‖q−1

L∞ ‖〈x〉
d+1φ‖L∞

∫
Rd

dx

〈x〉d+1

. (N0(φ))q−1Nd+1(φ)
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which yields
‖φ‖Lq . (N0(φ))

1− 1
q (Nd+1(φ))

1
q

and immediately implies (3.4).

3.3.2 The Fourier transform on S

We now study the Fourier transform (3.3) on S .
Lemma 3.3.2. Let φ ∈ S , then
(i) Fφ ∈ S with

∀p ∈ N, Np(Fφ) ≤ CpNp+d+1(φ); (3.5)

(ii) F(∂xjφ) = iξjFφ and ∂ξjFφ = F(−ixjφ) ;

(iii) Let a ∈ Rd and τaφ(x) ≡ φ(x− a) , then F(τφ)(ξ) = e−iξ·aF(φ)(ξ).

(iv) F(φ ? ψ) = (Fφ)(Fψ).

Proof of Lemma 3.3.2. Since φ ∈ S ⊂ L1 , the fact that Fφ ∈ C1(Rd) follows from Lebesgue’s
Theorem of derivability below the integral sign, and

∂ξjF(φ)(ξ) = ∂ξj

(∫
Rd
f(x)e−ix·ξdx

)
=

∫
Rd
f(x)∂ξj

(
e−ix·ξ

)
dx = −i

∫
Rd
f(x)xje

−ix·ξdx

= −iF(xjφ)(ξ).

An elementary induction argument using that (φ ∈ S) ⇒
(
∀p ∈ N, 〈x〉pφ ∈ L1

)
ensures that

Fφ ∈ C∞(Rd) . We compute integrating by parts in R using the decay of φ at ∞ :

F(∂x1φ)(ξ) =

∫
Rd
e−ix·ξ∂x1φ(x)dx =

∫
Rd−1

dx2 . . . dxd

∫
R
∂x1φ(x)e−ix·ξdx1

= −
∫
Rd−1

dx2 . . . dxd

∫
∂x1

(
e−ix·ξ

)
φdx1 =

∫
Rd−1

dx2 . . . dxd

∫
iξ1φe

−ix·ξdx1

= iξ1F(φ)(ξ).

Then
F(τaφ)(ξ) =

∫
Rd
e−ix·ξφ(x− a)dx =

∫
Rd
e−i(x+a)·ξφ(x)dx = e−ia·ξF(φ)(ξ).

It remains to prove (3.5). We compute thanks to the above formulas:

|ξα∂βF(φ)| = |ξα1
1 . . . ξαdd ∂β1x1 . . . ∂

βd
xd
F(φ)| =

∣∣∣ξα1
1 . . . ξαdd F

(
xβ11 . . . xβdd . . . φ

)∣∣∣
=

∣∣∣F (∂α(xβφ)
)∣∣∣

and hence using (3.4):

‖ξα∂βF(φ)‖L∞ =
∥∥∥F (∂α(xβφ)

)∥∥∥
L∞
≤
∥∥∥∂α(xβφ)

∥∥∥
L1

. Np+d+1(φ)

and (3.5) is proved. Finally, by Fubbini:

F(φ ? ψ)(ξ) =

∫
Rd

(∫
φ(x− y)ψ(y)dy

)
e−ix·ξdx =

∫
Rd

(∫
φ(x− y)ψ(y)dy

)
e−i(x−y)·ξe−iy·ξdx

=

∫
Rd
ψ(y)e−iy·ξ

(∫
Rd
φ(x− y)e−i(x−y)·ξdx

)
=

∫
Rd
ψ(y)e−iy·ξ

(∫
Rd
φ(z)e−iz·ξdz

)
= Fφ(ξ)Fψ(ξ).
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The amazing and fundamental feature of the Fourier transform is that it is almost an
involution.

Proposition 3.3.2 (Inversion formula). The Fourier transform is a C-linear isomorphism of
S with

F−1(φ)(x) =
1

(2π)d

∫
Rd
eix·ξφ(ξ)dξ. (3.6)

Moreover, F ,F−1 are continuous on S in the sense that

∀p ∈ N, ∀φ ∈ S, Np(F(φ)) +Np(F−1(φ)) ≤ CpNp+d+1(φ). (3.7)

Remark 3.3.1. It is often more convenient to reexpress (3.6) as

FFφ = (2π)dφ̃, φ̃(x) = φ(−x). (3.8)

In order to prove Proposition 3.3.2, we need the following lemma.

Lemma 3.3.3 (Fourier transform of Gaussians). Let A ∈ Md(R) , A = A∗ > 0 . Let the
gaussian

GA(x) =
1√

(2π)d detA
e−

(A−1x)·x
2 ,

then GA ∈ S(Rd) with
F(GA)(ξ) = e−

(Aξ)·ξ
2 . (3.9)

After diagonalizing A in an orthonormal basis, the proof reduces to the one dimensional
computation which is straightforward.

Proof of Proposition 3.3.2. Let ε > 0 and apply (3.9) with A = Id
ε to obtain

Gε(x) ≡ 1

(2π)d

∫
Rd
eiξ·x−

ε|ξ|2
2 dξ =

1

ε
d
2

(
2π
ε

)d ∫
Rd
eiξ·x−

ε|ξ|2
2 dξ =

1

(
√

2π)d
e−
|x|2
2ε

ε
d
2

and hence the sequence (Gε)ε>0 is almost a regularizing sequence (up to the compact support
property). Then by Fubbini∫

Rd
Gε(x− y)φ(y)dy =

∫
Rd

∫
Rd

1

(2π)d
eiξ·(x−y)− ε|ξ|

2

2 φ(y)dξdy

=
1

(2π)d

∫
Rd
eiξ·x−

ε|ξ|2
2

(∫
Rd
φ(y)e−iξ·ydy

)
dξ =

1

(2π)d

∫
Rd
eiξ·x−

ε|ξ|2
2 F(φ)(ξ)dξ

→ 1

(2π)d

∫
Rd
eiξ·xF(φ)(ξ)dξ as ε→ 0

by Lebesgue’s dominated convergence Theorem. On the other hand, using the regularizing
sequence structure and changing variables in the integral:∫

Rd
Gε(x− y)φ(y)dy =

1

(
√

2π)d

∫
Rd

e−
|x−y|2

2ε

ε
d
2

φ(y)dy =
1

(
√

2π)d

∫
Rd
e−
|z|2
2 φ(x−

√
εz)dz

→
∫
Rd e

− |z|
2

2 dz

(
√

2π)d
φ(x) = φ(x) as ε→ 0

by Lebesgue’s dominated convergence Theorem again, and (3.6) is proved.
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The fundamental Corollary of (3.6) is Plancherel’s formula.

Corollary 3.3.1 (Plancherel’s formula). Let (φ, ψ) ∈ S × S , then∫
Rd
φ(x)ψ(x)dx =

1

(2π)d

∫
Rd
Fφ(ξ)Fψ(ξ)dξ.

In particular, F as an isomorphism of S extends uniquely to a continuous isomorphism of
L2(Rd).

Proof of Corollary 3.3.1. We compute from (3.6) and Fubbini:∫
Rd
φ(x)ψ(x)dx =

1

(2π)d

∫
Rd
φ(x)

∫
Rd
Fψ(ξ)eix·ξdξdx

=
1

(2π)d

∫
Rd

(∫
Rd
φ(x)e−ix·ξdx

)
Fψ(ξ)dξ =

1

(2π)d

∫
Rd
Fφ(ξ)Fψ(ξ)dξ.

Taking φ = φ ensures that F is L2 continuous on S which is a dense subset of the Banach
space L2 , and the extension claim follows.

3.4 Tempered distributions

We do not know how to define the Fourier transform of a general element of D′(Rd) , not even
of L1

loc(Rd) . But there is a natural dual for S on which F is canonically defined.

3.4.1 Definition of S ′

Definition 3.4.1 (Tempered distributions). A linear form T on S is a tempered distribution
iff ∃p ∈ N , ∃Cp > 0 such that

∀φ ∈ S, |〈T, φ〉S′,S | . CpNp(φ). (3.10)

We note S ′ the set of tempered distributions.

Example. Let 1 ≤ p ≤ +∞ , 1
p + 1

p

′
= 1 , f ∈ Lp(Rd) and φ ∈ S , then

〈|〈f, φ〉S′,S | =
∣∣∣∣∫

Rd
f(x)φ(x)dx

∣∣∣∣ . ‖f‖Lp‖φ‖Lp′ ≤ CNp′+d+1(φ)

and hence Lp ⊂ S ′ . Any function with polynomial growth also defines a tempered distribution.
On the other hand it is easily see that f(x) = ex is not an element of S ′(R) , the growth is too
important at +∞ .

The following stability properties are straightforward consequences of the continuity prop-
erty.

Lemma 3.4.1 (Operations on S ). Let T ∈ S ′ , then

(i) ∀α ∈ Nd , ∂αT ∈ S ;

(ii) for all f with polynomial growth, fT ∈ S .

Convergence in S ′ is defined as follows.
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Definition 3.4.2 (Convergence in S ′ ). We say a sequence Tn ⇀ T in S ′ iff

∀φ ∈ S, lim
n→+∞

〈Tn, φ〉S′,S = 〈T, φ〉S′,S .

It is easily seen that the derivation and multiplication operation by a function f with
polynomial growth are continuous with respect to the above topology:

Tn ⇀ T in S ′ ⇒
∣∣∣∣ ∂αTn ⇀ ∂αT in S ′
fTn ⇀ fT in S ′

3.4.2 The Fourier transform on S ′

We will define it by duality starting with the following simple observation.

Lemma 3.4.2 (Duality formulation). Let φ, ψ ∈ S , then

〈Fφ, ψ〉S′,S = 〈φ,Fψ〉S′,S .

Proof of Lemma 3.4.2. We compute from Fubbini:

〈Fφ, ψ〉S′,S =

∫
Rd
Fφ(x)ψ(x)dx =

∫
Rd

(∫
Rd
φ(y)e−ix·ydy

)
ψ(x)dx

=

∫
Rd
φ(y)

(∫
Rd
ψ(x)e−ix·ydx

)
=

∫
Rd
φ(y)Fψ(y)dy = 〈φ,Fψ〉S′,S .

Definition 3.4.3 (Fourier transform on S ′ ). Let T ∈ S ′ we define its Fourier transform by

∀φ ∈ S, 〈FT, φ〉S′,S ≡ 〈T,Fφ〉S′,S (3.11)

and FT ∈ S ′ .

Note that the fact that FT ∈ S ′ follows directly from (3.7), (3.10). The following structural
properties of F on S ′ are a direct consequence of the corresponding properties on S and the
dual formula (3.11).

Lemma 3.4.3 (Properties of F on S ′ ). The following holds:

(i) Let T ∈ S ′ , then F(∂xjT ) = iξjFT and F(xjT ) = i∂ξjFT ;

(ii) Tn ⇀ T in S ′ implies FTn ⇀ FT in S ′ ;

(iii) For φ ∈ S , let φ̃(x) = φ(−x) , and for T ∈ S ′ , let 〈T̃ , φ〉S′,S ≡ 〈T, φ̃〉S′,S . Then F is
an isomorphism if S ′ with

∀T ∈ S ′, F−1T =
1

(2π)d
F̃T . (3.12)

Proof of Lemma 3.4.3. . The first two claims are obvious from the definitions. We prove (3.12)
which is equivalent to

FFT = (2π)dT̃ .

Indeed from (3.8):

〈FFT, φ〉S′,S = 〈T,FFφ〉S′,S = 〈T, (2π)dφ̃〉S′,S = 〈(2π)dT̃ , φ〉S′,S .
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3.5 Exercices

Exercice 3.1. Division by x in D′(R) .

(i) Solve xT = 0 in D′(R) . More generally, solve xmT = 0 , m ∈ N , in D′(R) .

(ii) Given S ∈ D′(R) , solve xT = S in D′(R) .

Exercice 3.2. ODE in D′(R) .

(i) Let T ∈ D′(R) with T ′ = 0 in D(R) . Show that T is a constant.

(ii) Solve T ′ − T = δ in D′(R) .

Exercice 3.3. Limit of distributions.

(i) Show that the linear form on D(R) given by
〈
pv
(

1
x

)
, φ)
〉

= limε→0

∫
|x|≥ε

φ(x)
x dx belongs

to D′ .

(ii) Given ε > 0 , let the complex valued function fε(x) = 1
x+iε , compute limε→0 fε in D′(R) .

Exercice 3.4. Derivative and translations. Let φ ∈ D(R) , h ∈ R , we define the translation
operation by τhφ(x) = φ(x + h) . Let T ∈ D′(R) , we define the translation operation by
〈τhT, φ〉D′,D = 〈T, τ−hφ〉D′,D. Show that

lim
h→0

τhT − T
h

= T ′ in D′(R).

Exercice 3.5. Computing derivatives in D′(Rd) .

(i) Let the Heaviside function be H(x) = 1x>0 . Let H̃(x1, ..., xN ) = H(x1)...H(xN ) and
α = (1, ...1) . Show that ∂αH̃ = δ0 .

(ii) Show that the linear form on D(R2) given by 〈T, φ〉D′,D =
∫
R φ(x, x)dx defines an

element of D′(R2) . Compute ∂xT + ∂yT .

Exercice 3.6 ( Distributions with support a singleton). Let T ∈ D′(R) with finite order p ∈ N
such that

∀φ ∈ D(R\{0}), 〈T, φ〉D′,D = 0,

we want to show that T =
∑p

i=0 ci
di

dxi
δx=0.

(i) Let χ ∈ D(R) with χ(x) = 1 for |x| ≤ 1 and Supp(χ) ⊂ [−2, 2] . Let χε(x) = χ
(
x
ε

)
.

Let φ ∈ D(R) , show that 〈T, φ〉D′,D = 〈T, χεφ〉D′,D.

(ii) Assume diφ
dxi

= 0 for 0 ≤ i ≤ p . Show that limε→0〈T, χεφ〉D′,D = 0 and conclude.

(iii) Extend the result to D′(Rd) .

Exercice 3.7. Fundamental solution of the Laplacian.

(i) Let φ ∈ C∞(Rd) with radial symmetry (ie φ(x) ≡ φ(r) with r =
√∑d

i=1 x
2
i .) Show that

∆φ = d2φ
dr2

+ d−1
r

dφ
dr .
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(ii) Let x ∈ Rd and define

Ed(x) =

{
|x|−(d−2) if d ≥ 3,
ln |x| if d = 2.

Show that Ed ∈ C∞(Rd\{0}) with ∆Ed = 0 in D′(Rd\{0}) .

(iii) Let φ ∈ D(Rd) . Show that 〈∆Ed, φ〉 = limε→0+
∫
‖x‖>εEd∆φdx.

(iv) Let d = 2, 3 . By transforming the above integral using Green’s formula, compute ∆Ed
in D′(Rd).

Exercice 3.8. Let 1 ≤ p ≤ 2 . Show that the Fourier transform sends Lp onto Lp′ .
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Chapter 4

Sobolev spaces

Sobolev spaces provide a natural functional setting to study the equations of mathematical
physics. We shall treat in details in the forthcoming lectures two applications: variational
methods with applications to the existence and stability of solitary waves, and the resolution
of a Cauchy problem for a non linear dispersive equation.

In this chaper, we first present Sobolev spaces Hs(Rd) wich are build on L2 and hence
display a Hilbertian structure. We then study Sobolev injection theorems which are a spec-
tacular application of frequency localization techniques using Fourier analysis. We shall give
at the end of the chapter a brief overview of Lp based Sobolev spaces which are Banach spaces.

In all the chapter, the key word is compactness of the Sobolev embeddings.

4.1 Sobolev spaces Hs(Rd)

We introduce Sobolev spaces Hs(Rd) through Fourier analysis. The case of a general domain
Ω ⊂ Rd is briefly discussed at the end of the chapter.

4.1.1 Hilbertian structure

Definition (Sobolev space Hs(Rd)). Let s ∈ R . We say that a tempered distribution u ∈
S ′(Rd) belongs to the Sobolev space Hs(Rd) iff

û ∈ L2(Rd; (1 + |ξ|2)s dξ).

We then let

‖u‖Hs =

(∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ
) 1

2

. (4.1)

If u ∈ S ′ , then û ∈ S ′ , and since (1 + |ξ|2)s has polynomial growth, (1 + |ξ|2)sû ∈ S ′ .
Being in Hs thus means that this distribution is also in L2 and we observe the following
elementary lemma.

Lemma 4.1.1 (Characterization of L2(Rd) in D′(Rd)). A distribution T ∈ D′(Rd) belongs to
L2(Rd) iff

∃C > 0 such that ∀φ ∈ D(Ω), |〈T, φ〉D′,D| ≤ C‖φ‖L2 . (4.2)
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Proof of Lemma 4.1.1. If T = T (f) with f ∈∈ L2(Rd) , then this is Cauchy Schwarz:

|〈T (f), φ〉D′,D| =
∣∣∣∣∫

Rd
f(x)φ(x)dx

∣∣∣∣ . ‖f‖L2‖φ‖L2 .

Conversely, (4.2) means that the linear form L(φ) = 〈T, φ〉D′,D is continuous on D(Rd) which
is a dense subset of L2 , and hence it can be uniquely extended to L2 . But then by Riesz
representation Theorem on the Hilbert space L2 , there exists f ∈ L2 such that

∀g ∈ L2, L(g) =

∫
Rd
f(x)g(x)dx

and hence in particular

∀φ ∈ D(Ω), L(φ) = 〈T, φ〉D′,D =

∫
Rd
f(x)φ(x)dx = 〈T (f), φ〉D′,D

and hence T = T (f) ∈ L2 .

We will systematically use in the sequel the japanese bracket :

〈ξ〉 def=
√

1 + |ξ|2.

Proposition 4.1.1. Let s ∈ R , then (Hs, (·|·)Hs) with

(u|v)Hs
def
=

∫
Rd
〈ξ〉2sû(ξ)v̂(ξ) dξ

is a Hilbert space.

Proof of Proposition 4.1.1. The vectorial space structure and the fact that (4.1.1) satisfies the
axiom of a scalar product is straightforward. We focus onto completeness. Let un ∈ Hs be a
Cauchy sequence, then the sequence (ûn)n∈N is a Cauchy sequence in L2(Rd; 〈ξ〉2s dξ) which
is complete, and hence there exists ũ ∈ L2(Rd; 〈ξ〉2s dξ) with

lim
n→∞

‖ûn − ũ‖L2(Rd;〈ξ〉2s dξ) = 0. (4.3)

Hence (ûn)n∈N → ũ in S ′ . Let u = F−1ũ . Since F is an isomorphism on S ′ , un → u in S ′
and also in Hs from (4.3).

Remark. We are using nothing more than the fact that F is an isometry from Hs into L2(Rd; 〈ξ〉2s dξ) .

The Sobolev scale measure the decay of the Fourier transform of u , and hence the regularity
of u . The link with classical derivation is the following.

Proposition 4.1.2 (Integer Sobolev spaces). Let m ∈ N , then Hm(Rd) coincides with the
vectorial space of L2 functions which derivative of order at most m in the sense of distributions
belong to L2 . Moreover,

‖̃u‖Hm
def
=

√ ∑
|α|≤m

‖∂αu‖2
L2

is a Hilbertian norm on Hm which is equivalent to ‖ · ‖Hm .
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Proof of Proposition 4.1.2. We have

‖̃u‖2Hm = (̃u|u)Hm with (̃u|v)Hm
def
=

∑
|α|≤m

∫
Rd
∂αu(x)∂αv(x) dx

and hence the norm is derived from a scalar product. Moreover, there exists a constant C
such that

∀ξ ∈ Rd , C−1
∑
|α|≤m

|ξ|2|α| ≤ 〈ξ〉2m ≤ C
∑
|α|≤m

|ξ|2|α|. (4.4)

Observe that (i)of Lemma 3.4.3 ensures:

∀α ∈ Nd, ∂αu ∈ L2 ⇐⇒ ξαû ∈ L2.

Hence
u ∈ Hm ⇐⇒ ∀|α| ≤ m, ∂αu ∈ L2

and (4.4) ensures the equivalence of the norms since F is up to a constant an L2 isometry.

Proposition 4.1.3 (Sobolev ladder). Let s ∈ R .

(i) D(Rd) is dense in Hs(Rd).

(ii) let s < t, then Ht ⊂ Hs and there holds the interpolation inequality:

∀θ ∈ [0, 1], ‖u‖Hθs+(1−θ)t ≤ ‖u‖θHs‖u‖1−θHt . (4.5)

(iii) Multiplication by φ ∈ S is a bounded operator on Hs.

Remark. Observe that (i) ensures that we could have defined Hs(Rd) as the smallest Hilbert
space complete for the norm (4.1) containing D(Rd) .

Proof of Proposition 4.1.3. For (i), let u ∈ Hs such that ∀φ ∈ D(Rd) , (φ|u)Hs = 0 . Then

∀φ ∈ D(Rd),
∫
Rd
φ̂(ξ)〈ξ〉2sû(ξ) dξ = 0.

Since 〈ξ〉sû(ξ) ∈ L2 and the Fourier transform and the multiplication by 〈ξ〉s are isomorphisms
on S , this implies

∀φ ∈ S(Rd),
∫
Rd
φ(ξ)〈ξ〉sû(ξ) dξ = 0

and hence by density of S in L2 :

∀φ ∈ L2(Rd),
∫
Rd
φ(ξ)〈ξ〉sû(ξ) dξ = 0

yields 〈ξ〉sû(ξ) = 0 . This yields (i) using the V = (V ⊥)⊥ = {0}⊥ = H in the Hilbert space
H = Hs .
(ii) follows from Hölder:

‖u‖2
Hθs+(1−θ)t =

∫ (
〈ξ〉2s|û(ξ)|2

)θ(〈ξ〉2t|û(ξ)|2
)1−θ

dξ.
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(iii) is slightly more delicate and is the price to pay for having a definition on the Fourier side1

From classical density arguments, we need only prove that

∀u ∈ S, ‖φu‖Hs ≤ Cφ‖u‖Hs .

From (iii) of Lemma 3.3.2 and (3.6):

ϕ̂u = (2π)−dϕ̂ ? û,

and hence we need to bound the L2 norm of the function:

U(ξ) = (1 + |ξ2|)
s
2

∫
Rd
|ϕ̂(ξ − η)| × |û(η)| dη.

Let I1(ξ) = {η / 2|ξ − η| ≤ |η|} and I2(ξ) = {η / 2|ξ − η| > |η|} , then

U(ξ) = U1(ξ) + U2(ξ) with

Uj(ξ) = 〈ξ〉s
∫
Ij(ξ)
|ϕ̂(ξ − η)| × |û(η)| dη.

Observe that for η ∈ I1(ξ) :
1

2
|η| ≤ |ξ| ≤ 3

2
|η|.

We conclude that for all s , there exists C such that for all (ξ, η) such that η ∈ I1(ξ) , there
holds

〈ξ〉2s ≤ C〈η〉2s.

Hence

U1(ξ) ≤ C
∫
Rd
|ϕ̂(ξ − η)|〈η〉s|û(η)| dη.

Since ϕ̂ belongs to S , in particular ϕ̂ belongs to L1. Hence from Young

‖U1‖L2 ≤ C‖ϕ̂‖L1‖u‖Hs .

We now treat U2. For η ∈ I2(ξ), there holds |η| ≤ 2|ξ − η|. Hence

U2(ξ) ≤ 〈ξ〉|s|
∫
I2(ξ)
|ϕ̂(ξ − η)|〈η〉|s|〈η〉s|û(η)| dη ≤ C

∫
Rd
|ϕ̂(ξ − η)|〈ξ − η〉2|s|〈η〉s|û(η)| dη.

Since ϕ̂ belongs to S , there exists C such that

|ϕ̂(ζ)| ≤ C〈ζ〉−d−1−2|s|

and hence

U2(ξ) ≤ C
∫
Rd
〈ξ − η〉−d−1〈η〉s|û(η)| dη.

Hence ‖U2‖L2 ≤ C‖u‖Hs , and (iii) is proved.
1but there will much more advantages!
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4.1.2 The dual of Hs

Since Hs is a Hilbert space, it is isomporphic to its topological dual (Hs)′ via the Hs scalar
product, this is Riesz representation Theorem. We now revisit this identification using the
"pivot" space L2 .

Proposition 4.1.4 (Dual of Hs ). Let s ∈ R and f ∈ S ′ such that f̂ ∈ L2
loc(Rd). Then

f ∈ H−s iff

Mf
def
= sup

ϕ∈S
‖ϕ‖Hs≤1

∣∣〈f, ϕ〉S′×S∣∣ <∞.
Moreover, for f ∈ H−s, the linear form Lf defined on S by Lf (ϕ) = 〈f, ϕ〉S′×S can be
uniquely extended as linear continuous form on Hs and

‖f‖H−s = (2π)d sup
ϕ∈S

‖ϕ‖Hs≤1

∣∣〈f, ϕ〉S′×S∣∣ = (2π)d sup
ϕ∈Hs

‖ϕ‖Hs≤1

∣∣〈f, ϕ〉H−s×Hs

∣∣.
Finally, the map f 7→ (2π)d〈f, · 〉H−s×Hs is an isometric isomorphism from H−s into (Hs)′.

Proof of Proposition 4.1.4. Let f ∈ H−s . Observe that for ϕ ∈ S,

〈f, ϕ〉S′×S = (2π)−d〈f̂ , ϕ̂〉S′×S .

Since S and S ′ are stable by multplication by 〈·〉±s,

〈f, ϕ〉S′×S = (2π)−d〈〈·〉−sf̂ , 〈·〉sϕ̂〉S′×S .

Since 〈·〉−sf̂ ∈ L2, Cauchy-Schwarz and the definition of the Sobolev norm ensure:∣∣〈f, ϕ〉S′×S∣∣ = (2π)−d
∣∣∣∣∫ 〈ξ〉−sf̂(ξ) 〈ξ〉sϕ̂(ξ) dξ

∣∣∣∣ ≤ (2π)−d‖f‖H−s‖ϕ‖Hs

and hence
(2π)d sup

ϕ∈S
‖ϕ‖Hs≤1

∣∣〈f, ϕ〉S′×S∣∣ ≤ ‖f‖H−s .
Hence Lf defined in the statement of the Proposition can be uniquely extended as a linear
continuous form on Hs with same norm and restriction on S. Hence

sup
ϕ∈Hs

‖ϕ‖Hs≤1

∣∣〈f, ϕ〉H−s×Hs

∣∣ = sup
ϕ∈S

‖ϕ‖Hs≤1

∣∣〈f, ϕ〉S′×S∣∣ ≤ (2π)−d‖f‖H−s .

Let now ϕ be defined by

ϕ̂(ξ)
def
=
〈ξ〉−2sf̂(ξ)

‖f‖Hs
,

then ϕ ∈ Hs with norm 1, and

〈f, ϕ〉H−s×Hs = (2π)−d‖f‖H−s .

Hence the linear form (2π)d〈f, · 〉H−s×Hs is of norm exactly ‖f‖H−s .
The proof is concluded by showing that the previously defined map is surjective. Let a linear
form L continuous on Hs , we are reduced to the case s = 0 by letting

M(ϕ)
def
= L(〈D〉−sϕ) pour ϕ ∈ L2,
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where 〈D〉−s is the fractional derivation operator

F
(
〈D〉−sϕ

)
= 〈·〉−sFϕ. (4.6)

Clearly M is a continuous linear form on L2 with norm ‖L‖(Hs)′ . Hence from Riesz, there
exists g ∈ L2 such that ϕ ∈ L2 ,

M(ϕ) =

∫
g ϕ dx.

Hence
∀ϕ ∈ S, L(〈D〉−sϕ) =

〈
〈D〉sg, 〈D〉−sϕ

〉
S′×S .

Since multiplication by 〈D〉−s is an isomorphism in S (voir exercice 4.2), we conclude

L(ψ) =
〈
〈D〉sg, ψ

〉
S′×S for all ψ ∈ S.

Since g ∈ L2, the function 〈D〉sg is in H−s. By density, we conclude that L = 〈〈D〉sg, ·〉H−s×Hs .

Finally, assume f ∈ S ′ satisfies f̂ ∈ L2
loc and Mf is finite. Then for all K > 0, the fonction

fK = F−1
[
(1B(0,K)f̂

]
is inH−s. Since for all ϕ ∈ Hs , F−1(1B(0,K)ϕ̂) ∈ Hs, we easily check

‖fK‖H−s ≤Mf .

Using the definition of the H−s norm and the monotone convergence Theroem, we conclude
that f ∈ H−s with norm at most Mf .

4.2 The Sobolev injection Theorem

We prove in this chapter the Sobolev injection Theorem. There are two classical proofs of this
result2: Nirenberg’s proof of integration by parts on the space side, see Theorem 4.4.2; and
Chemin’s proof using a real space interpolation method on the Fourier side. Both have their
own interest and in many ways say different things with various applications to geometrical
and physical problems.

4.2.1 Sobolev injection

Theoreme 4.2.1 (Sobolev injection in Rd ). Let s > 0.

(i) If s > d
2 then Hs(Rd) embeds continuously into the space of continuous functions which

decay to zero as |x| → +∞ .

(ii) If 0 ≤ s < d
2 , let the critical exponent pc be given by

−s+
d

2
=

d

pc
i.e. pc =

2d

d− 2s
∈ [2,+∞[, (4.7)

then for all p ∈ [2, pc] , Hs(Rd) embeds continuously into Lp(Rd):

∃Cp,s > 0 such that ∀f ∈ Hs(Rd), ‖f‖Lp(Rd) ≤ Cp,s‖f‖Hs(Rd). (4.8)

(iii) For s = d
2 , H

s(Rd) embeds continuously into Lp(Rd) for all 2 ≤ p < +∞ .
2on top of Sobolev’s proof which is long and delicate, [37].
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In fact, we shall need a more precise estimate than (4.8) which is the heart of the analysis.

Lemma 4.2.1 (Homogeneous Sobolev injection). Let 0 < s < d
2 and pc be given by (4.7).

Then there exists Cs > 0 such that :

∀f ∈ D(Rd), ‖f‖Lpc (Rd) ≤ Cs‖f‖Ḣs(Rd) (4.9)

where the homogeneous Sobolev semi-norm is defined by:

‖f‖Ḣs

def
=

(∫
Rd
|ξ|2s|f̂(ξ)|2 dξ

) 1
2

.

Remark (The importance of dimension). Lets = 1 , we conclude that H1(R) distributions are
in fact continuous functions, H1(R2) distributions belong to all Lp(R2) with 2 ≤ p < +∞ ,
and in dimension 3, Theorem 4.2.1 ensures that H1(R3) distributions gain the integrability
H1(R3) ⊂ L6(R3) which is a priori completely non trivial. More precisely, by Plancherel

‖f‖Ḣ1 h ‖∇f‖L2 ,

and hence (4.9) yields
∀f ∈ D(R3), ‖f‖L6(R3) ≤ C‖∇f‖L2(R3).

Remark (Scaling invariant homegeneous estimate). A key feature when comparing (4.9) and
(4.8) is that (4.9) is scale invariant. In fact, the value of the critical exponent (4.7) can be
computed by letting the group of dilations act. Let f ∈ D(Rd) and define the scaled function
fλ(x)

def
= f(λx) for λ > 0 then :

∀p ∈ [1,+∞], ‖fλ‖Lp = λ
− d
p ‖f‖Lp

and (∫
|ξ|2s|f̂λ(ξ)|2 dξ

) 1
2

=

(
λ−2d

∫
|ξ|2s|f̂(λ−1ξ)|2 dξ

) 1
2

= λ−
d
2

+s‖f‖Ḣs .

Both quantities ‖ · ‖Lp and ‖ · ‖Ḣs scale similarily (and may therefore be compared) iff their
scaling match ie −s+ d

2 = d
p i.e. p = pc .

Proof of Theorem 4.2.1. Assume (4.9) which is proved hereafter. We distinguish three cases.
case s > d

2 . Then 〈·〉
−s ∈ L2(Rd) and hence by Cauchy-Schwarz:

‖û‖L1 ≤
(∫
〈ξ〉−2s dξ

) 1
2
(∫
〈ξ〉2s|û(ξ)|2 dξ

) 1
2

≤ C‖u‖Hs .

We conclude from Fourier inversion formula that u is bounded an continuous (by dominated
convergence) and tends to zero as |x| → +∞ (Riemann-Lebesgue which is trivial for u ∈ D(Rd)
by integration by parts, and then follows by density).

case 0 < s < d
2 . Lemma 4.2.1 ensures that Hs ⊂ Lpc continuously. But by definition Hs ⊂ L2

continuously, and hence by Hölder, Hs ⊂ Lp for all p ∈ [2, pc].

case s > d
2 . Let 2 ≤ p < +∞ then σ = d

2 −
d
p satisfies 0 ≤ σ < d

2 = s and pc(σ) = p and
hence by the previous step Hs(Rd) ⊂ Hσ(Rd) ⊂ Lp(Rd) continuously.
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We now turn to the heart of the matter which is the proof of Lemma 4.2.1. The difficulty
is of course to understand how the Fourier transform can yield control in an Lp space when
2 < p < +∞ . The proof we present relies on the real interpolation method which goes beyond
the scope of these series of lectures but which is an illustration of the strength of Fourier
base localization techniques and the splitting in high and low frequencies for the analysis of
functions.

Proof of Lemma 4.2.1. Assume without loss of generality that ‖f‖Ḣs = 1. Pick A > 0 and
split the function f in low and high frequencies:

f = f1,A + f2,A with f1,A = F−1(1B(0,A)f̂) et f2,A = F−1(1 cB(0,A)
f̂). (4.10)

Since the Fourier transform of f1,A has compact support, the function f1,A is bounded and
more precisely:

‖f1,A‖L∞ ≤ (2π)−d‖f̂1,A‖L1 ≤ (2π)−d
∫
B(0,A)

|ξ|−s|ξ|s|f̂(ξ)| dξ

≤ (2π)−d
(∫

B(0,A)
|ξ|−2s dξ

) 1
2

≤ CsA
d
2
−s‖f‖Ḣs . (4.11)

The triangle inequality ensures that for all A > 0 ,

{|f | > λ} ⊂ {|f1,A| > λ/2} ∪ {|f2,A| > λ/2},

and hence (4.11) ensures:

A ≤ Aλ
def
=

(
λ

2Cs

) p
d

=⇒
∣∣∣∣{|f1,A| >

λ

2

}∣∣∣∣ = 0.

We conclude by (1.16):

‖f‖pLp ≤ p
∫ ∞

0
λp−1

∣∣∣∣{|f2,Aλ | >
λ

2

}∣∣∣∣ dλ.
High frequencies are now controlled using the Bienaymé-Tchebychev inequality in L2 :∣∣∣∣{|f2,Aλ | >

λ

2

}∣∣∣∣ =

∫
{|f2,Aλ |>

λ
2
}

1 dx ≤
∫
{|f2,Aλ |>

λ
2
}

4|f2,Aλ(x)|2

λ2
dx ≤ 4

‖f2,Aλ‖2L2

λ2
·

Hence
‖f‖pLp ≤ 4p

∫ ∞
0

λp−3‖f2,Aλ‖
2
L2 dλ. (4.12)

We recall Plancherel
(2π)d‖f2,Aλ‖

2
L2 =

∫
{|ξ|≥Aλ}

|f̂(ξ)|2 dξ

which injected into (4.12) yields

(2π)d‖f‖pLp ≤ 4p

∫
R+×Rd

λp−31{(λ,ξ) / |ξ|≥Aλ}(λ, ξ)|f̂(ξ)|2 dξ dλ.

Now by definition of Aλ
|ξ| ≥ Aλ ⇐⇒ λ ≤ Cξ

def
= 2Cs|ξ|

d
p .
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and hence Fubini ensures

(2π)d‖f‖pLp ≤ 4p

∫
Rd

(∫ Cξ

0
λp−3 dλ

)
|f̂(ξ)|2 dξ ≤ 4p

p− 2
(2Cs)

p−2
∫
Rd
|ξ|

d(p−2)
p |f̂(ξ)|2 dξ.

Since 2s =
d(p− 2)

p
, the estimate (4.9) is proved.

4.2.2 Corollaries of Sobolev injections

We give two elementary but very useful corollaries of the Sobolev injection Theorem.

Theoreme 4.2.2 (Dual Sobolev injection). Let p ∈]1, 2], then Lp(Rd) embeds continuously
into H−s(Rd) with s = d/p− d/2.
Proof of Theorem 4.2.2. By density, we need only show that there exists C > 0 such that

∀u ∈ S, ‖u‖H−s ≤ C‖u‖Lp . (4.13)

By Proposition 4.1.4,

‖u‖H−s = (2π)d sup
ϕ∈S

‖ϕ‖Hs≤1

∫
uϕdx

and hence by Hölder,
‖u‖H−s ≤ (2π)d sup

ϕ∈S
‖ϕ‖Hs≤1

‖u‖Lp‖ϕ‖Lp′ .

Since d/p′ = d/2− s, the above Sobolev injections ensure that there exists C > 0 such that

∀φ ∈ S, ‖ϕ‖Lp′ ≤ C‖ϕ‖Hs ,

and the claim is proved.

Remark. Since Lemma 4.2.1 involves only the homogeneous Sobolev norms, we may replace
‖u‖H−s by ‖u‖Ḣ−s in (4.13). This allows us to recover some of the exponents of the Hardy-
Littlewood-Sobolev inequality, see exercice 4.20.

A second corollary are the celebrated Gagliardo-Nirenberg interpolation inequalities which
are everywhere in the study of non linear problems.

Corollary 4.2.1 (Gagliardo-Nirenberg interpolation estimate). Let

2∗ =

{
+∞ for d = 1, 2,
2d
d−2 for d ≥ 3.

If 2 ≤ p < 2∗ , then

∀u ∈ H1(Rd), ‖u‖Lp ≤ C‖u‖1−σL2 ‖∇u‖σL2 with σ =
d(p− 2)

2p
· (4.14)

Remark. 2∗ is the universal notation for the homogeneous Sobolev injection Ḣ1(Rd) ⊂ L2∗(Rd)
in dimension d ≥ 3. See Lemma 4.4.1 for the generalization to the non Hilbertian setting.

Proof of 4.2.1. The estimate (4.9) yields

‖u‖Lp ≤ C‖u‖Ḣσ .

Since 2 ≤ p < 2∗ ensures σ ∈ [0, 1[ and arguing like for the proof of (4.5) with |ξ| instead of
〈ξ〉, we obtain

‖u‖Ḣσ ≤ ‖u‖1−σL2 ‖u‖σḢ1 ,

and the claim follows.
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4.3 Compactness of Sobolev embeddings

We are now in position to collect the fruits of the previous chapters and prove the local in
space compactness of the Sobolev injection which is the celebrated Rellich Theorem. This is
an absolutely fundamental tool for the study of linear and non linear physical models.

4.3.1 Ascoli-Arzela Theorem

Let us start with recalling a classical compactness result for sequences of continuous functions:
the Ascoli-Arzela Theorem.

Theoreme 4.3.1 (Ascoli-Arzela theorem). Let d, p ≥ 1 and BR = {x ∈ Rd, ‖x‖ ≤ R} . Let
(fn)n∈N be a bounded sequence of continuous maps from BR into Rp i.e.

sup
n≥1
‖fn‖L∞(BR) < +∞.

Assume that (fn)n∈N is uniformly equicontinuous :

∀ε > 0, ∃η > 0 such that ∀n ∈ N, (‖x− y‖ < η =⇒ ‖fn(x)− fn(y)‖ < ε). (4.15)

Then there exists f ∈ C(BR;Rp) and a subsequence (fφ(n))n∈N such that

fφ(n) → f uniformly on BR.

Remark. In other words, the subset of uniformly equicontinuous functions in the unit ball of
the Banach space C(BR;Rp) is relatively compact in C(BR;Rp) . It is easily seem that (4.15)
is in fact necessary and sufficient. The equicontinuity assumption (4.15) should be thought
of as a weak form of a derivative bound: if supn∈N ‖∇fn‖L∞(BR) < +∞ , then (4.15) holds.
The typical obstruction to the convergence of subsequences is the presence of high oscillations
fn(x) = sin(nx) (see exo 2.4).

Proof of 4.3.1. This is a diagonal extraction argument. Let m ≥ 1 and εm = 1
m · The ball

BR is compact, hence we can extract from BR ⊂
⋃
x∈B B(x, εm) a finite covering. Let

(x
(m)
i )1≤i≤N(m) such that

BR ⊂
N(m)⋃
i=1

B(x
(m)
i , εm).

Let m = 1 , then the N(1) sequences
(
fn(x

(1)
i )
)
n≥1

, 1 ≤ i ≤ N(1) are bounded in Rp , and
hence there exists an extraction φ1(n) such that

∀1 ≤ i ≤ N(1), fφ1(n)(x
(1)
i ) −→ f

(1)
i,∞ as n −→ +∞.

By induction on m , we construct subsequences φ1, · · · , φm such that:

∀1 ≤ i ≤ N(m), fφ1◦···◦φm(n)(x
(m)
i )→ f

(m)
i,∞ when n→ +∞.

The diagonal map φ(n)
def
= φ1 ◦ . . . φn(n) satisfies by construction

∀1 ≤ m, ∀1 ≤ i ≤ N(m), fφ(n)(x
(m)
i ) −→ f

(m)
i,∞ as n→ +∞. (4.16)
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We now claim that (fφ(n))n∈N is a Cauchy sequence in the Banach space (C(BR;Rp), ‖ · ‖L∞)
which concludes the proof. Indeed, let ε > 0 and η = η(ε) given by (4.15). Let m = m(ε)

such that εm < η . Let x ∈ BR , then ∃i ∈ [1, N(m)] such that ‖x− x(m)
i ‖ < η and hence by

(4.15), for all n ≥ 1,

‖fφ(n)(x)− fφ(p)(x)‖
≤ ‖fφ(n)(x)− fφ(n)(x

(m)
i )‖+ ‖fφ(n)(x

(m)
i )− fφ(p)(x

(m)
i )‖+ ‖fφ(p)(x

(m)
i )− fφ(p)(x)‖

≤ 2ε+ ‖fφ(n)(x
(m)
i )− fφ(p)(x

(m)
i )‖.

But the sequence (fφ(n)(x
(m)
i ))n∈N is convergent in Rp and hence a Cauchy sequence, and

hence for all n, p ≥ P (ε) large enough:

∀1 ≤ i ≤ N(m), ‖fφ(n)(x
(m)
i )− fφ(p)(x

(m)
i )‖ ≤ ε.

We conclude
∀n, p ≥ P (ε), ∀x ∈ BR, ‖fφ(n)(x)− fφ(p)(x)‖ ≤ 3ε,

and the claim is proved.

4.3.2 Compactness of the convolution

The convolution operation is the canonical compact operator since it naturally gains derivti-
aves. We give below one compactness result which follows from Ascoli, we refer to exo 2.10.

Proposition 4.3.1 (Compactness of the convolution). Soit d ≥ 1 , 1 ≤ p ≤ +∞ et BR =
{x ∈ Rd, ‖x‖ ≤ R} . Let ψ ∈ S(Rd) and Tψ(f) = ψ ? f , then

Tψ : (Lp(Rd), ‖ · ‖Lp(Rd))→ (C(BR;R), ‖ · ‖L∞(Rd))

is compact. In other words, let (fn)n∈N be a bounded sequence in Lp(Rd) , then we can extract
a subsequence (fφ(n))n∈N such that (ψ ? fφ(n))n∈N converge uniformly in BR .

Proof of Proposition 4.3.1. Let (fn)n∈N be a bounded sequence in Lp(Rd) . Let us show that
ψ ? fn ∈ C1(Rd) and satisfies the assumptions of Theorem 4.3.1. Fix n ∈ N and assume p
finite. Then D(Rd) is dense in Lp(Rd) and hence there exist fn,η ∈ D(Rd) with fn,η → fn in
Lp(Rd) as η to 0. Then ψ ? fn,η ∈ S(Rd) from Lemma 3.1.2 and by Young

‖ψ ? fn − ψ ? fn,η‖L∞(Rd) ≤ ‖fn − fn,η‖Lp(Rd)‖ψ‖Lp′ (Rd) → 0 as η → 0.

Hence ψ ? fn is the uniform limit of a sequence of continuous functions and is therefore
continuous. Using

∂i(ψ ? fn,η) = ∂iψ ? fn,η

ensures similarily that ψ ?fn is C1 . If p = +∞, the same holds by deriving directly below the
integral. For1 ≤ p ≤ +∞, we moreover obtain the uniform bounds

‖ψ ? fn‖L∞(Rd) ≤ ‖ψ‖Lp′ (Rd)‖fn‖Lp(Rd) ≤ C,
‖∇(ψ ? fn)‖L∞(Rd) = ‖∇ψ ? fn‖L∞(Rd) ≤ ‖∇ψ‖Lp′ (Rd)‖fn‖Lp(Rd) ≤ C.

Hence the sequence (ψ ? fn)n∈N is uniformly bounded and equicontinous on BR , and the
conclusion follows from Theorem 4.3.1.
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4.3.3 Local compactness of the Sobolev embedding

We now turn to the local compactness in space of Sobolev embeddings: Rellich’s Theorem.
Locality is in space.

Definition 4.3.1 (Lploc convergence). Let 1 ≤ p < +∞ and Ω be an open subset Rd . We say
that a sequence (fn)n∈N ∈ Lploc(Ω) converges to f in Lploc(Ω) iff

∀K compact de Ω, fn → f in Lp(K). (4.17)

Theoreme 4.3.2 (Local compactness of the Hs Sobolev injection). Let d ≥ 1 , s > 0 and

pc =

{
2d
d−2s for s < d

2 ,

+∞ otherwise.

Then the embedding

Hs(Rd) ↪→ Lploc(R
d) is compact for all 1 ≤ p < pc.

In other words, let (fn)n∈N bounded in Hs(Rd) , then there exists f ∈ Hs(Rd) and a subse-
quence (fφ(n))n∈N such that:

fϕ(n) ⇀ f dans Hs(Rd),
fϕ(n) → f dans Lploc(R

d) ∀1 ≤ p < pc.

If s > d
2 then the convergence is unifom on any compact set of Rd.

Proof of Theorem 4.3.2. The key to the proof is the fact that the map

Id : (Hs(Rd), ‖ · ‖Hs(Rd))→ L2(BR, ‖ · ‖L2(BR)) (4.18)

with BR
def
= {x ∈ Rd , ‖x‖ ≤ R} is the uniform limit of convolution operators satisfiying the

assumptions of Proposition 4.3.1.

step 1 Compactness. Fix ζ ∈ C∞c (Rd) positive with

ζ(x) =

{
1 pour ‖x‖ ≤ 1,
0 pour ‖x‖ ≥ 2

et
∫
Rd
ζ(x)dx = 1, (4.19)

and let the regularizing sequence:

ζε(x)
def
=

1

εd
ζ
(x
ε

)
, ε > 0. (4.20)

Let
Tε(f) = ζε ? f,

then from Theorem 3.1.2

∀f ∈ L2(Rd), Tε(f)→ f dans L2(Rd) quand ε→ 0.

Let s < d
2 . We claim the uniform statement:

sup
‖f‖Hs≤1

‖Tεf − f‖L2(Rd) → 0 quand ε→ 0 pour 0 < s ≤ d

2
· (4.21)
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Assume (4.21) which is proved below, then ∀R > 0 , the map defined in (4.18) is the uniform
limit of the sequence Tε . By Proposition 4.3.1, foall ε > 0 , Tε is compact from (L2(Rd), ‖ ·
‖L2(Rd)) into C(BR, ‖ · ‖L∞(BR)) and hence a fortiori from (Hs(Rd), ‖ · ‖Hs(Rd)) into L2(BR, ‖ ·
‖L2(BR)) . Hence

Id : (Hs(Rd), ‖ · ‖Hs(Rd))→ L2(BR, ‖ · ‖L2(BR)) est compacte (4.22)

as the uniform limit of compact operator in view of Proposition 2.1.1.
Proof of (4.21). We compute

ζ̂ε(ξ) = ζ̂(εξ) et (T̂εf − f̂)(ξ) = (1− ζ̂(εξ))f̂(ξ)

and hence by Plancherel:

(2π)d
∫
Rd
|Tε(f)− f |2dx =

∫
Rd
|T̂εf − f̂ |2 dξ =

∫
Rd
|1− ζ̂(εξ)|2|f̂(ξ)|2 dξ (4.23)

≤ ‖f‖2Hs(Rd) sup
ξ∈Rd

[
|1− ζ̂(εξ)|2

〈ξ〉2s

]
.

Since ζ ∈ S implies ζ̂ ∈ S and

ζ̂(0) =

∫
Rd
ζ(x) dx = 1 (4.24)

we easily conclude 3 using s > 0,

sup
ξ∈Rd

[
|1− ζ̂(εξ)|2

〈ξ〉2s

]
→ 0 when ε→ 0,

and (4.21) is proved.

step 2 Strong convergence in Lploc . Let now (fn)n∈N be a bounded sequence in Hs. By weak
compactness of the unit ball of Hs(Rd) , there exists f ∈ Hs(Rd) and an extraction ψ(n) such
that

fψ(n) ⇀ f in Hs(Rd). (4.25)

Letting R = m , we construct by induction on m ≥ 1 using (4.22) extractions φ1, · · · , φm, · · · ,
such that

∀m ≥ 1, fψ◦φ1◦···◦φm(n) → f in L2(Bm) as m→ +∞.

The fact that the local strong limit is necessarily given by f follows from the uniqueness of
the limit in the sense of distributions. The sequence (fφ(n))n∈N where

φ(n) = ψ ◦ φ1 ◦ · · · ◦ φn(n)

hence satisfies by construction

fφ(n) ⇀ f dans Hs(Rd), fφ(n) → f in L2
loc(Rd), (4.26)

and hence using Hölder on a given compact of Rd :

fφ(n) → f in Lploc(R
d) pour 1 ≤ p ≤ 2.

3cut in |ξ| ≤ 1√
ε
and |ξ| ≥ 1√

ε
·
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Let 2 ≤ p < pc and 0 < α ≤ 1 with

1

p
=
α

2
+

1− α
pc

,

let K be a compact of Rd. Hölder and Sobolev (4.8) and the convergence (4.26) yield:

‖fφ(n) − f‖Lp(K) ≤ ‖fφ(n) − f‖αL2(K)‖fφ(n) − f‖1−αLpc (K)

≤ Cp‖fφ(n) − f‖αL2(K)(‖fφ(n)‖1−αHs(Rd)
+ ‖f‖1−α

Hs(Rd)
)

≤ 2Cp(sup
n
‖fn‖Hs)1−α‖fφ(n) − f‖αL2(K) → 0 quand n→ +∞.

The same proof applies for s > d
2 , once proved that

sup
‖f‖Hs≤1

‖Tεf − f‖L∞(Rd) → 0 when ε→ 0 for s >
d

2
· (4.27)

Theorem 4.3.2 is essentially optimal in the following sense.

(i) Sobolev in never compact on Lp(Rd) . The continuous injection Hs(Rd) ⊂ Lp(Rd) is never
compact due to the action of the translation invariance group. Let

fn(x) = f(x− xn), |xn| → +∞

for a given non zero profile f , then fn ⇀ 0 in Hs but ∀p ≥ 1, ‖fn‖Lp = ‖f‖Lp and hence
the sequence does not strongly converge in Lp . This type of default of compactness can be
avoided using symmetry assumptions, see Proposition 7.1.1. The description of the default
of compactness of the Sobolev injection H1(Rd) ⊂ Lp(Rd) is the heart of concentration-
compactness techniques, see chapter 9.

(ii) Critical Sobolev is never compact. The critical continuous embedding Hs(Rd) ⊂ Lpcloc(R
d)

is never compact due to the action of the group of dilations. Indeed, let f ∈ C∞c (Rd) non zero
with support in B1 , let (λn)n∈N → 0 as n→ +∞ and consider

fn(x)
def
= λ

s− d
2

n f

(
x

λn

)
.

Then Suppfn ⊂ B1 and is bounded from direct check in Hs , but

|fn|pc =
1

λdn
|f |pc

(
x

λn

)
⇀ ‖f‖pc

Lpc (Rd)
δ0 in D′(Rd)

and hence does not admit any strongly converging subsequence in Lpc(B1) .

4.3.4 The case of a bounded domain

Simple consequences of the previous section apply to study Sobolev spaces on a bounded
domain as well.
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Definition 4.3.2 (H1
0 (Ω), H−1(Ω)). Let Ω be an open subset of Rd . We define H1

0 (Ω) as the
closure of D(Ω) for the H1(Rd) norm The space H−1(Ω) is its topological dual, or equivalently
the space of distributions u ∈ D′(Ω) such that

‖u‖H−1(Ω)
def
= sup

ϕ∈D(Ω)
‖ϕ‖

H1(Rd)≤1

|〈u, ϕ〉| <∞.

Recall that Proposition 4.1.3 ensures that H1(Rd) is the closure of D(Rd) for the H1(Rd)
norm, and hence H1

0 (Ω) can be identified as a closed vectorial subset of H1(Rd). Hence the
decomposition

H1(Rd) = H1
0 (Ω)⊕ (H1

0 (Ω))⊥.

We conclude that H1
0 (Ω) equipped with the scalar product

(u, v) 7−→
∫

Ω
u v dx+

∑
1≤j≤d

∫
Ω
∂ju ∂jv dx

is a Hilbert space. If Ω is bounded, the injection H1
0 (Ω) ⊂ H1(Rd) being continuous, Theorem

4.3.2 with Remark 4.2.2 yields:

Theorem (Kato-Rellich). Let Ω be a bounded open set of Rd .

(i) For d = 1, the injection H1
0 (Ω) ↪→ C(Ω) is compact.

(ii) For d = 2 and 2 ≤ p < +∞, the injection H1
0 (Ω) ↪→ Lp(Ω) is compact.

(iii) For d ≥ 3, let

2∗
def
=

2d

d− 2
∈]2,+∞[

be the critical exponent. Then for all p ∈ [1, 2∗], the space H1
0 (Ω) embeds continuously

into Lp(Ω) with compact embedding if p < 2∗ .

Remark. One can show that more generally, the embedding of H1
0 (Ω) into L2(Ω) (or Lp(Ω)

with p < 2∗ ) is compact as soon as Ω has finite measure (exercice 4.12).
Remark. By duality, we also obtain that the embedding of Lp(Ω) into H−1(Ω) is compact if
p > 2d

2+d ·
The following fundamental result ensures that the homogeneous Sobolev norm is a norm

on H1
0 (Ω) which is the weak form of the "zero boundary" condition on the frontier of Ω .

Theoreme 4.3.3 (Poincaré inequality). Let Ω be a bounded open set of Rd . Then there exists
λ1(Ω) > 0 such that:

∀u ∈ H1
0 (Ω) , ‖∇u‖2L2(Ω) ≥ λ1(Ω)‖u‖2L2(Ω) (4.28)

where

‖∇u‖2L2(Ω) =
d∑
j=1

‖∂ju‖2L2(Ω).

Remark. λ1(Ω) > 0 is the first eigenvalue of the Laplace operator with Dirichlet (ie zero)
boundary condition. The estimate (4.28) is a first example of spectral gap estimate 4. The
dependance of λ1(Ω) on the domain Ω is a subtle geometric problem (shape optimization)
which is not completely understood.

4We refer to G. Allaire [1], Chap. 7, for more examples.
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Proof of Theorem 4.3.3. We give two proofs: a quantitative one, and a qualitative one (see
exercice 4.12 for more applications) which is a first intrusion into variational methods.
Quantitative proof. Since Ω is bounded, Ω ⊂]0, R[×Rd−1 for some R large enough. Let
u ∈ D(⊂]0, R[×Rd−1) , then

u(x1, · · · , xd) =

∫ x1

0

∂u

∂y1
(y1, x2, · · · , xd) dy1.

and hence from Cauchy Schwarz:

|u(x1, · · · , xd)|2 ≤ R
∫ R

0

∣∣∣∣ ∂u∂y1
(y1, x2, · · · , xd)

∣∣∣∣2 dy1.

Since Supp u ⊂]0, R[×Rd−1, integration in x1 yields:∫
R
|u(x1, · · · , xd)|2dx1 ≤ R2

∫ R

0

∣∣∣∣ ∂u∂y1
(y1, x2, · · · , xd)

∣∣∣∣2 dy1.

and then integrating with respect to the d− 1 remaining variables,∫
Rd
|u(x1, · · · , xd)|2dx ≤ R2

∫
Ω

∣∣∣∣ ∂u∂y1
(y1, x2, · · · , xd)

∣∣∣∣2 dy1 dx2 · · · dxd

≤ R2‖∂1u‖2L2(Ω).

Since D(Ω) is dense in H1
0 (Ω) , (4.28) is proved.

Qualitative proof. Let

λ1(Ω) = inf
u∈H1

0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2
L2(Ω)

·

Assume by contradiction that λ1(Ω) = 0 . Then there exists a sequence (un)n≥1 with

∀n ∈ N∗, ‖un‖L2(Ω) = 1 and ‖∇un‖L2(Ω) ≤
1

n
·

Since (un)n∈N is bounded in H1(Ω), we extract from Kato-Rellich (uφ(n))n∈N and u ∈ H1
0 (Ω)

with
uφ(n) ⇀ u in H1

0 (Ω) and uφ(n) → u in L2(Ω).

The weak convergence in H1
0 (Ω) implies convergence inD′(Ω), and hence ∇uφ(n) ⇀ ∇u in

L2(Ω) from which by lower semi continuity of the L2 norm when passing to the weak limit:∫
Ω
|∇u|2 dx ≤ lim inf

n→+∞

∫
Ω
|∇un|2 dx = 0.

Hence u ∈ H1
0 (Ω) is a constant and this implies u ≡ 0 . On the other hand, by strong L2(Ω)

convergence: ∫
Ω
|u|2 dx = lim

n→+∞

∫
Ω
|uφ(n)|2 dx = 1,

and a contradiction follows.

The following corollay follows directly from (4.28).

Corollary 4.3.1. Let Ω be a bounded subset of Rd , then

(u, v) 7−→
∑

1≤j≤d

∫
Ω
∂ju ∂jv dx

is a scalar product on H1
0 (Ω) which defines a norm equivalent to the one of Definition 4.3.2.
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4.4 The Sobolev space W k,p(Rd)

Sobolev spaces Hs(Rd) are built on L2(Rd) which makes the Fourier transform techniques
particularily useful. For appication to nonlinear problems, the more general W k,p(Rd) scale
based on Lp(Rd) with 1 ≤ p < +∞ is useful. To simplify the exposition, we restrict to integer
derivatives k ∈ N . Let us stress that the general theory is the one of Besov spaces which
study relies on the Litllewood-Paley decomposition of functions, see for example [2, 31]. One
important feature of the exposition below is to provide another proof of the Sobolev injection
Theorem based solely on integration by parts due to L. Nirenberg.

4.4.1 Definition and Banach space structure

Definition (Sobolev space W k,p(Rd)). Let1 ≤ p < +∞ and k ∈ N∗ . We let W k,p(Rd) be
the set of functions f ∈ Lp(Rd) such that

∀α ∈ Nd with |α| ≤ k, ∂αf ∈ Lp(Rd).

Theoreme 4.4.1. Let 1 ≤ p < +∞ and k ∈ N∗ . Then (W k,p(Rd), ‖ · ‖Wk,p(Rd)) is a Banach
space for the norm:

‖f‖Wk,p(Rd) =

∑
|α|≤k

‖∂αf‖p
Lp(Rd)

 1
p

.

Moreover, D(Rd) is dense in W k,p(Rd).

Proof of Theorem 4.4.1. The normed vectorial space structure follows Minkowski’s inequality.
Let (fn)n∈N be a Cauchy sequence in W k,p(Rd). Then for all |α| ≤ k , (∂αfn)n∈N is a Cauchy
sequence in Lp(Rd) , hence it converges to some gα. Let g be the limit of (fn)n∈N in Lp , then
fn ⇀ g in D′(Rd) and hence ∂αfn ⇀ ∂αg in D′(Rd) which by uniqueness of the limit in the
sense of distributions forces gα = ∂αf . Hence ∂α(fn)n∈N converges to g in W k,p(Rd). The
density of D(Rd) in W k,p follows from Theorem 3.1.2.

4.4.2 Sobolev injections

We now establigh the L2 analogue of Theorem 4.2.1 and we consider for the sake of simplicity
integer derivatives only.

Theoreme 4.4.2 (Injection de Sobolev). Let d ≥ 1 , k ∈ N∗ and 1 ≤ p < +∞.

(i) If p > d
k or p = d = k = 1 then W k,p(Rd) embeds continuously into the space (C0(Rd), ‖·

‖L∞(Rd)) of continuous functions on Rd which tend to 0 at infinity.

(ii) If 1 ≤ p < d
k , let pc be the critical exponent

−k +
d

p
=

d

pc
i.e. pc =

pd

d− kp
∈]p,+∞[.

Then for all p ≤ q ≤ pc , W k,p(Rd) embeds continuously into Lq(Rd) .

(iii) If p = d
k ≥ 1 and d ≥ 2 then for all p ≤ q < +∞, W k,p(Rd) embed continuously into

Lq(Rd) .
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Like for Theorem 4.2.1, the heart of the proof is the scale invariant homogeneous Sobolev
estimate.

Lemma 4.4.1 (Homogeneous W 1,p injection). Let d ≥ 1.

(i) If 1 ≤ p < d and p∗ is given by

−1 +
d

p
=

d

p∗
i.e. p∗ =

pd

d− p
∈]p,+∞[

then
∀f ∈W 1,p(Rd), ‖f‖Lp∗ (Rd) ≤ Cp‖∇f‖Lp(Rd). (4.29)

(ii) If p > d and α = 1− d
p , then there holds the uniform Hölder bound:

∀f ∈W 1,p(Rd), ∀(x, y) ∈ R2d, |f(x)− f(y)| ≤ Cp,d|x− y|α‖∇f‖Lp(Rd) (4.30)

Proof of (4.4.1). We follow [5]5. By density it suffices to prove the claim for f ∈ D.
step 1 Case p = 1 and d ≥ 2. Let x ∈ Rd and denote

x̃i = (x1, . . . , xi−1, xi+1, . . . , xd), 1 ≤ i ≤ d.

Let (g1, . . . , gd) ∈ D(Rd−1) and g(x) =

d∏
i=1

gi(x̃i). Let us show by induction on d that

‖g‖L1(Rd) ≤
d∏
i=1

‖gi‖Ld−1(Rd−1). (4.31)

This is straightforward for d = 2 . We assume d and prove d+ 1. Let us freeze xd+1 ∈ R. Let
x = (x′, xd+1) , x′ = (x1, · · · , xd), then Hölder with respect to the Lebesgue measure in Rdx′
yields: ∫

|g(x)| dx′ ≤ ‖gd+1‖Ld(Rd)

(∫
|(g1 . . . gd)(x

′, xd+1)|
d
d−1dx′

) d−1
d

.

We then apply the induction claim to |g1|
d
d−1 , . . . , |gd|

d
d−1 and hence∫

|(g1 . . . gd)(x)|
d
d−1 dx′ ≤

d∏
i=1

‖|gi(·, xd+1)|
d
d−1 ‖Ld−1(Rd−1) =

d∏
i=1

‖gi(·, xd+1)|
d
d−1

Ld(Rd−1)
.

We have obtained for all fixed xd+1 :∫
|g(x′, xd+1)| dx′ ≤ ‖gd+1‖Ld(Rd)

d∏
i=1

‖gi(·, xd+1)‖Ld(Rd−1).

We now integrate on xd+1 . Each function xd+1 7→ ‖gi(·, xd+1)‖Ld(Rd−1) for 1 ≤ i ≤ d belongs
to Ld(R) avec ∥∥∥‖gi(·, xd+1)‖Ld(Rd−1)

∥∥∥
Ld(R)

= ‖gi‖Ld(Rd),

5another approach is proposed in exercice 4.19.
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and hence using Hölder again with
d∑
i=1

1

d
= 1 yields

∫
|g(x)| dx′ dxd+1 ≤ ‖gd+1‖Ld(Rd)

∫ d∏
i=1

‖gi‖Ld(Rd−1) dxd+1 =
d+1∏
i=1

‖gi(·, xd+1)‖Ld(Rd).

step 2 Case p < d and d ≥ 2. If p = 1 the estimate (4.29) follows from an integration by
parts: for all 1 ≤ i ≤ d :

|f(x)| =

∣∣∣∣∫ xi

−∞
∂if(x1, . . . , xi−1, t, xi+1, . . . , xd) dt

∣∣∣∣
≤ fi(x̃i)

def
=

∫
R
|∂if(x1, . . . , xi−1, t, xi+1, . . . , xd)| dt,

and hence

|f(x)|d ≤
d∏
i=1

fi(x̃i).

We conclude from (4.31):

∫
|f(x)|

d
d−1dx ≤

d∏
i=1

‖fi‖
1
d−1

L1(Rd−1)
=

d∏
i=1

‖∂if‖
1
d−1

L1(Rd)

and hence

‖f‖
L

d
d−1 (Rd)

≤
d∏
i=1

‖∂if‖
1
d

L1(Rd)
(4.32)

and (4.29) is proved for p = 1 and d ≥ 2.
If 1 < p < d , we fixe t > 1 and f ∈ D and apply (4.32) to f |f |t−1. Using Hölder:

‖f‖t
L

td
d−1 (Rd)

≤ Cp,t

d∏
i=1

∥∥|f |t−1∂if
∥∥ 1
d

L1(Rd)
≤ Cp

d∏
i=1

[
‖f‖t−1

Lp
′(t−1)(Rd)

‖∂if‖Lp(Rd)

] 1
d

≤ Cp,t‖f‖t−1

Lp
′(t−1)(Rd)

d∏
i=1

‖∂if‖
1
d

Lp(Rd)
. (4.33)

The choice

t =
d− 1

d
p∗ i.e.

td

d− 1
= p′(t− 1) = p∗

for which t ≥ 1 (since p < d) ensures:

‖f‖Lp∗ (Rd) ≤ Cp
d∏
i=1

‖∂if‖
1
d

Lp(Rd)
≤ Cp‖∇f‖Lp(Rd).

The estimate (4.29) is thus proved for f ∈ D(Rd) , and the general case f ∈W 1,p(Rd) follows
by density.
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step 3 Case p > d . By density we need only treat the case f ∈ D . The estimate (4.30) is
obvious in dimension d = 1 since by Hölder:

|f(x)− f(y)| =
∣∣∣∣∫ y

x
f ′(t)dt

∣∣∣∣ ≤ |x− y|1/p′‖f‖Lp(R).

The proof is more subtle in dimension d ≥ 2 . Let r > 0 and Q = [−r, r]d , then

∀x ∈ Q, |f(x)− f(0)| =
∣∣∣∣∫ t

0
x · ∇f(tx) dt

∣∣∣∣ ≤ r ∫ 1

0
|∇f(tx)| dt. (4.34)

Let fQbe the average of f on Q

fQ =
1

|Q|

∫
Q
f(x) dx.

Then integrating (4.34) for x ∈ Q and using Fubini, a change of variables and Hölder:

|fQ − f(0)| ≤ r

|Q|

∫ 1

0

∫
Q
|∇f(tx)| dx dt =

r

|Q|

∫ 1

0

1

td

∫
tQ
|∇f(x)| dx dt

≤ r

(2r)d

∫ t

0
‖∇f‖Lp(Rd)

|tQ|
1
p′

td
dt ≤ r

1−d+ d
p′

2d/p
‖∇f‖Lp(Rd)

∫ 1

0
t
d
p′−d dt

≤ Cp,d r
1− d

p ‖∇f‖Lp(Rd)

where we used
d

p′
− d = −d

p
> −1.

By translation invariance, we conclude that for all cube Q of size 2r :

∀x ∈ Q, |fQ − f(x)| ≤ Cp,d r1− d
p ‖∇f‖Lp(Rd),

and hence

∀(x, y) ∈ Q2, |f(x)− f(y)| ≤ |f(x)− fQ|+ |fQ − f(y)| ≤ Cp,d r1− d
p ‖∇f‖Lp(Rd).

Since two points (x, y) ∈ R2d always belong to such a cube with r = 2|x − y| , (4.30) is
proved.

Proof of Theorem 4.4.2. We detail the proof for k = 1 . The claim for k ≥ 2 follows directly
by induction on k .

(i) Case p > d . By (4.30), every function f ∈W 1,p(Rd) with p > d is Hölderian, and hence
continuous. Moreover, if x ∈ Rd and Q = Πd

1=1[xi − 1, xi + 1] , then there exists y ∈ Q
such that 6:

|f(y)| ≤ 1

|Q|

∫
Q
|f(z)|dz ≤ Cp‖f‖Lp(Rd)

and hence by (4.30):

|f(x)| ≤ |f(y)|+ Cp,d‖∇f‖Lp(Rd) ≤ Cp,d‖f‖W 1,p(Rd).

This proves that f is bounded and the uniform convergence norm is bounded by the
W 1,p norm. Since D(Rd) is dense in W 1,p and the uniform convergence preserves the
limit at infinity, we conclude that f ∈ C0.

6Raisonner par l’absurde.
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(i’) Case p = d = 1. For f ∈ D(Rd) ,

|f(x)| ≤
∫ x

−∞
|f ′(t)| dt,

and the claim follows by density

(ii) Case d ≥ 2 and 1 ≤ p < d with p ≤ p∗ . This follows directly from (4.29) and Hölder.

(iii) Cas p = d ≥ 1 . Let f ∈ D(Rd) , then by (4.33): ∀t ≥ 1 ,

‖f‖
L

td
d−1 (Rd)

≤ Cp,t‖f‖
t−1
t

Lp
′(t−1)(Rd)

‖∇f‖
1
t

Lp(Rd)

≤ Cp,t
[
‖f‖Lp′(t−1)(Rd) + ‖∇f‖Lp(Rd)

]
(4.35)

where we used Young ab ≤ 1
pa

p + 1
p′ b

p′ · The choice

p′(t− 1) = p i.e. t = p = d

ensures
‖f‖

L
d2
d−1 (Rd)

≤ Cd‖f‖W 1,p(Rd).

We then iterate the process and apply (4.35) to the sequence (tj = d+ j)j≥1 which goes
to +∞ as j → +∞.

Remark. This new injection Theorem allows one to compare the Hs and W 1,p ladders, see
exercice 4.18.

4.4.3 Local compactness of the Sobolev embedding

Theoreme 4.4.3 (Local compactness of the W 1,p(Rd) injection). Let d ≥ 1 , p ≥ 1 et

p∗ =

{
pd
d−p for p < d

+∞ otherwise.

Then for all 1 ≤ q < p∗ the embedding W 1,p(Rd) ↪→ Lqloc(R
d) iscompact.

Equivalently, for all sequence (fn)n∈N bounded in W 1,p(Rd) , there exists f ∈ W 1,p(Rd)
and a subsequence (fφ(n))n∈N such that:

fϕ(n) → f dans Lqloc(R
d), ∀1 ≤ q < p∗. (4.36)

For p > d, the convergence is uniform on any compact set of Rd.

Proof of Theorem 4.4.3. Let (fn)n∈N be a bounded sequence of W 1,p(Rd) and R > 0. Let us
show that we can extract

fϕ(n) → f dans Lq(BR), ∀1 ≤ q < p∗, (4.37)
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with moreover uniform convergence if p > d .
– For p > d , the uniform Hölder estimate (4.30) implies that the family (fn)n≥1 is equicon-
tinuous on BR , and (4.37) follows from Ascoli.
– If p ≤ d , let q < p∗ , let ζε be a regularizing sequence. Assume

sup
‖f‖

W1,p(Rd)≤1
‖ζε ? f − f‖Lp(Rd) → 0 quand ε→ 0. (4.38)

Then Id : W 1,p(Rd)→ Lp(BR) is the uniform limit of the maps f 7→ ζε?f which by Proposition
4.3.1 are compact from Lp(Rd) → C(BR) and hence a fortiori from W 1,p(Rd) → Lp(BR).
Hence Id : W 1,p(Rd) → Lp(BR) is compact by Proposition 2.1.1. The convergence (4.36) in
Lploc(R

d) follows by diagonal extraction on Rm = m like for the proof of Theorem 4.3.2, and
then in Lqloc(R

d) for 1 ≤ q < p∗ by Hölder on a fixed compact set for 1 ≤ q ≤ p and the
Sobolev injections for p ≤ q < p∗ . The proof for p > d is similar and left to the reader.
Proof of (4.38) for 1 ≤ p < d. Changing variable and using (4.19):

|ζε ? f(x)− f(x)|p =

∣∣∣∣∫
Rd
ζ(y)(f(x− εy)− f(y)) dy

∣∣∣∣p ≤
∣∣∣∣∣
∫
|y|≤2

|f(x− εy)− f(y)| dy

∣∣∣∣∣
p

≤ Cp

∫
|y|≤2

|f(x− εy)− f(y)|p dy. (4.39)

Let h ∈ Rd. Forϕ ∈ D(Rd) , we compute:

|ϕ(x+ h)− ϕ(x)|p =

∣∣∣∣∫ 1

0
h · ∇ϕ(x+ th) dt

∣∣∣∣p ≤ |h|p ∫ 1

0
|∇ϕ(x+ th)|p dt

and hence changing variable x 7→ x+ th,∫
Rd
|ϕ(x+ h)− ϕ(x)|pdx ≤

∫ 1

0
|h|p

∫
Rd
|∇ϕ(x+ th)|p dx dt ≤ |h|p‖∇φ‖p

Lp(Rd)
.

We conclude

∀f ∈W 1,p(Rd), ∀h ∈ Rd,
∫
Rd
|f(x+ h)− f(x)|p dx ≤ |h|p‖f‖p

W 1,p(Rd)
.

We inject this estimate into (4.39) and obtain:∫
Rd
|ζε ? f(x)− f(x)|p dx ≤ Cp

∫
Rd

(∫
|y|≤2

|f(x− εy)− f(y)|p dy
)
dx ≤ Cp|ε|p‖f‖pW 1,p(Rd)

,

and (4.38) is proved.

4.4.4 The case of a bounded domain

Like for H1 , the W 1,p extends naturally onto a domain.

Definition 4.4.1. Let Ω be an open subset of Rd and 1 ≤ p <∞. The space W 1,p
0 (Ω) is the

closure of D(Ω) for the norm ‖ · ‖W 1,p(Rd).

By construction W 1,p
0 (Ω) is closed subspace of W 1,p(Rd) for the norm ‖ · ‖W 1,p(Rd) and

hence a Banach space. The Sobolev injections of Theorem 4.4.2 yield :
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Theorem (Kato-Rellich in W 1,p(Ω)). Let Ω be a bounded set of Rd .

(i) For p > d, the embedding W 1,p
0 (Ω) ↪→ C(Ω) is compact.

(ii) For p = d and 1 ≤ q < +∞, the embedding W 1,p
0 (Ω) ↪→ Lq(Ω) is compact.

(iii) For 1 ≤ p < d, let the critical exponent

p∗ =
pd

d− p
,

then for allq ∈ [1, p∗] , W 1,p
0 (Ω) embeds continuously intp Lq(Ω) with compact injection

for 1 ≤ q < p∗ .

We can also recover a Poincaré inequality for p = 2 which proof of is similar to the one of
Theorem 4.3.3

Theoreme 4.4.4 (Poincaré inequality). Let Ω be an open subset of Rd et 1 ≤ p < +∞ .
Then there exists C(p,Ω) such that

∀f ∈W 1,p
0 (Ω), ‖f‖Lp(Ω) ≤ C(p,Ω)‖∇f‖Lp(Ω).

4.5 Exercices

Exercice 4.1. Show that for all s ∈ R , S embeds continuously into Hs Hs .

Exercice 4.2. Show that for all s, the multiplication by 〈·〉s sends continuously S into itself.
Same question with the operator 〈D〉s defined by (4.6). Generalize to S ′.

Exercice 4.3. We say that a distribution u ∈ D′(Rd) has compact support if there exists
K ⊂ Rd compact such that ∀φ ∈ D(Rd\K) , 〈u, φ〉D′,D = 0 . Show that if u ∈ D′(Rd) has
compact support, there exists s ∈ R such that u ∈ Hs .

Exercice 4.4. Show that the constante 1 does not belong to any Hs.

Exercice 4.5. Show that the Dirac mass δ0 belongs to H−
d
2
−ε for all ε > 0 , nut δ0 ∈/∈ H−

d
2 .

Generalize to the derivatives of δ0.

Exercice 4.6. Let s ≤ d/2, show that D(Rd \ {0}) is dense in Hs .
Hint: study the orthogonal of D(Rd \ {0}) and use the preceding exercice.

Exercice 4.7. Let R =
∑d

i=1 xi∂xi .

(i) Compute R| · |−2.

(ii) Show that for all f ∈ D(Rd \ {0})∫
Rd

|f(x)|2

|x|2
dx =

∫
Rd

f(x)Rf(x)

|x|2
dx+

d

2

∫
|f(x)|2

|x|2
dx.

(iii) For d ≥ 3, prove the Hardy inequality

∀f ∈ H1(Rd),
(∫

Rd

|f(x)|2

|x|2
dx

) 1
2

≤ 2

d− 2
‖∇f‖L2 . (4.40)
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(iv) Is it true in dimension d = 2?

Exercice 4.8 (Limit cases of Sobolev injections). (i) Show that H
d
2 (Rd) does not embed

continuously into L∞(Rd).

(ii) In which Sobolev spaces does L1(Rd) embed continuously?

(iii) Let d ≥ 3, show that H1(Rd) does not embed continuously into Lp(Rd) for p > 2d/(d−
2).

(iv) For d = 2 , give an example of an H1 function which is not bounded.

Exercice 4.9. Let r ∈]0, 1[. Show that H
d
2

+r(Rd) is continuously embedded into the Hölder
space Cr(Rd) defined in exercice 2.5.

Exercice 4.10. Let s > d
2 · Show that there exists C > 0 such that

∀u ∈ Hs(Rd), ‖u‖L∞ ≤ C‖u‖
1− d

2s

L2 ‖u‖
d
2s

Ḣs
·

Exercice 4.11. Let s > 0 and Ω be a bounded open set of Rd . Show that there exists
λs(Ω) > 0 such that

∀ϕ ∈ D(Ω), ‖ϕ‖2
Ḣs(Rd)

≥ λs(Ω)‖ϕ‖2L2(Ω).

Exercice 4.12. Let Ω be a open set of Rd of finite measure.

(i) Show that the embedding H1
0 (Ω) into L2(Ω) is compact.

Hint: use the Fourier transform to realize that if (gn)n∈N is bounded in H1
0 (Ω) , then

(ĝn)n∈N is bounded in the set of continuous functions which go to 0 as |x| → +∞ .

(ii) Prove that the Poincaré inequality still holds for this kind of domain.

(iii) Show that
∀u ∈ H1(Ω), ‖u− u‖L2 ≤ C‖∇u‖L2

wher u is the average of u on Ω.

Exercice 4.13. Let s ∈]0, 1[ . Show that there exists C > 0 such that

∀u ∈ S, C−1‖u‖2
Ḣs ≤

∫
Rd×Rd

|u(x+ y)− u(x)|2

|y|d+2s
dx dy ≤ C‖u‖2

Ḣs .

Exercice 4.14. Letχ ∈ S(Rd) and s ∈ [0, 1]. Let the homogeneous Fourier multiplier

|̂D|sv def
= |ξ|sv̂ . Let the commutator

Asv = |D|s, χ] =
def
= |D|s(χv)− χ|D|sv.

(i) Let v ∈ S(Rd) , compute Âsv in the form of an integral operator on v̂ .

(ii) Using Plancherel, show that As is bounded on L2 .

(iii) Give another proof of (iii) of Proposition 4.1.3.

Exercice 4.15. Let u and v in S(Rd).
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(i) Compute ‖uv‖2
Hs+t− d2

in terms of û and v̂. Let

J1 =

∫
〈ξ〉2s+2t−d

∣∣∣∣∫
2|ξ−η|≤|η|

û(ξ − η)v̂(η) dη

∣∣∣∣2 dξ,
J2 =

∫
〈ξ〉2s+2t−d

∣∣∣∣∫ |η|
2
≤|ξ−η|≤|η|

û(ξ − η)v̂(η) dη

∣∣∣∣2 dξ
with 〈ξ〉 :=

√
1 + |ξ|2.

(ii) Assume s < d
2 ·

(a) Show that there exists C = C(s, d) such that

∀ξ ∈ Rd,
∫

2|ξ−η|≤|η|

∣∣û(ξ − η)
∣∣ dη ≤ C‖u‖Hs〈ξ〉

d
2
−s,

∀η ∈ Rd,
∫

2|ξ−η|≤|η|

∣∣û(ξ − η)
∣∣ dξ ≤ C‖u‖Hs〈η〉

d
2
−s.

(b) Show that there exits C ′ = C ′(s, d) such that

J1 ≤ C ′‖u‖2Hs‖v‖2Ht .

(iii) We pick (s, t) ∈ R2 and assume s + t > 0. Show that there eixst C ′′ = C ′′(d, s, t) such
that

J2 ≤ C ′′‖u‖2Hs‖v‖2Ht .

(iv) Assume s < d
2 , t <

d
2 and s+ t > 0. Show that the multiplication operation (u, v) 7→ uv

extends as a bilinear continuous map from Hs ×Ht into Hs+t− d
2 .

Exercice 4.16. The trace map. We define the trace map from S(Rd) to S(Rd−1) by

τu(x′) = u(0, x′), x′ = (x2, . . . , xd).

(i) Show that for all u ∈ S(Rd) and ξ′ ∈ Rd−1 ,

τ̂u(ξ′) =
1

2π

∫
R
û(ξ1, ξ

′)dξ1.

(ii) Show that for s > 1/2 , ∃C(s) > 0 such that ∀u ∈ S(Rd) ,

‖τu‖Hs−1/2(Rd−1) ≤ C‖u‖Hs(Rd).

Hint: use the previous question to derive the estimate

|τ̂u(ξ′)|2 ≤ 1

4π2

(∫
R
|û(ξ)|2〈ξ〉2sdξ1

)(∫
R
〈ξ〉−2sdξ1

)
and express

∫
R〈ξ〉

−2sdξ1 in terms of 〈ξ′〉 (where we noted ξ = (ξ1, ξ
′)).

(iii) Let s > 1/2 . Show that the trace application extends uniquely as a continuous map
from Hs(Rd) onto Hs−1/2(Rd−1) .
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(iv) Let s > 1/2 and g ∈ Hs−1/2(Rd−1) . Define

v̂(ξ) = ĝ(ξ′)
〈ξ′〉2(s−1/2)

〈ξ〉2s
.

Show that v ∈ Hs(Rd) and v(0, x′) = Cg(x′) for some constant C 6= 0 . Conclude that
the above trace map is surjective.

Exercice 4.17. [Sobolev space in a cube] Let L2
per(Rd) be the set of functions u : Rd → C

which are 2πZd periodic and such that the restriction of u to Qd
def
= ]0, 2π[d belongs to L2(Qd).

We let H1
per(Rd) the set of u ∈ L2

per(Rd) such that ∇u ∈ L2
per(Rd). We equip L2

per(Rd) and
H1
per(Rd) with the Hilbertian norms:

‖u‖L2
per

def
=

√
1

(2π)d
‖u‖L2(Qd) and ‖u‖H1

per

def
=

√
1

(2π)d
(
‖u‖2

L2(Qd)
+ ‖∇u‖2

L2(Qd)

)
·

For k ∈ Zd, we let ek(x)
def
= ei(k|x) and we define the discrete Fourier coefficients of u by

uk
def
=

1

(2π)d

∫
Qd

e−i(k|x)u(x) dx.

(i) Compute ‖u‖L2
per

and ‖u‖H1
per

in terms of uk.

(ii) Let Tn : u 7→
∑
|k|≤n ukek.

(a) Show that s (Tn)n∈N converges to the map Id in L(H1
per;L

2
per).

(b) Conclude that the embedding H1
per(Rd) into L2

per(Rd) is compact.

Exercice 4.18. Let 1 ≤ p < d . We define the critical Sobolev exponent by −sc+ d
2 = −1+ d

p ·

(i) For p ≥ 2 , show that ∀s ≥ sc , Hs(Rd) ↪→W 1,p(Rd).

(ii) For 1 ≤ p ≤ 2 , show that ∀s ≤ sc , W 1,p(Rd) ↪→ Hs(Rd).

Exercice 4.19. We propose a proof of Sobolev injection in dimension d ≥ 2 as a consequence
of the Hardy-Littlewood-Sobolev inequality.

(i) Show that there exists C > 0 such that for all f ∈ C∞c (Rd) and x ∈ Rd,

|f(x)| ≤ C
∫
Rd

|∇f(y)|
|x− y|d−1

dy.

Hint : notice that if f is supported in the ball B(0, R) then for all a ω ∈ Sd−1 the unit
sphere, there holds

f(0) = −
∫ R

0

d

dr
f(rω) dr.

(ii) Conclude that if d < p < ∞ then W 1,p(Rd) continuously embed into the space C0(Rd)
of continuous functions on Rd which go to 0 at infinity.

(iii) For 1 < p < d, give a new proof of the critical Sobolev injection (4.29).
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Exercice 4.20. Let d = 3 .

(i) Let ψ(x) = 1
|x| · Show that ψ̂ is a homogeneous function of degre −2 with spherical

symmetry. Show that
ψ̂(ξ) =

c

|ξ|2

for some c ∈ R∗ .
Hint: we recall that a distribution with support a singleton is a finite sum of Dirac masses
(exercice 3.6).

(ii) Recover using Theorem 4.2.2 the special case of the Hardy-Littlewood-Sobolev inequality:

‖ 1

|x|
? f‖L6(R3) . ‖f‖L 6

5 (R3)
.
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Chapter 5

Scattering for the free Schrödinger
semi group in Rd

This chapter is devoted to the study of a central phenomenon in wave dynamics: scattering,
that is the spreading of the energy of wave packets over all space. We shall restrict the
exposition to the linear Schrödinger equation{

i∂tu+ ∆u = 0
u|t=0 = u0

, (t, x) ∈ R× Rd, u(t, x) ∈ C. (5.1)

The spreading of the wave packet is due to the structure of the wave packet during the evolu-
tion: the speed of propagation in space of a wave packet localized at the frequency ξ ∈ Rd is
an increasing fonction of |ξ| as indicated by the dispersion relation 1 Hence the wave packet
decomposes into elementary wave packets which travel at different speeds depending on their
frequency: this is scattering.

The physical phenomenon is clear, but its actual translation into useful tools to the study
the propagation, in particular for the study of nonlinear problems, has long been a challenge,
especially for Schrödinger like models which produce infinite speed of propagation and little
smoothing regularity. The pioneering works of R. Strichartz [38] at the end of the 1970’s de-
voted to abstract harmonic analysis problems (restriction Theorems in Fourier analysis) have
paved the way to the discovery of a new functional framework which has been developped for
more than thirty years, and lead nowadays to breathrough results in the description of the
long time behaviour of linear and non linear waves. The starting point is the series of works
on the Cauchy problem for the nonlinear Schrödinger equation by Ginibre and Velo [16] which
we will review in the next chapter.

Our aim in this chapter is to prove the celebrated Strichartz estimates and other dispersive
properties of the flow in connection to the pseudo conformal symmetry.

5.1 The Schrödinger semi group in Rd

We study in this section the linear flow (5.1) for an initial data u0 ∈ Hs(Rd) .

1computed by looking for a monochromatic wave (t, x) 7→ ei(ξ·x−ωt) which through (5.1) yields ω = |ξ|2 .
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5.1.1 Representation formulas

The linear flow (5.1) is explicitely solvable in Fourier. In all the section, û or Fu is the Fourier
transform in the space variables only, t is seen as a parameter.

Lemma (Representation formula). Let u0 ∈ S(Rd), then the unique solution u ∈ C1(R;S(Rd))
to (5.1) is given by

u(t, ·) = S(t)u0 = St ? u0 = F−1(e−it|ξ|
2
û0(ξ)) (5.2)

with
∀t ∈ R∗, St

def
=

1

(4πit)
d
2

ei
|x|2
4t and S0

def
= δ0.

Proof of Lemma 5.1.1. Let u ∈ C1(R;S(Rd)) solution to (5.1), then taking the Fourier trans-
form in x of (5.1) yields

∀(t, ξ) ∈ R× Rd, i
d

dt
û(t, ξ)− |ξ|2û(t, ξ) = 0, û(0, ξ) = û0(ξ),

which is explicitely integrated as

∀(t, ξ) ∈ R× Rd, û(t, ξ) = e−it|ξ|
2
û0(ξ),

and (5.2) is proved. The representation formula in space is a direct consequence of the com-
putation of the Fourier transform of Gaussians which is proved below.

Lemma 5.1.1. Let z ∈ C which <(z) > 0 , then

F
(
e−z|·|

2
)

(ξ) =
(π
z

) d
2
e−
|ξ|2
4z

with2 z−
d
2

def
= |z|−

d
2 e−i

d
2
θ for z = |z|eiθ and θ ∈ [−π/2, π/2].

Proof of Lemma 5.1.1. For all ξ ∈ Rd , the functions

z 7−→
∫
Rd
e−i(x|ξ)e−z|x|

2
dx et z 7−→

(π
z

) d
2
e−
|ξ|2
4z

are holomorphic on D = {z ∈ C,<(z) > 0}. The classical formula of Fourier transform for
Gaussians ensures that these two functions coincide of the half real line {z = x > 0} , and
hence on D . Let t 6= 0 and consider a sequence (zn)n∈N of D converging to it. Thanks to
Lebesgue dominated convergence theorem, for all φ ∈ S, there holds

lim
n→∞

∫
Rd
e−zn|x|

2
φ(x) dx =

∫
Rd
e−it|x|

2
φ(x) dx and

lim
n→+∞

(
π

zn

) d
2
∫
Rd
e−
|ξ|2
4zn φ(ξ) dξ =

(
π

it

) d
2
∫
Rd
e−
|ξ|2
4it φ(ξ) dξ.

Since

F
(
e−zn|·|

2
)

=
( π
zn

) d
2
e−
|ξ|2
4zn ,

2choice of the determination of the complex logarithm.
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we can write using the definiton of the Fourier transform for distributions (cf [4, 17]),

〈ê−it|·|2 , φ〉 = 〈e−it|·|2 , φ̂〉 = lim
n→+∞

∫
e−zn|x|

2
φ̂(x) dx = lim

n→+∞

∫
ê−zn|·|2(ξ)φ(ξ) dξ

= lim
n→+∞

(
π

zn

) d
2
∫
e−
|ξ|2
4zn φ(ξ) dξ =

(
π

it

) d
2
∫
e−
|ξ|2
4it φ(ξ) dξ,

which yields the expected equality for z = it.

Sovling the homogeneous problem (5.1) allows one to solve the inhomogeneous problem.

Lemma (Duhamel formula). Let u0 ∈ S(Rd) and f ∈ C(R;S(Rd)), then the solution to
u ∈ C1(R;S(Rd)) of the inhomogeneous problem{

i∂tu+ ∆u = f
u|t=0 = u0

(5.3)

is given by Duhamel representation formula

u(t) = S(t)u0 − i
∫ t

0
S(t− t′)f(t′) dt′. (5.4)

Proof of Lemma 5.1.1. In Fourier, u is a solution iff

∀t ∈ R, i
d

dt
û(t, ξ)− |ξ|2û(t, ξ) = f̂(t, ξ), û(0, ξ) = û0(ξ) (5.5)

which is integrated explicitely as

û(t, ξ) = e−it|ξ|
2
û0(ξ)− i

∫ t

0
e−i(t−t

′)|ξ|2 f̂(t′, ξ) dt′,

and (5.4) follows through inverse Fourier transform.

5.1.2 The Schrödinger semi group on Rd

Observe that the representation formula (5.2) makes sense for u0 ∈ Hs(Rd) and even u0 ∈
S ′(Rd) . The following Definition–Proposition is therefore an immediate consequence of (5.2)
and Plancherel.

Proposition (Semi-group on Hs(Rd)). Let s ∈ R , we define for u0 ∈ Hs(Rd) the Schrödinger
semi group on Hs by

∀t ∈ R, S(t)u0 = St ? u0 = F−1(e−it|ξ|
2
û0). (5.6)

Then (S(t))t∈R is strongly continuous and unitary on Hs , ie:
1.Regularity: t 7→ S(t)u0 ∈ C(R;Hs) .
2.Hs isometric: ‖S(t)u0‖Hs = ‖u0‖Hs .
3.Group property: ∀(t, t′) ∈ R2, S(t)S(t′)u0 = S(t+ t′)u0 and S(0) = Id.
4. Adjoint: S(t)∗ = S(−t) where the adjoint is with respect to the Hilbertian structure of Hs .

Pointwise decay of the semi group follows directly from the representation formula (5.2).
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Proposition (Pointwise decay). Let t ∈ R∗ and p ∈ [2,+∞] , then S(t) is strongly continuous
from Lp

′ into Lp and

∀t ∈ R∗, ‖S(t)u0‖Lp ≤
1

|4πt|
d
2

( 1
p′−

1
p

)
‖u0‖Lp′ . (5.7)

Proof of Proposition 5.1.2. Let t 6= 0 , it suffice by density to establish (5.7) for u0 ∈ S(Rd) ,
but then Young and (5.2) ensure:

‖S(t)u0‖L∞ ≤ ‖u0‖L1‖St‖L∞ ≤
1

|4πt|
d
2

‖u0‖L1 . (5.8)

On the other hand, since the semi group is L2 isometric:

‖S(t)u0‖L2 = ‖u0‖L2 .

Riesz-Thorin interpolation Theorem yields the claim.

An immediate consequence of pointwise decay is the local decay of energy. Let u0 ∈ S(Rd) ,
then since S(t) is unitary on L2 , the total mass is conserved:

‖S(t)u0‖L2 = ‖u0‖L2 .

But the local in space mass is dissipated in time: let R > 0 , then∫
|x|≤R

|S(t)u0|2 dx . Rd‖S(t)u0‖2L∞ .
Rd

|t|d
‖u0‖2L1 −→ 0 as |t| → +∞.

We shall see, and this is a fundamental feature of dispersive problems, that the speed at which
the local mass is dissipated is directly connected to the regularity of the data.

5.1.3 Weak solutions

The Schrödinger semi group (5.6) naturally extends to S ′ , and then the equation (5.1) is
satisfied in the sense of Distributions, [17].

Definition 5.1.1 (Weak solution). We say that a distribution u ∈ C(R;S ′(Rd)) is a weak
solution of the inhomogeneous problem (5.3) if for all ϕ ∈ C1(R;S(Rd)), there holds∫ t

0

〈
u(t′),∆ϕ(t′)− i∂tϕ(t′)

〉
dt′ = −i

〈
u0, iϕ(0)

〉
+ i
〈
u(t), ϕ(t)

〉
+

∫ t

0
〈f(t′), ϕ(t′)〉 dt′

where 〈·, ·〉 is the duality bracket of S ′ and S.

Proposition 5.1.1 (The semi group produces weak solution). Let u0 ∈ S ′ , then the distribu-
tion

S(t)u0 = F−1
(
e−it|ξ|

2
û0

)
= St ? u0 with St(x) =

1

(4πit)
d
2

ei
|x|2
4t (5.9)

belongs to C∞(R;S ′) and is a weak solution to (5.1).

Remark 5.1.1 (Infinite speed of propagation). The formula (5.9) shows an infinite speed of
propagation property. Indeed, let u0 = δx=0 the Dirac mass at the origin, then (5.9) implies

∀t 6= 0, u(t) = St,

and hence u(t) does not vanish at all on Rd , even though the data was concentrated at the
origin only.
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Proof of Proposition 5.1.1. Let u(t) = F−1
(
−eit|ξ|2 û0(ξ)

)
. For ϕ ∈ C∞(R;S), we note

Iϕ(t)
def
=

∫ t

0

〈
u(t′),∆ϕ(t′)− i∂tϕ(t′)

〉
dt′.

By definition of u , we have

Iϕ(t) =

∫ t

0

〈
F−1

(
e−it

′|ξ|2 û0(ξ)
)
,∆ϕ(t′)− i∂tϕ(t′)

〉
dt′,

=

∫ t

0

〈
e−it

′|ξ|2 û0(ξ),F−1
(
∆ϕ(t′)− i∂tϕ(t′)

)〉
dt′,

= −
∫ t

0
(2π)−d

〈
û0(ξ), e−it

′|ξ|2 (|ξ|2ϕ̂(t′,−ξ) + i∂tϕ̂(t′,−ξ)
)〉

dt′.

By definition of derivation in the sense of distributions:

Iϕ(t) = −(2π)−d
〈
û0,

∫ t

0
e−it

′|ξ|2
(
|ξ|2ϕ̂(t′,−ξ) + i∂tϕ̂(t′,−ξ)

)
dt′
〉
.

Since
∂t′
(
e−it

′|ξ|2iϕ̂(t′,−ξ)
)

= e−it
′|ξ|2
(
|ξ|2ϕ̂(t′,−ξ) + i∂t′ϕ̂(t′,−ξ)

)
,

we obtain∫ t

0
e−it

′|ξ|2
(
|ξ|2ϕ̂(t′,−ξ) + i∂t′ϕ̂(t′,−ξ)

)
dt′ = ie−it|ξ|

2
ϕ̂(t,−ξ)− iϕ̂(0,−ξ).

Hence

Iϕ(t) = i(2π)−d〈û0, e
−it|ξ|2ϕ̂(t,−ξ)〉 − i(2π)−d〈û0, ϕ̂(0,−ξ)〉,

= i〈û(t),F−1ϕ(t)〉 − i〈û0,F−1ϕ(0)〉 = i〈u(t), ϕ(t)〉 − i〈u0, ϕ(0)〉

and the claim is proved

We may similarily extend the Duhamel formula which will be needed for the study of the
non linear problem.

Proposition 5.1.2 (Low regularity Duhamel formula). Let u0 ∈ L2 and f ∈L1
loc(R;L2) then

the free Schrödinger equation (5.3) has a unique weak solution u ∈ C(R;L2) which is given by
the Duhamel formula (5.4). Moreover, the mass evolves according to:

∀t ∈ R, ‖u(t)‖2L2 = ‖u0‖2L2 + 2=m
∫ t

0

∫
Rd
f(τ, x)ū(τ, x) dx dτ. (5.10)

Proof of Proposition 5.1.2. Assume first u0 ∈ S(Rd) and f ∈ C(R;S(Rd)) , then u ∈ C1(R;S(Rd))
and we may take ū as a test function in the definition of the weak formulation. We obtain
after division byi :

‖u(t)‖2L2 = ‖u0‖2L2 + i

∫ t

0

∫
Rd
fū dx dτ − i

∫ t

0

∫
Rd
u(∆ū− i∂tū) dx dτ. (5.11)

We have −i∂tū + ∆ū = f̄ and the result follows. To prove (5.10) for data u0 ∈ L2 and
f ∈ L1

loc(R;L2), we regularize : using the convolution by an approximation of identity in t ,
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we construct un0 ∈ S with un0 → u in L2 and fn ∈ S with fn → f in L1
loc(R;L2). Let

un ∈ C1(R;S) be the solution associated to (un0 , f
n) by Duhamel, then for all (n,m) ∈ N2,

i∂t(u
n − um) + ∆(un − um) = fn − fm et (un − um)|t=0 = un0 − um0 .

Hence

‖(un − um)(t)‖L2 ≤ ‖un0 − um0 ‖L2 +

∣∣∣∣∫ t

0
‖fn − fm‖L2 dτ

∣∣∣∣.
and hence (un)n∈N converges strongly in C(R;L2). We may therefore pass to the limit in the
weak formulation and ensures that (5.10) is still valid for the limit u of this sequence. Finally,
uniqueness if obtained by remarking that if u ∈ C(R;L2) is a solution to (5.1) with f ≡ 0 and
u0 ≡ 0 , then so is un def

= χn ? u with χn(t, x)
def
= n1+dχ(nt, nx) and χ ∈ C∞c (R1+d) of integral

1. We have un ∈ C∞(R;H∞) with H∞(Rd) def
=
⋂
s∈RH

s(Rd). Passing in Fourier, we see that
a.s. in ξ ∈ Rd, the smooth function t 7→ ûn(t, ξ) satisfies the differential equation (5.5) with
source term and data 0 , and hence ûn ≡ 0 . We conclude û ≡ 0 by passing to the limit, and
hence u ≡ 0.

5.2 Strichartz space-time bounds

We give in this section a self contained proof of Strichartz estimates which yield an improved
regularity in space of u(t, ·) provided a suitable averaging process in time. The corresponding
estimates are the corner stone to the resolution of the nonlinear Cauchy problem and the
derivation of the long time asymptotics of the flow. More precisely, we will transform the
pointwise in time estimate (5.7) into an averaged temporal bound of the type

‖S(t)u0‖LqtLrx ≤ C‖u0‖L2 (5.12)

where

‖u‖LqtLrx =

∣∣∣∣∣∣
(∫

R ‖u(t, ·)‖qLrx dt
) 1
q for 1 ≤ q < +∞

‖u‖L∞t Lrx = supt∈R ‖u(t, ·)‖Lrx for q = +∞

Remark 5.2.1 (Scale invariant estimate). The estimate (5.12) is scale invariant. Indeed, let
λ ∈ R∗ , and uλ(x) = u(λx) then an explicit computation ensures

S(t)uλ = (S(λ2t)u)λ.

This implies immediately that it if (5.12) holds, then necessarily (q, r) must satisfy the com-
patibility relation:

2

q
+
d

r
=
d

2
· (5.13)

Remark 5.2.2 (Gain of regularity). The estimate (5.12) is an improvement with respect to
Sobolev embeddings. Indeed, since the semi group is unitary on Hs , then u0 ∈ Hs implies
u(t) ∈ Hs . To obtain Lr control through Sobolev requires s = d/2− d/r. The estimate (5.12)
shows that u(t) = S(t)u0 ∈ Lr for a.e. t even if u0 ∈ L2 . Note that the gain of regularity is
a.e. in time and hence does not contradict the time reversibility of the flow.

Definition 5.2.1 (Admissible pair). We say (q, r) ∈ [2,∞]2 is admissible if (5.13) holds and
(q, r, d) 6= (2,∞, 2). We say that is strictly admissible if moreover3 (q, r) 6= (2, 2d

d−2)·
3these are the "endpoints"
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Theorem (Strichartz estimates). Let d ≥ 1.
(i) Homogeneous case: for all admissible pair (q, r), there exists C such that for all u0 ∈
L2(Rd), the solution S(t)u0 ∈ C(R;L2(Rd)) to the homogeneous problem{

i∂tu+ ∆u = 0,

u|t=0 = u0,
(5.14)

satisfies
‖S(t)u0‖Lqt (Lrx) ≤ C‖u0‖L2 . (5.15)

(ii) Inomogeneous case: for every admissible pairs (q1, r1), (q2, r2) , there exists C such that for
all f ∈ Lq′2(R;Lr

′
2(Rd)), the unique solution v ∈ C(R;L2(Rd)) given by the Duhamel formula

to {
i∂tu+ ∆u = f,

u|t=0 = 0
(5.16)

satisfies
‖u‖Lq1t (L

r1
x ) ≤ C‖f‖Lq

′
2
t (L

r′2
x )
. (5.17)

Proof of Theorem 5.2. We treat the case of admissible pair only and refer to the seminal paper
of M. Keel and T. Tao [20] or [2] for the endpoint case

(q, r) =

(
2,

2d

d− 2

)
and d ≥ 3.

By density, we may assume all functions are smooth and decaying at ∞ .

step 1 The TT ? lemma. Let us start with an abstract elementary lemma.

Lemma (TT ? ). Let T ∈ L(H, B) where H is Hilbert and B Banach, and let T ? : B′ → H
be the adjoint operator defined by:

(T ?x|y)H = 〈x, Ty〉B′×B.

Then:
‖TT ?‖L(B′;B) = ‖T‖2L(H;B) = ‖T ?‖2L(B′;H). (5.18)

Remark 5.2.3. In other words, it is equivalent to show that T ∈ L(H;B), T ? ∈ L(B′;H) or
TT ? ∈ L(B′;B) , and then (5.18) holds.

Proof of Lemma 5.2. By characterization of the norm in a Hilbert space:

‖T ?x‖H = sup
‖y‖H=1

|(T ?x|y)H|.

Hence
‖T ?x‖H = sup

‖y‖H=1
|〈x, Ty〉B′×B| ≤ ‖x‖B′ sup

‖y‖H=1
‖Ty‖B ≤ ‖T‖L(H;B)‖x‖B′

and thus ‖T ?‖L(B′;H) ≤ ‖T‖L(H;B). Similarily ‖T‖L(H;B) ≤ ‖T ?‖L(B′;H) and then ‖TT ?‖L(B′;B) ≤
‖T‖L(H;B)‖T ?‖L(B′;H) by composition. Using the Hilbertian structure again:

‖T ?x‖2H = (T ?x|T ?x)H = 〈x, TT ?x〉B′×B ≤ ‖x‖2B′‖TT ?‖L(B′;B)

and hence ‖T ?‖2L(B′;H) ≤ ‖TT
?‖L(B′;B) and (5.18) is proved.
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step 2 Computing T , T ? and TT ? . Let (q, r) be strictly admissible. We apply the TT ?

lemma4 to
H = L2(Rd), B = Lq(R;Lr(Rd)), B′ = Lq

′
(R;Lr

′
(Rd))

and
T : u0 7−→

[
t 7→ S(t)u0

]
.

Observe that since S?(t) = S(−t)

〈g, Tu0〉B′×B =

∫
R×Rd

g(t, x)S(t)u0(x) dx dt =

∫
R

(g(t, ·)|S(t)u0)H dt

=

∫
R

(S(−t)g(t, ·)|u0)H dt =

(∫
R
S(−t)g(t, ·) dt

∣∣∣∣u0

)
H

and hence the computation of the adjoint:

T ? : ϕ 7−→
∫
R
S(−t′)ϕ(t′, ·) dt′ et TT ? : ϕ 7−→

[
t 7→

∫
R
S(t− t′)ϕ(t′, ·) dt′

]
.

In particular, up to the domain of integration in time, TT ∗f is very close to the Duhamel
term (5.4) assocated to the inhomogeneous equation (5.16).
step 3 Homogeneous estimate. The key idea is to estimate the norm of TT ? instead of T,
using pointwise decay (5.7) as follows :

‖TT ?g(t, ·)‖Lrx =

∥∥∥∥∫
R
S(t− t′)g(t′, ·) dt′

∥∥∥∥
Lrx

≤
∫
R
‖S(t− t′)g(t′, ·)‖Lrx dt

′

.
∫
R

1

|t− t′|
d
2

( 1
r′−

1
r

)
‖g(t′, ·)‖Lr′x dt

′ =

∫
R

1

|t− t′|
2
q

‖g(t′, ·)‖Lr′x dt
′

where we used the admissible pair relation:

d

2

(
1

r′
− 1

r

)
=
d

2

(
1− 2

r

)
=

2

q
·

We apply the one dimensional Hardy-Littlewood-Sobolev estimate in time: for 0 < 2/q < 1,∥∥∥ 1

|t|
2
q

? h
∥∥∥
Lqt

. ‖h‖Lγt avec 1 +
1

q
=

1

γ
+

2

q
·

Hence γ = q′ and

‖TT ?g‖LqtLrx .
∥∥∥ 1

|t|
2
q

‖g(t, ·)‖Lr′x
∥∥∥
L

2
q
t

. ‖g‖
Lq
′
t L

r′
x
,

and hence using the TT ? Lemma:

‖T‖2L(H;B) = ‖T ?‖2L(B′;H) = ‖TT ?‖L(B′;B) <∞ (5.19)

which concludes the proof of the homogeneous estimate (5.15) in the case 2 < q < ∞. The
case q =∞ is r = 2 and this is just conservation of mass for the free Schrödinger group.

4it suffice as usual to argue for Schwartz functions for which the definition of T and T ∗ make perfect sense,
only the norms in which we estimate these terms matter.
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step 4 Inhomogeneous estimate. The proof of the inhomogeneous estimate (5.17) when
(q1, r1) = (q2, r2) = (q, r) is similar to step 3 since the formula (5.4) with u0 = 0 is TT ∗

with integration restricted to the interval [0, t]. Indeed, the solution v to the inhomogeneous
problem (5.16) satisfies

v(t, ·) = −i
∫
R
χ(t, t′)S(t− t′)f(t′, ·) dt′

with

χ(t, t′)
def
=

{
1 si 0 ≤ t′ ≤ t ou t ≤ t′ ≤ 0,

0 otherwise.

Since χ is bounded by 1, we can write

‖v(t, ·)‖Lrx ≤
∫ t

0
‖S(t− t′)f(t′, ·)‖Lrx ds

and hence as above pointwise decay and Hardy-Littlewood-Sobolev ensure

‖v‖LqtLrx .

∥∥∥∥∫ t

0

1

|t− t′|
2
q

‖f(t, ·)‖Lr′x dt
′
∥∥∥∥
Lqt

.

∥∥∥∥ 1

|t|
2
q

? ‖f(t, ·)‖Lr′x

∥∥∥∥
Lqt

. ‖f‖
Lq
′
t L

r′
x
.

Let us now prove
‖v‖L∞t L2

x
. ‖f‖

L
q′2
t L

r′2
x

. (5.20)

For this, the group structure of S(t) yields

v(t, ·) = −i
∫
R
χ(t, t′)S(t− t′)f(t′, ·) dt′ = −iS(t)

∫
R
χ(t, t′)S(−t′)f(t′, ·) dt′

= −iS(t)T ? (χ(t, ·)f)

and hence using the L2 bound for S(t) and remarking that (5.19) (i.e. T : L2 → Lq2t (Lr2x )

ensures T ? : L
q′2
t (L

r′2
x )→ L2 ), we obtain for t ∈ R for (q2, r2) admissible,

‖v(t, ·)‖L2
x

= ‖T ∗ (χ(t, ·)f) ‖L2
x
. ‖χ(t, ·)f‖

L
q′2
t L

r′2
x

. ‖f‖
L
q′2
t L

r′2
x

,

and (5.20) is proved.
The linear map U : f 7→ v is bounded from L

q′2
t L

r′2
x into L∞t L2

x ∩L
q2
t L

r2
x , and hence using the

Riesz-Thorin interpolation Theorem generalized to space time Lebesgue (cf Theorem 1.2.3)
ensures that it also bounded from L

q′2
t L

r′2
x into Lq1t Lr1x for all admissible pair (q1, r1) , (q2, r2)

with q2 ≤ q1 ≤ +∞ . The case q2 ≥ q1 follows by duality. More precisely, assume

U is bounded from L1
tL

2
x into Lq1t L

r1
x (5.21)

for all (q1, r1) strictly admissible, then since U is also bounded from L
q′1
t L

r′1
x into Lq1t Lr1x , we

obtain (5.17) for all strictly admmissible pair (q1, r1) , (q2, r2) such that q1 ≤ q2 ≤ +∞ . To
prove (5.21), we write (simple generalization of Lemma 2.2.4) :

‖v‖Lq1t Lr1x = sup
‖φ‖

L
q′1
t L

r′1
x

≤1

∣∣∣∣∫
R×Rd

v φ̄ dx dt

∣∣∣∣.
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By density, we may assume functions are smooth and decaying at infinity. Letting v = Uf
and recalling the definition of U yields∫

R×Rd
v φ̄ dx dt =

∫
R×Rd

∫ t

0
S(t− t′) f(t′) φ̄(t) dt′ dt dx

=

∫
R

∫ t

0

(
S(t)S(−t′)f(t′)|φ(t)

)
L2(Rd)

dt′ dt

=

∫
R

(
S(−t′)f(t′)

∣∣∣ ∫
R
S(−t)χ(t, t′)φ(t) dt

)
dt′

with χ defined above. By Cauchy-Schwarz, we conclude∣∣∣∣∫
R

∫
Rd
v φ̄ dx dt

∣∣∣∣ ≤ ∫
R
‖S(−t′)f(t′)‖L2(Rd) ‖T ∗(χ(·, t′)φ)‖L2(Rd) dt

′.

But T : L2 → Lq1t L
r1
x implies T ∗ : L

q′1
t L

r′1
x → L2 , and hence for all t′ ∈ R,

‖T ∗(χ(·, t′)φ)‖L2(Rd) . ‖χ(·, t′)φ‖
L
q′1
t L

r′1
x

≤ ‖φ‖
L
q′1
t L

r′1
x

,

and hence since S(−t′) is unitary on L2(Rd),∣∣∣∣∫
R

∫
Rd
v φ̄ dx dt

∣∣∣∣ . ‖f‖L1
tL

2
x
‖φ‖

L
q′1
t L

r′1
x

.

This conclude the proof of Theorem 5.2 for strictly admissible pairs.

Remark 5.2.4. The limit cases q = 2 and r = 2d/(d − 2) with d ≥ 3 are more delicate to
handle, we refer to [20] or [2] for a slightly different proof relies on an atomic decomposition
analogous to the one used in Chapter 1).

5.3 Local in space decay in weighted spaces

The pointwise decay estimate (5.8) is optimal in the sense of the norms used, but it does give
a very clear description of the dispersion mechanism. The spreading of the wave packet can
be seen directly for Schödinger using the pseudo conformal symmetry which requires data in
the virial space

Σ
def
=
{
u ∈ H1 : xu ∈ L2

}
· (5.22)

We shall admit the following elementary result ( see for example [7]) which follows by a
regularization argument :

Theoreme 5.3.1. S(t) is strongly continuous on Σ.

A fundamental algebraic fact is the existence of an explicit pseudo conformal symmetry for
the linear Schrödinger flow.

Proposition (Conformal invariance). Let v solve (5.1) then so does

u(t, x)
def
=

1

(1 + t)
d
2

v

(
t

1 + t
,

x

1 + t

)
e
i
|x|2

4(1+t) (5.23)

for all t 6= −1.
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Proof of Proposition 5.3. Let u solve (5.1), and consider the renormalization

u(t, x) =
1

λ(t)
d
2

w(s, y) avec
ds

dt
=

1

λ2(t)
et y =

x

λ(t)
· (5.24)

for some scaling factor λ(t) > 0 to be determined. Let λs = dλ
ds , we compute:

0 = (i∂tu+ ∆u) (t, x) =
1

λ2+ d
2

(
i∂sw − i

λs
λ

[
d

2
w + y · ∇w

]
+ ∆w

)
(s, y).

We now map the above linear operator onto the harmonic oscillator as follows: let

w(s, y) = v(s, y)e−i
b(s)|y|2

4 with b = −λs
λ
,

then

i∂sv + ∆v +

(
bs + b2

4

)
|y|2v = 0. (5.25)

An explicit symmetry of the linear Schrödinger equation is therefore provided by the choice
λs
λ = −b,
bs + b2 = 0,
ds
dt = 1

λ2
.

(5.26)

To integrate (5.26), we compute(
b

λ

)
s

=
bs
λ
− bλs

λ2
=
bs + b2

λ
= 0

and hence

b = −λs
λ

= −λλt = cλ.

The choice c = −1 (i.e. λ(0) = 1 and λt(0) = 1) gives

λ(t) = 1 + t, b(t) = −λ(t) = −(1 + t)

and hence choosing s(0) = 0 :

s(t) =

∫ t

0

dτ

λ2(τ)
=

t

1 + t
,

this is (5.23).

A spectacular consequence of (5.23) is the complete description in the physical space of
the dispersion of the wave packet.

Proposition (Dispersion in Σ). Let u0 ∈ Σ and u the corresponding solution to (5.1) given
by Theorem 5.3.1. Then there exists u∗ ∈ Σ such that∥∥∥∥∥u(t, ·)− 1

|t|
d
2

(
u∗eit

|y|2
4

)( ·
t

)∥∥∥∥∥
L2

−→ 0 quand t→ +∞. (5.27)
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Proof of Proposition 5.3. Let v be given by (5.23). Then v satisfies (5.1) and

s(t) =
t

1 + t
→ 1 as t→ +∞.

By L2 continuity of S(t), we conclude

v(s, y)→ v(1, y) in L2 as s→ 1.

Let u?(y)
def
= v(1, y) and y = x/(1 + t), we conclude

1

(1 + t)
d
2

∥∥∥v( t

1 + t
,

x

1 + t

)
− u?

( x

1 + t

)∥∥∥
L2
→ 0 as t→ +∞,

which using (5.23) implies (5.27).

In other words, the spreading of the wave packet induced by the physical separation of
wave packets of different frequencies yields in physical space a profile that spreads in space at
a universal speed vitesse λ(t) ∼ t modulo an explicit quadratic oscillation. A corollary is an
improved decay estimate in weighted spaces.

Proposition (Local energy decay in weighted space). For s ≥ 0, we define the operator
multiplicateur de Fourier |D|s by

F(|D|sv)
def
= |ξ|sFv.

Then for all u solving (5.1) in C1(R;S), there holds :

∥∥∥∥|D|s(ue−i |x|24(1+t)

)∥∥∥∥
L2

≤ Cs

∥∥∥∥|D|s(u0e
−i |x|

2

4

)∥∥∥∥
L2

(1 + t)s
· (5.28)

Proof of Proposition 5.3. Recall (5.23). Since v solves (5.1), the conservation of the norms
‖ · ‖Ḣs through the action of S(t) ensures

‖|D|sz(λ−1·)‖L2 = ‖z(λ−1·)‖Ḣs = λ
d
2
−s‖z‖Ḣs = λ

d
2
−s‖|D|sz‖L2

and hence∥∥∥∥|D|s(ue−i |x|24(1+t)

)∥∥∥∥
L2

=
1

(1 + t)s

∥∥∥∥|D|sv( t

1 + t
, ·
)∥∥∥∥

L2

=
1

(1 + t)s
‖|D|sv (0, ·)‖L2 .

It remains to replace v(0, ·) by its value and the claim is proved.

Remark 5.3.1. Combining the above Proposition with the Gagliardo-Nirenberg estimate (see
exercice 4.10) :

‖U‖L∞ . ‖|D|sU‖
d
2s

L2‖U‖
1− d

2s

L2

applied with U = ue
−i |x|

2

4(1+t) , retrieves (5.7), but with a different norm on the data

Compared to (5.7), the estimate (5.28) expresses an improved local enegy decay for higher
Sobolev norms modulo the quadratic phase, but to the expense of higher control of the data.
The method presented here for the Schrödinger equation is a canonical application of Klain-
erman’s vector field method: decay in time is proved by writing down the conservation laws
for suitable transformations of the solution related to the symmetry group, and this method
has extremely deep ramifications in particular for the study of the quasilinear waves of general
relativity, see [8].
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5.4 Exercices

Exercice 5.1 (Dispersion for the free transport). Let the transport equation describing the
evolution of the microscopic density f(t, x, v) ∈ R+ of free particules which are at x ∈ Rd
with the speed v ∈ Rd at time t ∈ R :

(T )

{
∂tf + v · ∇xf = 0,

f|t=0 = f0.

(i) Assume f0 = f0(x, v) is differentiable, compute the solution to (T ).

(ii) If f0 is moreover integrable, show that the total density is converved∫
Rd×Rd

f(t, x, v) dx dv =

∫
Rd×Rd

f0(x, v) dx dv.

(iii) We define the macroscopic density ρ(t, x)
def
=
∫
Rd f(t, x, v) dv. Show the pointwise decay:

‖ρ(t, ·)‖L∞ ≤
1

|t|d
‖ sup

v
f0(·, v)‖L1 for all t 6= 0.

Exercice 5.2 (Wave equation). Let the free wave equation

(W )

{
2u = 0

(u, ∂tu)|t=0 = (u0, u1)

where 2
def
= ∂2

t −∆ and where u = u(t, x) ∈ R , (t, x) ∈ R× Rd.

(i) For d = 1 and (u0, u1) ∈ C2 × C1, show that the C2 solution is given by d’Alembert’s
formula:

u(t, x) =
1

2

(
u0(x+ t) + u0(x− t) +

∫ x+t

x−t
u1(y) dy

)
.

(ii) For d = 3, we recall that the solution is given by

u(t, x) =
1

4π

(
1

t

∫
S(x,t)

u1(σ) dσ +
d

dt

(
1

t

∫
S(x,t)

u0(σ) dσ

))
wher S(x, t) is the sphere of center x and radius t. Assume for simplicity u0 ≡ 0 , then
show:

‖u(t)‖L∞ .
‖∇u1‖L1

|t|
+
‖u1‖L1

t2
.

Exercice 5.3 (Oscillatory integrals). Let a ∈ D(R) and Φ a C2 function such that for some
c0 > 0 :

∀x ∈ Supp a, Φ′′(x) ≥ c0.

For t ∈ R, we define the oscillatory integral

I(t)
def
=

∫
R
eitΦ(x)a(x) dx.

For t 6= 0, we define the differential operator Lt acting on derivable functions b by

Ltb(x)
def
=

1

1 + t
(
Φ′(x))2

(b(x)− iΦ′(x)b′(x)
)
.
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(i) Using Lt, show that I(t) = I1(t) + I2(t) with

I1(t)
def
=

∫
eitΦ(x) iΦ′(x)

1 + t(Φ′(x))2
a′(x) dx and

I2(t)
def
=

∫
eitΦ(x)

1 + t(Φ′(x))2

(
1 + iΦ′′(x)− 2i

t(Φ′(x))2Φ′′(x)

1 + t(Φ′(x))2

)
a(x) dx.

(ii) Noticing that for x ∈ Supp a,

1

1 + t(Φ′(x))2
≤ 1

c0

Φ′′(x)

1 + t(Φ′(x))2
,

show that
|I2(t)| ≤ π

2

(
1

c0
+ 3

)
1

|t|
1
2

‖a′‖L1(R).

(iii) Conclude that there exists C0(c0) such that

|I(t)| ≤ C0

|t|
1
2

‖a′‖L1 ·

(iv) Application : Consider the Airy equation

∂tu+ ∂3
xxxu = 0

with data u0 integrable and with Fourier transform supported in

[−2,−1/2] ∪ [1/2, 2].

(a) Show that the L2 norm is conserved. Write u(t) = kt ? u0 for a suitable function
kt and conclude

‖u(t)‖L∞ ≤ C|t|−
1
2 ‖u0‖L1 .

Hint: use the fact that if ϕ is smooth with support in {1
3 ≤ |ξ| ≤ 3} and equal to

1 on {1
2 ≤ |ξ| ≤ 2} , then û0 = ϕû0.

(b) What kind of Lp–Lp′ estimate do we obtain if û0 is supported in the set [−2λ,−λ/2]∪
[λ/2, 2λ] ?

Exercice 5.4 (A symmetry of the harmonic oscillator). We consider the cubic non linear
harmonic oscillator in dimension 2

i∂tu+ ∆u− |x|2u+ u|u|2 = 0.

(i) We define the renormalization∣∣∣∣∣∣∣
u(t, x) = 1

Lw(s, y)

w(s, y) = e−i
b(s)|y|2

4 v(s, y)

y = x
L ,

ds
dt = 1

L2 .

Show that v(s, y) satisfies the same equation iff∣∣∣∣∣
Ls
L + b = 0
bs
4 −

(
b2

4 + L4
)
− b

2
Ls
L = −1

(5.29)

where fs = df
ds .

(ii) Integrate the dynamical system (5.29) in time t .
Hint: look for a conserved quantity and draw the phase portrait.
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Chapter 6

Scattering and blow up for (NLS)

The aim of this chapter is to first solve locally in time the Cauchy problem associated to the
nonlinear Schrödinger equation{

i∂tu+ ∆u+ εu|u|p−1 = 0, (t, x) ∈ [0, T [×Rd,
u(0, x) = u0(x),

(6.1)

where p > 1 and ε ∈ {−1, 1} dictates the nature of the nonlinearity: focusing for ε = 1 ,
defocusing for ε = −1 .

The nature of the problem is similar to the Cauchy-Lipshitz Theorem for ode: is the knowl-
edge of u0 sufficient to ensure the existence and uniqueness of a maximal in time solution?
Then is this solution global, or on the contrary can it blow up in finite time? The approach
is indeed to reformulate (6.1) as an ode in a Banach space, the heart of the matter being the
choice of the Banach space.

In this chapter, we shall see how Strichartz estimates provide a well adapted functional set-
ting to solve the Cauchy problem. We will then derive classical fundamental results concerning
scattering in the defocusing case, and blow up in the focusing case.

6.1 The local Cauchy problem

The main result of this chapter is the resolution of (6.1) seen as an ode in the Sobolev space
H1. The choice of the H1 space is dictated by the conservation laws as we shall see.

Theoreme 6.1.1 (Local Cauchy problem in the energy space). Let d ≥ 1 et u0 ∈ H1(Rd).
Assume

1 < p <

{
+∞ si d = 1, 2
d+2
d−2 si d ≥ 3.

(6.2)

Then there exists a maximal time T (u0) > 0 such that (6.1) admits a unique maximal solution
u ∈ C([0, T [;H1). Moreover, there exist two universal constants C,α > 0 independent of u0

such that
T (u0) ≥ C‖u0‖−αH1 .

Finally, there holds the blow up criterion:

T < +∞⇒ lim
t↗T
‖u(t)‖H1 = +∞. (6.3)
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In other words, for not too strong nonlinearities (6.2), the Cauchy is well posed and sub-
critical in the energy space in the sense of (6.3). The local in time theory does not depend on
the nature (focusing or defocusing) of the non linearity.

The proof of the general Theorem 6.1.1 is given in [7]. In order to simplify the exposition
and extract the essence of the argument, we restrict the presentation to the model1 case 2

d = 2 et p = 3, , see also Exercice 6.1 for a simplified proof for d = 1 .

6.1.1 Picard contraction

The structure of the proof, due to Ginibre et Velo [16], is remarkably simple and robust: a
Picard fixed point in a suitable Banach space. Indeed, through Duhamel formula, the heart of
the proof is to exhibit a fixed point of the map

Φ(u)(t, x) = S(t)u0(x) + iε

∫ t

0
S(t− s)

(
u(s, x)|u(s, x)|2

)
ds. (6.4)

The difficulty is to exhibit a function space where Φ is a contraction. For example in dimension
d = 2, H1 is not an algebra and hence u(t) ∈ H1 does not ensure a priori that u(t)|u(t)|2 ∈ H1 .
Strichartz estimates as studied in chapter 5, will provide the needed gain of integrability with
respect to Sobolev estimates which will allow us to close the control of the nonlinear term.
To ease the presentation, we note

‖u‖LpTLqx
def
=

(∫ T

0
‖u(t, ·)‖pLq dt

) 1
p

for T > 0.

More generally, for E Banach space, we let

‖u‖LpTE
def
=

(∫ T

0
‖u(t)‖pE dt

) 1
p

.

Hölder’s inequality implies: ∥∥∥∥ r∏
j=1

uj

∥∥∥∥
LpTL

q
x

≤
r∏
j=1

‖uj‖LpjT L
qj
x

(6.5)

with
1

p
=

r∑
j=1

1

p j
,

1

q
=

r∑
j=1

1

q j
, 1 ≤ p, q, pj , qj ≤ +∞.

In dimension d = 2 , the pairs
(∞, 2) et (3, 6)

are admissible, and the space time Lebesgue norm

‖u‖ST = max{‖u‖L∞T L2
x
, ‖u‖L3

TL
6
x
}, (6.6)

will play a fundamental role. More precisely, we introduce the space time Banach space:

XT = {u : ‖u‖XT = ‖u‖ST + ‖∇u‖ST < +∞} avec ∇ def
= ∇x = (∂x1 , · · · , ∂xd).

The key to the proof of Theorem 6.1.1 is:
1and physically relevant
2et physiquement pertinent
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Proposition 6.1.1 (Φ is a contraction in small time). There eixst universal constants C1, C2 >
1 such that for all u0 ∈ H1 , if

0 < T <
C1

‖u0‖3H1

and BT = {u ∈ XT : ‖u‖XT ≤ C2‖u0‖H1}, (6.7)

then Φ : BT → BT is a strict contraction.

Proof of Proposition 6.1.1. Let us prove that Φ is a strict contraction on BT for T small
enough:

∃k < 1 t.q. ∀(u, v) ∈ BT ×BT , ‖Φ(u)− Φ(v)‖XT ≤ k‖u− v‖XT .

Indeed,

Φ(u)(t)− Φ(v)(t) = iε

∫ t

0
S(t− s)

(
u(s, x)|u(s, x)|2 − v(s, x)|v(s, x)|2

)
ds,

and hence inhomogeneous Strichartz estimates and Hölder (6.5) with (p, p1, p2) = (1, 3, 3/2)
and (q, q1, q2) = (2, 3, 6) yield:

‖Φ(u)− Φ(v)‖ST . ‖u|u|2 − v|v|2‖L1
TL

2
x
. ‖(u− v)(|u|2 + |v|2)‖L1

TL
2
x

. ‖u− v‖L3
TL

6
x

(
‖u‖2L3

TL
6
x

+ ‖v‖2L3
TL

6
x

)
.

We now take one derivative of Φ(u) . Since S(t) and ∇ commute,

(∇Φ(u)) (t, x) = S(t)(∇u0(x)) + i

∫ t

0
S(t− s)

[
∇(u(s, x)|u(s, x)|2)

]
ds,

and hence inhomogeneous Stricharts estimates and Hölder (6.5) with (p, p1, p2, p3) = (1, 3, 3, 3)
et (q, q1, q2, q3) = (2, 6, 6, 6) ensure:

‖∇Φ(u)−∇Φ(v)‖ST . ‖∇(u|u|2)−∇(v|v|2)‖L1
TL

2
x

. ‖|∇(u− v)|(|u|2+|v|2)‖L1
TL

2
x
+‖|u− v|(|∇u|+|∇v|)(|u|+|v|)‖L1

TL
2
x

. ‖∇(u− v)‖L3
TL

6
x

(
‖u‖2L3

TL
6
x

+ ‖v‖2L3
TL

6
x

)
+‖u− v‖L3

TL
6
x

(
‖∇u‖L3

TL
6
x

+ ‖∇v‖L3
TL

6
x

)(
‖u‖L3

TL
6
x
+‖v‖L3

TL
6
x

)
.

The fundamental observation is that both estimates are subcritical3, which will allow us to
show that Φ is a contraction in BT for T = T (‖u0‖H1) small enough. Indeed, using the
Sobolev embedding Theorem for d = 2 :

‖u‖Lp . ‖u‖H1 ∀p ∈ [2,+∞[.

Hence
‖u‖L3

TL
6
x
. ‖u‖L3

TH
1
x
. T

1
3 ‖u‖L∞T H1

x
, (6.8)

and we obtain

‖Φ(u)− Φ(v)‖ST . T
2
3 ‖u− v‖L3

TL
6
x

(
‖u‖2L∞T H1

x
+ ‖u‖2L∞T H1

x

)
.

3which in the general case is equivalent to assumption (6.2)
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and

‖∇Φ(u)−∇Φ(v)‖ST . T
2
3

(
‖∇(u− v)‖L3

TL
6
x

(
‖u‖2L∞T H1

x
+ ‖u‖2L∞T H1

x

)
+‖u− v‖L∞T H1

x

(
‖u‖L∞T H1

x
+ ‖u‖L∞T H1

x

)(
‖∇u‖L3

TL
6
x

+ ‖∇v‖L3
TL

6
x

))
·

Hence in fine the estimate for some universal constant c1 > 0 :

∀(u, v) ∈ XT ×XT , ‖Φ(u)− Φ(v)‖XT ≤ c1T
2
3
(
‖u‖2XT + ‖v‖2XT

)
‖u− v‖XT . (6.9)

It remains to prove that Φ sends BT into BT for T small enough. Indeed, we apply (6.9)
with u, and v ≡ 0. The homogeneous Strichartz estimate ensures

‖Φ(0)‖XT = ‖S(t)u0‖XT . ‖u0‖H1 ,

and hence there exists c2 > 0 universal such that

∀u ∈ XT , ‖Φ(u)‖XT ≤ c2‖u0‖H1 + c2T
2
3 ‖u‖3XT .

Choose
C2 = 2c2

in (6.7) and letu0 ∈ BT , then

‖Φ(u)‖XT ≤ c2

(
‖u0‖H1 + 8c3

2T
2
3 ‖u0‖3H1

)
≤ 2c2‖u0‖H1

as soon as

8c3
2T

2
3 ‖u0‖2H1 ≤ 1 i.e. T ≤

(
1

8c3
2‖u0‖2H1

) 3
2

. (6.10)

For such a time T , the closed ball BT is stable by Φ , and hence using (6.9), Φ is Lipschitz
on BT with modulus

k ≤ 2c1T
2
3C2

2‖u0‖2H1 < 1 for T <

(
1

2c1C2
2‖u0‖2H1

) 3
2

.

This concludes the proof of Proposition 6.1.1.

6.1.2 Proof of Theorem 6.1.1

We may now conclude the proof of Theorem 6.1.1.

step 1 Existence and regularity of a solution. Let u0 ∈ H1 , C1, C2 given by Proposition 6.1.1
and

T =
C1

2‖u0‖3H1

,

then Picard’s Theorem in the metric space (BT , ‖ · ‖XT ) ensures that Φ admits a unique fixed
point u ∈ BT . We claim

u ∈ C([0, T ];H1). (6.11)

Indeed, let v ∈ C([0, T ];H1). Using the Fourier representation of the semi group, we have:

S(t)v ∈ C([0, T ];H1),
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and hence using the Duhamel formula

u = Φ(u) = S(t) [u0 + iεΦ1(u)(t)] with Φ1(u)(t) =

∫ t

0
S(−s)(u(s)|u(s)|2) ds.

Hence we need only check:

u ∈ XT implies Φ1(u) ∈ C([0, T ];H1). (6.12)

But S(t) is isometric onL2 , and hence using the continuous embedding H1 ⊂ L6 and Hölder:

‖Φ1(u)(t′)− Φ1(u)(t)‖L2
x

=
∥∥∥∫ t′

t
S(−s)(u(s)|u(s)|2) ds

∥∥∥
L2
x

≤
∫ t′

t
‖u|u|2(s)‖L2

x
ds

. |t− t′|‖u‖3L∞T H1
x
. |t− t′|‖u‖3XT ,

and similarily after applying one derivative in space:

‖∇Φ1(u)(t′)−∇Φ1(u)(t))‖L2
x

.
∫ t′

t
‖∇(u|u|2)(s)‖L2

x
ds .

∫ t′

t
‖∇u(s)‖L6

x
‖u(s)‖2L6

x
ds

. |t− t′|
2
3 ‖u‖2L∞T H1

x
‖∇u‖L3

TL
6
x
. |t− t′|

2
3 ‖u‖3XT ,

which concludes the proof of (6.12), and hence (6.11).

step 2 Uniqueness and blow up criterion. Let u be given by step 1 which is a solution
u ∈ C([0, T ];H1) of (6.1). Let v ∈ C([0, T ];H1) another solution. Let M denote a shared
bound for ‖u‖L∞T H1

x
and ‖v‖L∞T H1

x
.The assumptions ensure that v|v|2 ∈ L1

TL
2
x by Sobolev and

Hölder, and hence Proposition 5.1.2 ensures

v = Φ(v).

But v ∈ L∞T H1
x ⊂ L3

TL
6
x by Sobolev. Hence by (6.8) and (6.8), for all T0 ∈]0, T ],

‖u− v‖L3
T0
L6
x

= ‖Φ(u)− Φ(v)‖L3
T0
L6
x
. ‖u− v‖L3

T0
L6
x

(
‖u‖2L3

T0
L6
x

+ ‖v‖2L3
T0
L6
x

)
. T

2
3

0 ‖u− v‖L3
T0
L6
x

(
‖u‖2L∞T0H1

x
+ ‖v‖2L∞T0H1

x

)
. T

2
3

0 M
2‖u− v‖L3

T0
L6
x
.

Hence there exists c > 0 such that

‖u− v‖L3
T0
L6
x
≤ 1

2
‖u− v‖L3

T0
L6
x

avec T0
def
= min

(
c

M3
, T

)
·

which implies u = v on [0, T0]. Since T0 depends only the H1 bound a priori bound of the
solution on [0, T ], we may iterate the argument starting at T0, and obtain uniqueness on
[T0, 2T0], and so on, which yields uniqueness on [0, T ].
It remains to prove the blow up criterion (6.3). Let u ∈ C([0, T [;H1) be a maximal solution
with T < +∞. Assume by contradiction that there exists M ≥ 0 finite such that

∀t ∈ [0, T [, ‖u(t)‖H1 ≤M. (6.13)

Then by (6.7), for all t0 ∈ [0, T [, we may construct a solution to (6.1) with data u(t0) at
t = t0 on a time interval of length CM−3 with C universal (see(6.10)). For t0 such that
T − t0 < CM−3 , we obtain a new solution defined beyond T which in light of the uniqueness
result coincides with u on [0, T [, and this contradicts the maximality of T .
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6.2 Conservation laws and global existence

In this section, we aim at understanding under which conditions the local in time solutions
of the Cauchy problem provided by Theorem 6.1.1 exist for all times. Here the nature of the
singularity, focusing or defocusing, and the algebraic sturcture u|u|p−1 of the non linearity,
will both play a fundamental role.

6.2.1 Symmetries and conservation laws

We describe in this section two fundamental structural facts: the existence of symmetries and
the existence of conservation laws, both being connected.

Proposition 6.2.1 (Symmetries of(NLS)). Let u ∈ C([0, T [;H1) satisfiying

i∂tu+ ∆u+ εu|u|p−1 = 0. (6.14)

Then the following functions are also solutions to (6.14) :

• Scaling: (t, x) 7→ λ
2
p−1u(λ2t, λx), λ > 0;

• Translation : (t, x) 7→ u(t, x+ x0), x0 ∈ Rd ;

• Phase : (t, x) 7→ u(t, x)eiγ , γ ∈ R ;

• Galilean drift : (t, x) 7→ u(t, x− 2βt)eiβ·(x−βt), β ∈ R.

Scale invariance plays a fundamental role in the classification of the (NLS) problems through
the computation of the scaling parameter.

Definition 6.2.1 (Scaling parameter). The scaling associated to (6.1) is the unique exponent

sc such that the dilation u(t, x) ; uλ(t, x)
def
= λ

2
p−1u(λ2t, λx) leaves the homogeneous Sobolev

norm Ḣsc invariant:
‖uλ(t, ·)‖Ḣsc = ‖u(λ2t, ·)‖Ḣsc .

Explicitely4,

sc =
d

2
− 2

p− 1
· (6.15)

We say that (6.1) is Ḣsc critical.

Example. Let p = 3 . Then d = 2 is sc = 0 , problem is L2–critical Then d = 1 is sc = −1
2 ,

the equation is L2–sub critical since the critical space Ḣ−
1
2 is below L2 in the Sobolev ladder.

Finally d = 3 is sc = 1
2 , the equation is Ḣ

1
2 critical, and L2–super critical. These three

cases correspond to three relevant physical situations with dramatic changes in the behaviour
of solutions (see Theorem 6.2.1)

Noether’s theorem ensures that symmetries imply conservation laws (see e.g. [22] ou [39]).

Proposition 6.2.2 (Conservation lawe). Let u0 ∈ H1 and u ∈ C([0, T [;H1) the solution to
(6.1). Then for all t ∈ [0, T [ :

(i) Conservation of mass: ∫
Rd
|u(t, x)|2 dx =

∫
Rd
|u0(x)|2 dx. (6.16)

4elementary in Fourier
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(ii) Conservation of energy:

E(u(t))
def
=

1

2

∫
Rd
|∇u(t, x)|2 dx− ε

p+ 1

∫
Rd
|u(t, x)|p+1 dx = E(u0). (6.17)

(iii) Conservation of kinetic momentum5:

M(u(t))
def
= Im

(∫
Rd
∇u(t, x)u(t, x) dx

)
= M(u0). (6.18)

The physical interpretation of these conservation laws are clear: conservation of the total
probability of presence for the mass, and the total kinetic momemtum for the moment. The
energy E(u) is the sum of the kinetic energy and the potential energy. For ε = 1, the minus
sign in the potential energy indicates a focusing nonlinearity which acts against the natural
spreading of the wave packet.

Proof of Proposition 6.2.2. The proof relies on a formal computation where all integrals are
defined on Rd , and where one uses the integration by parts formula with vanishing boundary
term at |x| → +∞ : ∫

∇u · ∇v dx = −
∫

∆u v dx.

Let us assume to begin with that u is space time smooth and decaying at +∞ in space, as
well as all its derivatives. Then for the mass:

1

2

d

dt

{∫
|u(t, x)|2 dx

}
= Re

(∫
∂tu(t, x)u(t, x) dx

)
= Im

(∫
i∂tu(t, x)u(t, x) dx

)
= − Im

(∫
(∆u+ εu|u|p−1)(t, x) u(t, x)dx

)
= Im

(∫
|∇u(t, x)|2 dx

)
= 0.

For the energy

d

dt
E(u) = Re

(∫
∇∂tu · ∇u dx− ε

∫
∂tuu|u|p−1 dx

)
= −Re

(∫
∂tu

[
∆u+ εu|u|p−1

]
dx

)
= − Im

(∫
i∂tu

[
∆u+ εu|u|p−1

]
dx

)
= Im

(∫
|∆u+ εu|u|p−1|2 dx

)
= 0.

For the momentum, let j ∈ {1, · · · , d} ,

d

dt
M(u) = Im

(∫
∂2
tjuu dx+

∫
∂ju∂tu dx

)
= −2 Im

(∫
∂tu∂ju dx

)
= 2 Re

(∫
i∂tu∂ju dx

)
= −2 Re

(∫
(∆u+ εu|u|p−1) ∂ju dx

)
= 0

5M(u) is a vector with components Im
(∫

Rd ∂ju(t, x)u(t, x) dx
)
, 1 ≤ j ≤ d .
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where we used the integration by parts formula for functions null at +∞ :

Re

(∫
∆u ∂ju dx

)
= −Re

∑
k 6=j

∫
∂ku ∂

2
jku dx

 = 0.

These three computations can be justified for u ∈ C([0, T [;H1) modulo a regularization argu-
ment, we refer to [7] for a complete exposition of the argument.

Remark 6.2.1. We may now reinterpret the constraint (6.2) on the size of p. Let sc be the
scaling parameter associated to(6.1):

sc =
d

2
− 2

p− 1
·

Then (6.2) is equivalent to
sc < 1,

ie (6.1) is H1–sub-critical. Equivalently, (6.2) is

p+ 1 <
2d

d− 2
= 2∗ where Ḣ1 ↪→ L2∗ for d ≥ 3,

and hence the Sobolev embedding Theorem ensures that E(u) given by (6.17) is finite for
u ∈ H1 . So are the other two conservation laws, and hence H1 is the minimum regularity for
which the three conservation laws of (6.1) are well defined, hence the relevance of a Cauchy
theory in this energy space6.

6.2.2 Global existence

We are now in position to state the fundamental global existence Theorem.

Theoreme 6.2.1 (Global existence). Let d ≥ 1 and p > 1 satisfiying (6.2). Let sc be the
scaling exponent given by (6.15). Assume one of the following two cases:

(i) Defocusing energy subcritical non linearity: ε = −1 and sc < 1;

(ii) Focusing mass subcritical non linearity: ε = 1 and sc < 0 .

Then for all u0 ∈ H1 , the solution to the Cauchy problem (6.1) given by Theorem 6.1.1 is
global and bounded in H1 :

T = +∞ and sup
t∈R+

‖u(t)‖H1 ≤ C(u0)

where C(u0) depends only on the initial data.

Proof of Theorem 6.2.1. Let u0 ∈ H1 and u ∈ C([0, T [;H1) be the maximal solution to (6.1)
given by Theorem 6.1.1. Global existence follows from an a priori bound on ‖u(t)‖H1 which
coupled to the blow up criterion (6.3) implies T = +∞ . The uniform control of the H1 norm
is obvious in the defocusing case ε = −1 since the mass is conserved and both terms in the

6But the Cauchy problem may be perfectly well posed in other spaces. Typically (6.1) for p = 3 and d = 2
has a well posed Cauchy problem in L2 , see Exercice 6.2.
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energy (6.17) are under control. In the focusing case ε = 1 , the Gagliardo-Nirenberg inequality
of chapter 4 yields:

‖u‖Lp+1 ≤ C‖u‖1−σ
L2 ‖∇u‖σL2 with − σ +

d

2
=

d

p+ 1
·

We inject this estimate into the conservation of the energy and lower bound:

E(u0) = E(u) ≥ 1

2
‖∇u‖2L2 − C‖u‖(p+1)(1−σ)

L2 ‖∇u‖(p+1)σ
L2

≥ 1

2
‖∇u‖2L2 − C‖u0‖(p+1)(1−σ)

L2 ‖∇u‖(p+1)σ
L2 (6.19)

where use the conservation of the L2 norm in the last step. We now observe

sc < 0↔ p < 1 +
4

d
⇔ (p+ 1)σ =

d(p− 1)

2
< 2.

Hence the function
x→ 1

2
x2 − C‖u0‖(p+1)(1−σ)

L2 x(p+1)σ

diverges to +∞ as x→ +∞ , and (6.19) implies

sup
t∈[0,T [

‖∇u(t)‖L2 ≤ C(u0),

which using L2 conservation yields the a priori bound on the H1 norm.

6.3 Scattering and blow up

In this section, we give a further qualitative description of the flow in the continuation of The-
orem 6.2.1. We will show that global existence for the energy subcritical defocusing NLS is in
fact scaterring, and that for the focusing problem, the global existence criterion sc < 0 is sharp.

Let us stress that there is no abstract general route map for the study of non linear problems.
Most known results rely on mononotonicity formulas7.

6.3.1 The virial identity

A fundamental monotonicity formula for (6.1) relies on the virial identity which makes sense
in the virial space Σ defined in (5.22).

Lemma (Virial identity). Let u0 ∈ Σ and u ∈ C([0, T [; Σ) the corresponding solution to (6.1)
given by Theorem 5.3.1. Then

d

dt

∫
|x|2|u(t, x)|2 dx = 4 Im

(∫
x · ∇uu dx

)
(6.20)

1

2

d

dt
Im

(∫
x · ∇uu dx

)
=

∫
|∇u|2 dx− ε

[
d

2
− d

p+ 1

] ∫
|u|p+1 dx. (6.21)

7like for Perelman’s proof of the Poincaré conjecture which heart is a monotonicity statement for the Ricci
flow of surfaces.
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Proof of Lemma 6.2.1. The proof follows by direct computation.

step 1 Pohozaev identity. We will need the celebrated Pohozaev indentity:∫
∆u

(
d

2
u+ x · ∇u

)
dx = −

∫
|∇u|2 dx. (6.22)

By density, we need only prove (6.22) for u ∈ D(Rd). Let

uλ(x)
def
= λ

d
2u(λx),

then ∫
|∇uλ|2 dx = λ2

∫
|∇u|2 dx.

Deriving this identity with respect to λ and evaluating the result at λ = 1 yields:∫
∇u · ∇

(d
2
u+ x · ∇u

)
dx =

∫
|∇u|2 dx.

Integrating by parts the left hand side yields (6.22). Observe that the same argument yields∫
|uλ|q dx = λ

dq
2
−d
∫
|u|q dx, q ≥ 2,

and hence
Re

∫
u
(d

2
u+ x · ∇u

)
|u|q−2 dx =

(
d

2
− d

q

)
‖u‖qLq . (6.23)

step 2 Virial. Assuming u is space time and well decaying, we compute:

1

2

d

dt

∫
|x|2|u(t, x)|2 dx = Re

(∫
|x|2∂tuu dx

)
= Im

(∫
|x|2i∂tuu dx

)
= − Im

(∫
|x|2(∆u+ εu|u|p−1)u dx

)
= Im

(∫
∇u · (|x|2∇u+ 2xu) dx

)
= 2 Im

(∫
x · ∇uu dx

)
and (6.20) is proved. Then:

d

dt
Im

(∫
x · ∇uu dx

)
= Im

(∫
x · ∇∂tuu+ x · ∇u ∂tu dx

)
(6.24)

= − Im

(∫
∂tu

[
∇ · (xu) + x · ∇u

]
dx

)
=−2 Im

(∫
∂tu

[
d

2
u+ x · ∇u

]
dx

)
= 2 Re

(∫
i∂tu

[
d

2
u+ x · ∇u

]
dx

)
=−2 Re

(∫ [
∆u+εu|u|p−1

] [d
2
u+x · ∇u

]
dx

)
·

We now use Pohozaev (6.22):

−2 Re

(∫
∆u

[
d

2
u+ x · ∇u

]
dx

)
= 2 Re

(∫
∇u · ∇

[
d

2
u+ x · ∇u

]
dx

)
= 2

∫
|∇u|2 dx.
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and the non linear is computed from (6.23):

−2 Re

(∫
εu|u|p−1

[
d

2
u+ x · ∇u

])
dx = −2ε

[
d

2
− d

p+ 1

] ∫
|u|p+1dx,

and (6.21) is proved. The proof for u ∈ C([0, T [; Σ) relies on classical but lenghty regularization
arguments, see e.g. [7].

There are two spectacular consequences of the virial identity which may seem addressing
completely different issues: finite time blow up for sc > 0 in the focusing case, scattering for
the energy sub critical defocusing (NLS).

6.3.2 Blow up for focusing (NLS)

In this section, we prove the celebrated blow up by virial for (6.1) which appeared in the
Russian litterature in the 1950’s.

Theorem (Finite time blow up). Let sc ≥ 0 for the focusing (6.1) ε = 1. Let

u0 ∈ Σ with E0 < 0. (6.25)

Then the corresponding solution u ∈ C([0, T [; Σ) to (6.1) blows up in finite time.

Remark 6.3.1. The assumptions of the Theorem are not empty. Let φ ∈ D(Rd) and u0 = aφ ,
a > 0 , then u0 ∈ Σ and

E(u0) =
a2

2

∫
|∇φ|2 − ap+1

p+ 1

∫
|φ|p+1 < 0

for all a > a(φ) large enough.

Remark 6.3.2. This result shows that the global existence criterion sc < 0 of Theorem 6.2.1
is sharp. The model problem is the cubic two dimensional problem

i∂tu+ ∆u+ u|u|2 = 0

which has been introduced in the 1950’s to model the focusing of a laser beam, and is the
limiting case sc = 0 .

Proof of Theorem 6.3.2. Combining the virial identities (6.20), (6.21) with the conservation of
energy and the observation 2(p− 1)sc = (p− 1)d− 4 ≥ 0, we obtain

1

16

d2

dt2

∫
|x|2|u|2 dx =

1

2

∫
|∇u|2 − 1

2

[
d

2
− d

p+ 1

] ∫
|u|p+1 dx

= E(u)− 1

2

[
d(p− 1)

2(p+ 1)
− 2

p+ 1

] ∫
|u|p+1 dx = E0 −

(p− 1)sc
2(p+ 1)

∫
|u|p+1 dx ≤ E0.

The positive quantity
∫
|x|2|u(t, x)|2dx therefore lies below an inverted parabola with dominant

coefficient E0 < 0 , and hence it must become non positive in finite time. Hence the solution
cannot exist for all times.
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Let us stress that this kind of blow up result is very rare, and such questions for non linear
PDE’s are mostly open. The analogous problem for the Navier-Stokes equation describing the
evolution of a three dimensionl incompressible fluid is one of the Clay Millenium problems.

For (6.1), the blow up virial argument is spectacular by its simplicity and its robustness.
It not only proves that blow up happens, it exhibits an open region of phase space where
blow up occurs, ie E0 < 0 . The virial algebra which was discovered in the study of nonlinear
optics (see [41]) is more universal than one could think, and was for example used to prove the
formation of shock in compressible fluid dynamics, [35]. The argument is however unstable by
perturbation of the equation, and gives no insight into the nature of the singularity. The aim
of this section was to give a glimpse at this class of problems which is the subject of an intense
research activity since the beginning of the new Millenium.

6.3.3 Scattering for defocusing (NLS)

We conclude this chapter by completing Theorem 6.2.1 in the defocusing case, and proving
that asympotically in time, solutions scatter ie behave like linear waves.

Proposition 6.3.1 (Scattering in Σ). Let u0 ∈ Σ and u ∈ C(R; Σ) be the global solution to
(6.1) given by Theorem 6.2.1 in the defocusing case ε = −1 with 0 < sc < 1. Then ∃u+∞ ∈ Σ
such that

lim
t→+∞

‖u(t, ·)− S(t)u+∞‖L2 = 0. (6.26)

Remark 6.3.3. Proposition 6.3.1 does not cover the values sc < 0 of Theorem 6.2.1. The
result remains true for p∗ < p ≤ 1+ 4

d , but the proof is more complicated, and counterexamples
exist for p < p∗ where modified scattering is expected.

Proof of Proposition 6.3.1. For the sake of simplicity, we restrict the analysis ro d ≥ 3. The
route map is similar for d = 1, 2.

step 1 Pointwise decay. Let

F (t)
def
=

∫
|xu+ 2it∇u|2dx+

8t2

p+ 1

∫
|u|p+1dx.

Then

F (t) =

∫
|x|2|u|2dx− 4t Im

(∫
x · ∇uu dx

)
+ 8t2E(u0)

and hence using the virial identities (6.20), (6.21) with ε = −1 :

dF

dt
= − 4t

p+ 1
[d(p− 1)− 4]

∫
|u|p+1 dx ≤ 0. (6.27)

Moreover, let v(t, x) = e−i
|x|2
4t u(t, x), then a direct computation reveals

F (t) = 8t2E(v)

and hence by the monotonicity (6.27):

t2E(v) ≤ F (0) = ‖xu0‖2L2 i.e. 4t2‖∇v(t)‖2L2 ≤ ‖xu0‖2L2 . (6.28)
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Let
2 ≤ r ≤ 2d

d− 2
·

We now transform the decay estimate (6.28) using the Gagliardo-Nirenberg inequality :

‖v‖Lr ≤ cr,d‖∇v‖αL2‖v‖1−αL2 with α =
d

2
− d

r
·

Hence using the conservation of mass:

‖u(t)‖Lr = ‖v(t)‖Lr . C(u0)‖∇v(t)‖
d
2
− d
r

L2 .
C(u0)

t
d
2
− d
r

which is the non linear analogue of the pointwise decay bound (5.7).

step 2 Controlling the Strichartz norm. To be continued.

6.4 Exercices

Exercice 6.1 (The Cauchy problem (6.1) in dimension d = 1).

(i) Let p ∈ N \ {0, 1} , u0 ∈ H1.

(a) Using only the L2 isometry property of S(t) and the Sobolev injection H1 ↪→ L∞,
show that (6.4) is a contraction on a well chosen ball of the space XT = C([0, T ];H1)
equipped with the norm ‖ · ‖L∞([0,T ];H1) .

(b) Solve the local Cauchy problem (6.1.1) for d = 1 .

(ii) We now assume p = 3 (for the sake of simplicity), and we pick u0 ∈ L2.

(a) Show that there exists T > 0 such that (6.1) admits a unique solution in

YT
def
= C([0, T ];L2(R)) ∩ L4([0, T ];L∞(R)).

(b) Using chapter 5, show that the mass is conserved.
(c) Show that the maximal solution constructing from u0 is global, and belongs to YT

for all T > 0.

(d) Show that for such a solution u, for all 0 ≤ t0 ≤ t,

‖u‖L4([t0,t];L∞) ≤ C‖u0‖L2

(
1 +

∫ t

t0

‖u‖2L∞ dτ
)
,

and deduce that there holds for some universal constant C ′ :

‖u‖L4([0,t];L∞) ≤ C ′‖u0‖L2(1 + t
1
4 ‖u0‖L2) for all t ≥ 0.

Exercice 6.2 (The critical Cauchy problem). We consider the Cauchy problem (6.1) with
d = 2 , p = 3 and u0 ∈ L2 only.

(i) Show that (6.4) is contraction on a well chosen ball of ST = C([0, T ];L2)∩L3([0, T ];L6)
equipped with (6.6).
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(ii) Enounce a result of existence and uniqueness in ST , and show that the mass is conserved
(6.16).

(iii) Are all solutions global? Which is the new blow up criterion replacing (6.3)?

(iv) We now assume that ‖u0‖L2 is small.

(a) Show that global existence holds in the space S∞
def
= C(R+;L2) ∩ L3(R+;L6).

(b) Let v∞
def
= iε

∫ +∞

0
S(−τ)(u(τ)|u(τ)|2) dτ. Check that v∞ ∈ L2 and compute u(t)−

S(t)v∞.

(c) How can we choose u∞ ∈ L2 so that lim
t→+∞

‖u(t)− S(t)u∞‖L2 = 0 ?

Exercice 6.3 (Local existence in H2 for (6.1) cubic in dimension 2). We consider

(Sε) i∂tu+ ∆u+ ε|u|2u = 0 dans R× R2, ε ∈ {−1, 1}

with data u0 ∈ H2(R2).

LetET = C([0, T ];H2) and uL = S(t)u0. For u ∈ ET , we let

∀t ∈ [0, T ], Φ(u)(t) = uL(t) + iε

∫ t

0
S(t− τ)((|u|2u(τ)) dτ.

(i) Using Proposition 4.1.2 and Sobolev injections, show that H2(R2) is stable by product.

(ii) Show that Φ is well defined from ET into ET , and there exist two constants C1, C2 > 0
such that for all u, v in BET (uL, R),

‖Φ(u)−uL‖ET ≤ C1T (R3+‖u0‖3H2) and ‖Φ(u)−Φ(v)‖ET ≤ C2T (R2+‖u0‖2H2)‖u−v‖ET .

(iii) Conclude that there exists c > 0 and a time T ≥ c/‖u0‖2H2 such that Φ has a fixed
point in ET .

(iv) Conclude that there exists T ∗ > 0 such that (Sε) with data u0 ∈ H2 has a unique
maximal solution u ∈ C([0, T ∗[;H2) ∩ C1([0, T ∗[;L2).

(v) In this question, we look for a blow up criterion.

(a) Prove the Gagliardo-Nirenberg estimate :

∀u ∈ H2(R2), ‖∂1u‖2L4 ≤ 3‖u‖L∞‖∂2
11u‖L2 .

(b) Prove the tame estimate :

∀(u, v) ∈ H2 ×H2, ‖uv‖H2 ≤ C0

(
‖u‖L∞‖v‖H2 + ‖v‖L∞‖u‖H2

)
for some universal constant C0 .

(c) Show that there exists C > 0 universal such that for all solution u ∈ ET of (Sε) :

∀t ∈ [0, T ], ‖u(t)‖H2 ≤ ‖u0‖H2 + C

∫ t

0
‖u‖2L∞‖u‖H2 dτ.
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(d) Conclude that T ∗ < +∞ implies
∫ T ∗

0 ‖u(t)‖2L∞ dt = +∞. For ε = −1, does this
allow to conclude T ∗ = +∞?

(vi) Using Theorem 6.2.1, prove global existence in H2 for ε = −1.

Exercice 6.4 (Cubic wave equation). We consider the Cauchy problem for the non linear
wave equation in dimension d = 3 :

(NLW ε)

{
∂2
ttu−∆u+ εu3 = 0, (t, x) ∈ I × R3,

u|t=0 = u0, ∂tu|t=0 = u1,

where I is an interval of R containing 0, u0 : R3 → R and u1 : R3 → R are the data, and
ε ∈ {−1, 1}· The non linearity is defocusing for ε = 1, and focusing for ε = −1.

We also consider the linear wave equation

(W )

{
∂2
ttu−∆u = f, (t, x) ∈ I × R3,

u|t=0 = u0, ∂tu|t=0 = u1,

with u0 : R3 → R, u1 : R3 → R and f : I × R3 → R given.

(i) Let f ≡ 0, u0, u1 ∈ S(R3) , show that the solution u to (W ) is given by the formula:

u(t) = U+(t)γ+ + U−(t)γ−

with F(U±(t)z)(ξ) = e±it|ξ|Fz(ξ) and

Fγ±(ξ) =
1

2

(
Fu0(ξ)± 1

i|ξ|
Fu1(ξ)

)
·

(ii) Show that the quantity ‖∇t,xu(t)‖2L2(R3)

def
= ‖∇xu(t)‖2L2(R3) + ‖∂tu(t)‖2L2(R3) is indepen-

dent of time.

(iii) Let Ḣ1(R3) be the closure of S(R3) for the norm ‖z‖Ḣ1

def
= ‖∇z‖L2 . Explain briefly why

this set coincides with L6(R3) functions which gradient is in L2(R3), and then show that
for all (u0, u1) ∈ Ḣ1(R3)×L2(R3), the linear wave (W ) with f ≡ 0 has a unique solution
u ∈ C(R; Ḣ1(R3)) ∩ Ċ1(R;L2(R3)) (the second space just means ∂tu ∈ C(R;L2(R3))).

(iv) In the general case f 6= 0 , show that smooth decaying at infinity solutions of (W ) satisfy:

1

2

d

dt
‖(∂tu,∇u)‖2L2 =

∫
R3

f ∂tu dx

and then for all t ∈ R,

‖∇t,xu(t)‖L2 ≤ ‖(∇u0, u1)‖L2 +

∣∣∣∣∫ t

0
‖f‖L2 dτ

∣∣∣∣
with

‖(∇u0, u1)‖L2
def
=
√
‖∇u0‖2L2 + ‖u1‖2L2 .

Fpr u0 ∈ Ḣ1(R3), u1 ∈ L2(R3) and f ∈ L1
loc(R;L2(R3)), we admit that this remains

true and that the solution has the regularity C(R; Ḣ1(R3)) ∩ Ċ1(R;L2(R3)) .
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(v) In this question, we solve the Cauchy problem for (NLW ε) with u0 ∈ Ḣ1(R3) and u1 ∈
L2(R3). Let uL be the solution to (W ) with f ≡ 0 and data (u0, u1). Let Φε : v 7→ w
with w solution to {

∂2
ttw −∆w = −εv3

(w, ∂tw)|t=0 = (0, 0).

We note XT the Banach space C([0, T ]; Ḣ1(R3)) ∩ Ċ1([0, T ];L2(R3)) and B̄T (R) the
closed ball of XT with center 0 and radius R.

(a) Show that there exists C > 0 such that

∀v ∈ B̄T (R), ‖Φε(v)‖XT ≤ ‖(∇u0, u1)‖L2 + CTR3

and

∀(v, w) ∈ B̄T (R)× B̄T (R), ‖Φε(v)− Φε(w)‖XT ≤ CTR
2‖v − w‖XT .

(b) Show that there exists c > 0 (independant of u0, u1 ) such that the map v 7→
uL + Φε(v) has a unique fixed point in B̄T0(R) with

R = 2‖(∇u0, u1)‖L2 et T0 =
c

‖(∇u0, u1)‖2
L2

·

(c) Conclude that (NLW ε) has a unique solution in XT0 .

(d) Let T ∗ be the maximal life time of this solution. Show that T ∗ < ∞ implies
lim supt→T ∗ ‖∇t,xu(t)‖L2 = +∞, and then that there exists C0 > 0 such that

‖∇t,xu(t)‖L2 ≥
C0√
T ∗ − t

for all t ∈ [0, T ∗[.

(e) If u is a smooth solution of (NLW ε) in the interval [0, T ], show that

(E) ∀t ∈ [0, T ],
d

dt

(
‖∂tu‖2L2 + ‖∇xu‖2L2 +

ε

2
‖u‖4L4

)
(t) = 0.

(f) We admit that u0 ∈ L4(R3) ∩ Ḣ1(R3) and u1 ∈ L2(R3) imply that the maximal
solution constructed above satisfies (E). What can we conclude on the life time of
the solution in the defocusing case ?

Exercice 6.5 (Lower bound on the blow up speed). Let u0 ∈ H1 and u ∈ C([0, T [, H1) the
solution to (6.1) given by Theorem 6.1.1. Let 0 < sc < 1 be the scaling parameter given by
(6.15). We assume T < +∞ . Show that there exists C(u0) such that for all t close enough
to T , there holds

‖∇u(t)‖L2 ≥
C(u0)

(T − t)
1−sc

2

·

Hint: Pick t0 ∈ [0, T [ and define v(τ, x) = (λ(t0))
2
p−1u(t0 + (λ(t0))2τ, λ(t0)x) for a well chosen

λ(t0) .

Exercice 6.6 (Upper bound on the blow up speed). Let the focusing (NLS)∣∣∣∣ i∂tu+ ∆u+ u|u|p−1 = 0
u(0, x) = u0(x)

, x ∈ R2, 3 < p < 5.
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Let H1
r be the set of H1 functions with radial symmetry, then the Cauchy problem is well posed

in H1
r . We pick u0 ∈ H1

r and assume that the solution blows up in finite time 0 < T < +∞ .
The aim of this problem is to derive an upper bound on ‖∇u(t)‖L2 as t ↑ T .
Integration by parts should be done without boundary terms (without justification). We let

sc = 1− 2

p− 1

and E0 be the energy of the data. We recall Hölder:

|xy| ≤ 1

p

(
|x|
A

)p
+

(A|y|)p′

p′
, 1 ≤ p, p′ ≤ +∞, 1

p
+

1

p′
= 1, A > 0. (6.29)

(i) Let χ ∈ C∞c (R2) with spherical symmetry, prove the formulas:

1

2

d

dτ

∫
χ|u|2 = Im

(∫
∇χ · ∇uu

)
,

and

1

2

d

dτ
Im

(∫
∇χ · ∇uu

)
=

∫
χ′′|∇u|2 − 1

4

∫
∆2χ|u|2 −

(
1

2
− 1

p+ 1

)∫
∆χ|u|p+1.

(ii) Prove that for all u ∈ H1
r ,

∀R > 0, ‖u‖2L∞(r≥R) ≤
2

R
‖u‖L2‖∇u‖L2 .

(iii) Let R > 0 , ψ ∈ C∞c (R2) with spherical symmetry and

ψ(x) =

∣∣∣∣∣ |x|
2

2 pour |x| ≤ 2
0 pour |x| ≥ 3

.

Let
χ(x) = ψR(x) = R2ψ

( x
R

)
,

show that

c(d, p)

∫
|∇u|2+

1

2

d

dt
=
(∫
∇ψR · ∇uu

)
≤ C(d, p)

[
|E0|+

∫
|x|≥R

|u|p+1 +
1

R2

∫
2R≤|x|≤3R

|u|2
]

for some constants c(d, p), C(d, p) > 0 independant of R.

(iv) Prove using (6.29) that:

c(d, p)

2

∫
|∇u|2 +

1

2

d

dt
=
(∫
∇ψR · ∇uu

)
≤ C(u0, d, p)

[
1 +

1

R2
+

1

R
2
α

]
(6.30)

with
α =

5− p
p− 1

.

(v) Integrate in time (6.30) and prove: ∀0 < t0 < t2 < T ,∫ t2

t0

(t2 − t)‖∇u(t)‖2L2dt ≤ C(u0, d, p)

[
(t2 − t0)2

R
2
α

+R(t2 − t0)‖∇u(t0)‖L2 +R2

]
.
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(vi) Choose R = (T − t0)
α

1+α and conclude that for t close enough to T :∫ T

t0

(T − t)‖∇u(t)‖2L2dt ≤ C(d, p, u0)(T − t)
α

2+α + (T − t0)2‖∇u(t0)‖2L2 .

(vii) Show that for t close enough to T :∫ T

t0

(T − t)‖∇u(t)‖2L2dt ≤ C(d, p, u0)(T − t)
2α
1+α .

(viii) Conclude that there exists a sequence tn → T such that

‖∇u(tn)‖L2 ≤
C(d, p, u0)

(T − tn)
1

1+α

.

(remark: this bound is sharp!).

(ix) Open problem: prove any bound on blow up rate in the critical case p = 3 !
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Chapter 7

Variational methods

Let us consider the non linear Schrödinger equation

(NLS)

∣∣∣∣∣∣∣∣
i∂tu+ ∆u+ εu|u|p−1 = 0
u(t, x) ∈ C
(t, x) ∈ R× Rd
u(0, x) = u0(x) ∈ H1(Rd).

(7.1)

in dimension d ≥ 1 and in the focusing case ε = 1 . Given u0 ∈ H1(Rd) , we have proved the
existence of a unique maximal solution u ∈ C([0, T [;H1) with T = +∞ if p < 1 + 4

d · We
address the question: what does the solution look like as t→ +∞?

We know the answer in the linear case: solutions disperse to zero at speed which depends
on the structure in Fourier of the initial data. For the defocusing case ε = −1 in the subcritical
regimes p < 2∗−1 , the non linear dynamics is asymptotically attracted by the linear dynamic,
and the non linear effect is described by the scattering map. The situation is completely dif-
ferent in the focusing case due to the existence of new solutions: solitons or solitary waves.
For (NLS), they take the form of time periodic wave packets u(t, x) = Q(x)eit which therefore
do not decay in time. A general conjecture is that all solutions to (7.1) can be decomposed
asymptotically in time as trains of decoupled solitary waves coupled to a scattering radiation.

We aim in this chapter at developping various methods for the construction of solitary
waves. A classical problem which will guide us is the construction of time periodic solutions
to (7.1)

u(t, x) = Q(x)eit

where the profile Q satisfies: ∣∣∣∣ ∆Q−Q+Q|Q|p−1 = 0
Q ∈ H1(Rd). (7.2)

7.1 The variational approach

We introduce the variational setting to study (7.2) and the associated infinite dimensional
minimization problem.
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7.1.1 The space H1
r

Let d ≥ 2 and consider the space H1
r which is the subset of functions of H1(Rd;C) which

have radial symmetry ie

u(x) = u(Rx), ∀R ∈Md(R) with RtR = Id,

or equivalently

u(x) ≡ ũ(r) with r = |x| =
( d∑
i=1

x2
i

) 1
2

and ũ : R+ → C.

This set coincides with the closure of the radially elements of D(Rd) for the norm

‖u‖2H1 =

∫
Rd

(
|∇u(x)|2 + |u(x)|2

)
dx = cd

∫ +∞

0

(
|∂rũ(r)|2 + |ũ(r)|2

)
rd−1 dr

where cd is the area of the unit sphere of Rd . It is therefore a closed subset of H1. In the
sequel , we systematically identify u : Rd → C radial with its representant ũ : R+ → C .

Lemma (Regularity and decay in H1
r ). Let d ≥ 2 and u ∈ H1

r , then u belongs to the Hölder
space C

1
2 (]0 +∞[;C) defined in exercice 2.5 and

‖r
d−1
2 u‖L∞ .

√
‖u‖L2‖∇u‖L2 · (7.3)

Proof of Lemma 7.1.1. Let φ ∈ C∞c (Rd) radial. Then

φ2(r) = −2

∫ +∞

r
φ(τ)φ′(τ) dτ

and hence by Cauchy-Schwarz,

φ2(r) ≤ 2
rd−1

∫ +∞

r
|φ(τ)φ′(τ)|τd−1 dτ .

1

rd−1
‖∇φ‖L2(Rd)‖φ‖L2(Rd),

and (7.3) is proved. Similarily for 0 < r1 ≤ r2 < +∞ ,

|φ(r1)− φ(r2)| = 2

∣∣∣∣∫ r2

r1

φ′(τ)dτ

∣∣∣∣ . 1

r
d−1
2

1

‖φ‖H1(r2 − r1)
1
2

where we used Cauchy-Schwarz in the first step. The lemma follows by density.

The decay estimate (7.3) implies the compactness of the radial Sobolev embedding1:

Proposition 7.1.1 (Compactness of the embedding of H1
r into Lp , 2 < p < pc ). Let d ≥ 2

and

pc
def
=

{
+∞ for d = 2,
2d
d−2 for d ≥ 3,

then for all 2 < p < pc , the embedding H1
r ↪→ Lp is compact.

1Recall that this is false without the symmetry assumption due to the action of the group of translations.
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Proof of Proposition 7.1.1. Let u ∈ H1
r and 2 < p < pc , then (7.3) implies∫

|x|≥R
|u|p dx ≤

‖r
d−1
2 u‖p−2

L∞

R
(p−2)(d−1)

2

∫
Rd
|u|2 dx .

1

R
(p−2)(d−1)

2

‖u‖p
H1 . (7.4)

Let (un)n∈N bounded in H1
r (Rd), then (7.4) implies that the sequence is Lp tight:

∀ε > 0, ∃R > 0, ∀n ≥ 1, ‖un‖Lp(|x|≥R) < ε. (7.5)

Since by Theorem 4.3.2, there exists u ∈ H1(Rd) such that, up to a subsequence,

un ⇀ u in H1, and un → u in Lp(|x| ≤ R), ∀R > 0,

we conclude using (7.5),
un → u dans Lp(Rd).

Since H1
r is closed and hence weakly closed, u ∈ H1

r .

Remark. The injection H1
r ↪→ L2 is never compact due to the action of the dilation group:

un(r) = λ
d
2
nu(λnr), λn → 0

for some fixed profile u ∈ C∞c non nul. One easily checks that un ⇀ 0 in H1 but ‖un‖L2 =
‖u‖L2 6= 0, and hence no subsequence converges in L2 .

7.1.2 A compact minimization problem in H1
r

The compactness of the Sobolev embedding allows us to solve infinite dimensional minimization
problems.

Proposition 7.1.2 (Compact minimization). Let d ≥ 2 and p > 1 satisfying

1 < p < 2∗ − 1 =

∣∣∣∣ +∞ for d = 1, 2
d+2
d−2 for d ≥ 3.

For all M > 0 , let

AM =

{
u ∈ H1

r t.q.
∫
Rd
|u|p+1 dx = M

}
·

Then the minimization problem
IM = inf

u∈AM
‖u‖2H1 (7.6)

has a solution uM ∈ AM .
Proof of Proposition 7.1.2. Since we minimize a positive quantity, we may consider a minimiz-
ing sequence (un)n∈N of AM such that

‖un‖2H1 → IM ≥ 0.

The sequence (un)n∈N is radial and bounded in H1
r , and hence by Proposition 7.1.1, (un)n∈N

converges strongly in Lp+1 up to a subsequence. Hence there exists u ∈ H1
r such that :

un → u in Lp+1 and un ⇀ u in H1.

By lower semi continuity of the norm for the weak limit:

‖u‖2H1 ≤ lim inf
n→+∞

‖un‖2H1 = IM

and by strong Lp+1 limit:
‖u‖p+1

Lp+1 = lim
n→+∞

‖un‖p+1
Lp+1 = M.

Hence u ∈ AM and ‖u‖2H1 ≤ IM , hence u attains the infimum.
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7.2 Study of the minimizers

We now aim at classifying all the minimizers given by Proposition 7.1.2 and show in particular
that they provide radially symmetric solitonic profiles for (NLS).

7.2.1 Positivity of the minimizer

Lemma 7.2.1 (Positivity). If u ∈ AM minimizes (7.6), then so does |u| .

This follows from the following convexity property of the Dirichlet functional

Lemma 7.2.2 (Convexity estimate for the gradient). Let u ∈ H1(Rd;C) , then |u| ∈ H1(Rd;R+)
and ∫

|∇u|2 dx ≥
∫
|∇|u||2 dx. (7.7)

Moreover, if u is continuous and {u 6= 0} is open and connex2, then the equality holds iff there
exists γ ∈ R such that u = |u|eiγ .

Proof of Lemma 7.2.2. Decompose u in real and imaginary parts: u = f + ig. Then p.p3

∇|u| = ∇
√
f2 + g2 =

f∇f + g∇g√
f2 + g2

·

Hence ∫
|∇|u||2 dx =

∫
|f∇f + g∇g|2

f2 + g2
dx

=

∫
1

f2 + g2

[
f2|∇f |2 + g2|∇g|2 + 2fg∇f · ∇g

]
dx

=

∫
|∇f |2 dx+

∫
|∇g|2 dx−

∫
|g∇f − f∇g|2

f2 + g2
dx,

which yields (7.7). Assume now |u| ∈ H1(Rd;R+
∗ ) with equality in (7.7). Then

p.p. x ∈ Rd, f∇g = g∇f. (7.8)

Since f and g are continuous, our assumption ensures that A ∪ B with A
def
= f−1(R \ {0})

and B
def
= g−1(R \ {0}) is open and connex. Let φ ∈ D(B). Then

h =
φ

g
∈ H1(Rd) and ∇h =

∇φ
g
− ∇g

g2
φ,

and we may compute:∫
f

g
∇φdx =

∫
f∇
(
φ

g

)
dx+

∫
fφ
∇g
g2

dx =

∫
f∇h dx+

∫
h
f∇g
g

dx

=

∫
f∇h dx+

∫
h∇f dx = 0

2which holds in particular if u does not vanish
3This formula can be justified by a regularization argument, see [26], p. 152.
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from (7.8). Since this all ∀φ ∈ D(B) , we conclude

∇
(
f

g

)
= 0 in D′(B)

and hence / f/g is a constant in B. The same argument ensures g/f constant in A. Since
A ∪ B is connex, we conclude that f and g are proportional and hence ∃γ ∈ C such that
u = |u|eiγ .

7.2.2 Euler-Lagrange equations

We are thus left via Lemma 7.2.1 with the classification of the non negative minimizers u ∈
H1
r (Rd;R+) . The next step is the derivation of the Euler Lagrance equations which tranform

into a PDE the minimizing property.

Proposition 7.2.1 (Euler Lagrange equation). Let u ≥ 0 minimizing (7.6), then ∃λ ∈ R
such that

∆u− u = −λup dans H−1. (7.9)

Moreover:
λ =

IM
M

> 0. (7.10)

Proof of Proposition 7.2.1. Let t ∈ R and h ∈ C∞c (Rd;R) radial, let ut = u + th. We renor-
malize ut :

vt
def
=
‖u‖Lp+1

‖ut‖Lp+1

ut

so that vt ∈ AM . This renormalization makes sense for t small enough since u is not zero.
Let us show that Φ : t 7→ ‖vt‖2H1 is derivable at t = 0. Since the infinum is attained at 0 ,
(7.9) will follow by writing Φ′(0) = 0. Let us first compute

‖u+ th‖2L2 = ‖u‖2L2 + 2t

∫
uh dx+ t2‖h‖2L2

and ‖∇(u+ th)‖2L2 = ‖∇u‖2L2 + 2t

∫
∇u · ∇h dx+ t2‖∇h‖2L2 .

Then
‖u+ th‖2L2 = ‖u‖2L2 + 2t

∫
uh dx+O(t2), (7.11)

and by integration by parts,

‖∇(u+ th)‖2L2 = ‖∇u‖2L2 − 2t〈∆u, h〉H−1×H1 +O(t2). (7.12)

Next, to compute the order one term in the development of ‖ut‖p+1
Lp+1 , we start with the

following homogeneous estimate: forall q ≥ 2 :

||1 + z|q − 1− qz| ≤ Cq(|z|2 + |z|q), ∀z ∈ R.

Chosing z = th/u , integrating and multiplying both terms of the identity by uq yields∣∣∣∣∫ |ut|q dx− ∫ uq dx− q
∫
th uq−1 dx

∣∣∣∣ ≤ Cq(t2 ∫ h2uq−2 dx+ tq
∫
|h|q dx

)
·
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Let q = p+ 1, we conclude by Hölder since h is compactly supported:∫
|ut|p+1 dx =

∫
|u|p+1 dx+ (p+ 1)t

∫
hup dx+O(t2) as t→ 0. (7.13)

Recall the definition of vt, we easily obtain combining (7.11), (7.12) and (7.13) :

‖vt‖2H1 =

(
‖u‖2H1 + 2t

∫
uh dx− 2t〈∆u, h〉H−1×H1

)(
1− 2t

M

∫
up h dx

)
+O(t2).

Hence. for t close enough to 0,

Φ(t) = Φ(0) + 2t

(∫
(u− λup)h dx− 〈∆u, h〉H−1×H1

)
+O(t2) with λ

def
=

IM
M
·

We conclude that Φ is derivable at 0 with derivative

Φ′(0) = −〈∆u− u+ λup, h〉H−1×H1

and then
〈∆u− u+ λup, h〉H−1×H1 = 0 for all h ∈ C∞c (Rd) radial.

By density, we may extend the above equality to all h ∈ H1
r , and conclude that (7.9) is satisfied

in the sense of the dual of H1
r only. Nevertheless, the distribution ∆u−u+λup is radial, and

then decomposing any h ∈ C∞c (Rd) as h = hr + g with hr radiale and g of zero average on
every sphere centered at the origin ensures∫

(∆u− u+ λup)h dx =

∫
(∆u− u+ λup)hr dx = 0,

and (7.9) in H−1 = (H1)∗, by density.

7.2.3 Regularity and uniqueness of the minimizers

We may now completely classify the family of minimizers. First observe that if u satisfies (7.9)
with λ = λ(M) > 0 from (7.10), then

v = λ
1
p−1u

satisfies
∆v − v + vp = 0, v ≥ 0. (7.14)

We are therefore left with classifiying the H1
r positive solutions of (7.14). The equation (7.14)

is to be understood in the sense of distributions or in H−1 since v ∈ H1
r . Let us start with

showing that v is in fact a smooth and hence a solution in the classical sense.

Lemma 7.2.3 (Regularity). The solution v to (7.14) belongs to C2(Rd), tends to 0 at infinity,
and there exists a > 0 such that v is the unique solution on R+ of the Cauchy problem:

d2v

dr2
+
d− 1

r

dv

dr
= v − vp,

v(0) = a,
dv

dr
(0) = 0.

(7.15)
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Proof of Lemma 7.2.3. The regularity of v relies on a bootstrap argument using the smoothing
effect of the Laplace operator. For the sake of simplicity, let us restrict the proof to p = 3
and d = 2, the general case relies on similar arguments. Let us first show that v ∈ H2(R2) .
For this, observe that v ∈ H1(R2) and the Sobolev embedding H1(R2) ↪→ L6(R2) ensures
v3 ∈ L2(R2). Hence (7.14) yields (Id−∆)v ∈ L2, which through Plancherel ensures v ∈ H2 .
Next, we apply ∆ to (7.14) and observe

(Id−∆)∆v = ∆(v3) = 6v|∇v|2 + 3v2∆v.

Since H2(R2) embeds into L∞(R2) and H1(R2) embeds into L4(R2) , we conclude that the
right hand side belongs to L2. We conclude that ∆v ∈ H2, and hence v ∈ H4. Sobolev
injections then ensure that v and all its derivatives of order 1 and 2 are continuous and tend
to 0 at infinity. In particular, v ∈ C2(R2). Since v is radial, computing the ∆ in spherical
coordinates ensures

∀r > 0,
d2v

dr2
+

1

r

dv

dr
= v − v3. (7.16)

The C2 regularity of v allows us to conclude

v′(r)→ 0 as r → 0

and hence v satisfies (7.15) for some a ≥ 0. Finally, the fact that the Cauchy problem (7.15)
is locally well posed follows by remarking

d2v

dr2
+
d− 1

r

dv

dr
=

1

rd−1

d

dr

(
rd−1dv

dr

)
and hence we solve by fixed point inC1([0, R]) , R = R(a) > 0 small enough, the corresponding
integral equation

v(r) = a+

∫ r

0

(
ds

sd−1

∫ s

0
τd−1f(v(τ))dτ

)
with f(v) = v − vp.

Since for a = 0 , u = 0 is a solution and hence the unique solution, we conclude that a > 0
and the Lemma is proved.

We have therefore reduced the understanding of positive H1
r solutions of the PDE (7.14) to

the description of solutions to the one dimensional ODE , indexed by the shooting parameter
a . This is not a trivial problem and after the first proof of Kwong [24] in 1987, a simplified
canonical proof is proposed in MacLeod [28], see also the appendix of [39].

Theoreme 7.2.1 (Uniqueness in the sense of the dynamical systems). There exists a unique
a > 0 such that the corresponding solution v(r) to (7.15) satisfies

∀r > 0, v(r) ≥ 0

and the boundary condition
v(r)→ 0 when r → +∞. (7.17)

Moreover,
∀r ≥ 0, v(r) > 0. (7.18)

We note Q(r) this solution: it is the ground state of (7.15).

Remark 7.2.1. Let us stress that the strict positivity (7.18) follows from Cauchy-Lipschits: if
Q(r0) = 0 , then Q′(r0) = 0 since Q is positive, and hence Q ≡ 0. Note also that Theorem
7.2.1 is trivial in dimension d = 1 where all solutions can be computed explicitely (see exercice
7.1).
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7.2.4 Conclusion

Let us summarize. Let u ∈ H1
r a minimizer of (7.6), then |u| is a positive minimizer by Lemma

7.2.1. Then by Proposition 7.2.1,

v
def
= λ

1
p−1 |u| with λ =

IM
M

> 0

solves
∆v − v + vp = 0, v ≥ 0, v ∈ H1

r .

Hence by Lemma 7.2.3, v is a strong positive solution of (7.15). Moreover, v ∈ H1
r implies

v(r)→ 0 when r → +∞

by (7.3), and hence Theorem 7.2.1 implies

v(r) = Q(r).

Hence |u| is continuous and does not vanish. Finally, u and |u| being both minimizers, we
are in the equality case of Lemma 7.2.2, and hence

u = |u|eiγ , γ ∈ R.

We have proved:

Proposition 7.2.2 (Classification of minimizers). Let M > 0 and

AM =

{
u ∈ H1

r with
∫
Rd
|u|p+1 dx = M

}
,

then the minimization problem
IM = inf

u∈AM
‖u‖2H1

is attained exactly on the one parameter family

eiγ
(
M

IM

) 1
p−1

Q(r), γ ∈ R,

where Q is the unique ground state solution given by Theorem 7.2.1.

7.3 Exercices

Exercice 7.1 (Computing the ground state in dimension d = 1). Let 1 < p < +∞ .

(i) Let a ∈ R+. Show that there exists a unique maximal solution u ∈ C1(]R1, R2[;R) of
the non linear ODE: {

Q′′ −Q+Qp = 0,

Q(0) = a, Q′(0) = 0.

(ii) Compute a first integral (hint: multiply by Q′ ).

(iii) Show that there exists at most one global solution Q which goes to 0 as +∞, and that
this solution satisfies

∀x > 0, Q(x) > 0 and Q′(x) < 0.
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(iv) Change variables y = 1

Q
p−1
2

and obtain the ground state formula

Q(x) =

 p+ 1

2 cosh2
(

(p−1
2 )x

)
 1

p−1

.

Exercice 7.2. Let V : Rd → R continuous with lim|x|→+∞ V (x) = 0.

(i) Show that for all s > 0 , the operator T : u→ V u is compact from Hs(Rd) into L2(Rd) .

(ii) Let Emin be the energy of the ground state of the Schrödinger operator −∆− V :

Emin
def
= inf{E(u), u ∈ H1(Rd), ‖u‖L2(Rd) = 1} où E(u)

def
=

∫
Rd
|∇u|2 dx−

∫
Rd
V |u|2 dx.

Assume Emin < 0 . Show that Emin is attained :

∃u ∈ H1(Rd) tel que ‖u‖L2(Rd) = 1 et E(u) = Emin,

and that every minimizing sequence converges strongly in H1(Rd).

(iii) Conclude that there exists an eigenmode for −∆−V : ∃λ < 0 and u ∈ H1(Rd) non zero
such that

−∆u− V u = λu, u(x) ≥ 0. (7.19)

(iv) Show that u belongs to all Sobolev spaces Hs , and that it is a classical solution to (7.19).

(v) We now assume that V ≥ 0 for the rest of the exercice. Let p ∈]1, 1 + 4/d[ and F be
the non linear functional defined by

F (u) =
1

2

∫
Rd
|∇u(x)|2dx− 1

2

∫
Rd
V (x)|u(x)|2dx− 1

p+ 1

∫
Rd
|u(x)|p+1 dx.

Let the minimization problem for M > 0 :

I(M) = inf
u∈H1

r (Rd)

{
F (u),

∫
Rd
|u(x)|2 dx = M

}
·

Show that
I < 0.

(vi) Show that all minimizing sequences are bounded in H1(Rd) .

(vii) We assume that I(M) is a strictly dereasing function of M. Show that I(M) is attained.

(viii) Assume moreove V radial, conclude that there exists a non linear eigenmode: ∃λ ∈ R
and u ∈ H1(Rd) such that

−∆u− V u− up = λu, u(x) ≥ 0.

Exercice 7.3 (One dimensional Hardy inequality). We work on R and all functions are
considered real valued.
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(i) Let

A =

{
u ∈ C∞c (R;R),

∫
R

|u(x)|2

1 + x2
dx = 1

}
·

Show that
inf
u∈A

∫
R
|u′(x)|2 dx = 0.

Hint: consider

un(x)
def
= χ

(x
n

)
with χ(x) =

{
1 for |x| ≤ 1
0 pour |x| ≥ 2.

(ii) Show that there exists a universal constant c1 > 0 such that

∀u ∈ C∞c (R), u2(1) +

∫
x≥1
|u′(x)|2 dx ≥ c1

∫
x≥1

|u(x)|2

x2
dx.

Hint: integrate by parts in ∫
x≥1

u2

x2
dx = −

∫
x≥1

u2

(
1

x

)′
dx

and use

2|xy| ≤ x2

A
+Ay2, ∀A > 0.

(iii) Show that there exists a universal constant c2 > 0 such that

u2(1) +

∫
|x|≤1

|u′(x)|2 dx ≥ c2

[
u2(−1) +

∫
|x|≤1

|u(x)|2

1 + x2
dx

]
.

(iv) Conclude that there exists a universal constant c3 > 0 such that

∀u ∈ C∞c (R), u2(1) +

∫
R
|u′(x)|2 dx ≥ c3

∫
R

u2(x)

1 + x2
dx.

(v) Fix ψ ∈ D(R) with ∫
R
ψ(x) dx 6= 0 and ψ(x) = 0 for |x| ≥ 1.

Let

Aψ =

{
u ∈ C∞c (R),

∫
R

u2(x)

1 + x2
dx = 1 and

∫
R
u(x)ψ(x) dx = 0

}
·

We want to prove:

Iψ = inf
u∈Aψ

∫
R
|u′(x)|2 dx > 0. (7.20)

We argue by contradiction and assume Iψ = 0. Let un ∈ Aψ with∫
R
|u′n(x)|2 dx ≤ 1

n
·

Show that
lim inf
n→+∞

u2
n(1) > 0.
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(vi) Let χ ∈ C∞c (R) with

χ(x) =

{
1 for |x| ≤ 1
0 for |x| ≥ 2

and χ(x) > 0 for 1 ≤ |x| ≤ 2.

Let
vn(x) = χ(x)un(x).

Show that (vn)n≥1 is bounded in H1(R) and there exists a subsequence{
vφ(n) ⇀ v dans H1(R)

vφ(n) → v in L∞(|x| ≤ 2).

(vii) Show that
∫
R vψ dx = 0.

(viii) Show that v(1) 6= 0.

(ix) Let A > 0 and χA(x) = χ
(
x
A

)
. Show that∫

χA|v′ − v′n|2 dx =

∫
χA|v′n|2 dx−

∫
χA|v′|2 dx− 2

∫
χAv

′(v′n − v′) dx.

Conclude that
∀0 < A <

1

2
,

∫
χA|v′|2 dx = 0.

(x) Conclude the proof of (7.20).
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Chapter 8

More solitary waves

The varational approach developped in chapter 7 is a powerful tool but does not always apply:
the non linearity has no reason in general to be a gradient. We present in this chapter two
other powerful methods which have applications everywhere in mathematical physics: the
Lyapounov-Schmidt bifurcation argument, and the direct ODE approach.

8.1 The Lyapounov Schmidt bifurcation method

The Lyapounov Schmidt bifurcation argument is the canonical method to start bifurcation
branches and is at the heart of perturbation theory. We shall illustrate the method on an
elementary problem related to the harmonic oscillator, but the method goes very far beyond
and is probably the most powerful known tool to construct nonlinear objects and solitons.

8.1.1 The resolvent of the harmonic oscillator

Let us consider the harmonic oscillator operator

H = −∆u+ (1 + |x|2)u

where we may without loss of generality assume that all functions are real valued. Let us
consider the virial space

Σ = {u ∈ H1(Rd), xu ∈ L2(Rd)}

which is a Hilbert space for the natural scalar product

〈u, v〉Σ = 〈u, v〉H1 + 〈|x|2u, v〉L2 .

The solutions to the eigenvalue problem

Hu = λu, u ∈ Σ

correspond to the energy levels acquired by a quantum particle trapped by the |x|2 magnetic
field. The functional setting to study H is the following which adresses the resolvent of H .

Let us start with the following elementary observation which we will systematically use in
the sequel.
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Lemma 8.1.1. Let u ∈ Σ and f ∈ L2 such that

Hu = f in D′.

Then
∀v ∈ Σ,

∫
∇u · ∇v +

∫
(1 + |x|2)uv =

∫
uf. (8.1)

Proof of Lemma 8.1.1. Let v ∈ Σ , then since D is dense in Σ , there exists φn ∈ D such that
φn → v in Σ . Hence∫

∇u · ∇v +

∫
(1 + |x|2)uv −

∫
uf = lim

n→+∞

[∫
∇u · ∇φn +

∫
(1 + |x|2)uφn −

∫
uf

]
= lim

n→+∞
(Hu− f, φn)D′,D = 0.

We start with the study of the resolvent of H .

Proposition 8.1.1 (Resolvent of the harmonic oscillator). For all f ∈ L2(Rd) , there exists a
unique u ∈ Σ such that

Hu = f in D′(Rd). (8.2)

Moreover, the resolvent map T (f) = u is continuous from L2 into Σ , injective, and compact
and self adjoint from L2 into itself.

Proof of Proposition 8.1.1. The proof relies on the Lax Milgram approach.

step 1 Existence and continuity of the resolvent. Let f ∈ L2(Rd) . Consider the linear form:

Lf (v) = 〈f, v〉L2 ,

then from Cauchy Schwarz

∀v ∈ Σ, |Lf (v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖Σ,

and hence Lf is continuous linear form on the Hilbert space Σ . Riesz representation Theorem
ensures that there exists a unique u = T (f) ∈ Σ such that

∀v ∈ Σ, 〈u, v〉Σ = Lf (v) = 〈f, v〉L2 . (8.3)

In particular for v = φ ∈ D(Rd) :

〈f, φ〉L2 = 〈u, φ〉Σ =

∫
∇u · ∇φ+

∫
(1 + |x|2)uφ

⇔
(
−∆u+ (1 + |x|2)u− f, φ

)
D′,D = 0

and hence u ∈ Σ solves (8.2). Moreover applying (8.3) with v = u ensures

‖u‖2Σ = 〈f, u〉L2 ≤ ‖f‖L2‖u‖L2 ≤ ‖f‖L2‖u‖Σ ⇒ ‖u‖Σ ≤ ‖f‖L2 .

We now claim that there exists a unique u ∈ Σ solution to (8.2). Indeed, by linearity, let
u ∈ Σ with Hu = 0 in D′ , then applying (8.1) with v = u and u = 0 yields ‖u‖2Σ = 0 and
hence u = 0 . This concludes the proof of the existence and continuity of the resolvent operator
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T as a linear map from L2 into Σ , and its injectivity.

step 2 Self adjointness. Since T ∈ (L2,Σ) and ‖u‖L2 ≤ ‖u‖Σ , we conclude that T ∈ (L2, L2) .
We now claim that T is self adjoint as an endomorphism of L2 . Indeed, let

Tu = f, Tv = g, (u, v)Σ× Σ, (f, g) ∈ L2 × L2,

then from (8.3): ∣∣∣∣ 〈Tu, v〉L2 = 〈f, v〉L2 = 〈u, v〉Σ
〈u, Tv〉L2 = 〈Tv, u〉L2 = 〈g, u〉L2 = 〈u, v〉Σ

and since we assumed a real Hilbertian structure1

〈u, v〉Σ = 〈u, v〉Σ ⇒ 〈Tu, v〉L2 = 〈u, Tv〉L2 ⇒ T ∗ = T.

step 3 Compactness. We now claim that T is a compact endormorphism of L2 . Indeed, let
fn ⇀ 0 in L2 , then un = Tfn is bounded in Σ . Moreover T ∈ L(L2,Σ) and hence is weakly
continuous, Proposition 2.2.3, which ensures

un ⇀ 0 in Σ⇒ un ⇀ 0 in H1 (8.4)

where we applied Remark 2.2.2. Pick ε > 0 . Since un is bounded in Σ , there exists R(ε)
such that

∀n ≥ 1,

∫
|x|≥R(ε)

|un|2 ≤
1

R2(ε)

∫
|x|≥R(ε)

|x|2|un|2 ≤
C

R2(ε)
≤ ε.

On the other hand from (8.4) and Rellich’s Theorem 4.3.2, we have

lim
n→+∞

∫
|x|≤R(ε)

|un|2 = 0.

We have proved
fn ⇀ 0 in L2 ⇒ Tfn → 0 in L2

and hence T is compact as an endomorphism of L2 by Proposition 2.2.4.

Remark 8.1.1. Note that the above proof shows that the embedding Σ ⊂ L2 is compact.

8.1.2 Diagonalization of the harmonic oscillator

The spectral Theorem asserts that a self adjoint compact operator is diagonalizable in a Hilber-
tian basis.

Theoreme 8.1.1 (Spectral theorem). Let T be a self adjoint compact endomorphism of a
separable Hilbert space H , then T is diagonalizable in a Hilbertian basis of H .

In the case of the harmonic oscillator, eigenvalues and eigenvectors can in fact be computed
explicitely using the Hermite functions ψn(x) .

Proposition 8.1.2 (Diagonalization of H ). There exists an increasing sequence (λn ∈ R∗+)n≥0

with
lim
n→∞

λn = +∞

such that the Hermite functions (ψn)n≥1 ∈ Σ is a Hilbertian basis of L2 with

∀n ≥ 0, Hψn = λnψn.
1the same can be proved for complex valued functions as well.
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Remark 8.1.2. Note that Tψn = ψn
λn

and hence 1
λn
→ 0 is the sequence of eigenvalues of T

on L2 .

Proof. The key step is the conjuguation formula:∣∣∣∣∣ u = e−
|x|2
2 v ⇒ Hu = e−

|x|2
2 (−∆ + (d+ 1) + 2Λ) v

Λv = x · ∇v.
(8.5)

Indeed, we compute∣∣∣∣∣∣∣∣
u = e−

αx2

2 v

∇u = e−
α|x|2

2 [−αxv +∇v]

∆ = e−
α|x|2

2 [−αdv − αx · ∇v + ∆v − αx · (−αxv +∇v)] = e−
α|x|2

2

[
∆v − 2αx · ∇v − dαv + α2|x|2v

]
and hence

Hu = e−
α|x|2

2
[
∆v − 2αx · ∇v − dαv + α2|x|2v + (1 + x2)v

]
= e−

α|x|2
2
[
−∆v + 2αx · ∇v + (dα+ 1)v + (1− α2)x2v

]
and hence α = 1 yields (8.5). Let us give the proof of Proposition 8.1.2 in dimension d = 1 .
The case d ≥ 2 follows by splitting any u ∈ Σ in spherical harmonics.
For d = 1 , the operator H̃v is trivial to diagonalize using polynomials. Indeed,

H̃1 = 2⇔

∣∣∣∣∣ Hψ0 = λ0ψ0

λ0 = 2, ψ0 = e−
x2

2 .

Then since
Λxn = nxn,

one easily constructs a polynomial Pn = xn +
∑n−1

k=0 akx
k such that

(H̃ − λn)Pn = 0 for λn = 2n+ 2,

and hence

Hψn = λnψn,

∣∣∣∣∣ λn = 2n+ 2

ψn = Pne
−x

2

2 .

The polynomial Pn is the Hermite polynomial of degree n ≥ 0 and ψn is the associated
Hermite function. Note that the family ψn is orthogonal since ψn is an eigenvector for T
which is self adjoint on H = L2 , and moreover since by Stone Weierstrass polynomials are
dense in C(|x| ≤ R) for any R , the family (ψn)n≥0 is total2 in L2 and hence it is up to
normalization a Hilbertian basis of L2 in which T is diagonal, and hence H .

8.1.3 Varational characterization of the first eigenvalue

We now characterize variationally the first eigenvalue and prove H−λ0 has continuous resolvent
when restricted to the subspace of functions orthogonal to the first eigenvalue. The proof below
is canonical and can be applied to a large class of operators.

2ie the vectorial space of finite linear combinations of the ψn is dense in L2
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Proposition 8.1.3 (Variational characterization of the first eigenvalue). Let d ≥ 1 .
1. Variational characterization. The minimization problem

I = inf
u∈A
‖u‖2Σ, A = {u ∈ Σ, ‖u‖L2 = 1}

is attained exactly on

I = d+ 1, u ∈ span{ψ0 = e−
|x|2
2 }.

Moreover, I = λ0 where 1
λ0

is the largest eigenvalue of T .
2. Resolvent of H −λ0 . There exists c > 0 such that ∀f ∈ L2 with 〈f, ψ0〉L2 = 0, there exists
a unique u ∈ Σ with 〈u, ψ0〉L2 = 0 such that (H − λ0)u = f and ‖u‖Σ ≤ C‖f‖L2 .

Remark 8.1.3. The first statement implies that the first eigenvalue of T is simple which
is a special case of the Krein-Rutman Theorem. For the second statement, observe that if
(H − λ0)u = f in D′ , then from (8.1) and (H − λ0)ψ0 = 0∣∣∣∣ ∫ ∇u · ∇ψ0 +

∫
(1 + |x|2)uψ0 = λ0

∫
uψ0 +

∫
ψ0f∫

∇ψ · ∇u+
∫

(1 + |x|2)ψ0u = λ0

∫
ψ0u

⇒
∫
ψ0f = 0

and hence 〈f, ψ0〉L2 = 0 is a necessary condition for the equation to be solvable in Σ . Propo-
sition 8.1.3 says that this condition is necessary and sufficient which is a special case of the
Fredholm alternative.

Proof of Proposition 8.1.3. This follows from an elementary variational argument.

step 1 Compactness of the minimization problem. Consider the minimization problem

I = inf
u∈A
‖u‖2Σ, A = {u ∈ Σ, ‖u‖L2 = 1}.

Then I ≥ 0 by definition and we may consider a minimizing sequence which is bounded in Σ .
Recalling Remark 8.1.1, we have up to a subsequence∣∣∣∣ un ⇀ u in Σ

un → u in L2

and hence u ∈ Σ , ‖u‖L2 = limn→+∞ ‖un‖L2 = 1 ensures u ∈ A and

‖u‖2Σ ≤ lim inf
n→+∞

‖u‖2Σ = I

and hence u attains the infimum. Arguing verbatim like for the proof of (7.9), we conclude
that there exists µ ∈ R such that

Hu = µu ∈ D′

and then from (8.1):

‖u‖2Σ = µ

∫
|u|2 = µ⇔ µ = I.

Note that I > 0 since otherwise u ≡ 0 contradicts ‖u‖L2 = 1 . Moreover by (7.7), |u| is also
a minimizer and thus we may without loss of generality assume u ≥ 0 and u 6= 0 .

step 2 Uniqueness of the minimizer. Let now φ(x) = e−
|x|2
2 , then from (8.5):

Hφ = (d+ 1)φ,
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and then using (8.1) and Hu = Iu , u ≥ 0 , ensures:∣∣∣∣ ∫ ∇φ · ∇u+
∫

(1 + |x|2)φu = (d+ 1)
∫
φu∫

∇u · ∇φ+
∫

(1 + |x|2)uφ = I
∫
uφ

⇒ [I − (d+ 1)]

∫
φu = 0⇒ I = d+ 1

since φ > 0, u ≥ 0 and u 6= 0 . Hence ψ0, u are both minimizers, and hence using (7.7), so is

the function
√

ψ2
0+u2

2 with necessarily the same Dirichlet energy, and hence since it does not
vanish, we are in the equality case of Lemma 7.2.2 and hence u, ψ0 are proportional.

step 3 Computation of λ0 . It remains to show that I = 1
λ0

where 1
λ0

is the largest eigenvalue
of T . Indeed, let Tφ0 = 1

λ0
φ0 with ‖φ0‖L2 = 1 , then Hφ0 = λ0φ0 and hence ‖φ0‖2Σ = λ0

implies λ0 ≥ I . On the other hand, Hψ0 = Iψ0 implies Tψ0 = ψ0

I and hence 1
I ≤

1
λ0

implies
I ≥ λ0 .

step 4 Coercivity of H − λ0 . Let us now consider the minimization problem

J = inf
u∈B
‖u‖2Σ, B = {u ∈ Σ, ‖u‖L2 = 1, 〈u, ψ0〉L2 = 1}.

A minimizing sequence is bounded in Σ and hence up to a subsequence un ⇀ u in Σ and
un → u in L2 which ensures

u ∈ B and ‖u‖2Σ ≤ J

and hence u attains the infimum. The Lagrange multiplier argument ensures that there exists
µ1, µ2 ∈ R such that

Hu = µ1u+ µ2ψ0 in D′.

Using 〈u, ψ0〉L2 = 0 and (8.1) yields µ2 = 0 and hence u is a eigenvalue of H with µ1 = J , and
hence and eigenvalue of T . Since 〈u, ψ0〉L2 = 0 and the first eigenvalue is simple, necessarily
µ1 = J ≥ λ1 > λ0 . By linearity, we have proved that there exists c > 0 such that

∀u ∈ Σ with 〈u, ψ0〉L2 = 0, ‖u‖2Σ ≥ (c+ λ0)‖u‖2L2 . (8.6)

step 5 Resolvent of H−λ0 . Let now f ∈ L2 with 〈f, ψ0〉L2 = 0 , we consider the minimization
problem

K = inf
u∈B
‖u‖2Σ − λ0‖u‖2L2 − 〈f, u〉L2 , C = {u ∈ Σ, 〈u, ψ0〉L2 = 0}.

Then from (8.6). for u ∈ C ,

‖u‖2Σ − 〈f, u〉L2 ≥ ‖u‖2Σ − ‖f‖L2‖u‖L2 ≥ c‖u‖2Σ −
1

c
‖f‖L2

for some c > 0 , and hence K ≥ −c‖f‖2L2 > −∞ and every minimizing sequence is bounded
in Σ . Hence up to a subsequence un ⇀ u in Σ and un → u in L2 , and hence u ∈ C and
ensures

K = lim
n→+∞

‖un‖2Σ − 〈f, un〉L2 ≥ ‖u‖2Σ − 〈f, u〉L2

and hence u attains the infimum. Lagrange multiplier yields Hu− λ0u− f = 0 in D′ with
u ∈ Σ . Uniqueness follows immediately from (8.6) and Proposition 8.1.3 is proved.
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8.1.4 The bifurcation branch

The explicit diagonalization of H yields the energy level of a quantum particle trapped in a
magnetic potential. The basic problem in the theory of perturbations is the following: say we
add a potential V (x) ∈ L∞(Rd) , and we pick a small ε > 0 , how do we compute the first
eigenvalue of the deformed operator Hε = H+εV ? The general Lyapounov Schmidt argument
answers precisely this question, and the framework is extremely general.

Proposition 8.1.4 (Perturbation theory via Lyapounov Schmidt). Let V ∈ L∞(Rd) , then
there exists ε0 > 0 such that for all |ε| < ε0 , there exists ψε ∈ Σ and λε with |λ − λ0| . ε
with

Hεψε = λεψe.

Moreover,

λ = λ0 + ε
〈V ψ0, ψ0〉L2

‖ψ0‖L2

+O(ε2). (8.7)

Proof of Proposition 8.1.4. Let us look for a solution to Hεψε = λeψε in the form

ψε = ψ0 + εψ1, λε = λ0 + ελ1.

Then using Hψ0 = λ0ψ0 :

Hεψε = λeψε ⇔ (H + εV )(ψ0 + εψ1) = (λ0 + ελ1)(ψ0 + εψ1)

⇔ ε(Hψ0 + V ψ0) + ε2V ψ1 = ε(λ0ψ1 + λ1ψ0) + ε2λ1ψ1

⇔ (H − λ0)ψ1 = (λ1 − V )ψ0 + ε(λ1 − V )ψ1. (8.8)

In order to invert the above equation in Σ , we need according to Proposition 8.1.3 to ensure
that the right hand side is orthogonal to ψ0 , and this is therefore a non linear constraint on
ψ1 . We argue as follows. Given any ψ1 ∈ Σ , we define λ1(ψ1) by the condition

〈(λ1 − V )ψ0 + ε(λ1 − V )ψ1, ψ0〉L2 = 0⇔ λ1(ψ1) =
〈V (ψ0 + εψ1), ψ0〉L2

〈ψ0 + εψ1, ψ0〉L2

which is well defined for |ε| < ε(‖ψ1‖L2) small enough. We then define

F (ψ1) = (λ1(ψ1)− V )ψ0 + ε(λ1(ψ1)− V )ψ1

which satisfies
〈F (ψ1), ψ0〉L2 = 0, (8.9)

and (8.8) now becomes

(H − λ0)ψ1 = F (ψ1)⇔ ψ1 = (H − λ0)−1F (ψ1) (8.10)

where the resolvent is well defined by Proposition 8.1.3 and (8.9). Using (8.9), it is easily
shown that (8.10) is solved through Picard fixed point theorem for |ε| < ε0 small enough, the
details are left to the reader. The key here is the continuity of the resolvent. The conclusions
of Proposition 8.1.4 immediately follow.

The above argument can be extended to any kind of perturbations, including non local,
non self adjoint and non linear ones, see for example Exercice 8.1. The key is to reduce the
analysis to a Picard fixed point Theorem, the heart of the matter being to understand the
continuity of the resolvent in suitable function spaces. Here we used only the L2 bound, this
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may not be sufficient to study more complicated non linear problems, but a various different
kind of estimates can be derived for the resolvent. This is a classical scheme for non linear
analysis: derive linear estimates adapted to the structure of the non linear problem.

Let us also say that the above argument starts the branch of bifurcation for small ε . One
may then ask what happens when we push the branch and let ε grow: does the first eigenvalue
disappear, are other bifurcation branches createds, etc... This kind of question can become
very complicated and is very much studied from the physical, mathematical and numerical
point of views.

8.2 Euler equations and new soliton solutions

We conclude this section by giving two examples attached to the Euler equation where com-
pletely different methods apply to produce non linear solitary waves. We shall in particular
emphasize that sometimes, non linear ODE’s may save the day.

8.2.1 The incompressible Euler equation: travelling wave vortices in two
dimension

8.2.2 The compressible Euler equation: implosion in three dimension

8.3 Exercices

Exercice 8.1 (Non linear bifurcation). Let H be the one dimensional harmonic oscillator

with bound state (λ0 = 2, ψ0(x) = e−
x2

2 ) . We aim at solving the non linear equation

Hu− λu = u|u|2.

(i) Let u = εv , write the equation for ε .

(ii) Prove using a Lyapounov Schmidt bifurcation argument that there exist solutions to the
v equation which bifurcate from the ground state (λ0, ψ0) . Compute the law for the
deformed non linear eigenvalue.

(iii) Can we apply this argument to find the soliton solutions to (7.2)?
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Chapter 9

Orbital stability of the ground state

We have obtained in chapter 7 the existence of H1 solutions to∣∣∣∣ ∆Q−Q+Q|Q|p−1 = 0
Q ∈ H1(Rd) (9.1)

in dimension d ≥ 1 and for all p > 1 satisfying (6.2). Every solution to (9.1) induces a solitary
wave time periodic solution to (NLS) via the formula

u(t, x) = Q(x)eit.

A fundamental problem is stability: are these particular solutions stable by perturbation of
the initial data for (NLS)? In fact, as can been observed numerically, a generic solution to
(9.1) tends to be an unstable solution. But the ground state solution Q > 0 will turn out to
be stable in a suitable sense for not too strong nonlinearities and this will a consequence of its
variational characterization.

The aim of this chapter is to prove the so called orbital stability of the ground state solitary
wave for sc < 0 by following the steps of the seminal proof by Cazenave-Lions [6]. The heart
of the proof is Lions’ concentration-compactness Lemma, [27], which describes the lack of
compactness of the Sobolev embedding H1 ⊂ Lp , 2 ≤ p < 2∗ .

9.1 Orbital stability of the solitary wave

We work in this chapter in Rd , d ≥ 1 , and for a nonlinearity sc < 0 ie 1 < p < 1 + 4
d . We let

Q be the unique ground state solitary wave given by Theorem 7.2.1.

9.1.1 Trivial instabilities

Let u0 ∈ H1 and u ∈ C([0,+∞[;H1) be the corresponding global solution to (6.1) given by
Theorem 6.2.1. From the dynamical system point of view, the natural stability statement in
the energy space H1 would be the following: for all ε > 0 , there exists δ(ε) > 0 such that for
all u0 ∈ H1 ,

‖u0 −Q‖H1 < δ(ε) ⇒ sup
t≥0
‖u(t, x)−Q(x)eit‖H1 < ε. (9.2)

However for (6.1), the symmetry group through scaling and Galilean drifts generates trivial
instabilities which violate (9.2).
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Scaling instability. For λ > 0 , the solution to (6.1) with data

(u0)λ(x) = λ
2
p−1Q(λx) is uλ(t, x) = λ

2
p−1Q(λx)eiλ

2t.

We have
‖(u0)λ −Q‖H1 . |λ− 1| → 0 as λ→ 1.

But for t = tk
def
= 2kπ/λ2

k with λ2
k
def
= (2k)/(2k + 1),

uλk(tk, x) = λ
2
p−1

k Q(λkx) while Q(x)eitk = −Q(x).

Hence for all k large enough

sup
t≥0
‖uλk(t, x)−Q(x)eit‖H1 ≥ ‖Q‖H1 .

Galilean kick. For β ∈ Rd , the solution to (6.1) with data

(u0)β(x) = Q(x)eiβ·x is uβ(t, x) = Q(x− 2βt)eiβ·(x−βt).

It satisfies
‖(u0)β −Q‖H1 . |β| → 0 when β → 0

but
∀β ∈ Rd \ {0}, sup

t≥0
‖uβ(t, x)−Q(x)eit‖H1 ≥ ‖Q‖H1

because of the decoupling in space of Q(x) et Q(x− βt) .

9.1.2 Orbital stability

The above instabilities simply mean that we shoud not try to control the distance of the
solution to the solitary wave picked by the data, but to the full manifold of solitary waves
generated by the symmetry group.

Theoreme 9.1.1 (Orbital stability of the ground state, [6]). Let d ≥ 1 and 1 < p < 1 + 4
d · .

Then for all ε > 0 , there exists δ(ε) > 0 such that for all data u0 ∈ H1 with

‖u0 −Q‖H1 < δ(ε),

there exists two functions γ : R+ → R and x : R+ → Rd such that the solution u ∈
C([0,+∞[;H1) of (6.1) satisfies:

sup
t≥0
‖u(t, x)−Q(x− x(t))eiγ(t)‖H1 < ε. (9.3)

In other words, a data which is close to the ground state generates a solution which for all
time is close to the manifold of solitary waves, and it draws on it a curve through the modulation
parameters (γ(t), x(t)) . Theorem 9.1.1 is the starting point of a very active research area
with many remaining open problems in connection to asymptotic stability problems (does the
solution asymptotically converge as t → +∞ to a solitary wave?) and stability problems in
particular in fluid mechanics.
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9.1.3 Sharp variational characterization of the ground state

The rest of this chapter is devoted to the proof of Theorem 9.1.1. The fundamental observation
is that stability in the energy space does not rely on fine properties of the flow, but simply on
a variational characterization of the ground state based on the conserved invariants of (NLS),
here mass and energy. Theorem 9.1.1 is indeed a direct consequence of the following:

Theoreme 9.1.2 (Subcritical characterization of the ground state). Let d ≥ 1 and sc
def
=

d
2 −

2
p−1 < 0. Let Q be the ground state profile of Theorem 7.2.1. Let M > 0. Then :

(i) The minimization problem

I(M) = inf
{
E(u) : u ∈ H1 with ‖u‖2L2 = M

}
where E(u) is the energy functional is attained on the family

Qλ(M)(x− x0)eiγ0 , x0 ∈ Rd, γ0 ∈ R

where

Qλ(M)(x)
def
= (λ(M))

2
p−1Q(λ(M)x) avec λ(M)

def
=

(
M

‖Q‖2
L2

)− 1
2sc

. (9.4)

(ii) Every minimizing sequence is relatively compact in H1 up to translation and phase shift:
let (un)n∈N ∈ H1 with

‖un‖2L2 →M and E(un)→ I(M), (9.5)

then there exists (xn)n∈N ∈ (Rd)N, γ ∈ R and a subsequence φ : N→ N such that:

uφ(n)(·+ xφ(n))e
iγ → Qλ(M) in H1. (9.6)

Remark. The assumption p < 1+ 4
d is fundamental for this new characterization of Q which is

false for p ≥ 1+ 4
d · . In this last case, the soliton is a saddle point, and it is dynamically unstable

by scattering and blow up: any neighborhood of the mass critical and super critical (NLS)
ground state contains data which either lead to forward global in time scattering solutions or
finite time blow up solutions.

Proof of Theorem 9.1.1 assuming Theorem 9.1.2. By contradiction: let ε > 0 and a sequence
(un)n∈N of solutions of (6.1) such that

‖un(0, x)−Q‖H1 → 0 as n→ +∞, (9.7)

and there exists (tn)n∈N with tn ≥ 0 satisfying

∀x0 ∈ Rd, ∀γ ∈ R, ‖un(tn, x)−Q(x− x0)eiγ‖H1 > ε. (9.8)

By (9.7) and the continuity of the energy functional on H1 ,

E(un(0, x))→ E(Q) and ‖un(0, x)‖2L2 → ‖Q‖2L2 .

Let wn(x) = un(tn, x) , we conclude by the conservation of mass and energy that:

E(wn)→ E(Q), ‖wn‖2L2 → ‖Q‖2L2 ,

and hence by (9.6), we can find (xφn)n∈N ∈ (Rd)N and γ ∈ R such that

wφ(n)(·+ xφ(n))e
iγ → Q in H1

which contradicts (9.8).
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9.2 Minimization of the energy under a mass constraint

The rest of this chapter is devoted to the proof of Theorem 9.1.2.

9.2.1 Computing I(M)

We first observe that I(M) is a homoegeneous function of M .

Lemma 9.2.1 (Calcul de I(M)). There holds∣∣∣∣∣ ∀M > 0, I(M) = M
1−sc
|sc| I(1)

−∞ < I(1) < 0.
(9.9)

Proof of Lemma 9.2.1. We first claim.

I(M) > −∞. (9.10)

Indeed, from Gagliardo-Nirenberg:

‖u‖Lp+1 ≤ C‖∇u‖σL2‖u‖1−σL2 with − σ +
d

2
=

d

p+ 1
·

Hence for u ∈ H1 with ‖u‖2L2 = M ,

E(u) ≥ 1

2
‖∇u‖2L2 − C‖∇u‖

d(p−1)
2

L2 M
(p+1)(1−σ)

2 . (9.11)

Since
p < 1 +

4

d
⇔ d(p− 1)

2
< 2,

the function x 7→ 1
2x

2 − Cx
d(p−1)

2 is lower bounded on R+, and (9.10) follows.
We now claim

I(M) < 0. (9.12)

Indeed, let u ∈ H1 with ‖u‖2L2 = M. Fpr λ > 0, let

uλ(x) = λ
d
2u(λx),

then
‖uλ‖2L2 = ‖u‖2L2 = M

and

E(uλ) = λ2

(
1

2

∫
Rd
|∇u|2 dx− λ(p−1)sc

p+ 1

∫
Rd
|u|p+1 dx

)
< 0

for λ > 0 small enough.
We now prove (9.9) using a different scaling:

uλ(x) = λ
2
p−1u(λx)

which yields
‖uλ‖2L2 = λ

4
p−1
−d‖u‖2L2 = λ−2sc‖u‖2L2

and
E(uλ) = λ2(1−sc)E(u).

Hence:
∀M > 0, ∀λ > 0, I(λ−2scM) = λ2(1−sc)I(M)

and taking λ−2scM = 1⇔ λ = M
1

2sc yields (9.9).
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9.2.2 Classification of minimizers

We assume in this section that the infimum is attained (which will be proved later), and we
classify the set of minimizers.

Lemma 9.2.2 (Euler-Lagrange for minimizers). Let u be a minimizer for I . Then:

(i) |u| is a minimizer and ∫
|∇|u||2 dx =

∫
|∇u|2 dx. (9.13)

(ii) If u ≥ 0 then there exists µ ∈ R such that:

∆u+ up = µu. (9.14)

(iii) The Lagrange multiplier µ does not depend on the minimizer and

µ = µ(M) > 0.

Proof of Lemma 9.2.2. The proof is similar to the one of Proposition 7.2.1 : if u is a minimizer,
then so is |u| by (7.7), and E(u) = E(|u|) = I(M) implies

∫
|∇u|2 dx =

∫
|∇|u||2 dx, and (i)

is proved.
Let u ≥ 0 be a minimizer and h ∈ C∞c (Rd). Then (7.11), (7.12) and (7.13) give (with a slight
abuse of notations) :

d

dt
E(u+ th)|t=0 = −

∫
Rd

(∆u+ up)h dx and
d

dt

(
‖u+ th‖2L2

)
|t=0

= 2

∫
Rd
uh dx,

and as in the proof of Proposition 7.2.1, this yields the existence of µ = µ(u) such that u
satisfies (9.14). We now claim that µ does not depend on u , which is a consequence of the
scale invariance of the minimization problem. Indeed, we multiply (9.14) by u and integrate

−
∫
|∇u|2 dx+

∫
up+1 dx = µ

∫
u2 dx = µM. (9.15)

We then multiply (9.14) by d
2u+ x · ∇u. Combining the Pohozaev identity (6.22) with (6.23)

forq = p+ 1, we obtain, rembering that u ≥ 0 :

0 = −
∫
|∇u|2 dx+

∫
up
(
d

2
u+ x · ∇u

)
dx = −

∫
|∇u|2 dx+

(
d

2
− d

p+ 1

)∫
up+1 dx

and hence the second relation:∫
|∇u|2 dx =

d(p− 1)

2(p+ 1)

∫
up+1 dx.

This implies with (9.15):

µM =

(
1− d(p− 1)

2(p+ 1)

)∫
up+1 dx. (9.16)

But by (9.16),

I(M) = E(u) =
1

2

∫
|∇u|2 dx− 1

p+ 1

∫
up+1 dx

=
1

p+ 1

(
d(p− 1)

4
− 1

)∫
up+1 dx =

1

p+ 1

(
d(p−1)

4 − 1

1− d(p−1)
2(p+1)

)
µM
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and µ depends only on M. We moreover observe that the right hand side is non positive: this
is obvious for d = 1 , and for d ≥ 2 :

p < 1 +
4

d
<
d+ 2

d− 2
implies

d(p−1)
4 − 1

1− d(p−1)
2(p+1)

< 0.

Since I(M) < 0, we conclude µ > 0.

We are thus left with classifiying the positive H1 solutions to

∆u+ up = µu, µ > 0.

This is a highly non trivial problem which has been solved in the 80’s by Gidas, Ni, Nirenberg
[15]. This is one of the spectacular success of the analysis of non linear elliptic PDE’s from
the 80’s.

Theoreme 9.2.1 (Uniqueness of the ground state). Let u ∈ H1 be a solution to

∆u− u+ up = 0, u ≥ 0.

Then there exists x0 ∈ Rd such that u(x− x0) has spherical symmetry.

Let us stress that the link between positivity and symmetry is at first hand totally unclear,
and the proof relies on a very clever use of the maximum principle for the Laplace operator
and the moving hyperplane method which goes beyond the scope of these notes. We may now
complete the classification of minimizers.

Proposition 9.2.1 (Classification of minimizers). Let u be a minimizer of

I(M) = inf
{
E(u) : u ∈ H1 with ‖u‖L2 = M

}
·

Then there exists (γ0, x0) ∈ R× Rd such that

u(x) = Qλ(M)(x− x0)eiγ0

where Qλ(M) is given by (9.4).

Proof of Proposition 9.2.2. Let u be a minimizer, then so is v = |u| ≥ 0 . By Lemma 9.2.2, v
is a non trivial (since I(M) < 0) solution to

∆v + vp = µv, v ∈ H1, v ≥ 0

with µ = µ(M) > 0 . Then

w =
1

λ
2
p−1

v
(x
λ

)
with λ =

√
µ (9.17)

satisfies
∆w − w + wp = 0, w ∈ H1, w ≥ 0.

Hence the combination of Theorem 7.2.1 and Theorem 9.2.1 ensure that w = Q(x − x0) for
some x0 ∈ Rd . Coming back to (9.17), we obtain

‖Q‖2L2 = ‖w‖2L2 = λ2sc‖v‖2L2 = λ2scM.

Since Q does not vanish, we conclude by (9.13) and Lemma 7.2.2 that there exists γ ∈ R and
x1 ∈ Rd such that

u = |u|eiγ = Qλ(M)(x− x1)eiγ .
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9.3 The H1 relative compactness of minimizing sequences

We now turn to the heart of the description of minimizing sequences which will allow us to
conclude the proof of Theorem 9.1.2.

9.3.1 The lack of compactness of the Sobolev injection

Let (un)n∈N be a minimizing sequence for I(M) :

‖un‖2L2 = M, E(un)→ I(M).

Then (un)n∈N is bounded in H1 from (9.11). To show that one can extract a non trivial weak
limit which attains the infimun, we must establish strong convergence in Lp+1 ∩ L2 , which
is of course completely false for a generic bounded H1 sequence. To overcome this difficulty,
we introduce the profile decomposition of the sequence un as introduced in [14] in the con-
tinuation of [27] which completely describes the lack of compactness of the Sobolev embedding.

Let us start with a definition.

Definition (Limiting weak set). Let v = (vn)n≥1 be a bounded sequence of H1 functions. We
let V(v) be the set of all possible H1 weak limits extracted from (vn)n≥1 and its translates:

V ∈ V(v)⇔ vφ(n)(·+ xn) ⇀ V in H1 as n→ +∞.

This is a bounded subset of H1 and we denote

η(v) = sup
V ∈V(v)

‖V ‖H1 .

We may now state the profile decomposition property.

Proposition (Profile decomposition). Let d ≥ 1 . Let v = (vn)n≥1 be a bounded sequence in
H1(Rd) . Then there exists a subsequence still denoted (vn)n≥1 , a family (xj)j≥1 of sequences
(xjn)n≥1 of points of Rd , a sequence of profiles (V j)j≥1 bounded in H1 and a family (vj)j≥1

of sequences of corrections vjn ∈ H1 such that the following holds:
(i) Separation: for k 6= j ,

lim
n→+∞

|xkn − xjn| = +∞. (9.18)

(ii) Decomposition in H1 : there holds the decomposition

vn =
∑̀
j=1

V j(· − xjn) + v`n (9.19)

with for every fixed ` ≥ 1 :∣∣∣∣∣ ‖vn‖2L2 =
∑`

j=1 ‖V j‖2L2 + ‖v`n‖2L2 + on→+∞(1)

‖∇vn‖2L2 =
∑`

j=1 ‖∇V j‖2L2 + ‖∇v`n‖2L2 + on→+∞(1)
(9.20)

and the asymptotic vanishing in `:

lim
`→+∞

η(v`) = 0. (9.21)
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(iii) Uniform splitting of the potential energy: let

2 < p < 2∗ (9.22)

then
lim

`→+∞
lim sup
n→∞

‖v`n‖Lp = 0 (9.23)

and there holds the no loss asymptotic splitting of the potential energy:∣∣∣∣ ‖vn‖pLp =
∑`

j=1 ‖V j‖pLp + ε`n
lim`→+∞ lim supn→+∞ ε

`
n = 0.

(9.24)

Remark 9.3.1. Beware of the fact that (9.21) is very different from lim`→+∞ lim supn→∞ ‖v`n‖H1 =
0 which has no reason to hold in general as can be seen on the example of the vanishing sequence

vn =
1

n
d
2

φ
(x
n

)
, φ ∈ S(Rd).

It however holds in Lp for 2 < p < 2∗ , (9.23), this is why a compactess process is at work.

In other words, up to an error which can be made arbitrarily small in in Lp , smallness
being indexed by the parameter ` , the sequence vn constists of ` bubbles which move strictly
away from each other according to (9.18). The decomposition can be iterated ` → +∞ with
smaller and smaller errors in Lp and in the η(v`) sense which provides an asymptotic no loss
estimate for the potential energy (9.23), (9.24) which is contained in the bubbles only.

Proof of Proposition 9.3.1. We closely follow [19]. We fix once and for all v = (vn)n≥1 a
bounded sequence in H1 .

step 1 Induction and H1 bounds. We construct by induction on j a sequence V j ∈ V(v) , a
family (xj)j≥1 of sequence of Rd such that (9.18) holds and a family (vj)j≥1 of sequences of
error vjn ∈ H1 such that, up to a subsequence, (9.19) holds with the uniform bound (9.21).

` = 1 . If η(v) = 0 , we can take V j = 0 for all j . Otherwise, we pick a non trivial profile
V 1 ∈ V(v) such that

‖V 1‖H1 ≥
1

2
η(v) > 0.

Then by definition, there exists x1 = (x1
n)n≥1 such that up to extraction of a subsequence:

vn(·+ x1
n) ⇀ V 1 in H1

and we set
v1
n = vn − V 1(· − x1

n).

Since v1
n(·+x1

n) ⇀ 0 in H1 , we have as n→ +∞ and by translation invariance of the Lebesgue
measure in Rd :

‖vn‖2L2 = ‖v1
n + V 1(· − x1

n)‖2L2 = ‖v1
n‖2L2 + 2<

〈
v1
n, V

1(· − x1
n

〉
)L2 + ‖V 1(· − x1

n)‖2L2

= ‖v1
n‖2L2 + ‖V 1‖2L2 + 2<

〈
v1
n(·+ x1

n), V 1
〉
L2 = ‖v1

n‖2L2 + ‖V 1‖2L2 + on→+∞(1)

and similarily
‖∇vn‖2L2 = ‖∇v1

n‖2L2 + ‖∇V 1‖2L2 + on→+∞(1).
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This implies the bounds
lim sup
n→+∞

‖v1
n‖2H1 ≤ lim sup

n→+∞
‖vn‖2H1 .

` = 2 . We now write
vn = V 1(· − x1

n) + v1
n,

replace v by v1 = (v1
n)n≥1 which is a bounded sequence in H1 , and iterate the process. If

η(v1) = 0 , we take V j = 0 for all j ≥ 2 . Otherwise, we extract V 2 6= 0 , x2 , v2 as above.
The fundamental observation is that necessarily the sequences x1 , x2 decouple ie

lim
n→+∞

|x1
n − x2

n| = +∞.

Indeed, by contradiction, we could otherwise extract up to a subsequence

x1
n − x2

n → x0 ∈ Rd as n→ +∞, (9.25)

but then since by construction ∣∣∣∣ v1
n(·+ x2

n) ⇀ V 2 in H1

v1
n(·+ x1

n) ⇀ 0 in H1

the relation
v1
n(·+ x2

n)) = v1
n(·+ (x2

n − x1
n) + x1

n))

with (9.25) implies
V 2 = 0

which is a contradiction. Finally, we observe that by construction∣∣∣∣ v1
n(·+ x1

n) ⇀ 0 in H1

v2
n(·+ x2

n) ⇀ 0 in H1

and
v1
n = V 2(· − x2

n) + v2
n ⇒ v1

n(·+ x1
n) = V 2(·+ x1

n − x2
n) + v2

n(·+ x1
n).

Since |x1
n − x2

n| → +∞ ,

V 2(·+ x1
n − x2

n) ⇀ 0 in H1 as n→ +∞

and hence
v2
n(·+ x1

n) ⇀ 0 in H1 as n→ +∞.

This implies

vn = S2
n + v2

n, S2
n =

2∑
j=1

V j(· − xjn).

We compute the norms:∣∣∣∣ ‖vn‖2L2 = ‖S2
n + v2

n‖2L2 = ‖S2
n‖2L2 + 2<

〈
S2
n, v

2
n

〉
L2 + ‖S2

n‖2L2

∇vn‖2L2 = ‖∇S2
n +∇v2

n‖2L2 = ‖∇S2
n‖2L2 + 2<

〈
∇S2

n,∇v2
n

〉
L2 + ‖∇S2

n‖2L2

The cross product vanishes at n→ +∞ using

v2
n(·+ xjn) ⇀ 0 in H1 as n→ +∞, j = 1, 2
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which ensures ∣∣∣∣∣∣
<
〈
Vj(· − xjn, v2

n

〉
L2

= <
〈
Vj , v

2
n(·+ xjn)

〉
L2
→ 0 as n→ +∞

<
〈
∇Vj(· − xjn,∇v2

n

〉
L2

= <
〈
∇Vj ,∇v2

n(·+ xjn)
〉
L2

= 0.

On the other hand, the decoupling limn→+∞ |x1
n − x2

n| = +∞ ensures

‖S2
n‖2L2 = ‖V 1(· − x1

n) + V 2(· − x2
n)‖2L2 = ‖V 1(· − x1

n)‖2L2 + ‖V 2(· − x2
n)‖L2 + on→+∞(1)

= ‖V 1‖L2 + ‖V 2‖2L2 + on→+∞(1)

and similarily for the Dirichlet energy:

‖∇S2
n‖2L2 = ‖∇V 1‖L2 + ‖∇V 2‖2L2 + on→+∞(1).

Hence ∣∣∣∣ ‖vn‖2L2 = ‖V 1‖2L2 + ‖V 2‖2L2 + ‖v2
n‖2L2 + on→+∞(1)

‖∇vn‖2L2 = ‖∇V 1‖2L2 + ‖∇V 2‖2L2 + ‖∇v2
n‖2L2 + on→+∞(1).

Induction on ` . We now argue by induction on ` and use a diagonal extraction argument to
construct V ` , x` , v` such that up to a subsequence, for all ` ≥ 1 ,∣∣∣∣ vn = S`n + v`n

S`n =
∑`

j=1 V
j(· − xjn),

(9.26)

the separation (9.18) holds, the weak limit

∀1 ≤ j ≤ `, v`n(·+ xjn) ⇀ 0 in H1 as n→ +∞ (9.27)

holds and by construction
η(vj) ≤ 2‖V j−1‖H1 , j ≥ 2. (9.28)

Fix ` ≥ 1 , then using (9.18) yields the asymptotic orthogonality:∣∣∣∣∣ ‖S`n‖2L2 = ‖
∑`

j=1 V
j(· − xjn)‖2L2 →

∑`
j=1 ‖V j‖2L2 as n→ +∞

‖∇S`n‖2L2 →
∑`

j=1 ‖∇V j‖2L2 as n→ +∞.
(9.29)

We now develop the scalar product and use (9.27) to compute:

‖vn‖2L2 = ‖S`n + v`n‖2L2 = ‖S`n‖2L2 + ‖v`n‖2L2 + on→+∞(1) =
∑̀
j=1

‖V j‖2L2 + ‖v`n‖2L2 + on→+∞(1)

and similarily for the Dirichelt energy, and (9.20) is proved. This implies letting n→ +∞ :

C ≥ lim
supn→+∞

‖vn‖2H1 ≥
∑̀
j=1

‖V j‖2H1

and hence since this is true for all j :

+∞∑
j=1

‖V j‖2H1 < +∞. (9.30)
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This implies recalling (9.28):

η(vj) ≤ 2‖V j−1‖H1 → 0 as j → +∞

and (9.21) is proved.

step 2 Lp bounds. We now claim the asymptotic splitting of the kinetic energy (9.23), (9.24)
which follows from (9.21) and Sobolev embeddings. First observe from (9.20) the uniform
bound

∀` ≥ 1, lim sup
n→+∞

‖v`n‖H1 ≤ lim sup
n→+∞

‖vn‖H1 ≤ C (9.31)

independent of ` . Let us fix once and for all χ ∈ S(Rd) with

χ̂(ξ) =

∣∣∣∣ 1 for |ξ| ≤ 1
0 for |ξ| ≥ 2

, |χ̂| ≤ 1,

and given R > 0 , let
χR(x) = Rdχ(Rx). (9.32)

Then

χ̂R(ξ) = χ̂

(
ξ

R

)
=

∣∣∣∣ 1 for |ξ| ≤ R
0 for |ξ| ≥ 2R

We now split in low and high frequencies

v̂`n = v̂`nχ̂R + v̂`n(1− χ̂R)⇔ v`n = χR ? v
`
n + (δ − χR) ? v`n

where δ is the Dirac mass at the origin. High frequencies are estimated using the homegeneous
Sobolev embbeding: let

−s+
d

2
=
d

p
, 0 < s < 1

from (9.22), then

‖(δ − χR) ? v`n‖2Lp . ‖(δ − χR) ? v`n‖2Ḣs ≤
∫
|ξ|≥R

|ξ|2s|v̂`n|2(ξ)dξ =

∫
|x|≥R

|ξ|2|
|ξ|2(1−s) |v̂

`
n|2(ξ)dξ

.
‖v`n‖2H1

R2(1−s) .

and hence using (9.31)

∀` ≥ 1, lim sup
n→+∞

‖(δ − χR) ? v`n‖2Lp ≤
C

R2(1−s) .

Given ε > 0 , we may therefore find R = R(ε) such that

∀` ≥ 1, lim sup
n→+∞

‖(δ − χR) ? v`n‖2Lp < ε.

This R = R(ε) being now fixed, we estimate the low frequency part using Hölder and Young:

‖χR ? v`n‖Lp . ‖χR ? v`n‖
2
p

L2‖χR ? v`n‖
1− 2

p

L∞ . ‖χR‖L1‖v`n‖L2‖χR ? v`n‖
1− 2

p

L∞ . ‖v`n‖L2‖χR ? v`n‖
1− 2

p

L∞

where used from (9.32):
∀R > 0, ‖χR‖L1 = ‖χ‖L1 .
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Hence from (9.31):

lim sup
n→+∞

‖χR ? v`n‖Lp ≤ C lim sup
n→+∞

‖χR ? v`n‖
1− 2

p

L∞ .

We now observe recalling the Definition 9.3.1 of the limiting weak set:

lim sup
n→+∞

‖χR ? v`n‖L∞ = sup
(xn)n≥1

lim sup
n→+∞

‖(χR ? v`n)(xn)‖L∞ = sup
(xn)n≥1

lim sup
n→+∞

∣∣∣∣∫
Rd
χR(xn − y)vn(y)dy

∣∣∣∣
= sup

(xn)n≥1

lim sup
n→+∞

∣∣∣∣∫
Rd
χR(−y)vn(xn + y)dy

∣∣∣∣ ≤ sup
V ∈V(v`)

∣∣∣∣∫
Rd
χR(−y)V (y)dy

∣∣∣∣ .
From Hölder, ∣∣∣∣∫

Rd
χR(−y)V (y)dy

∣∣∣∣ ≤ ‖χR‖L2‖V ‖L2

and hence the bound:
lim sup
n→+∞

‖χR ? v`n‖L∞ ≤ C(R)η(v`).

R = R(ε) has been fixed, so we now let ` → +∞ and (9.21) yields (9.23). We are now in
position to conclude the proof of (9.24). Fix ` ≥ 1 and recall (9.26):

vn = S`n + v`n.

We first estimate from (9.29), (9.30) and Sobolev:

∀` ≥ 1, lim sup
n→+∞

‖S`n‖2Lp ≤ Cp lim sup
n→+∞

‖S`n‖2H1 < C (9.33)

with constant C > 1 independent of ` . We now use the homogeneity estimate∣∣∣∣∣∣
∣∣∣∣∣∣
∑̀
j=1

aj

∣∣∣∣∣∣
p

−
∑̀
j=1

|aj |p
∣∣∣∣∣∣ ≤ Cp,`

∑
j 6=q
|aj ||ak|p−1 (9.34)

to first estimate with Hölder:∣∣∣‖S`n + v`n‖
p
Lp − ‖S

`
n‖

p
Lp − ‖vn‖

p
Lp

∣∣∣ ≤ Cp ∫
Rd

[
|S`n||v`n|p−1 + |v`n||S`n|p−1

]
dx

≤ Cp

(
‖v`n‖Lp‖S`n‖

p−1
Lp + ‖v`n‖

p−1
Lp ‖S

`
n‖Lp

)
. (9.35)

We now estimate using (9.34), (9.18) and an elementary density argument:

‖S`n‖
p
Lp =

∑̀
j=1

‖V j‖pLp + on→+∞(1).

Let

ε`n = ‖vn‖pLp −
∑̀
j=1

‖V j‖pLp ,

we conclude using (9.33), (9.35), (9.23) that

∀` ≥ 1, lim sup
n→+∞

|ε`n| ≤ Cp lim sup
n→+∞

‖v`n‖Lp

and letting `→ +∞ and using (9.23) concludes the proof of (9.24).
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The profile decomposition is the generalization of P.L Lions’ concentration compactness
principle whihch arose for the very first time at the end of the 1970’s in non compact geometric
problems and led to the resolution of a series of classical variational problems in mathematical
physics, [27]. More recently, a new set of applications arose for the study of nonlinear dispersive
equations and the classification of minimal elements in the seminal works of Kenig, Merle [21],
which have designes a revolutionary route map for the study of global existence and scattering
for non linear dispersive PDE’s.

9.3.2 Compactness of minimizing sequences

Let us show how Proposition 9.3.1 allows us to conclude the proof of Theorem 9.1.2.

Let (un)n∈N be a minimizing sequence. Let us consider up to a subsequence the profile
decomposition of Proposition 9.3.1. The key is to show that for a minimizing sequence, the
profile decomposition must be trivial

V j = 0 for j ≥ 2. (9.36)

Indeed, by Proposition 9.3.1,

E(un) =
1

2
‖∇vn‖2L2 −

1

p+ 1
‖un‖p+1

Lp+1 =
1

2

∑̀
j=1

‖∇V j‖2L2 + ‖∇v`n‖2L2 −
1

p+ 1

∑̀
j=1

‖V j‖p+1
Lp+1 − εn,`

=
∑̀
j=1

E(V j) + ‖∇v`n‖2L2 + εn,` ≥
∑̀
j=1

E(V j)− εn,`

with
lim

`→+∞
lim sup
n→+∞

εn,` = 0.

Letting n→ +∞ and then `→ +∞ yields

I(M) ≥
+∞∑
j=1

E(V j).

Moreover,

M = ‖vn‖2L2 =
∑̀
j=1

‖V j‖2L2 + ‖v`n‖2L2 + on→+∞(1)

and hence letting n→ +∞ and then `→ +∞ yields

M ≥
+∞∑
j=1

‖V j‖2L2 .

Let
Mj = ‖V j‖2L2 = αjM, 0 ≤ αj ≤ 1,

and recall (9.9):

I(M) = Mβ, β =
1 + |sc|
|sc|

> 1,

135



we obtain:

I(M) = I(1)Mβ ≥
+∞∑
j=1

E(V j) ≥
+∞∑
j=1

I(Mj) = I(1)Mβ
+∞∑
j=1

αβj

and hence since I(1) < 0 :
+∞∑
j=1

αβj ≥ 1.

On the other hand,

M ≥
+∞∑
j=1

‖V j‖2L2 = M
+∞∑
j=1

αj

and hence the constraints ∣∣∣∣∣∣∣
∑+∞

j=1 αj ≤ 1∑+∞
j=1 α

β
j ≥ 1

0 ≤ αj ≤ 1

which since β > 1 forces α1 = 1 , αj = 0 for j ≥ 2 , and (9.36) is proved. We conclude:∣∣∣∣ I(M) ≥ E(V 1)
‖V 1‖2L2 = α1M = M

which since I(M) is the infimum forces

E(V 1) = I(M),

and V 1 attains the infimum. We have shown

‖un‖2L2 → ‖V 1‖2L2

and by strong Lp+1 convergence since V 1 attains the infimum

‖∇un‖2L2 → ‖∇V 1‖2L2

and hence
un − V 1(· − x1

n)→ 0 in H1.

We conclude using Proposition 9.2.1 that there exists (γ0, x0) ∈ R× Rd such that

V 1 = Qλ(M)(x− x0)eiγ0 ,

which concludes the proof of (9.6).

9.4 Exercices

Exercice 9.1 (Ground state of a gaseous star). We work in R3 . To every positive function
u : R3 → R+ , we associate its Poisson field

Eu
def
= ∇φu with φu

def
= − 1

4π|x|
? u.

The potential φu is a solution to
∆φu = u. (9.37)
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(i) Show that

|Eu(x)| . 1

|x|2
? |u|.

Prove that
‖Eu‖L2 . ‖u‖

1
3

L2‖u‖
2
3

L1 .

(ii) Compute Êu in terms of û . Prove

‖Eu‖H1 . ‖u‖L2 + ‖u‖L1 .

(iii) Let (un)n∈N be a bounded sequence in L1 ∩ L2 such that

un ⇀ u dans L2.

Show using Plancherel that

∀φ ∈ C∞c (R3),

∫
Eunφdx −→

∫
Euφdx.

Prove that
Eun ⇀ Eu dans L2.

(iv) We assume that u has spherical symmetry. Show the representation formula

Eu(r) = φ′u(r)er =

(
1

r2

∫ r

0
τ2u(τ)dτ

)
x

|x|
·

Show that

∀R > 0,

∫
|x|≥R

|Eu|2dx .
‖u‖2L1

R
·

(v) Let (un)n∈N be a bounded sequence in L1 ∩L2 of radially symmetric positive functions.
Show that we can extract (uϕ(n))n∈N such that

uϕ(n) ⇀ u in L2

and
Euϕ(n) → Eu in L2.

(vi) Let M > 0 and

A(M) =
{
u : R3 7→ R+ with u ∈ L2(R3) et

∫
R3

u dx = M
}
·

Let
I(M) = inf

u∈A(M)

[∫
R3

|u|2 dx−
∫
R3

|Eu|2 dx
]
.

Show that
−∞ < I(M) < 0.

(vii) Compute I(M) in terms of M and I(1) .
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(viii) Let Arad(M) be the set of radially symmetric elements u ∈ A(M) . Let

Irad(M) = inf
u∈Arad(M)

[∫
R3

|u|2 dx−
∫
R3

|Eu|2 dx
]
.

Show that Irad(M) is attained.

Exercice 9.2 (Kinetic model of stars). A galaxy is a cluster of 1015 stars. A statistic de-
scription is given by the distribution f(x, v) which is the density of stars which have the speed
v ∈ R3 at the point x ∈ R3 . The total number of stars at x ∈ R3 is therefore

ρf (x) =

∫
v∈R3

f(x, v) dv.,

and the total number of stars is

‖f‖L1(R6) =

∫
R6

f(x, v) dx dv =

∫
R3

ρf (x) dx.

The total kinetic energy of the galaxy is

Ecin(f) =
1

2

∫
R6

|v|2f(x, v) dx dv.

Last, stars are submitted only to the gravitational force, and the total potential energy is

Epot(f) =

∫
R3

|∇φf (x)|2 dx où φf (x) = − 1

4π

∫
R3

ρf (y)

|x− y|
dy.

Given M1,M2 > 0 , we consider the minimization problem:

I(M1,M2) = inf
f∈A(M1.M2)

E(f)

which defines a stable galazy, where

A(M1.M2) =
{
f(x, v) ≥ 0, ‖f‖L1(R6) = M1, ‖f‖L2(R6) = M2

}
and

E(f) =
1

2

∫
R6

|v|2f dx dv −
∫
R3

|∇φf (x)|2 dx.

(i) Let x ∈ R3 . By splitting |v| ≤ R et |v| ≥ R , show that

|ρf (x)| . R
3
2

(∫
R3

f2(x, v) dv

) 1
2

+
1

R2

∫
R3

|v|2f(x, v) dv.

(ii) Conclude by optimizing on R that

∀x ∈ R3, |ρf (x)| .
(∫

R3

|v|2f(x, v) dv

) 3
7
(∫

R3

f2(x, v) dv

) 2
7

.

(iii) Prove using Hölder:

‖ρf‖
L

7
5 (R3)

. ‖|v|2f‖
3
7

L1(R6)
‖f‖

4
7

L2(R6)
.
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(iv) Prove using Hölder:

‖ρf‖2
L

6
5 (R3)

. ‖|v|2f‖
1
2

L1(R6)
‖f‖

5
6

L1(R6)
‖f‖

2
3

L2(R6)
.

(v) Show that

|∇φf (x)| . 1

|x|2
? ρf

and obtain the interpolation estimate∫
|∇φf (x)|2 dx . ‖|v|2f‖

1
2

L1(R6)
‖f‖

5
6

L1(R6)
‖f‖

2
3

L2(R6)
.

(vi) Show that
I(M1,M2) > −∞.

(vii) Using the scaling
fλ(x, v) = f

(x
λ
, λv
)
, λ > 0

show that
I(M1,M2) < 0.

(viii) Using the scaling
fλ,µ(x, v) =

µ

λ2
f
(x
λ
, µv
)
, λ, µ > 0,

show that
I(M1,M2) = M

5
6

1 M
1
3

2 I(1, 1).

The compactness of the minimizing problem can be proved, but this requires more work...

139



140



Chapter 10

Blow up: an introduction

Blow up mechanisms are in general poorly understood, but the subject has lead to a tremen-
dous activity in the last twenty years. The scenario leading to the formation of a singularity
may be complicated and the phenomenon appears under very different forms: shock waves,
turbulence, energy concentration on nonlinear structures, . . . The celebrated problem of finite
time blow up for the incompressible Navier Stokes which are the basic equations of fluid me-
chanics is one of the Millenium Clay problem.

In this context, the singularity formation for the (NLS) focusing equation is a fantastic
model problem which comprehension has considerably advanced in the last fifteen years, in
direct connection with the mathematics developped in these notes.

As an introduction to blow up techniques, we present here the seminal pionnering work of
Merle (1992) of classification of the minimal blow up bubble for the mass critical (NLS). This
result has been a completely isolated point in the analysis of non linear PDEs until it became
in 2006 the corner stone of the revolutionary approach to global existence and scattering for
critical non linear dispersive equations known as the Kenig-Merle route map (2006) (see [32],
for references).

In order to simplify the exposition as much as possible, we focus in this chapter onto the
historical problem of non linear optics:{

i∂tu+ ∆u+ u|u|2 = 0
u|t=0 = u0,

(t, x) ∈ R× R2 (10.1)

which is L2 critical in dimension d = 2 ie sc = 0 .

10.1 Critical dynamics and minimal objects

We presented in chapter 7 a first variational characterization of the ground state solitary wave
to (6.1) for sc < 1 , and hence in particular for (10.1). The stability analysis of chapter 9
however requires the stronger assumption sc < 0, and is false in the critical case sc = 0. In
this chapter, we will derive a dynamical characterization of the ground state solitary wave as
solution to (10.1): it is the smallest non linear object, ie the first solution (in term of mass)
which does not disperse in large times.
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10.1.1 Another variational characterization of Q

We derive in this section the variational characterization of the ground state solitary wave as an
extremizer for a Gagliardo-Niremberg interpolation inequality as discovered by M. Weinstein,
[40].

Proposition 10.1.1 (Best constant in Gagliardo-Nirenberg). Let

J(u)
def
=
‖∇u‖2L2‖u‖2L2

‖u‖4
L4

, u ∈ H1(R2)\{0}·

Then

inf
u∈H1\{0}

J(u) = J(Q) =
‖Q‖2L2

2
, (10.2)

and the infimum is attained exactly on the family

a0Q(λ0x+ x0)eiγ0 avec (a0, λ0, x0, γ0) ∈ R∗ × R∗+ × R2 × R.

Proof of Proposition 10.1.1. . This follows a now classical path.

step 1 Reduction to ‖u‖L2 = ‖u‖L4 = 1. In dimension d = 2 and for p = 4, the Gagliardo-
Nirenberg inequality (4.14) is:

∀u ∈ H1, ‖u‖4L4 . ‖∇u‖2L2‖u‖2L2 .

Hence
J = inf

u∈H1\{0}
J(u) > 0. (10.3)

An explicit computation reveals

J(au(λ·)) = J(u), ∀(a, λ) ∈ R∗ × R∗+,

and hence adjusting the parameters a, λ, we have

J = inf
‖u‖L2=1, ‖u‖L4=1

‖∇u‖2L2 . (10.4)

step 2 Compactness. Let u ∈ H1 , and consider its distribution function

µu(t)
def
=
∣∣{|u| > t}

∣∣, t ≥ 0.

We associate to u its symmetric rearrangement u∗ which is the unique non increasing spheri-
cally symmetric function such that

∀t > 0, µu∗(t) = µu(t).

The identity (1.16) ensures
∀p ≥ 1, ‖u∗‖Lp = ‖u‖Lp .

A non trivial fact which we shall admit is that this transformation makes the kinetic energy
decrease 1 ∫

|∇u|2 dx ≥
∫
|∇u∗|2 dx.

1Polya-Szego inequality, [30].
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Hence given a minimizing sequence (un)n∈N with ‖un‖L2 = ‖un‖L4 = 1 , we conclude that
vn = u∗n is minimizing with spherical symmetry. By lower semi continuity of the kinetic energy
(cf (2.4)) and compactness of the radial Sobolev embedding H1

r ↪→ L4 , we extract (vϕ(n))n∈N
with vϕ(n) ⇀ v in H1 and :

J ≥ ‖∇v‖2L2 , ‖v‖L4 = 1 and ‖v‖L2 ≤ 1.

If ‖v‖L2 < 1 then J(v) < J which contradicts the definition of J. Hence the infimum is
attained on v .

step 3 Classification of minimizers. If u is a minimizer, so is v = |u| by (7.7). We may
therefore first restrict the study to positive minimizers. We claim the existence of Lagrange
multipliers λ, µ such that

∆v − λv + µv3 = 0. (10.5)

Arguing as in chapter 7, we fix h ∈ C∞c (R2) and then, for t ∈ R close enough to 0, we let
vt

def
= at(v + th)(λt·) with at and λt choisen so that

‖vt‖L2 = 1 et ‖vt‖L4 = 1.

A simple computation using ‖v‖L2 = ‖v‖L4 = 1 reveals:

at =
‖v + th‖L2

‖v + th‖2
L4

and λt =

(
‖v + th‖L2

‖v + th‖L4

)2

·

Hence

‖∇vt‖2L2 = a2
tλ

2
t

∫
|(∇(v + th))(λtx)|2 dx

=
‖v + th‖2L2

‖v + th‖4
L4

∫ (
|∇v(x)|2 + 2t∇v(x) · ∇h(x) + t2|∇h(x)|2

)
dx.

Then using (7.11), (7.12) and (7.13) with p = 3,

‖∇vt‖2L2 =

(
1 + 2t

∫
vh dx

1 + 4t
∫
v3h dx

)(
‖∇v‖2L2 − 2t

∫
∆v h dx

)
+O(t2).

Hence

‖∇vt‖2L2 = ‖∇v‖2L2 + 2

(
‖∇v‖2L2

∫
(v − 2v3)h dx−

∫
∆v h dx

)
t+O(t2).

This expression ensures that the map t 7→ ‖∇vt‖2L2 is derivable close to 0 , and since the
infimum is attained at 0 , we conclude that (10.5) holds with

λ = ‖∇v‖2L2 = J and µ = 2λ.

Since λ and µ are striclty positive, we may adjust the constants a, b > 0 so that w def
= av(b· )

satisfies:
∆w − w + w3 = 0, w ≥ 0, w ∈ H1\{0}.
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We conclude using Theorem 9.2.1 that there exists x0 ∈ R2 such that w = Q(· −x0).
We now consider u general minimizer, then since Q does not vanish and u is a minimizer, the
relation ∫

|∇u|2 dx =

∫
|∇|u||2 dx

yields u = |u|eiγ for γ ∈ R , and the classification is complete.
It remains to prove (10.2). We mulptiply the Q equation by Q + x · ∇Q and compute using
the Pohozaev identity : ∫

|∇Q|2 dx =
1

2

∫
Q4 dx i.e. E(Q) = 0. (10.6)

Hence J = J(Q) =
1

2
‖Q‖2L2 .

We will use the following equivalent formulation of Proposition 10.1.1.

Corollary 10.1.1 (Lower bound on the energy functional).

∀u ∈ H1, E(u)
def
=

1

2

∫
‖∇u‖2L2 −

1

4
‖u‖4L4 ≥

‖∇u‖2L2

2

[
1−
‖u‖2L2

‖Q‖2
L2

]
· (10.7)

Moreover,
(E(u) = 0 and ‖u‖L2 = ‖Q‖L2)⇔ u(x) = λ0Q(λ0x+ x0)eiγ0

for some (λ0, x0, γ0) ∈ R∗+ × R2 × R.

Proof of Corollary 10.1.1. By Proposition 10.1.1:

∀u ∈ H1, J(u) =
‖∇u‖2L2‖u‖2L2

‖u‖4
L4

≥ J(Q) =
‖Q‖2L2

2

which implies (10.7). If E(u) = 0 and ‖u‖L2 = ‖Q‖L2 , then J(u) = J(Q) and hence
u = a0Q(λ0x+ x0)eiγ0 . The constraint ‖u‖L2 = ‖Q‖L2 fixes the constant a0 = λ0 .

In other words, the total energy controls the kinetic energy for functions with mass ‖u‖L2 <
‖Q‖L2 , and at the critical level of mass ‖u‖L2 = ‖Q‖L2 , the only (up to symmetries) zero
energy function is the ground state solitary wave.

10.1.2 Generalized orbital stability

An important corollary of this new variational characterization is the following generalization
of Proposition 9.1.2 to the mass critical case.

Proposition 10.1.2 (Mass critical oribital stability). Let (un)n∈N be a sequence in H1 with

‖un‖L2 = ‖Q‖L2 , ‖∇un‖L2 → ‖∇Q‖L2 and lim sup
n→+∞

E(un) ≤ 0. (10.8)

Then up to a subsequence, there exist (xn)n∈N and (γn)n∈N elements of respectively R2 and
R such that

un(·+ xn)eiγn → Q dans H1.
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Proof of Proposition 10.1.2. Let us apply the profile decomposition Proposition 9.3.1 to the
sequence un . Up to subsequence, this yields

‖Q‖2L2 = ‖un‖2L2 =
∑̀
j=1

‖V j‖2L2 + ‖v`n‖2L2 + on→+∞(1) ≥
∑̀
j=1

‖V j‖2L2 + on→+∞(1)

and hence letting n→ +∞ and then `→ +∞ :

‖Q‖2L2 ≥
+∞∑
j=1

‖V j‖2L2 ⇒ ∀` ≥ 1, ‖V `‖L2 ≤ ‖Q‖L2 . (10.9)

On the other hand,

E(un) =
∑̀
j=1

E(V j) +
∑̀
j=1

‖∇v`n‖2L2 + on→+∞(1) + ε`n ≥
∑̀
j=1

E(Vj)
2 + on→+∞(1) + ε`n

and hence letting n→ +∞ and then `→ +∞ yields:

0 ≥
+∞∑
j=1

E(Vj).

We now invoque (10.9) and the sharp Gagliardo-Nirenberg inequality (10.7) which yield

∀j ≥ 1, E(Vj) ≥ ‖∇V j‖2L2

(
1−
‖V j‖2L2

‖Q‖2
L2

)
≥ 0

and hence necessarily ∣∣∣∣ Vj = 0 for j ≥ 2
E(V1) ≤ 0, ‖V 1‖L2 ≤ ‖Q‖L2 .

If V 1 = 0 , we conclude that up to a subsequence,

un → 0 in L4

and then using (10.8)

E(un) =
1

2
‖∇un‖2L2 −

1

4

∫
|un|4 dx→

‖∇Q‖2L2

2
as n→ +∞

which contradicts (10.8). Hence V 1 6= 0 from which using (10.1.1):

V 1 = λ0Q(λ0x+ x0)eiγ0 .

Moreover ∣∣∣∣ un(·+ x1
n) ⇀ V 1 in H1

un(·+ x1
n)→ V 1 in L4

and E(un)→ 0 (because ∀n , E(un) ≥ 0) force

E(un)→ E(V 1) = 0⇒ ‖∇un‖2L2 = ‖∇Q‖2L2 → ‖∇V 1‖2L2

and hence λ0 = 1 , and

un(·+ x1
n)→ V 1 = Q(x+ x0)eiγ0 in H1

by strong convergence of the norms, and the Proposition is proved.
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10.1.3 Minimality of the solitary wave

The variational characterization as a Gagliardo-Nirenberg extremizer implies its dynamical
unstability: it is the smallest non scattering element.

Proposition 10.1.3 (Q is minimal). Let u0 ∈ H1 avec

‖u0‖L2 < ‖Q‖L2 . (10.10)

Then the corresponding solution to (10.1) is global in time ±∞ and disperses as t → ±∞ :
∃u±∞ in H1 such that

lim
t→±∞

‖u− eit∆u±∞‖H1 = 0. (10.11)

Proof of Proposition 10.1.3. Glopal existence follows from the Cauchy theory, and scattering
from the pseudo conformal symmetry.

step 1 Global existence. We observe that (10.7) applied u(t) combined with the conservation
of mass and energy implies a uniform bound on the kinetic energy, and the blow up criterion
(6.3) yields u ∈ C([0,+∞), H1) .

step 2 Scattering. We give the proof for u0 ∈ Σ . The proof for u0 ∈ H1 only is considerably
more complicated. The pseudo conformal invariance (5.23) is still a symmetry of the non linear
problem in the L2 -critical case. Let then

u(t, x) =
1

1 + t
v

(
t

1 + t
,

x

1 + t

)
e
i
|x|2

4(1+t)

which solves (10.1) with

∀t 6= −1, ‖v(T, ·)‖L2 = ‖u(t, ·)‖L2 < ‖Q‖L2 with T =
t

1 + t
.

Hence v is global solution to (10.1) which satisfies

v(T,X)→ v(1, X) in H1 when T → 1,

and (10.11) follows from an explicit computation.

10.2 Dynamical classification of the solitary wave

We conclude this chapter by a new class of theorem which lie within the class of rigidity
theorems2. We aim at transforming the variational characterization of the solitary wave (the
smallest H1 solution in L2 with zero energy) into a dynamical classification of the solitary
wave: it is up to symmetries the unique solution to (NLS) with mass ‖Q‖L2 which does not
disperse. This should be thought of in the following way: being the first and minimal non
trivial solution of the non linear flow is a very rigid property and forces a very particular non
linear stucture to emerge, here the solitary wave. Should the problem not admit such very
special solutions, then there can be no such minimal first non scattering solution, and hence
all solutions must disperse and scatter: this is the Kenig Merle route map [21]. The heart of
the proof is the classification of minimal elements.

2See [32] for an elementary introduction.
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10.2.1 The minimal blow up bubble

The global existence criterion (10.10) is optimal in the following two ways: first the solitary
wave u(t, x) = Q(x)eit is global and non dispersive with minimal mass ‖u(t, ·)‖L2 = ‖Q‖L2 ;
second there exists a blow up solution with minimal mass ‖Q‖L2 . Indeed, the conformal
invariance (5.23) being still a symmetry of the non linear flow in the mass critical case, and
exchanging the roles of and t and T = t

1+t , we obtain

v(T,X) =
1

1− T
u

(
T

1− T
,

X

1− T

)
e
−i |X|

2

4(1−T ) .

Applied to the solitary wave u(t, x) = Q(x)eit produces the explicit solution

S(t, x) ≡ 1

1− t
Q

(
x

1− t

)
e
−i |x|

2

4(1−t)+ it
1−t , (10.12)

which emerges from the data at time 0 :

S(0, x) = Q(x)e−i
|x|2
4 .

The solution S blows up at time t = 1 at the speed

‖∇S(t, ·)‖L2 =
c

1− t
,

but is globally defined and scatters as t→ −∞ . Moreover, the conformal invariance being an
L2 isometry, this solution has miminal mass

‖S(t, ·)‖L2 = ‖Q‖L2 .

10.2.2 Uniqueness of the minimal blow up bubble

A spectacular property of the S solution is that at the time of the singularity, all the mass of
the solution concentrates at the origin as (10.12) easily implies

|S(t, ·)|2 ⇀ ‖Q‖2L2δx=0 in D′(R2). (10.13)

Hence all the mass available at t = 0 has focused into the singularity. Like the solitary
wave Q(x)eit which does not loose energy as it propagates, the minimal blow up bubble is
non dispersive and compact in H1 up to symmetries, ie it does not eject any energy during
the evolution. This behaviour must be non generic and such objects are rigid: these are the
bubbles of energy which drive the non linear flows, anything else should be linear radiation,
this is the soliton resolution conjecture. Hence the dynamical classification of these compact
bubbles is a fundamental step towards the understanding of all solutions, and a pioneering
result in this direction is:

Theoreme 10.2.1 (Classification of the minimal bubble, F. Merle (1992) [29]). Let u0 ∈ H1

with
‖u0‖L2 = ‖Q‖L2 .

If the corresponding solution u ∈ C([0, T [;H1) blows up in finite time T < +∞, then

u(t, x) ≡ S(t, x)

up to the symmetries of the flow3.
3that is scaling, phase and translations, see Proposition 6.2.1.

147



Through the conformal invariance, this yields equivalently the dynamical classification of
the solitary wave.

Corollary 10.2.1 (Dynamical classification of the solitary wave). Let u0 ∈ H1 with

‖u0‖L2 = ‖Q‖L2 .

If u is neither the solitary wave nor S up to symmetries, then u is global and scattering in
both directions of time.

In other words, Proposition 10.1.3 extends to the limiting case ‖u0‖L2 = ‖Q‖L2 , modulo
the consideration of two exceptional solutions: the minimal dynamics of the solitary wave and
S which are H1 compact. The proof is the starting point of the analysis of all data u0 with
‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗ , and 0 < α∗ � 1 , for which most dynamics have now been
classified.

10.2.3 Proof of Theorem10.2.1

Let u0 ∈ H1 be a minimal mass blow up solution: ‖u0‖L2 = ‖Q‖L2 , and u ∈ C([0, T [;H1) the
corresponding solution to (10.1). We assume finite time blow up T < +∞ .

step 1 Orbital stability and H1 compactness. Let us renormalize the solution

λ(t)
def
=
‖∇Q‖L2

‖∇u(t)‖L2

· (10.14)

Then the blow up criterion (6.3) ensures

lim
t↗T

λ(t) = 0. (10.15)

Let
v(t, x)

def
= λ(t)u(t, λ(t)x),

then by (10.14):
‖∇v(t, ·)‖L2 = ‖∇Q‖L2 .

By conservation of mass
‖v(t, ·)‖L2 = ‖u(t, ·)‖L2 = ‖Q‖L2

and energy with (10.15) :

E(v(t)) = λ2(t)E(u(t)) = λ2(t)E(u0)→ 0 as t→ T.

We conclude using Proposition 10.1.2 that there exists (x(t), γ(t)) ∈ R2 × R such that:

v(t, ·+ x(t))eiγ(t) → Q dans H1 as t→ T.

Coming back to u, we conclude

u(t, x) =
1

λ(t)
[Q+ ε]

(
x− x(t)

λ(t)

)
eiγ(t) with lim

t→T
‖ε(t, ·)‖H1 = 0. (10.16)

In other words, up to renormalization, u has a strong H1 limit as t→ T, and does not eject
mass: we say that the flow is non dispersive or compact in H1 .
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step 2 A Cauchy-Schwarz inequality. From (10.7), let u ∈ H1 with ‖u‖L2 < ‖Q‖L2 , then the
total energy controls the kinetic energy. We claim a slightly weaker statement at the minimal
level: let w ∈ H1 with ‖w‖L2 ≤ ‖Q‖L2 and ψ a smooth function, then∣∣∣∣Im(∫ w∇w · ∇ψ dx

)∣∣∣∣2 ≤ 2E(w)

∫
|∇ψ|2|w|2 dx. (10.17)

Indeed, we compute for all a ∈ R :

E(weiaψ) = E(w) + a Im

(∫
w∇w · ∇ψ dx

)
+

1

2
a2

∫
|w|2|∇ψ|2 dx.

Now ‖weiaψ‖L2 = ‖Q‖L2 , implies E(weiaψ) ≥ 0 by (10.7), which implies (10.17) by rewriting
down the discriminant of the order two polynomial in a .

step 3 L2 tightness and control of the concentration point. We now inject the first dynamical
information: we localize the mass conservation and claim that it implies the L2 tightness of
the flow

∀ε > 0, ∃R > 0 t.q. ∀t ∈ [0, T [,

∫
|x|≥R

|u(t, x)|2dx < ε. (10.18)

Observe by (10.16) that this immediately implies the control of the concentration point

lim sup
t→T

|x(t)| < +∞. (10.19)

Proof of (10.18). Let χ smooth with spherical symmetry with χ(r) = 0 for r ≤ 1
2 and χ(r) = 1

for r ≥ 1 . Let R > 0 and χR(x)
def
= χ

(
x
R

)
. We compute the evolution of the localized mass:

1

2

d

dt

∫
χR|u|2 dx = Re

(∫
χR∂tuu dx

)
= Im

(∫
i∂tuχRu dx

)
= − Im

(∫
[∆u+ u|u|2)χRu dx

)
= Im

(∫
∇u · ∇(χRu) dx

)
= Im

(∫
∇u · ∇χRu dx

)
. (10.20)

We conclude using (10.17) and the conservation of mass:∣∣∣∣ ddt
∫
χR|u|2 dx

∣∣∣∣ .√E(u0)

(∫
|∇χR|2|u|2 dx

) 1
2

.

√
E(u0)‖u0‖L2√

R
·

We integrate bewteen 0 and t < T :

∀t ∈ [0, T [,

∫
χR|u(t, x)|2dx ≤

∫
χR|u0(x)|2 dx+

C(u0)T√
R

,

and (10.18) is proved. Note that this step uses the finite time blow up assumption.

step 4 Improved regularity. We now enter the heart of the proof: the improved regularity. A
solution to a non linear dispersive PDE’s inherits the regularity of its Cauchy data. But the
key to the classification of minimal bubbles is to integrate the flow from the singularity and
use the minimality to gain regularity. Here more precisely we will show that necessarily the
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solution gains integrability at infinity u ∈ C([0, T [; Σ) : since there is no mass at blow up time
away from the origin, there could not be "too much" mass at infinity at initial time.
By (10.19), up to possibly translating by a fixed vector, there exists tn ↑ T with :

x(tn)→ 0 in R2. (10.21)

Let ψ be a radially symmetric function ψ(r) = r2 for r ≤ 1 , ψ(r) = 8 for r ≥ 2 and
|∇ψ|2 ≤ Cψ. Let A > 0 and ψA(r)

def
= A2ψ( rA). Then there exists a constant C independant

of A such that
|∇ψA|2 ≤ CψA. (10.22)

We estimate using (10.20), (10.17) and (10.22):∣∣∣∣12 d

dt

∫
ψA|u|2 dx

∣∣∣∣ =

∣∣∣∣Im ∫ (∇ψA · ∇u u) dx

∣∣∣∣ .√E0

(∫
|∇ψA|2|u|2 dx

) 1
2

.
√
E0

(∫
ψA|u|2 dx

) 1
2

and hence ∣∣∣∣∣ ddt
√∫

ψA|u|2
∣∣∣∣∣ .√E0. (10.23)

Now from (10.21) and (10.16):∫
ψA|u(tn)|2 dx→ 0 as n→ +∞.

Hence, integrating (10.23) on [t, tn] and letting n vers +∞, we obtain

∀t ∈ [0, T [,

√∫
ψA|u(t)|2 dx ≤ C(E0)(T − t),

where we used finite time blow up again. Since the right hand side is independent of A , Fatou’s
lemma ensures letting A→ +∞ :

∀t ∈ [0, T [, u(t) ∈ Σ with
∫
|x|2|u(t, x)|2dx ≤ C(E0)(T − t). (10.24)

step 5 Conformal invariance and conclusion. The last step is algebra. The bound (10.24)
implies ∫

|x|2|u(t, x)|2dx→ 0 as t→ T.

Let now
v(t, x) =

(
T

T + t

)
u

(
tT

T + t
,
Tx

T + t

)
e
i
|x|2

4(T+t) .

Then
‖v(t, ·)‖L2 = ‖u(t, ·)‖L2 = ‖Q‖L2

and a direct computation ensures:

E(v) =
1

8
lim
t↗T

∫
|x|2|u(t, x)|2 dx = 0.

We conclude using Corollary 10.1.1 that v ≡ Q up to symmetries, and hence u ≡ S up to
symmetries.
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10.3 Exercices

Exercice 10.1. Generalize Proposition 10.1.1 with (p, d) such that sc < 1 and obtain the
solitary wave as the extremizer of a suitable Gagliardo-Nirenberg inequality.

Exercice 10.2. Let u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 + α∗ for some 0 < α∗ � 1 . We assume
that the corresponding solution u ∈ C([0, T [;H1) of the L2 -critical (NLS) (i.e. p = 1 + 4

d )
blows up in finite time. We define v through the renormalization :

u(t, x) =
1

λ(t)
d
2

v

(
x

λ(t)

)
with λ(t)

def
=
‖∇Q‖L2

‖∇u(t)‖L2

·

(i) Show that
lim
t↗T

E(v(t)) = 0.

(ii) Show that there exist (x(t), γ(t)) ∈ Rd × R such that

∀x ∈ Rd, v(t, x+ x(t))eiγ(t) = Q(x) + ε(t, x)

with
sup
t∈[0,T [

‖ε(t)‖H1 = o(1) as α∗ → 0.

Hint: argue by contradiction and use Proposition 10.1.2.

Exercice 10.3 (Mass concentration for the cubic focusing (NLS) in dimension 2). Consider
(10.1) with data u0 ∈ H1

r . We suppose that the corresponding radial solution u blows up in
finite time 0 < T < +∞ . We will show that the critical norm must concentrate: :

∀R > 0, lim inf
t↗T

∫
|x|≤R

|u(tn, x)|2dx ≥ ‖Q‖2L2 .

We argue by contradiction and assume that there exists ε,R > 0 and a sequence tn → T with

lim sup
n→+∞

∫
|x|≤R

|u(tn, x)|2dx < ‖Q‖2L2 − ε.

(i) Let

λ(t)
def
=

1

‖∇u(t)‖L2

·

Show that
lim
t↑T

λ(t) = 0.

(ii) Let vn(x) = λnu(tn, λnx) with λn = λ(tn). Show that (vn)n∈N is bounded in H1 .

(iii) Compute E(vn) .

(iv) Let v be a weak limit extracted from (vn)n∈N . Show that v is non zero.

(v) Show that

E(v) ≤ 0 and 0 <

∫
|v|2 dx ≤

∫
Q2 dx − ε,

and conclude.
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